-
Notifications
You must be signed in to change notification settings - Fork 3
/
健康检查
171 lines (137 loc) · 9.63 KB
/
健康检查
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 80
livenessProbe:
httpGet:
path: /index.html
port: 80
Probe 支持以下三种检查方法:
httpGet
发送HTTP请求,返回200-400范围状态码为成功。
exec
执行Shell命令返回状态码是0为成功。
tcpSocket
发起TCP Socket建立成功。
示例:
livenessProbe: 存活性探针
tcpSocket:
port: 80
initialDelaySeconds: 10 初始化10秒后开始检测
periodSeconds: 3 每隔3秒检测一次
readinessProbe: 可读性探针
tcpSocket:
port: 80
initialDelaySeconds: 5
periodSeconds: 10
上节课我们和大家一起学习了Pod中容器的生命周期的两个钩子函数,PostStart与PreStop,其中PostStart是在容器创建后立即执行的,而PreStop这个钩子函数则是在容器终止之前执行的。除了上面这两个钩子函数以外,还有一项配置会影响到容器的生命周期的,那就是健康检查的探针。
在Kubernetes集群当中,我们可以通过配置liveness probe(存活探针)和readiness probe(可读性探针)来影响容器的生存周期。
* kubelet 通过使用 liveness probe 来确定你的应用程序是否正在运行,通俗点将就是是否还活着。一般来说,如果你的程序一旦崩溃了, Kubernetes 就会立刻知道这个程序已经终止了,然后就会重启这个程序。而我们的 liveness probe 的目的就是来捕获到当前应用程序还没有终止,还没有崩溃,如果出现了这些情况,那么就重启处于该状态下的容器,使应用程序在存在 bug 的情况下依然能够继续运行下去。
* kubelet 使用 readiness probe 来确定容器是否已经就绪可以接收流量过来了。这个探针通俗点讲就是说是否准备好了,现在可以开始工作了。只有当 Pod 中的容器都处于就绪状态的时候 kubelet 才会认定该 Pod 处于就绪状态,因为一个 Pod 下面可能会有多个容器。当然 Pod 如果处于非就绪状态,那么我们就会将他从我们的工作队列(实际上就是我们后面需要重点学习的 Service)中移除出来,这样我们的流量就不会被路由到这个 Pod 里面来了。
和前面的钩子函数一样的,我们这两个探针的支持两种配置方式:
* exec:执行一段命令
* http:检测某个 http 请求
* tcpSocket:使用此配置, kubelet 将尝试在指定端口上打开容器的套接字。如果可以建立连接,容器被认为是健康的,如果不能就认为是失败的。实际上就是检查端口
好,我们先来给大家演示下存活探针的使用方法,首先我们用exec执行命令的方式来检测容器的存活,如下:
apiVersion: v1
kind: Pod
metadata:
name: liveness-exec
labels:
test: liveness
spec:
containers:
- name: liveness
image: busybox
args:
- /bin/sh
- -c
- touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600
livenessProbe:
exec:
command:
- cat
- /tmp/healthy
initialDelaySeconds: 5
periodSeconds: 5
我们这里需要用到一个新的属性:livenessProbe,下面通过exec执行一段命令,其中periodSeconds属性表示让kubelet每隔5秒执行一次存活探针,也就是每5秒执行一次上面的cat /tmp/healthy命令,如果命令执行成功了,将返回0,那么kubelet就会认为当前这个容器是存活的并且很监控,如果返回的是非0值,那么kubelet就会把该容器杀掉然后重启它。另外一个属性initialDelaySeconds表示在第一次执行探针的时候要等待5秒,这样能够确保我们的容器能够有足够的时间启动起来。大家可以想象下,如果你的第一次执行探针等候的时间太短,是不是很有可能容器还没正常启动起来,所以存活探针很可能始终都是失败的,这样就会无休止的重启下去了,对吧?所以一个合理的initialDelaySeconds非常重要。
另外我们在容器启动的时候,执行了如下命令:
☁ ~ /bin/sh -c "touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600"
意思是说在容器最开始的30秒内有一个/tmp/healthy文件,在这30秒内执行cat /tmp/healthy命令都会返回一个成功的返回码。30秒后,我们删除这个文件,现在执行cat /tmp/healthy是不是就会失败了,这个时候就会重启容器了。
我们来创建下该Pod,在30秒内,查看Pod的Event:
☁ ~ kubectl describe pod liveness-exec
我们可以观察到容器是正常启动的,在隔一会儿,比如40s后,再查看下Pod的Event,在最下面有一条信息显示 liveness probe失败了,容器被删掉并重新创建。
然后通过kubectl get pod liveness-exec可以看到RESTARTS值加1了。
同样的,我们还可以使用HTTP GET请求来配置我们的存活探针,我们这里使用一个liveness镜像来验证演示下,
apiVersion: v1
kind: Pod
