-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimizers.py
127 lines (120 loc) · 3.22 KB
/
optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from pytorch_optimizer import create_optimizer
from pytorch_optimizer.optimizer import TRAC, Lookahead, OrthoGrad
from torch.optim import Optimizer
def get_optimizer_profile(name="AdamW", shuffle=False, no_schedule=False):
profiles = {k.lower(): v for k, v in OPTIMIZER_PROFILES.items()}
profile = {**profiles.get(name.lower()), "wd_ban_list": WD_BAN_LIST}
profile["weight_decay"] = 0 if shuffle else profile.get("weight_decay", None)
no_schedule = profile.get("no_schedule", no_schedule)
if "no_schedule" in profile:
del profile["no_schedule"]
return profile, no_schedule
def get_optimizer(model, trac=False, ortho=False, lookahead=False, *args, **kwargs):
optimizer = create_optimizer(model, *args, **kwargs)
if trac:
optimizer = TRAC(optimizer, num_coefs=128)
if ortho:
optimizer = OrthoGrad(optimizer)
if lookahead:
optimizer = Lookahead(optimizer, k=5, alpha=0.5, pullback_momentum="none")
return optimizer
# Most optimizer settings can be found here:
# https://pytorch-optimizers.readthedocs.io/en/latest/optimizer
OPTIMIZER_PROFILES = {
"AdamW": dict(
optimizer_name="AdamW",
lr=1e-3,
weight_decay=0.1,
betas=(0.9, 0.95),
),
"AdEMAMix": dict(
optimizer_name="AdEMAMix",
lr=0.001,
weight_decay=0.1,
weight_decouple=True,
betas=(0.9, 0.95, 0.9999),
alpha=5.0,
cautious=True,
),
"Lion": dict(
optimizer_name="Lion",
lr=0.000333,
weight_decay=0.1,
betas=(0.9, 0.95),
r=0.98,
use_gc=True,
adanorm=True,
cautious=True,
),
"MARS": dict(
optimizer_name="MARS",
mars_type="lion",
lr=0.000333,
gamma=0.025,
optimize_1d=True,
betas=(0.95, 0.99),
betas_1d=(0.9, 0.95),
weight_decay=0.1,
weight_decay_1d=0.1,
cautious=True,
),
"Prodigy": dict(
optimizer_name="Prodigy",
lr=1.0,
weight_decay=0.1,
betas=(0.9, 0.95),
beta3=0.98,
growth_rate=float("inf"),
d_coef=0.1,
bias_correction=True,
safeguard_warmup=False,
no_schedule=True,
),
"ScheduleFreeAdamW": dict(
optimizer_name="ScheduleFreeAdamW",
lr=1e-3,
weight_decay=0.1,
betas=(0.9, 0.95),
r=0.0,
weight_lr_power=2.0,
warmup_steps=1024,
no_schedule=True,
),
"SOAP": dict(
optimizer_name="SOAP",
lr=0.00333,
weight_decay=0.1,
betas=(0.95, 0.99),
shampoo_beta=0.98,
precondition_frequency=10,
max_precondition_dim=10000,
normalize_gradient=False,
correct_bias=True,
precondition_1d=True,
merge_dims=False,
),
}
WD_BAN_LIST = [
"bias",
"edge_embeddings",
"spatial_embeddings",
"Embedding",
"BatchNorm",
"BatchNorm1d",
"BatchNorm2d",
"BatchNorm3d",
"GroupNorm",
"LayerNorm",
"RMSNorm",
"InstanceNorm",
"InstanceNorm1d",
"InstanceNorm3d",
"InstanceNorm2d",
"PReLU",
"SinLU",
"NMDA",
]