-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode177.html
139 lines (131 loc) · 6.96 KB
/
node177.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>Stability and Accuracy Assessments Z. Bai and R. Li </title>
<meta charset="utf-8">
<meta name="description" content="Stability and Accuracy Assessments Z. Bai and R. Li ">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html3415" href="node178.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3409" href="node155.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3405" href="node176.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3411" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3413" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3416" href="node178.html">正定 <span class="math-inline">B</span></a>
<b>上一级:</b><a name="tex2html3410" href="node155.html">广义厄米特征值问题</a>
<b>上一节:</b><a name="tex2html3406" href="node176.html">Jacobi-Davidson方法</a>
<br>
<br>
<!--End of Navigation Panel--><h1><a name="SECTION001470000000000000000"></a><a name="sec:gsym_pert"></a><a name="18145"></a>
<a name="18146"></a>
稳定性与精度评估
<br> <em>Z. Bai 和 R. Li</em>
</h1>
<p>
对于一个厄米矩阵对 <span class="math-inline">\{A,B\}</span> 的广义特征值问题,其中 <span class="math-inline">A</span> 和 <span class="math-inline">B</span> 之一或它们的某种线性组合是正定的,这种情况在所有矩阵对广义特征值问题中占据独特地位,因为它在许多方面与第四章<a href="node85.html#chap:heig">4</a>讨论的标准厄米特征值问题相似。此类矩阵对被称为<em>厄米正定对</em>。我们将分别考虑以下两种情况:
<ol>
<li><span class="math-inline">B</span> 是正定且良态的,这意味着
<span class="math-inline">\kappa(B)\equiv \Vert B\Vert _2\Vert B^{-1}\Vert _2</span> 不太大。<sup><a href="#footnote-b-condition-number">[1]</a></sup>
</li>
<li>某些 <span class="math-inline">A</span> 和 <span class="math-inline">B</span> 的组合是正定且良态的。
</li>
</ol>
在本节中,我们仅回顾一些基本结果,这些结果可直接用于评估计算得到的特征值和特征向量的准确性。我们假设在成功计算结束后通常可获得残差向量,如果不可获得,之后也可以较低成本计算。
<p>
关于稠密广义厄米特征问题的计算特征值和特征向量的误差估计处理,请参见《LAPACK用户指南》第四章[<a href="node421.html#lapack">12</a>]。
<p>
<br><hr>
<!--Table of Child-Links-->
<a name="CHILD_LINKS"><strong>小节</strong></a>
<ul>
<li><a name="tex2html3417" href="node178.html">正定 <span class="math-inline">B</span></a>
<ul>
<li><a name="tex2html3418" href="node179.html">残差向量</a>
<li><a name="tex2html3419" href="node180.html">将残差误差转化为后向误差</a>
<li><a name="tex2html3420" href="node181.html">计算特征值的误差界限</a>
<li><a name="tex2html3421" href="node182.html">计算特征向量的误差界限</a>
<li><a name="tex2html3422" href="node183.html">关于聚集特征值的备注</a>
</ul>
<li><a name="tex2html3423" href="node184.html">某些 <span class="math-inline">A</span> 和 <span class="math-inline">B</span> 的组合是正定的</a>
<ul>
<li><a name="tex2html3424" href="node185.html">残差向量</a>
<li><a name="tex2html3425" href="node186.html">将残差误差转化为后向误差</a>
<li><a name="tex2html3426" href="node187.html">计算特征值的误差界限</a>
<li><a name="tex2html3427" href="node188.html">计算特征向量的误差界限</a>
<li><a name="tex2html3428" href="node189.html">关于聚集特征值的备注</a>
</ul></ul>
<!--End of Table of Child-Links-->
<hr>
<ol>
<li id="footnote-b-condition-number">究竟多大的数值才算“过大”,这是一个模糊的概念,通常需要根据具体情况来处理。一般而言,我们可能会认为,任何超过1000的条件数都可以被视为“过大”。</li>
</ol>
<hr><!--Navigation Panel-->
<a name="tex2html3415" href="node178.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3409" href="node155.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3405" href="node176.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3411" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3413" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3416" href="node178.html">正定 <span class="math-inline">B</span></a>
<b>上一级:</b><a name="tex2html3410" href="node155.html">广义厄米特征值问题</a>
<b>上一节:</b><a name="tex2html3406" href="node176.html">Jacobi-Davidson方法</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>