-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode131.html
135 lines (119 loc) · 7.77 KB
/
node131.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>带状Lanczos方法 R. Freund</title>
<meta charset="utf-8">
<meta name="description" content="带状Lanczos方法 R. Freund">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html2716" href="node132.html">
<button class="navigate">下一节</button></a>
<a name="tex2html2710" href="node85.html">
<button class="navigate">上一级</button></a>
<a name="tex2html2704" href="node130.html">
<button class="navigate">上一节</button></a>
<a name="tex2html2712" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html2714" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html2717" href="node132.html">收缩的必要性</a>
<b>上一级:</b><a name="tex2html2711" href="node85.html">厄米特征值问题</a>
<b>上一节:</b><a name="tex2html2705" href="node130.html">可用的软件</a>
<br>
<br>
<!--End of Navigation Panel--><h1><a name="SECTION001360000000000000000"></a> <a name="rwf:bandsym"></a><a name="8295"></a>
带状Lanczos方法
<br> <em>R. Freund</em>
</h1>
<p>
标准的厄米Lanczos算法利用由矩阵<span class="math-inline">A</span>和一个初始向量<span class="math-inline">b</span>生成的Krylov子空间来近似求解厄米特征值问题<span class="math-inline">Ax = \lambda x</span>。然而,在某些情况下,使用一组<span class="math-inline">p</span>个初始向量而非单一初始向量更为可取。例如,对于具有多个或紧密聚集特征值的矩阵,为了获得对应于这<span class="math-inline">p</span>个特征值的特征空间的基向量,需要使用由<span class="math-inline">A</span>和一组<span class="math-inline">p</span>个初始向量生成的块Krylov子空间。
<p>
一个重要的应用场景是<span class="math-inline">m</span>输入<span class="math-inline">p</span>输出的线性动态系统的降阶建模,其中多个初始向量作为问题的一部分给出;详见§<a href="node260.html#rwf:reduced_order">7.10.4</a>节。尽管这类应用通常涉及非厄米方阵<span class="math-inline">A</span>、具有<span class="math-inline">m</span>列的矩形“输入”矩阵<span class="math-inline">B</span>和具有<span class="math-inline">p</span>列的矩形“输出”矩阵<span class="math-inline">C</span>,但当<span class="math-inline">A</span>为厄米矩阵且输入和输出矩阵<span class="math-inline">B</span>与<span class="math-inline">C</span>相同时,具有特殊重要性。例如,这种情况在VLSI电路互连建模的背景下出现;参见例如[<a href="node421.html#freu98">176</a>]。对于这种特殊情况,需要将厄米Lanczos算法扩展到多个初始向量,即<span class="math-inline">B=C</span>的<span class="math-inline">p</span>列。
<p>
最后,当计算矩阵-矩阵乘积<span class="math-inline">AV</span>(其中<span class="math-inline">V</span>是具有<span class="math-inline">p</span>列的矩阵)比依次计算<span class="math-inline">p</span>个向量的矩阵-向量乘积<span class="math-inline">Av</span>更经济时,利用块Krylov子空间也是有益的。基于块Krylov子空间的Lanczos方法允许将所有必要的<span class="math-inline">A</span>乘法计算为块大小为<span class="math-inline">p</span>的矩阵-矩阵乘积<span class="math-inline">AV</span>,而在标准厄米Lanczos算法中,<span class="math-inline">A</span>的乘法必须计算为一连串的矩阵-向量乘积<span class="math-inline">Av</span>。
<p>
在本节中,我们描述了一种用于厄米特征值问题的带状Lanczos方法,
<div class="math-display" name="#rwf:AAA">A x = \lambda x, \tag{4.25}</div>
该方法基于由矩阵<span class="math-inline">A</span>和一组<span class="math-inline">p</span>个初始向量生成的块Krylov子空间,
<div class="math-display" name="#rwf:AAB">b_1,b_2,\ldots,b_p. \tag{4.26}</div>
矩阵<span class="math-inline">A</span>和初始向量(<a href="node131.html#rwf:AAB">4.26</a>)生成了块Krylov序列
<div class="math-display" name="#rwf:ABA">b_1,b_2,\ldots,b_p,A b_1, A b_2, \ldots, A b_p,\ldots,A^{k-1} b_1, A^{k-1} b_2, \ldots, A^{k-1} b_p, \ldots. \tag{4.27}</div>
带状Lanczos算法的目标是构造正交向量,
<div class="math-display" name="#rwf:ABB">v_1,v_2,\ldots,v_j, \tag{4.28}</div>
这些向量构成了块Krylov序列(<a href="node131.html#rwf:ABA">4.27</a>)中前<span class="math-inline">j</span>个线性无关向量所张成子空间的基。
<p>
<br><hr>
<!--Table of Child-Links-->
<a name="CHILD_LINKS"><strong>小节</strong></a>
<ul>
<li><a name="tex2html2718" href="node132.html">收缩的必要性</a>
<li><a name="tex2html2719" href="node133.html">基本性质</a>
<li><a name="tex2html2720" href="node134.html">算法</a>
<li><a name="tex2html2721" href="node135.html">变体</a>
</ul>
<!--End of Table of Child-Links-->
<hr><!--Navigation Panel-->
<a name="tex2html2716" href="node132.html">
<button class="navigate">下一节</button></a>
<a name="tex2html2710" href="node85.html">
<button class="navigate">上一级</button></a>
<a name="tex2html2704" href="node130.html">
<button class="navigate">上一节</button></a>
<a name="tex2html2712" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html2714" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html2717" href="node132.html">收缩的必要性</a>
<b>上一级:</b><a name="tex2html2711" href="node85.html">厄米特征值问题</a>
<b>上一节:</b><a name="tex2html2705" href="node130.html">可用的软件</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>