-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
70 lines (53 loc) · 2.85 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# -*- coding: utf-8 -*-
# mnist 数据集
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)#下载数据集
x= tf.placeholder(tf.float32,[None, 784])#x是n*(28*28)
y_actual=tf.placeholder(tf.float32,shape=[None,10])#输出10维
def weight_variable(shape):#初始化weight
initial=tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):#初始化偏值
initial=tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#-----------------------------------------------------------------------------------------------#
x_image = tf.reshape(x, [-1,28,28,1]) #转换输入数据shape,以便于用于网络中
W_conv1 = weight_variable([5, 5, 1, 6])
b_conv1 = bias_variable([6])
h_conv1 = tf.nn.softmax(conv2d(x_image, W_conv1) + b_conv1) #第一个卷积层
h_pool1 = max_pool(h_conv1) #第一个池化层
W_conv2=weight_variable([5,5,6,12])
b_conv2=bias_variable([12])
h_conv2=tf.nn.softmax(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool(h_conv2)
W_fc1=weight_variable([7*7*12,1024])
b_fc1=bias_variable([1024])
h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*12])
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
keep_prob=tf.placeholder("float")
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)
W_fc2=weight_variable([1024,10])
b_fc2=bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#--------------------------------------正向传播------------------------------------------#
cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict))#计算交叉熵,以后在弄懂,这里只讲实现
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) #梯度下降法
correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #精确度计算
sess=tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(200000):
batch = mnist.train.next_batch(500)
if i%100 == 0: #训练100次,验证一次
test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
print ("test accuracy",test_acc)
#train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})
#print('step',i,'training accuracy',train_acc)
train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.8})
test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
print ("test accuracy",test_acc)