-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmain.py
63 lines (46 loc) · 2.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""main.py"""
import argparse
import numpy as np
import torch
import trainer_mmd
import trainer_gan
from utils import str2bool
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
def main(args):
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
if args.model == 'mmd':
Trainer = trainer_mmd.Trainer
elif args.model == 'gan':
Trainer = trainer_gan.Trainer
trainer = Trainer(args)
trainer.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='toy Beta-VAE')
parser.add_argument('--seed', default=1, type=int, help='random seed')
parser.add_argument('--cuda', default=True, type=str2bool, help='enable cuda')
parser.add_argument('--max_epoch', default=250, type=float, help='maximum training epoch')
parser.add_argument('--batch_size', default=100, type=int, help='batch size')
parser.add_argument('--model', default='mmd', type=str, help='model for wae. mmd/gan')
parser.add_argument('--z_dim', default=64, type=int, help='dimension of the latent z')
parser.add_argument('--z_var', default=2, type=int, help='scalar variance of the isotropic gaussian prior P(Z)')
parser.add_argument('--reg_weight', default=100, type=float, help='lambda parameter for the regularization term')
parser.add_argument('--lr', default=1e-3, type=float, help='learning rate for AE')
parser.add_argument('--lr_D', default=1e-3, type=float, help='learning rate for Adversary Network')
parser.add_argument('--beta1', default=0.5, type=float, help='Adam optimizer beta1')
parser.add_argument('--beta2', default=0.999, type=float, help='Adam optimizer beta2')
parser.add_argument('--dset_dir', default='data', type=str, help='dataset directory')
parser.add_argument('--dataset', default='CelebA', type=str, help='dataset name')
parser.add_argument('--num_workers', default=2, type=int, help='dataloader num_workers')
parser.add_argument('--viz_on', default=True, type=str2bool, help='enable visdom visualization')
parser.add_argument('--viz_name', default='main', type=str, help='visdom env name')
parser.add_argument('--viz_port', default=8097, type=str, help='visdom port number')
parser.add_argument('--save_output', default=True, type=str2bool, help='save traverse images and gif')
parser.add_argument('--output_dir', default='outputs', type=str, help='output directory')
parser.add_argument('--ckpt_dir', default='checkpoints', type=str, help='checkpoint directory')
parser.add_argument('--ckpt_name', default='last', type=str, help='load previous checkpoint. insert checkpoint filename')
args = parser.parse_args()
main(args)