-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
82 lines (68 loc) · 2.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import streamlit as st
import pickle
import string
import nltk
# Download NLTK resources
nltk.download('punkt')
nltk.download('stopwords')
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
ps = PorterStemmer()
# Function to transform text
def transform_text(text):
text = text.lower()
text = nltk.word_tokenize(text)
# Remove non-alphanumeric characters
text = [i for i in text if i.isalnum()]
# Remove stopwords and punctuation
text = [i for i in text if i not in stopwords.words('english') and i not in string.punctuation]
# Apply stemming
text = [ps.stem(i) for i in text]
return " ".join(text)
# Load models
vectorizer_path = 'vectorizer.pkl'
model_path = 'model.pkl'
# Loading vectorizer and model with error handling
try:
with open(vectorizer_path, 'rb') as vectorizer_file:
tfidf = pickle.load(vectorizer_file)
except Exception as e:
st.error(f"Error loading vectorizer: {e}")
try:
with open(model_path, 'rb') as model_file:
model = pickle.load(model_file)
except Exception as e:
st.error(f"Error loading model: {e}")
# Streamlit UI with background image
st.markdown(
"""
<style>
body {
background-image: url('https://your_website.com/your_image_path.jpg'); /* Replace with your image URL */
background-size: cover;
}
</style>
""",
unsafe_allow_html=True
)
# Streamlit UI components
st.title("SMS Classifier")
input_sms = st.text_area("Enter the message", height=100)
if st.button('Check'):
if input_sms:
try:
# 1. Preprocess
transformed_sms = transform_text(input_sms)
# 2. Vectorize
vector_input = tfidf.transform([transformed_sms])
# 3. Predict
result = model.predict(vector_input)[0]
# 4. Display result
if result == 1:
st.error("Spam")
else:
st.success("Not Spam")
except Exception as e:
st.error(f"Error processing input: {e}")
else:
st.warning("Please enter a message for prediction.")