-
Notifications
You must be signed in to change notification settings - Fork 53
/
AVL_trees.c
285 lines (256 loc) · 7.88 KB
/
AVL_trees.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#include <stdio.h>
#include <stdlib.h>
struct node
{
int data;
struct node *leftchild;
struct node *rightchild;
int height;
} *root = NULL;
struct node *create_new_node(int data)
{
struct node *ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = data;
ptr->leftchild = NULL;
ptr->rightchild = NULL;
ptr->height = 0;
return ptr;
}
int find_maximum(int a, int b)
{
int max;
if (a > b)
{
max = a;
}
else
{
max = b;
}
return max;
}
int find_height_of_node(struct node *ptr) // countiong number of nodes ( height of subtrees + 1)
{
if (ptr == NULL)
{
return 0;
}
return 1 + find_maximum(find_height_of_node(ptr->leftchild), find_height_of_node(ptr->rightchild));
}
int find_balance_factor(struct node *ptr) //finding balancing factor
{
if (ptr == NULL)
{
return 0;
}
return find_height_of_node(ptr->leftchild) - find_height_of_node(ptr->rightchild);
}
struct node *rotate_RR_Imbalance(struct node *ptr) //Left Rotation // FUNCTION FOR QUESTION 1
{
struct node *ptr1 = ptr->rightchild;
struct node *ptr2 = ptr1->leftchild;
ptr1->leftchild = ptr;
ptr->rightchild = ptr2;
ptr->height = find_height_of_node(ptr);
ptr1->height = find_height_of_node(ptr1);
return ptr1;
}
struct node *rotate_LL_Imbalance(struct node *ptr) //Right Rotation // FUNCTION FOR QUESTION 1
{
struct node *ptr1 = ptr->leftchild;
struct node *ptr2 = ptr1->rightchild;
ptr1->rightchild = ptr;
ptr->leftchild = ptr2;
ptr->height = find_height_of_node(ptr);
ptr1->height = find_height_of_node(ptr1);
return ptr1;
}
struct node *rotate_RL_Imbalance(struct node *ptr) //Right Left Rotation // FUNCTION FOR QUESTION 1
{
ptr->rightchild = rotate_LL_Imbalance(ptr->rightchild);
return rotate_RR_Imbalance(ptr);
}
struct node *rotate_LR_Imbalance(struct node *ptr) //Left Right Rotation // FUNCTION FOR QUESTION 1
{
ptr->leftchild = rotate_RR_Imbalance(ptr->leftchild);
return rotate_LL_Imbalance(ptr);
}
struct node *insert_to_AVL(struct node *ptr, int data) // FUNCTION FOR QUESTION 1
{
{ // for insertion into tree
if (ptr == NULL)
{
return create_new_node(data);
}
if (data < ptr->data)
{
ptr->leftchild = insert_to_AVL(ptr->leftchild, data);
}
else if (data > ptr->data)
{
ptr->rightchild = insert_to_AVL(ptr->rightchild, data);
}
else
{
return ptr;
}
}
{ // for rotation in case of unbalanced tree after inserting a node
ptr->height = find_height_of_node(ptr);
int check_balance_factor = find_balance_factor(ptr);
if ((check_balance_factor < -1) && (ptr->rightchild->data < data)) // for RR imbalance
{
printf("\nInserting %d causes RR imbalance in AVL tree : Left rotation(single) performed", data);
return rotate_RR_Imbalance(ptr);
}
if ((check_balance_factor < -1) && (ptr->rightchild->data > data)) // for RL imbalance
{
printf("\nInserting %d causes RL imbalance in AVL tree : Right-Left rotation(double) performed", data);
return rotate_RL_Imbalance(ptr);
}
if ((check_balance_factor > 1) && (ptr->leftchild->data > data)) // for LL imbalance
{
printf("\nInserting %d causes LL imbalance in AVL tree : Right rotation(single) performed", data);
return rotate_LL_Imbalance(ptr);
}
if ((check_balance_factor > 1) && (ptr->leftchild->data < data)) // for LR imbalance
{
printf("\nInserting %d causes LR imbalance in AVL tree : Left-Right rotation(double) performed", data);
return rotate_LR_Imbalance(ptr);
}
return ptr;
}
}
void inorder_traversal(struct node *ptr) // FUNCTION FOR QUESTION 1 and QUESTION 2
{
if (root == NULL)
{
printf("NULL\n");
}
if (ptr->leftchild != NULL)
{
inorder_traversal(ptr->leftchild);
}
printf("%d ", ptr->data);
if (ptr->rightchild != NULL)
{
inorder_traversal(ptr->rightchild);
}
}
void print_height_inorder_traversal(struct node *ptr) // FUNCTION FOR QUESTION 1 and QUESTION 2
{
if (ptr->leftchild != NULL)
{
print_height_inorder_traversal(ptr->leftchild);
}
printf("%d ", find_height_of_node(ptr) - 1);
if (ptr->rightchild != NULL)
{
print_height_inorder_traversal(ptr->rightchild);
}
}
struct node *inorder_successor(struct node *ptr) // FUNCTION FOR QUESTION 2
{
// inorder successor = left most node of the right subtree of the root.
