forked from twinslabnet/stra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClucHAnix_5mTB1.py
463 lines (373 loc) · 20.8 KB
/
ClucHAnix_5mTB1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy as np
import talib.abstract as ta
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy import merge_informative_pair, DecimalParameter, stoploss_from_open, RealParameter
from pandas import DataFrame, Series
from datetime import datetime
from typing import Dict, List
from datetime import datetime, timezone
from freqtrade.persistence import Trade
import logging
logger = logging.getLogger(__name__)
def bollinger_bands(stock_price, window_size, num_of_std):
rolling_mean = stock_price.rolling(window=window_size).mean()
rolling_std = stock_price.rolling(window=window_size).std()
lower_band = rolling_mean - (rolling_std * num_of_std)
return np.nan_to_num(rolling_mean), np.nan_to_num(lower_band)
def ha_typical_price(bars):
res = (bars['ha_high'] + bars['ha_low'] + bars['ha_close']) / 3.
return Series(index=bars.index, data=res)
class ClucHAnix_5m1(IStrategy):
"""
PASTE OUTPUT FROM HYPEROPT HERE
Can be overridden for specific sub-strategies (stake currencies) at the bottom.
"""
#hypered params
buy_params = {
"bbdelta_close": 0.01889,
"bbdelta_tail": 0.72235,
"close_bblower": 0.0127,
"closedelta_close": 0.00916,
"rocr_1h": 0.79492,
}
# Sell hyperspace params:
sell_params = {
# custom stoploss params, come from BB_RPB_TSL
"pHSL": -0.10,
"pPF_1": 0.011,
"pPF_2": 0.064,
"pSL_1": 0.011,
"pSL_2": 0.062,
# sell signal params
'sell_fisher': 0.39075,
'sell_bbmiddle_close': 0.99754
}
# ROI table:
minimal_roi = {
"0": 100
}
# Stoploss:
stoploss = -0.99 # use custom stoploss
# Trailing stop:
trailing_stop = False
trailing_stop_positive = 0.001
trailing_stop_positive_offset = 0.012
trailing_only_offset_is_reached = False
"""
END HYPEROPT
"""
timeframe = '5m'
# Make sure these match or are not overridden in config
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
# Custom stoploss
use_custom_stoploss = True
process_only_new_candles = True
startup_candle_count = 168
order_types = {
'buy': 'market',
'sell': 'market',
'emergencysell': 'market',
'forcebuy': "market",
'forcesell': 'market',
'stoploss': 'market',
'stoploss_on_exchange': False,
'stoploss_on_exchange_interval': 60,
'stoploss_on_exchange_limit_ratio': 0.99
}
# buy params
rocr_1h = RealParameter(0.5, 1.0, default=0.54904, space='buy', optimize=True)
bbdelta_close = RealParameter(0.0005, 0.02, default=0.01965, space='buy', optimize=True)
closedelta_close = RealParameter(0.0005, 0.02, default=0.00556, space='buy', optimize=True)
bbdelta_tail = RealParameter(0.7, 1.0, default=0.95089, space='buy', optimize=True)
close_bblower = RealParameter(0.0005, 0.02, default=0.00799, space='buy', optimize=True)
# sell params
sell_fisher = RealParameter(0.1, 0.5, default=0.38414, space='sell', optimize=True)
sell_bbmiddle_close = RealParameter(0.97, 1.1, default=1.07634, space='sell', optimize=True)
# hard stoploss profit
pHSL = DecimalParameter(-0.500, -0.040, default=-0.08, decimals=3, space='sell', load=True)
# profit threshold 1, trigger point, SL_1 is used
pPF_1 = DecimalParameter(0.008, 0.020, default=0.016, decimals=3, space='sell', load=True)
pSL_1 = DecimalParameter(0.008, 0.020, default=0.011, decimals=3, space='sell', load=True)
# profit threshold 2, SL_2 is used
pPF_2 = DecimalParameter(0.040, 0.100, default=0.080, decimals=3, space='sell', load=True)
pSL_2 = DecimalParameter(0.020, 0.070, default=0.040, decimals=3, space='sell', load=True)
def informative_pairs(self):
pairs = self.dp.current_whitelist()
informative_pairs = [(pair, '1h') for pair in pairs]
