-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel.py
80 lines (66 loc) · 2.57 KB
/
kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
from sklearn.gaussian_process.kernels import Kernel, Hyperparameter
class NTK(Kernel):
def __init__(self,
depth,
c = 2.0,
bias = 0.1,
bias_bounds = (1e-5, 1e5)
):
self.depth = depth
self.c = c
self.bias = bias
self.bias_bounds = bias_bounds
@property
def hyperparameter_bias(self):
return Hyperparameter("bias", "numeric", self.bias_bounds)
def __call__(self, X, Z=None, eval_gradient=False):
aug = False
X_shape = -1
Z_shape = -1
products = []
if Z is None:
Z = X
else:
X_shape = X.shape[0]
Z_shape = Z.shape[0]
A = np.concatenate((X, Z), axis=0)
X = A
Z = A
aug = True
if eval_gradient:
products.append(np.ones((X.shape[0], X.shape[0])))
Σ_mat = X @ Z.T
K = Σ_mat + self.bias**2 # K^0/
for dep in range(1, self.depth + 1): # K^1 to K^L
diag = np.diag(Σ_mat)
denominator = np.clip(np.sqrt(np.outer(diag, diag)), a_min=1e-10, a_max=None)
div = Σ_mat / denominator
# div = np.nan_to_num(div)
λ = np.clip(div, a_min=-1, a_max=1)
Σ_mat = (self.c / (2 * np.pi)) * (λ * (np.pi - np.arccos(λ)) + np.sqrt(1 - λ**2)) * denominator
Σ_mat_dot = (self.c / (2 * np.pi)) * (np.pi - np.arccos(λ))
K = K * Σ_mat_dot + Σ_mat + self.bias**2
if eval_gradient:
products.append(products[-1] * Σ_mat_dot)
scalar = 1/((self.depth + 1) * (self.bias**2 + 1))
if eval_gradient:
if not self.hyperparameter_bias.fixed:
K_prime = 2 * self.bias**2 * products[-1] * (1 + sum(1/np.array(products)))
K_prime = np.expand_dims(K_prime, -1)
return scalar * K, scalar * (K_prime - ((2 * self.bias**2) / (self.bias**2 + 1)) * np.expand_dims(K, -1))
else:
return scalar * K, np.empty((X.shape[0], X.shape[0], 0))
else:
if aug:
return scalar * K[0:X_shape, X_shape:(X_shape + Z_shape)]
else:
return scalar * K
def diag(self, X):
return np.diag(self(X))
def is_stationary(self):
"""Returns whether the kernel is stationary."""
return False
def __repr__(self):
return "{0}(depth={1:d}, c={2:.3f}, bias={3:.3f})".format(
self.__class__.__name__, self.depth, self.c, self.bias)