forked from brinkar/real-world-machine-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfm.py3
168 lines (120 loc) · 5.06 KB
/
tfm.py3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from __future__ import absolute_import, division, print_function, unicode_literals
import pathlib
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# from keras import optimizers
print(tf.__version__)
dataset_path = keras.utils.get_file("auto-mpg.data", "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data")
column_names = ['Расход топлива','Кол-во цилиндров','Объем двигателя','Л.с.','Вес',
'Разгон до 100 км/ч', 'Год выпуска', 'Страна выпуска']
raw_dataset = pd.read_csv(dataset_path, names=column_names,
na_values = "?", comment='\t',
sep=" ", skipinitialspace=True)
dataset = raw_dataset.copy()
dataset.tail()
dataset.isna().sum()
dataset = dataset.dropna()
origin = dataset.pop('Страна выпуска')
dataset['США'] = (origin == 1)*1.0
dataset['Европа'] = (origin == 2)*1.0
dataset['Япония'] = (origin == 3)*1.0
dataset.tail()
train_dataset = dataset.sample(frac=0.8,random_state=0)
test_dataset = dataset.drop(train_dataset.index)
sns.pairplot(train_dataset[["Расход топлива", "Кол-во цилиндров", "Объем двигателя", "Вес"]], diag_kind="kde")
# plt.show()
train_stats = train_dataset.describe()
train_stats.pop("Расход топлива")
train_stats = train_stats.transpose()
# print(train_stats)
train_labels = train_dataset.pop('Расход топлива')
test_labels = test_dataset.pop('Расход топлива')
# print(train_dataset, train_stats['mean'], train_stats['std']0)
def norm(x):
return (x - train_stats['mean']) / train_stats['std']
normed_train_data = norm(train_dataset)
normed_test_data = norm(test_dataset)
def build_model():
model = keras.Sequential([
layers.Dense(64, activation=tf.nn.relu, input_shape=[len(train_dataset.keys())]),
layers.Dense(64, activation=tf.nn.relu),
layers.Dense(1)
])
# print(dir(tf.train.experimental))
optimizer = tf.compat.v1.train.RMSPropOptimizer(learning_rate=0.001)
# optimizer = keras.optimizers.RMSprop(lr=0.001)
model.compile(loss='mse',
optimizer=optimizer,
metrics=['mae', 'mse'])
return model
model = build_model()
model.summary()
example_batch = normed_train_data[:10]
example_result = model.predict(example_batch)
# from pprint import pprint
# pprint(example_result)
# Выведем прогресс обучения в виде точек после каждой завершенной эпохи
class PrintDot(keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs):
if epoch % 100 == 0: print('')
print('.', end='')
EPOCHS = 1000
history = model.fit(
normed_train_data, train_labels,
epochs=EPOCHS, validation_split = 0.2, verbose=0,
callbacks=[PrintDot()])
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
# print(hist.tail())
def plot_history(history):
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
plt.figure(figsize=(8,12))
plt.subplot(2,1,1)
plt.xlabel('Эпоха')
plt.ylabel('Среднее абсолютное отклонение')
# pprint(hist)
plt.plot(hist['epoch'], hist['mae'],
label='Ошибка при обучении')
plt.plot(hist['epoch'], hist['val_mae'],
label = 'Ошибка при проверке')
plt.ylim([0,5])
plt.legend()
plt.subplot(2,1,2)
plt.xlabel('Эпоха')
plt.ylabel('Среднеквадратическая ошибка')
plt.plot(hist['epoch'], hist['mse'],
label='Ошибка при обучении')
plt.plot(hist['epoch'], hist['val_mse'],
label = 'Ошибка при проверке')
plt.ylim([0,20])
plt.legend()
# plt.show()
model = build_model()
# Параметр patience определяет количество эпох, которые можно пропустить без улучшений
early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=50)
history = model.fit(normed_train_data, train_labels, epochs=EPOCHS,
validation_split = 0.2, verbose=0, callbacks=[early_stop, PrintDot()])
plot_history(history)
loss, mae, mse = model.evaluate(normed_test_data, test_labels, verbose=0)
print("Среднее абсолютное отклонение на проверочных данных: {:5.2f} галлон на милю".format(mae))
test_predictions = model.predict(normed_test_data).flatten()
plt.clf() # Очистим график
plt.scatter(test_labels, test_predictions)
plt.xlabel('Истинные значения')
plt.ylabel('Предсказанные значения')
plt.axis('equal')
plt.axis('square')
plt.xlim([0,plt.xlim()[1]])
plt.ylim([0,plt.ylim()[1]])
_ = plt.plot([-100, 100], [-100, 100])
plt.show()
error = test_predictions - test_labels
plt.hist(error, bins = 25)
plt.xlabel("Prediction Error [MPG]")
_ = plt.ylabel("Count")
plt.show()