return informative_pairs
# come from BB_RPB_TSL
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
# hard stoploss profit
HSL = self.pHSL.value
PF_1 = self.pPF_1.value
SL_1 = self.pSL_1.value
PF_2 = self.pPF_2.value
SL_2 = self.pSL_2.value
# For profits between PF_1 and PF_2 the stoploss (sl_profit) used is linearly interpolated
# between the values of SL_1 and SL_2. For all profits above PL_2 the sl_profit value
# rises linearly with current profit, for profits below PF_1 the hard stoploss profit is used.
if current_profit > PF_2:
sl_profit = SL_2 + (current_profit - PF_2)
elif current_profit > PF_1:
sl_profit = SL_1 + ((current_profit - PF_1) * (SL_2 - SL_1) / (PF_2 - PF_1))
else:
sl_profit = HSL
# Only for hyperopt invalid return
if sl_profit >= current_profit:
return -0.99
return stoploss_from_open(sl_profit, current_profit)
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# # Heikin Ashi Candles
heikinashi = qtpylib.heikinashi(dataframe)
dataframe['ha_open'] = heikinashi['open']
dataframe['ha_close'] = heikinashi['close']
dataframe['ha_high'] = heikinashi['high']
dataframe['ha_low'] = heikinashi['low']
# Set Up Bollinger Bands
mid, lower = bollinger_bands(ha_typical_price(dataframe), window_size=40, num_of_std=2)
dataframe['lower'] = lower
dataframe['mid'] = mid
dataframe['bbdelta'] = (mid - dataframe['lower']).abs()
dataframe['closedelta'] = (dataframe['ha_close'] - dataframe['ha_close'].shift()).abs()
dataframe['tail'] = (dataframe['ha_close'] - dataframe['ha_low']).abs()
dataframe['bb_lowerband'] = dataframe['lower']
dataframe['bb_middleband'] = dataframe['mid']
dataframe['ema_fast'] = ta.EMA(dataframe['ha_close'], timeperiod=3)
dataframe['ema_slow'] = ta.EMA(dataframe['ha_close'], timeperiod=50)
dataframe['volume_mean_slow'] = dataframe['volume'].rolling(window=30).mean()
dataframe['rocr'] = ta.ROCR(dataframe['ha_close'], timeperiod=28)
rsi = ta.RSI(dataframe)
dataframe["rsi"] = rsi
rsi = 0.1 * (rsi - 50)
dataframe["fisher"] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
inf_tf = '1h'
informative = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe=inf_tf)
inf_heikinashi = qtpylib.heikinashi(informative)
informative['ha_close'] = inf_heikinashi['close']
informative['rocr'] = ta.ROCR(informative['ha_close'], timeperiod=168)
dataframe = merge_informative_pair(dataframe, informative, self.timeframe, inf_tf, ffill=True)
#NOTE: dynamic offset
dataframe['perc'] = ((dataframe['high'] - dataframe['low']) / dataframe['low']*100)
dataframe['avg3_perc'] = ta.EMA(dataframe['perc'], 3)
dataframe['norm_perc'] = (dataframe['perc'] - dataframe['perc'].rolling(50).min())/(dataframe['perc'].rolling(50).max()-dataframe['perc'].rolling(50).min())
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
dataframe['rocr_1h'].gt(self.rocr_1h.value)
) &
((
(dataframe['lower'].shift().gt(0)) &
(dataframe['bbdelta'].gt(dataframe['ha_close'] * self.bbdelta_close.value)) &
(dataframe['closedelta'].gt(dataframe['ha_close'] * self.closedelta_close.value)) &
(dataframe['tail'].lt(dataframe['bbdelta'] * self.bbdelta_tail.value)) &
(dataframe['ha_close'].lt(dataframe['lower'].shift())) &
(dataframe['ha_close'].le(dataframe['ha_close'].shift()))
) |
(
(dataframe['ha_close'] < dataframe['ema_slow']) &
(dataframe['ha_close'] < self.close_bblower.value * dataframe['bb_lowerband'])
)),
'buy'
] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(dataframe['fisher'] > self.sell_fisher.value) &
(dataframe['ha_high'].le(dataframe['ha_high'].shift(1))) &
(dataframe['ha_high'].shift(1).le(dataframe['ha_high'].shift(2))) &
(dataframe['ha_close'].le(dataframe['ha_close'].shift(1))) &
(dataframe['ema_fast'] > dataframe['ha_close']) &
((dataframe['ha_close'] * self.sell_bbmiddle_close.value) > dataframe['bb_middleband']) &
(dataframe['volume'] > 0),
'sell'
] = 1
return dataframe
class ClucHAnix_5mTB1(ClucHAnix_5m1):
process_only_new_candles = True
custom_info_trail_buy = dict()
# Trailing buy parameters
trailing_buy_order_enabled = True
trailing_expire_seconds = 300
# If the current candle goes above min_uptrend_trailing_profit % before trailing_expire_seconds_uptrend seconds, buy the coin
trailing_buy_uptrend_enabled = True
trailing_expire_seconds_uptrend = 90
min_uptrend_trailing_profit = 0.02
debug_mode = True
trailing_buy_max_stop = 0.01 # stop trailing buy if current_price > starting_price * (1+trailing_buy_max_stop)
