-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathops.py
123 lines (87 loc) · 3.89 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""ops.py"""
import math
import torch.nn.functional as F
def reconstruction_loss(x_recon, x, distribution):
r"""Calculate reconstruction loss for the general auto-encoder frameworks.
Args:
x_recon (Tensor): reconstructed images. arbitrary shape.
x (Tensor): target images. same shape with x_recon.
distribution (str): output distributions of the decoder. bernoulli or gaussian.
"""
assert x_recon.size() == x.size()
n = x.size(0)
if distribution == 'bernoulli':
recon_loss = F.binary_cross_entropy_with_logits(x_recon, x, size_average=False).div(n)
elif distribution == 'gaussian':
x_recon = F.sigmoid(x_recon)
recon_loss = F.mse_loss(x_recon, x, size_average=False).div(n)
else:
raise NotImplementedError('supported distributions: bernoulli/gaussian')
return recon_loss
def mmd(z_tilde, z, z_var):
r"""Calculate maximum mean discrepancy described in the WAE paper.
Args:
z_tilde (Tensor): samples from deterministic non-random encoder Q(Z|X).
2D Tensor(batch_size x dimension).
z (Tensor): samples from prior distributions. same shape with z_tilde.
z_var (Number): scalar variance of isotropic gaussian prior P(Z).
"""
assert z_tilde.size() == z.size()
assert z.ndimension() == 2
n = z.size(0)
out = im_kernel_sum(z, z, z_var, exclude_diag=True).div(n*(n-1)) + \
im_kernel_sum(z_tilde, z_tilde, z_var, exclude_diag=True).div(n*(n-1)) + \
-im_kernel_sum(z, z_tilde, z_var, exclude_diag=False).div(n*n).mul(2)
return out
def im_kernel_sum(z1, z2, z_var, exclude_diag=True):
r"""Calculate sum of sample-wise measures of inverse multiquadratics kernel described in the WAE paper.
Args:
z1 (Tensor): batch of samples from a multivariate gaussian distribution \
with scalar variance of z_var.
z2 (Tensor): batch of samples from another multivariate gaussian distribution \
with scalar variance of z_var.
exclude_diag (bool): whether to exclude diagonal kernel measures before sum it all.
"""
assert z1.size() == z2.size()
assert z1.ndimension() == 2
z_dim = z1.size(1)
C = 2*z_dim*z_var
z11 = z1.unsqueeze(1).repeat(1, z2.size(0), 1)
z22 = z2.unsqueeze(0).repeat(z1.size(0), 1, 1)
kernel_matrix = C/(1e-9+C+(z11-z22).pow(2).sum(2))
kernel_sum = kernel_matrix.sum()
# numerically identical to the formulation. but..
if exclude_diag:
kernel_sum -= kernel_matrix.diag().sum()
return kernel_sum
def log_density_igaussian(z, z_var):
"""Calculate log density of zero-mean isotropic gaussian distribution given z and z_var."""
assert z.ndimension() == 2
assert z_var > 0
z_dim = z.size(1)
return -(z_dim/2)*math.log(2*math.pi*z_var) + z.pow(2).sum(1).div(-2*z_var)
def multistep_lr_decay(optimizer, current_step, schedules):
"""Manual LR scheduler for implementing schedules described in the WAE paper."""
for step in schedules:
if current_step == step:
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr']/schedules[step]
return optimizer
def cuda(tensor, uses_cuda):
return tensor.cuda() if uses_cuda else tensor
def kl_divergence(mu, logvar):
assert mu.size() == logvar.size()
assert mu.size(0) != 0
if mu.data.ndimension() == 4:
mu = mu.view(mu.size(0), mu.size(1))
if logvar.data.ndimension() == 4:
logvar = logvar.view(logvar.size(0), logvar.size(1))
klds = -0.5*(1 + logvar - mu.pow(2) - logvar.exp())
total_kld = klds.sum(1).mean()
mean_kld = klds.mean()
dimension_wise_kld = klds.mean(0)
return total_kld, mean_kld, dimension_wise_kld
def squared_distance(tensor1, tensor2):
assert tensor1.size() == tensor2.size()
assert tensor1.ndimension() == 2
return (tensor1-tensor2).pow(2).sum(1).mean()