metadata:
labels:
test: liveness
name: liveness-http
spec:
containers:
- name: liveness
image: cnych/liveness
args:
- /server
livenessProbe:
httpGet:
path: /healthz
port: 8080
httpHeaders:
- name: X-Custom-Header
value: Awesome
initialDelaySeconds: 3
periodSeconds: 3
同样的,根据periodSeconds属性我们可以知道kubelet需要每隔3秒执行一次liveness probe,该探针将向容器中的 server 的8080端口发送一个 HTTP GET 请求。如果 server 的 /healthz 路径的 handler 返回一个成功的返回码,kubelet就会认定该容器是活着的并且很健康,如果返回失败的返回码,kubelet将杀掉该容器并重启它。。initialDelaySeconds 指定kubelet在该执行第一次探测之前需要等待3秒钟。
通常来说,任何大于200小于400的返回码都会认定是成功的返回码。其他返回码都会被认为是失败的返回码。
我们可以来查看下上面的healthz的实现:
http.HandleFunc("/healthz", func(w http.ResponseWriter, r *http.Request) {
duration := time.Now().Sub(started)
if duration.Seconds() > 10 {
w.WriteHeader(500)
w.Write([]byte(fmt.Sprintf("error: %v", duration.Seconds())))
} else {
w.WriteHeader(200)
w.Write([]byte("ok"))
}
})
大概意思就是最开始前10s返回状态码200,10s过后就返回500的status_code了。所以当容器启动3秒后,kubelet 开始执行健康检查。第一次健康监测会成功,因为是在10s之内,但是10秒后,健康检查将失败,因为现在返回的是一个错误的状态码了,所以kubelet将会杀掉和重启容器。
同样的,我们来创建下该Pod测试下效果,10秒后,查看 Pod 的 event,确认liveness probe失败并重启了容器。
☁ ~ kubectl describe pod liveness-http
然后我们来通过端口的方式来配置存活探针,使用此配置,kubelet将尝试在指定端口上打开容器的套接字。 如果可以建立连接,容器被认为是健康的,如果不能就认为是失败的。
apiVersion: v1
kind: Pod
metadata:
name: goproxy
labels:
app: goproxy
spec:
containers:
- name: goproxy
image: cnych/goproxy
ports:
- containerPort: 8080
readinessProbe:
tcpSocket:
port: 8080
initialDelaySeconds: 5
periodSeconds: 10
livenessProbe:
tcpSocket:
port: 8080
initialDelaySeconds: 15
periodSeconds: 20
我们可以看到,TCP 检查的配置与 HTTP 检查非常相似,只是将httpGet替换成了tcpSocket。 而且我们同时使用了readiness probe和liveness probe两种探针。 容器启动后5秒后,kubelet将发送第一个readiness probe(可读性探针)。 该探针会去连接容器的8080端,如果连接成功,则该 Pod 将被标记为就绪状态。然后Kubelet将每隔10秒钟执行一次该检查。
除了readiness probe之外,该配置还包括liveness probe。 容器启动15秒后,kubelet将运行第一个 liveness probe。 就像readiness probe一样,这将尝试去连接到容器的8080端口。如果liveness probe失败,容器将重新启动。
有的时候,应用程序可能暂时无法对外提供服务,例如,应用程序可能需要在启动期间加载大量数据或配置文件。 在这种情况下,您不想杀死应用程序,也不想对外提供服务。 那么这个时候我们就可以使用readiness probe来检测和减轻这些情况。 Pod中的容器可以报告自己还没有准备,不能处理Kubernetes服务发送过来的流量。
从上面的YAML文件我们可以看出readiness probe的配置跟liveness probe很像,基本上一致的。唯一的不同是使用readinessProbe而不是livenessProbe。两者如果同时使用的话就可以确保流量不会到达还未准备好的容器,准备好过后,如果应用程序出现了错误,则会重新启动容器。
另外除了上面的initialDelaySeconds和periodSeconds属性外,探针还可以配置如下几个参数:
* timeoutSeconds:探测超时时间,默认1秒,最小1秒。
* successThreshold:探测失败后,最少连续探测成功多少次才被认定为成功。默认是 1,但是如果是`liveness`则必须是 1。最小值是 1。
* failureThreshold:探测成功后,最少连续探测失败多少次才被认定为失败。默认是 3,最小值是 1。
这就是liveness probe(存活探针)和readiness probe(可读性探针)的使用方法。在Pod的生命周期当中,我们已经学习了容器生命周期中的钩子函数和探针检测,下节课给大家讲解Pod层面生命周期的一个阶段:初始化容器。
Copyright © qikqiak.com 2018 all right reserved,