-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode157.html
116 lines (109 loc) · 6.08 KB
/
node157.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>可用算法综述</title>
<meta charset="utf-8">
<meta name="description" content="可用算法综述">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html3134" href="node158.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3128" href="node156.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3122" href="node156.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3130" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3132" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3135" href="node158.html">算法选择总结</a>
<b>上一级:</b><a name="tex2html3129" href="node156.html">引言</a>
<b>上一节:</b><a name="tex2html3123" href="node156.html">引言</a>
<br>
<br>
<!--End of Navigation Panel--><h4><a name="SECTION001410010000000000000">
可用算法概览</a>
</h4>
<p>
在许多情况下,我们可以将矩阵束(参见<a href="node156.html#gsymeig">5.1</a>节)转化为第四章<a href="node85.html#chap:heig">4</a>讨论的标准厄米特征值问题(HEP),或在某些情况下转化为第七章<a href="node203.html#chap:nep">7</a>讨论的标准非厄米特征值问题(NHEP),并使用这两章中描述的任何算法。我们在§<a href="node163.html#sec:dense_gsym">5.2</a>中简要回顾了此类转换。
<p>
本章的主体部分专门介绍针对广义厄米矩阵束(参见<a href="node156.html#gsymeig">5.1</a>节)的特殊形式的算法:
<dl>
<dt><strong><i>幂法与逆迭代</i></strong></dt>
<dd>§<a href="node165.html#sec_power_gsym">5.4</a>介绍的基本迭代方法。它从一个适当的初始向量开始,在每次迭代中进行一次矩阵-向量乘法和一次线性系统求解。由于这两种操作都需要,它不如标准情况下的方法吸引人,但由于其简单性以及为了阐明它与后续描述的更复杂方案的关系,我们在此将其包括进来。
<p>
</dd>
<dt><strong><i>Lanczos方法</i></strong></dt>
<dd>§<a href="node169.html#sec:lan_gsym">5.5</a>构建了一个<span class="math-inline">B</span>正交基,该基由矩阵算子表示为三对角矩阵<span class="math-inline">T</span>的Krylov序列向量组成,<span class="math-inline">T</span>的特征值产生原始矩阵束(参见<a href="node156.html#gsymeig">5.1</a>节)的几个特征值的Ritz近似。我们将在§<a href="node169.html#sec:lan_gsym">5.5</a>中描述两种变体,一种直接迭代需要进行<span class="math-inline">A</span>的乘法运算和<span class="math-inline">B</span>的系统求解,另一种位移-逆迭代需要进行<span class="math-inline">(A-\sigma B)</span>的系统求解和<span class="math-inline">B</span>的乘法运算。
<p>
</dd>
<dt><strong><i>Jacobi-Davidson方法</i></strong></dt>
<dd>§<a href="node176.html#sec:jacdav_gsym">5.6</a>更新一系列子空间,操作预处理的位移矩阵。它使用<span class="math-inline">B</span>正交性,不需要线性系统的求解。这使得它在矩阵太大以至于无法进行线性系统求解的情况下(如本章描述的其他算法所需)仍然适用。
</dd>
</dl>
<p>
<hr><!--Navigation Panel-->
<a name="tex2html3134" href="node158.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3128" href="node156.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3122" href="node156.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3130" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3132" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3135" href="node158.html">算法选择总结</a>
<b>上一级:</b><a name="tex2html3129" href="node156.html">引言</a>
<b>上一节:</b><a name="tex2html3123" href="node156.html">引言</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>