-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode10.html
126 lines (122 loc) · 7.65 KB
/
node10.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>图片清单</title>
<meta charset="utf-8">
<meta name="description" content="图片清单">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html807" href="node11.html">
<button class="navigate">下一节</button></a>
<a name="tex2html801" href="index.html">
<button class="navigate">上一级</button></a>
<a name="tex2html795" href="node9.html">
<button class="navigate">上一节</button></a>
<a name="tex2html803" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html805" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html808" href="node11.html">表格清单</a>
<b>上一级:</b><a name="tex2html802" href="index.html">首页</a>
<b>上一节:</b><a name="tex2html796" href="node9.html">直接算法清单</a>
<br>
<br>
<!--End of Navigation Panel-->
<h2><a name="SECTION00800000000000000000">图片清单</a></h2>
<ol>
<li><a name="tex2html4" href="node19.html#1049">阻尼振动质量-弹簧系统。</a>
<li><a name="tex2html19" href="node114.html#7915">残差估计,L形薄膜矩阵。</a>
<li><a name="tex2html20" href="node114.html#7921">Ritz值,L形薄膜矩阵。</a>
<li><a name="tex2html21" href="node114.html#7935">残差估计,Medline SVD矩阵</a>
<li><a name="tex2html22" href="node114.html#7940">残差估计,位移-反演L形薄膜矩阵。</a>
<li><a name="tex2html25" href="node147.html#10618">针对外部特征值的Jacobi-Davidson方法,采用多种策略求解校正方程。</a>
<li><a name="tex2html26" href="node147.html#10627">针对外部特征值(顶部)和内部特征值(底部)的Jacobi-Davidson方法。校正方程通过5步普通GMRES(左侧)和5步预处理GMRES(右侧)求解。</a>
<li><a name="tex2html29" href="node174.html#17624">残差估计,采用位移-反演的Lanczos方法,L形薄膜9点有限差分近似。</a>
<li><a name="tex2html36" href="node208.html#27088">通过直接平衡和不直接平衡计算的QH<span class="math-inline">768</span>和TOLOSA矩阵特征值的相对精度。</a>
<li><a name="tex2html37" href="node208.html#27089">通过Krylov平衡和不平衡计算的QH<span class="math-inline">768</span>和TOLOSA矩阵特征值的相对精度。</a>
<li><a name="tex2html38" href="node208.html#27090">不同Krylov平衡算法下,QH<span class="math-inline">768</span>矩阵最大和最小(按模)特征值相对精度的比较,使用默认设置的五次迭代和<span class="math-inline">10^{-8}</span>截止值。</a>
<li><a name="tex2html39" href="node208.html#27091">不同Krylov平衡算法下,TOLOSA矩阵最大和最小(按模)特征值相对精度的比较,使用默认设置的五次迭代和<span class="math-inline">10^{-8}</span>截止值。</a>
<li><a name="tex2html45" href="node274.html#26946">针对外部特征值(左侧)和内部特征值(右侧)的Jacobi-Davidson方法。</a>
<li><a name="tex2html48" href="node294.html#36421">BFW<span class="math-inline">782</span>的收敛历史。</a>
<li><a name="tex2html56" href="node354.html#43545">Procrustes问题</a>
<li><a name="tex2html57" href="node355.html#43560">Jordan问题</a>
<li><a name="tex2html58" href="node356.html#43576">迹最小化问题</a>
<li><a name="tex2html59" href="node357.html#43589">LDA玩具问题</a>
<li><a name="tex2html60" href="node358.html#43604">同时Schur问题</a>
<li><a name="tex2html61" href="node359.html#43616">同时对角化问题</a>
<li><a name="tex2html62" href="node367.html#43821">无约束微分<span class="math-inline">F(Y)</span>可以投影到切空间以获得协变梯度<span class="math-inline">G</span>。</a>
<li><a name="tex2html63" href="node369.html#43850">在平坦空间中,比较邻近点的向量没有问题,因为所有向量都位于同一切空间中。</a>
<li><a name="tex2html64" href="node369.html#43857">在弯曲流形中,比较邻近点的向量可能导致向量不在切空间中。</a>
<li><a name="tex2html65" href="node378.html#46558">非对称天际线或变带宽矩阵的轮廓。</a>
<li><a name="tex2html69" href="node408.html#48517">Olmstead问题的非精确有理Krylov方法残差范数的对数图。圆圈表示<span class="math-inline">\Vert f_j\Vert</span>,实心点表示<span class="math-inline">\Vert r_j\Vert</span>。</a>
<li><a name="tex2html70" href="node419.html#49095">共轭梯度与最速上升比较,<span class="math-inline">\delta _1 / \delta _0=10</span></a>
<li><a name="tex2html71" href="node419.html#49102">共轭梯度与最速上升比较,<span class="math-inline">\delta _1 / \delta _0=100</span></a>
<li><a name="tex2html72" href="node419.html#49109">共轭梯度与最速上升比较,<span class="math-inline">\delta _1 / \delta _0=1000</span></a>
</ol>
<p>
<br><hr>
<!--Navigation Panel-->
<a name="tex2html807" href="node11.html">
<button class="navigate">下一节</button></a>
<a name="tex2html801" href="index.html">
<button class="navigate">上一级</button></a>
<a name="tex2html795" href="node9.html">
<button class="navigate">上一节</button></a>
<a name="tex2html803" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html805" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html808" href="node11.html">表格清单</a>
<b>上一级:</b><a name="tex2html802" href="index.html">首页</a>
<b>上一节:</b><a name="tex2html796" href="node9.html">直接算法清单</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>