trailing_buy_max_buy = 0.002 # buy if price between uplimit (=min of serie (current_price * (1 + trailing_buy_offset())) and (start_price * 1+trailing_buy_max_buy))
init_trailing_dict = {
'trailing_buy_order_started': False,
'trailing_buy_order_uplimit': 0,
'start_trailing_price': 0,
'buy_tag': None,
'start_trailing_time': None,
'offset': 0,
'allow_trailing': False,
}
def trailing_buy(self, pair, reinit=False):
# returns trailing buy info for pair (init if necessary)
if not pair in self.custom_info_trail_buy:
self.custom_info_trail_buy[pair] = dict()
if (reinit or not 'trailing_buy' in self.custom_info_trail_buy[pair]):
self.custom_info_trail_buy[pair]['trailing_buy'] = self.init_trailing_dict.copy()
return self.custom_info_trail_buy[pair]['trailing_buy']
def trailing_buy_info(self, pair: str, current_price: float):
# current_time live, dry run
current_time = datetime.now(timezone.utc)
if not self.debug_mode:
return
trailing_buy = self.trailing_buy(pair)
duration = 0
try:
duration = (current_time - trailing_buy['start_trailing_time'])
except TypeError:
duration = 0
finally:
logger.info(
f"pair: {pair} : "
f"start: {trailing_buy['start_trailing_price']:.4f}, "
f"duration: {duration}, "
f"current: {current_price:.4f}, "
f"uplimit: {trailing_buy['trailing_buy_order_uplimit']:.4f}, "
f"profit: {self.current_trailing_profit_ratio(pair, current_price)*100:.2f}%, "
f"offset: {trailing_buy['offset']}")
def current_trailing_profit_ratio(self, pair: str, current_price: float) -> float:
trailing_buy = self.trailing_buy(pair)
if trailing_buy['trailing_buy_order_started']:
return (trailing_buy['start_trailing_price'] - current_price) / trailing_buy['start_trailing_price']
else:
return 0
def trailing_buy_offset(self, dataframe, pair: str, current_price: float):
# return rebound limit before a buy in % of initial price, function of current price
# return None to stop trailing buy (will start again at next buy signal)
# return 'forcebuy' to force immediate buy
# (example with 0.5%. initial price : 100 (uplimit is 100.5), 2nd price : 99 (no buy, uplimit updated to 99.5), 3price 98 (no buy uplimit updated to 98.5), 4th price 99 -> BUY
current_trailing_profit_ratio = self.current_trailing_profit_ratio(pair, current_price)
last_candle = dataframe.iloc[-1]
adapt = abs((last_candle['perc_norm']))
default_offset = 0.003 * (1 + adapt) #NOTE: default_offset 0.003 <--> 0.006
#default_offset = adapt*0.01
trailing_buy = self.trailing_buy(pair)
if not trailing_buy['trailing_buy_order_started']:
return default_offset
# example with duration and indicators
# dry run, live only
last_candle = dataframe.iloc[-1]
current_time = datetime.now(timezone.utc)
trailing_duration = current_time - trailing_buy['start_trailing_time']
if trailing_duration.total_seconds() > self.trailing_expire_seconds:
if ((current_trailing_profit_ratio > 0) and (last_candle['buy'] == 1)):
# more than 1h, price under first signal, buy signal still active -> buy
return 'forcebuy'
else:
# wait for next signal
return None
elif (self.trailing_buy_uptrend_enabled and (trailing_duration.total_seconds() < self.trailing_expire_seconds_uptrend) and (current_trailing_profit_ratio < (-1 * self.min_uptrend_trailing_profit))):
# less than 90s and price is rising, buy
return 'forcebuy'
if current_trailing_profit_ratio < 0:
# current price is higher than initial price
return default_offset
trailing_buy_offset = {
0.06: 0.02,
0.03: 0.01,
0: default_offset,
}
for key in trailing_buy_offset:
if current_trailing_profit_ratio > key:
return trailing_buy_offset[key]
return default_offset
# end of trailing buy parameters
# -----------------------------------------------------
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe = super().populate_indicators(dataframe, metadata)
self.trailing_buy(metadata['pair'])
return dataframe
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float, time_in_force: str, **kwargs) -> bool:
val = super().confirm_trade_entry(pair, order_type, amount, rate, time_in_force, **kwargs)
if val:
if self.trailing_buy_order_enabled and self.config['runmode'].value in ('live', 'dry_run'):
val = False
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
if(len(dataframe) >= 1):
last_candle = dataframe.iloc[-1].squeeze()
current_price = rate
trailing_buy = self.trailing_buy(pair)