ptr = ptr->rightchild;
while (ptr->leftchild != NULL)
{
ptr = ptr->leftchild;
}
return ptr;
}
struct node *delete_element_from_AVL(struct node *ptr, int element) // FUNCTION FOR QUESTION 2
{
{ // for deleting node from tree
if (ptr == NULL)
{
return ptr;
}
if (ptr->data > element)
{
ptr->leftchild = delete_element_from_AVL(ptr->leftchild, element);
}
else if (ptr->data < element)
{
ptr->rightchild = delete_element_from_AVL(ptr->rightchild, element);
}
else
{
if (ptr->leftchild == NULL)
{
struct node *ptr1 = ptr->rightchild;
free(ptr);
return ptr1;
}
else if (ptr->rightchild == NULL)
{
struct node *ptr1 = ptr->leftchild;
free(ptr);
return ptr1;
}
else
{
struct node *ptr1 = inorder_successor(ptr);
ptr->data = ptr1->data;
ptr->rightchild = delete_element_from_AVL(ptr->rightchild, ptr->data);
}
}
if (ptr == NULL)
{
return ptr;
}
}
{ // for rotation in case of unbalanced tree after deleting a node
ptr->height = find_height_of_node(ptr);
int check_balance_factor = find_balance_factor(ptr);
if ((check_balance_factor < -1) && (find_balance_factor(ptr->rightchild) <= 0)) // for RR imbalance
{
return rotate_RR_Imbalance(ptr);
}
if ((check_balance_factor < -1) && (find_balance_factor(ptr->rightchild) > 0)) // for RL imbalance
{
return rotate_RL_Imbalance(ptr);
}
if ((check_balance_factor > 1) && (find_balance_factor(ptr->leftchild) >= 0)) // for LL imbalance
{
return rotate_LL_Imbalance(ptr);
}
if ((check_balance_factor > 1) && (find_balance_factor(ptr->leftchild) < 0)) // for LR imbalance
{
return rotate_LR_Imbalance(ptr);
}
return ptr;
}
}
int main()
{
{
// QUESTION 1
printf("----------QUESTION 1 ----------\n");
// 12, 14, 15, 17, 3, 4, 9, 10, 20
root = insert_to_AVL(root, 12);
root = insert_to_AVL(root, 14);
root = insert_to_AVL(root, 15);
root = insert_to_AVL(root, 17);
root = insert_to_AVL(root, 3);
root = insert_to_AVL(root, 4);
root = insert_to_AVL(root, 9);
root = insert_to_AVL(root, 10);
root = insert_to_AVL(root, 20);
printf("\nInorder traversal of the constructed AVL tree :\n");
inorder_traversal(root);
printf("\nHeights of all respective nodes:\n");
print_height_inorder_traversal(root);
}
{
// QUESTION 2
printf("\n----------QUESTION 2 ----------\n");
for (int i = 0; i < 9; i++)
{
printf("\nInorder traversal of AVL tree after deleting root node = %d: ", root->data);
root = delete_element_from_AVL(root, root->data);
inorder_traversal(root);
}
}
return 0;
}