Skip to content

Latest commit

 

History

History
235 lines (181 loc) · 7.02 KB

hostpath.md

File metadata and controls

235 lines (181 loc) · 7.02 KB

示例 - 使用Fluid加速主机目录

测试场景:ResNet50 模型训练

  • 测试机型: V100 x8
  • nfs地址:38037492dc-pol25.cn-shanghai.nas.aliyuncs.com

配置

硬件配置

Cluster Alibaba Cloud Kubernetes. v1.16.9-aliyun.1
ECS实例 ECS 规格:ecs.gn6v-c10g1.20xlarge
CPU:82核
分布式存储 容量型NAS

软件配置

软件版本: 0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6

前提条件

已知约束

  • 通过主机目录实现挂载并不是推荐的使用方式,因为该方式依赖于Kubernetes意外的挂载点维护方式,实际上并不可靠,可能引发数据不一致的问题。

数据准备

  1. 下载数据集
$ wget http://imagenet-tar.oss-cn-shanghai.aliyuncs.com/imagenet.tar.gz
  1. 解压数据集
$ tar -I pigz -xvf imagenet.tar.gz

NFS dawnbench测试

部署数据集

  1. 在NFS Server中挂载数据集

  2. 将NFS挂载到主机目录上

$ sudo mount -t nfs -o vers=3,nolock,proto=tcp,rsize=1048576,wsize=1048576,hard,timeo=600,retrans=2,noresvport <YOUR_NFS_SERVER>:<YOUR_PATH_TO_DATASET> /mnt/nfs-imagenet
  1. 查看NFS是否已成功挂载
$ mount | grep nfs
<YOUR_NFS_SERVER>:<YOUR_PATH_TO_DATASET> on /mnt/nfs-imagenet type nfs (rw,relatime,vers=3,rsize=1048576,wsize=1048576,namlen=255,hard,nolock,noresvport,proto=tcp,timeo=600,retrans=2,sec=sys,mountaddr=192.168.1.28,mountvers=3,mountport=2049,mountproto=tcp,local_lock=all,addr=192.168.1.28)

NOTE:

修改上述命令中的<YOUR_NFS_SERVER><YOUR_PATH_TO_DATASET>为您的nfs server地址和挂载路径。

dawnbench

单机八卡

arena submit mpijob \
--name horovod-v2-nfs-hostpath-1x8-093000 \
--gpus=8 \
--workers=1 \
--working-dir=/horovod-demo/tensorflow-demo/ \
--data-dir /mnt/nfs-imagenet:/data \
-e DATA_DIR=/data/imagenet \
-e num_batch=1000 \
-e datasets_num_private_threads=8 \
--image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/horovod-benchmark-dawnbench-v2:0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6 \
./launch-example.sh 1 8

四机八卡

arena submit mpi \
--name horovod-v2-nfs-hostpath-4x8-092921 \
--gpus=8 \
--workers=4 \ 
--working-dir=/horovod-demo/tensorflow-demo/ \ 
--data-dir /mnt/nfs-imagenet:/data \
-e DATA_DIR=/data/imagenet \
-e num_batch=1000 \
-e datasets_num_private_threads=8 \
--image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/horovod-benchmark-dawnbench-v2:0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6 \
./launch-example.sh 4 8

Fluid加速主机目录

部署数据集

  1. 按照前述步骤完成NFS的挂载
  2. 部署Fluid加速NFS挂载的主机目录
$ cat <<EOF > dataset.yaml
apiVersion: data.fluid.io/v1alpha1
kind: Dataset
metadata:
  name: imagenet
spec:
  mounts:
  - mountPoint: local:///mnt/nfs-imagenet
    name: imagenet
  nodeAffinity:
    required:
      nodeSelectorTerms:
        - matchExpressions:
            - key: aliyun.accelerator/nvidia_name
              operator: In
              values:
                - Tesla-V100-SXM2-16GB
---
apiVersion: data.fluid.io/v1alpha1
kind: AlluxioRuntime
metadata:
  name: imagenet
spec:
  replicas: 4
  data:
    replicas: 1
  tieredstore:
    levels:
      - mediumtype: MEM
        path: /alluxio/ram 
        quota: 50Gi
        high: "0.99"
        low: "0.8"
EOF

NOTE:

  • mounts.mountPoint通过local://的前缀来指明要挂载的主机目录(e.g. /mnt/nfs-imagenet)
  • spec.replicas和dawnbench测试的worker数量保持一致。比如:单机八卡为1,四机八卡为4
  • nodeSelectorTerms作用是限制在有V100显卡的机器上部署数据集,此处应根据实验环境具体调节
$ kubectl create -f dataset.yaml
  1. 检查部署情况
$ kubectl get pv,pvc
NAME                        CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM              STORAGECLASS   REASON   AGE
persistentvolume/imagenet   100Gi      RWX            Retain           Bound    default/imagenet                           3h28m

NAME                             STATUS   VOLUME     CAPACITY   ACCESS MODES   STORAGECLASS   AGE
persistentvolumeclaim/imagenet   Bound    imagenet   100Gi      RWX                           3h28m

dawnbench

单机八卡

arena submit mpi \
--name horovod-v2-nfs-fluid-1x8-093009 \
--gpus=8 \
--workers=1 \
--working-dir=/horovod-demo/tensorflow-demo/ \
--data imagenet:/data \
-e DATA_DIR=/data/imagenet/imagenet \
-e num_batch=1000 \
-e datasets_num_private_threads=8 \
--image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/horovod-benchmark-dawnbench-v2:0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6 \
./launch-example.sh 1 8

四机八卡

arena submit mpi \
--name horovod-v2-nfs-fluid-4x8-092910 \
--gpus=8 \
--workers=4 \
--working-dir=/horovod-demo/tensorflow-demo/ \
--data imagenet:/data \
-e DATA_DIR=/data/imagenet/imagenet \
-e num_batch=1000 \
-e datasets_num_private_threads=8 \
--image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/horovod-benchmark-dawnbench-v2:0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6 \
./launch-example.sh 4 8

Experiment Results

horovod-1x8

nfs-hostpath fluid (cold) fluid (warm)
Training time 4h20m36s 4h21m56s 4h2m16s
Speed at the 1000 step(images/second) 2426.4 2467.2 8959.7
Speed at the last step(images/second) 8218.1 8219.8 8275.8
steps 56300 56300 56300
Accuracy @ 5 0.9280 0.9288 0.9291

horovod-4x8

nfs-hostpath fluid (cold) fluid (warm)
Training time 2h9m21s 1h40m15s 1h29m55s
Speed at the 1000 step(images/second) 3219.2 11067.2 21951.3
Speed at the last step(images/second) 15855.7 20964.4 21869.8
steps 14070 14070 14070
Accuracy @ 5 0.9227 0.9232 0.9228

结果分析

From the test results, the Fluid acceleration on 1x8 has no obvious enhancement, while in the improvements of 4x8, the effect is very obvious. In warm data scenario, the training time can be shortened (129-89)/129 = 31 %; In cold data scenario, training time can be shortened (129-100)/129 = 22 %. This is because NFS bandwidth became a bottleneck under 4x8; Fluid based on Alluxio provides distributed cache data reading capability for P2P data.