trailing_buy_offset = self.trailing_buy_offset(dataframe, pair, current_price)
if trailing_buy['allow_trailing']:
if (not trailing_buy['trailing_buy_order_started'] and (last_candle['buy'] == 1)):
# start trailing buy
trailing_buy['trailing_buy_order_started'] = True
trailing_buy['trailing_buy_order_uplimit'] = last_candle['close']
trailing_buy['start_trailing_price'] = last_candle['close']
trailing_buy['buy_tag'] = last_candle['buy_tag']
trailing_buy['start_trailing_time'] = datetime.now(timezone.utc)
trailing_buy['offset'] = 0
self.trailing_buy_info(pair, current_price)
logger.info(f'start trailing buy for {pair} at {last_candle["close"]}')
elif trailing_buy['trailing_buy_order_started']:
if trailing_buy_offset == 'forcebuy':
# buy in custom conditions
val = True
ratio = "%.2f" % ((self.current_trailing_profit_ratio(pair, current_price)) * 100)
self.trailing_buy_info(pair, current_price)
logger.info(f"price OK for {pair} ({ratio} %, {current_price}), order may not be triggered if all slots are full")
elif trailing_buy_offset is None:
# stop trailing buy custom conditions
self.trailing_buy(pair, reinit=True)
logger.info(f'STOP trailing buy for {pair} because "trailing buy offset" returned None')
elif current_price < trailing_buy['trailing_buy_order_uplimit']:
# update uplimit
old_uplimit = trailing_buy["trailing_buy_order_uplimit"]
self.custom_info_trail_buy[pair]['trailing_buy']['trailing_buy_order_uplimit'] = min(current_price * (1 + trailing_buy_offset), self.custom_info_trail_buy[pair]['trailing_buy']['trailing_buy_order_uplimit'])
self.custom_info_trail_buy[pair]['trailing_buy']['offset'] = trailing_buy_offset
self.trailing_buy_info(pair, current_price)
logger.info(f'update trailing buy for {pair} at {old_uplimit} -> {self.custom_info_trail_buy[pair]["trailing_buy"]["trailing_buy_order_uplimit"]}')
elif current_price < (trailing_buy['start_trailing_price'] * (1 + self.trailing_buy_max_buy)):
# buy ! current price > uplimit && lower thant starting price
val = True
ratio = "%.2f" % ((self.current_trailing_profit_ratio(pair, current_price)) * 100)
self.trailing_buy_info(pair, current_price)
logger.info(f"current price ({current_price}) > uplimit ({trailing_buy['trailing_buy_order_uplimit']}) and lower than starting price price ({(trailing_buy['start_trailing_price'] * (1 + self.trailing_buy_max_buy))}). OK for {pair} ({ratio} %), order may not be triggered if all slots are full")
elif current_price > (trailing_buy['start_trailing_price'] * (1 + self.trailing_buy_max_stop)):
# stop trailing buy because price is too high
self.trailing_buy(pair, reinit=True)
self.trailing_buy_info(pair, current_price)
logger.info(f'STOP trailing buy for {pair} because of the price is higher than starting price * {1 + self.trailing_buy_max_stop}')
else:
# uplimit > current_price > max_price, continue trailing and wait for the price to go down
self.trailing_buy_info(pair, current_price)
logger.info(f'price too high for {pair} !')
else:
logger.info(f"Wait for next buy signal for {pair}")
if (val == True):
self.trailing_buy_info(pair, rate)
self.trailing_buy(pair, reinit=True)
logger.info(f'STOP trailing buy for {pair} because I buy it')
return val
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe = super().populate_buy_trend(dataframe, metadata)
if self.trailing_buy_order_enabled and self.config['runmode'].value in ('live', 'dry_run'):
last_candle = dataframe.iloc[-1].squeeze()
trailing_buy = self.trailing_buy(metadata['pair'])
if (last_candle['buy'] == 1):
if not trailing_buy['trailing_buy_order_started']:
open_trades = Trade.get_trades([Trade.pair == metadata['pair'], Trade.is_open.is_(True), ]).all()
if not open_trades:
logger.info(f"Set 'allow_trailing' to True for {metadata['pair']} to start trailing!!!")
# self.custom_info_trail_buy[metadata['pair']]['trailing_buy']['allow_trailing'] = True
trailing_buy['allow_trailing'] = True
initial_buy_tag = last_candle['buy_tag'] if 'buy_tag' in last_candle else 'buy signal'
dataframe.loc[:, 'buy_tag'] = f"{initial_buy_tag} (start trail price {last_candle['close']})"
else:
if (trailing_buy['trailing_buy_order_started'] == True):
logger.info(f"Continue trailing for {metadata['pair']}. Manually trigger buy signal!!")
dataframe.loc[:,'buy'] = 1
dataframe.loc[:, 'buy_tag'] = trailing_buy['buy_tag']
# dataframe['buy'] = 1
return dataframe