-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode126.html
127 lines (112 loc) · 5.81 KB
/
node126.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>锁定</title>
<meta charset="utf-8">
<meta name="description" content="锁定">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html2650" href="node127.html">
<button class="navigate">下一节</button></a>
<a name="tex2html2644" href="node124.html">
<button class="navigate">上一级</button></a>
<a name="tex2html2638" href="node125.html">
<button class="navigate">上一节</button></a>
<a name="tex2html2646" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html2648" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html2651" href="node127.html">清洗</a>
<b>上一级:</b><a name="tex2html2645" href="node124.html">正交收缩变换</a>
<b>上一节:</b><a name="tex2html2639" href="node125.html">锁定或清洗</a>
<br>
<br>
<!--End of Navigation Panel--><h4><a name="SECTION001357020000000000000">
锁定 <span class="math-inline">\theta </span></a>
</h4>
首先讨论的是锁定单个收敛的 Ritz 值。假设
<div class="math-display">Ty = y \theta, \; \Vert y\Vert = 1,</div>
其中 <span class="math-inline">e_k^* y = \eta</span>,且 <span class="math-inline">|\eta| \le \epsilon_D \Vert T \Vert</span>。这里,<span class="math-inline">\epsilon_M \le \epsilon_D \lt 1</span> 是一个指定的相对精度容差,介于 <span class="math-inline">\epsilon_M</span> 和 <span class="math-inline">1</span> 之间。
<p>
如果 <span class="math-inline">\theta </span> 是“需要的”,那么锁定 <span class="math-inline">\theta </span> 是可取的。然而,为了实现这一点,需要对当前的 Lanczos 分解进行变换,使其具有一个小次对角线以隔离 <span class="math-inline">\theta </span>。这可以通过构造一个 <span class="math-inline">k \times k</span> 的正交矩阵 <span class="math-inline">Q = Q(y)</span> 来实现,使用算法<a href="node124.html#alg-orthQ">4.9</a>:
<div class="math-display">Q e_1 = y \quad \mathrm{且} \quad e_k^* Q = ( \eta, \tau e_{k-1}^*),</div>
其中 <span class="math-inline">\eta^2 + \tau^2 = 1 </span>。
<p>
这些变换的最终结果是
<div class="math-display">
\begin{aligned}
Av_1 &= v_1\theta + r\eta, \quad \text{其中} \quad v_1^* r = 0, \\
A V_2 &= V_2 T_2 + r\tau e_{k-1}^*,
\end{aligned}
</div>
其中 <span class="math-inline">[v_1 , V_2] = V Q</span>。
<p>
这意味着随后的隐式重启发生在
<div class="math-display">A V_2 = V_2 T_2 + r\tau e_{k-1}^*</div>
所有与隐式重启相关的后续正交变换应用于 <span class="math-inline">T_2</span>,并且不会干扰关系 <span class="math-inline"> Av_1 = v_1 \theta + r \eta </span>。在随后的 Lanczos 步骤中,<span class="math-inline">v_1</span> 参与正交化,从而自动实现了 Parlett 和 Scott 推荐的择优正交化 [<a href="node421.html#pasc79">363</a>,<a href="node421.html#parl80">353</a>]。
<p>
<hr><!--Navigation Panel-->
<a name="tex2html2650" href="node127.html">
<button class="navigate">下一节</button></a>
<a name="tex2html2644" href="node124.html">
<button class="navigate">上一级</button></a>
<a name="tex2html2638" href="node125.html">
<button class="navigate">上一节</button></a>
<a name="tex2html2646" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html2648" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html2651" href="node127.html">清洗</a>
<b>上一级:</b><a name="tex2html2645" href="node124.html">正交收缩变换</a>
<b>上一节:</b><a name="tex2html2639" href="node125.html">锁定或清洗</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>