forked from codeplea/genann
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenann.c
405 lines (308 loc) · 11.8 KB
/
genann.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*
* GENANN - Minimal C Artificial Neural Network
*
* Copyright (c) 2015-2018 Lewis Van Winkle
*
* http://CodePlea.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgement in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
*/
#include "genann.h"
#include <assert.h>
#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef genann_act
#define genann_act_hidden genann_act_hidden_indirect
#define genann_act_output genann_act_output_indirect
#else
#define genann_act_hidden genann_act
#define genann_act_output genann_act
#endif
#define LOOKUP_SIZE 4096
double genann_act_hidden_indirect(const struct genann *ann, double a) {
return ann->activation_hidden(ann, a);
}
double genann_act_output_indirect(const struct genann *ann, double a) {
return ann->activation_output(ann, a);
}
const double sigmoid_dom_min = -15.0;
const double sigmoid_dom_max = 15.0;
double interval;
double lookup[LOOKUP_SIZE];
#ifdef __GNUC__
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#define unused __attribute__((unused))
#else
#define likely(x) x
#define unlikely(x) x
#define unused
#pragma warning(disable : 4996) /* For fscanf */
#endif
double inline genann_act_sigmoid(const genann *ann unused, double a) {
if (a < -45.0) return 0;
if (a > 45.0) return 1;
return 1.0 / (1 + exp(-a));
}
void genann_init_sigmoid_lookup(const genann *ann) {
const double f = (sigmoid_dom_max - sigmoid_dom_min) / LOOKUP_SIZE;
int i;
interval = LOOKUP_SIZE / (sigmoid_dom_max - sigmoid_dom_min);
for (i = 0; i < LOOKUP_SIZE; ++i) {
lookup[i] = genann_act_sigmoid(ann, sigmoid_dom_min + f * i);
}
}
double inline genann_act_sigmoid_cached(const genann *ann unused, double a) {
assert(!isnan(a));
if (a < sigmoid_dom_min) return lookup[0];
if (a >= sigmoid_dom_max) return lookup[LOOKUP_SIZE - 1];
size_t j = (size_t)((a-sigmoid_dom_min)*interval+0.5);
/* Because floating point... */
if (unlikely(j >= LOOKUP_SIZE)) return lookup[LOOKUP_SIZE - 1];
return lookup[j];
}
double inline genann_act_linear(const struct genann *ann unused, double a) {
return a;
}
double inline genann_act_threshold(const struct genann *ann unused, double a) {
return a > 0;
}
genann *genann_init(int inputs, int hidden_layers, int hidden, int outputs) {
if (hidden_layers < 0) return 0;
if (inputs < 1) return 0;
if (outputs < 1) return 0;
if (hidden_layers > 0 && hidden < 1) return 0;
const int hidden_weights = hidden_layers ? (inputs+1) * hidden + (hidden_layers-1) * (hidden+1) * hidden : 0;
const int output_weights = (hidden_layers ? (hidden+1) : (inputs+1)) * outputs;
const int total_weights = (hidden_weights + output_weights);
const int total_neurons = (inputs + hidden * hidden_layers + outputs);
/* Allocate extra size for weights, outputs, and deltas. */
const int size = sizeof(genann) + sizeof(double) * (total_weights + total_neurons + (total_neurons - inputs));
genann *ret = malloc(size);
if (!ret) return 0;
ret->inputs = inputs;
ret->hidden_layers = hidden_layers;
ret->hidden = hidden;
ret->outputs = outputs;
ret->total_weights = total_weights;
ret->total_neurons = total_neurons;
/* Set pointers. */
ret->weight = (double*)((char*)ret + sizeof(genann));
ret->output = ret->weight + ret->total_weights;
ret->delta = ret->output + ret->total_neurons;
genann_randomize(ret);
ret->activation_hidden = genann_act_sigmoid_cached;
ret->activation_output = genann_act_sigmoid_cached;
genann_init_sigmoid_lookup(ret);
return ret;
}
genann *genann_read(FILE *in) {
int inputs, hidden_layers, hidden, outputs;
int rc;
errno = 0;
rc = fscanf(in, "%d %d %d %d", &inputs, &hidden_layers, &hidden, &outputs);
if (rc < 4 || errno != 0) {
perror("fscanf");
return NULL;
}
genann *ann = genann_init(inputs, hidden_layers, hidden, outputs);
int i;
for (i = 0; i < ann->total_weights; ++i) {
errno = 0;
rc = fscanf(in, " %le", ann->weight + i);
if (rc < 1 || errno != 0) {
perror("fscanf");
genann_free(ann);
return NULL;
}
}
return ann;
}
genann *genann_copy(genann const *ann) {
const int size = sizeof(genann) + sizeof(double) * (ann->total_weights + ann->total_neurons + (ann->total_neurons - ann->inputs));
genann *ret = malloc(size);
if (!ret) return 0;
memcpy(ret, ann, size);
/* Set pointers. */
ret->weight = (double*)((char*)ret + sizeof(genann));
ret->output = ret->weight + ret->total_weights;
ret->delta = ret->output + ret->total_neurons;
return ret;
}
void genann_randomize(genann *ann) {
int i;
for (i = 0; i < ann->total_weights; ++i) {
double r = GENANN_RANDOM();
/* Sets weights from -0.5 to 0.5. */
ann->weight[i] = r - 0.5;
}
}
void genann_free(genann *ann) {
/* The weight, output, and delta pointers go to the same buffer. */
free(ann);
}
double const *genann_run(genann const *ann, double const *inputs) {
