-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinference_realesrgan.py
114 lines (99 loc) · 4.6 KB
/
inference_realesrgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import argparse
import cv2
import glob
import os
from models.rrdbnet_arch import RRDBNet
# import paddle
from models.utils import RealESRGANer
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--input', type=str, default='inputs', help='Input image or folder')
parser.add_argument(
'--model_path',
type=str,
# default = '/home/aistudio/work/Real-ESRGAN-paddle1129/experiments/pretrained_models/RealESRGAN_x4plus.pdparams',
default = '/experiments/pretrained_models/net_g_latest7.pdparams',
help='Path to the pre-trained model')
parser.add_argument('--output', type=str, default='results', help='Output folder')
parser.add_argument('--netscale', type=int, default=4, help='Upsample scale factor of the network')
parser.add_argument('--outscale', type=float, default=4, help='The final upsampling scale of the image')
parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored image')
parser.add_argument('--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
parser.add_argument('--half', action='store_true', help='Use half precision during inference')
parser.add_argument('--block', type=int, default=23, help='num_block in RRDB')
parser.add_argument(
'--alpha_upsampler',
type=str,
default='realesrgan',
help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
parser.add_argument(
'--ext',
type=str,
default='auto',
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
args = parser.parse_known_args()[0]
if 'RealESRGAN_x4plus_anime_6B.pdparams' in args.model_path:
args.block = 6
elif 'RealESRGAN_x2plus.pdparams' in args.model_path:
args.netscale = 2
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=args.block, num_grow_ch=32, scale=args.netscale)
upsampler = RealESRGANer(
scale=args.netscale,
model_path=args.model_path,
model=model,
tile=args.tile,
tile_pad=args.tile_pad,
pre_pad=args.pre_pad,
half=args.half)
# if args.face_enhance:
# from gfpgan import GFPGANer
# face_enhancer = GFPGANer(
# model_path='https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth',
# upscale=args.outscale,
# arch='clean',
# channel_multiplier=2,
# bg_upsampler=upsampler)
os.makedirs(args.output, exist_ok=True)
if os.path.isfile(args.input):
paths = [args.input]
else:
paths = sorted(glob.glob(os.path.join(args.input, '*')))
for idx, path in enumerate(paths):
imgname, extension = os.path.splitext(os.path.basename(path))
print('Testing', idx, imgname)
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
else:
img_mode = None
h, w = img.shape[0:2]
if max(h, w) > 1000 and args.netscale == 4:
import warnings
warnings.warn('The input image is large, try X2 model for better performance.')
if max(h, w) < 500 and args.netscale == 2:
import warnings
warnings.warn('The input image is small, try X4 model for better performance.')
# paddle.set_device('gpu:0')
try:
# if args.face_enhance:
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
# else:
# output, _ = upsampler.enhance(img, outscale=args.outscale)
output, _ = upsampler.enhance(img, outscale=args.outscale)
except Exception as error:
print('Error', error)
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
else:
if args.ext == 'auto':
extension = extension[1:]
else:
extension = args.ext
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
save_path = os.path.join(args.output, f'{imgname}_{args.suffix}.{extension}')
cv2.imwrite(save_path, output)
if __name__ == '__main__':
main()