-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
127 lines (93 loc) · 4.04 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from torchvision import datasets, transforms, models
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch import optim
from PIL import Image
from network import Net
import json
# Define model - ref CNN2
def to_device(data, device):
"""Move tensor(s) to chosen device"""
if isinstance(data, (list,tuple)):
return [to_device(x, device) for x in data]
return data.to(device, non_blocking=True)
class DeviceDataLoader():
"""Wrap a dataloader to move data to a device"""
def __init__(self, dl, device):
self.dl = dl
self.device = device
def __iter__(self):
"""Yield a batch of data after moving it to device"""
for b in self.dl:
yield to_device(b, self.device)
def __len__(self):
"""Number of batches"""
return len(self.dl)
class MyModel:
def __init__(self, trained_weights:str, device:str):
self.net = Net()
self.weights = trained_weights
self.device = torch.device('cuda:0' if device=='cuda' else 'cpu')
#self.preprocess = transforms.Compose([
#transforms.Resize((300, 300)),
#transforms.ToTensor(),
#transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])
self._initialize()
def _initialize(self):
# Load weights
try:
# Force loading on CPU if there is no GPU
if(torch.cuda.is_available() == False):
self.net.load_state_dict(torch.load(self.weights,map_location=lambda storage, loc: storage)["state_dict"])
else:
self.net.load_state_dict(torch.load(self.weights)["state_dict"])
except IOError:
print("Error Loading Weights")
return None
self.net.eval()
# Move to specified device
self.net.to(self.device)
#def predict(self,path):
# Open the Image and resize
#img = Image.open(path)
# Convert to tensor on device
#with torch.no_grad():
#img_tensor = self.preprocess(img) # tensor in [0,1]
#img_tensor = 1 - img_tensor
#xb = to_device(img_tensor.unsqueeze(0), self.device) #mg_tensor = img_tensor.view(1, 28, 28, 1).to(self.device)
# Do Inference
#yb = self.net(xb) #probabilities = self.net(img_tensor)
#prob, preds = torch.max(yb, dim=1) #probabilities = F.softmax(probabilities, dim = 1)
#output = torch.nn.functional.softmax(yb[0], dim=0)
#confidence, index = torch.max(yb, dim=1)
#return (self.classes[index[0].item()], confidence[0].item())
def infer(self, path):
img = Image.open(path)
preprocess = transforms.Compose([
transforms.Resize((300, 300)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])
image_tensor = preprocess(img)
# create a mini-batch as expected by the model
input_batch = to_device(image_tensor.unsqueeze(0), self.device)
with torch.no_grad():
output = self.net(input_batch)
#The output has unnormalized scores. To get probabilities, you can run a softmax on it.
confidence, index = torch.max(output, dim=1)
return (index[0].item(), confidence[0].item())
#def infer(self, path):
#img = Image.open(path)
#preprocess = transforms.Compose([
#transforms.Resize((300, 300)),
#transforms.ToTensor(),
#transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])
#image_tensor = preprocess(img)
# create a mini-batch as expected by the model
#input_batch = to_device(image_tensor.unsqueeze(0), self.device)
#with torch.no_grad():
#output = self.net(input_batch)
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
#confidence, index = torch.max(output, dim=1)
#return (output)