double const *w = ann->weight;
double *o = ann->output + ann->inputs;
double const *i = ann->output;
/* Copy the inputs to the scratch area, where we also store each neuron's
* output, for consistency. This way the first layer isn't a special case. */
memcpy(ann->output, inputs, sizeof(double) * ann->inputs);
int h, j, k;
if (!ann->hidden_layers) {
double *ret = o;
for (j = 0; j < ann->outputs; ++j) {
double sum = *w++ * -1.0;
for (k = 0; k < ann->inputs; ++k) {
sum += *w++ * i[k];
}
*o++ = genann_act_output(ann, sum);
}
return ret;
}
/* Figure input layer */
for (j = 0; j < ann->hidden; ++j) {
double sum = *w++ * -1.0;
for (k = 0; k < ann->inputs; ++k) {
sum += *w++ * i[k];
}
*o++ = genann_act_hidden(ann, sum);
}
i += ann->inputs;
/* Figure hidden layers, if any. */
for (h = 1; h < ann->hidden_layers; ++h) {
for (j = 0; j < ann->hidden; ++j) {
double sum = *w++ * -1.0;
for (k = 0; k < ann->hidden; ++k) {
sum += *w++ * i[k];
}
*o++ = genann_act_hidden(ann, sum);
}
i += ann->hidden;
}
double const *ret = o;
/* Figure output layer. */
for (j = 0; j < ann->outputs; ++j) {
double sum = *w++ * -1.0;
for (k = 0; k < ann->hidden; ++k) {
sum += *w++ * i[k];
}
*o++ = genann_act_output(ann, sum);
}
/* Sanity check that we used all weights and wrote all outputs. */
assert(w - ann->weight == ann->total_weights);
assert(o - ann->output == ann->total_neurons);
return ret;
}
void genann_train(genann const *ann, double const *inputs, double const *desired_outputs, double learning_rate) {
/* To begin with, we must run the network forward. */
genann_run(ann, inputs);
int h, j, k;
/* First set the output layer deltas. */
{
double const *o = ann->output + ann->inputs + ann->hidden * ann->hidden_layers; /* First output. */
double *d = ann->delta + ann->hidden * ann->hidden_layers; /* First delta. */
double const *t = desired_outputs; /* First desired output. */
/* Set output layer deltas. */
if (genann_act_output == genann_act_linear ||
ann->activation_output == genann_act_linear) {
for (j = 0; j < ann->outputs; ++j) {
*d++ = *t++ - *o++;
}
} else {
for (j = 0; j < ann->outputs; ++j) {
*d++ = (*t - *o) * *o * (1.0 - *o);
++o; ++t;
}
}
}
/* Set hidden layer deltas, start on last layer and work backwards. */
/* Note that loop is skipped in the case of hidden_layers == 0. */
for (h = ann->hidden_layers - 1; h >= 0; --h) {
/* Find first output and delta in this layer. */
double const *o = ann->output + ann->inputs + (h * ann->hidden);
double *d = ann->delta + (h * ann->hidden);
/* Find first delta in following layer (which may be hidden or output). */
double const * const dd = ann->delta + ((h+1) * ann->hidden);
/* Find first weight in following layer (which may be hidden or output). */
double const * const ww = ann->weight + ((ann->inputs+1) * ann->hidden) + ((ann->hidden+1) * ann->hidden * (h));
for (j = 0; j < ann->hidden; ++j) {
double delta = 0;
for (k = 0; k < (h == ann->hidden_layers-1 ? ann->outputs : ann->hidden); ++k) {
const double forward_delta = dd[k];
const int windex = k * (ann->hidden + 1) + (j + 1);
const double forward_weight = ww[windex];
delta += forward_delta * forward_weight;
}
*d = *o * (1.0-*o) * delta;
++d; ++o;
}
}
/* Train the outputs. */
{
/* Find first output delta. */
double const *d = ann->delta + ann->hidden * ann->hidden_layers; /* First output delta. */
/* Find first weight to first output delta. */
double *w = ann->weight + (ann->hidden_layers
? ((ann->inputs+1) * ann->hidden + (ann->hidden+1) * ann->hidden * (ann->hidden_layers-1))
: (0));
/* Find first output in previous layer. */
double const * const i = ann->output + (ann->hidden_layers
? (ann->inputs + (ann->hidden) * (ann->hidden_layers-1))
: 0);
/* Set output layer weights. */
for (j = 0; j < ann->outputs; ++j) {
*w++ += *d * learning_rate * -1.0;
for (k = 1; k < (ann->hidden_layers ? ann->hidden : ann->inputs) + 1; ++k) {
*w++ += *d * learning_rate * i[k-1];
}
++d;
}
assert(w - ann->weight == ann->total_weights);
}
/* Train the hidden layers. */
for (h = ann->hidden_layers - 1; h >= 0; --h) {
/* Find first delta in this layer. */
double const *d = ann->delta + (h * ann->hidden);
/* Find first input to this layer. */
double const *i = ann->output + (h
? (ann->inputs + ann->hidden * (h-1))
: 0);
/* Find first weight to this layer. */
double *w = ann->weight + (h
? ((ann->inputs+1) * ann->hidden + (ann->hidden+1) * (ann->hidden) * (h-1))
: 0);
for (j = 0; j < ann->hidden; ++j) {
*w++ += *d * learning_rate * -1.0;
for (k = 1; k < (h == 0 ? ann->inputs : ann->hidden) + 1; ++k) {
*w++ += *d * learning_rate * i[k-1];
}
++d;
}
}
}
void genann_write(genann const *ann, FILE *out) {
fprintf(out, "%d %d %d %d", ann->inputs, ann->hidden_layers, ann->hidden, ann->outputs);
int i;
for (i = 0; i < ann->total_weights; ++i) {
fprintf(out, " %.20e", ann->weight[i]);
}
}