This repository has been archived by the owner on Nov 21, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 26
/
main_svm.py
128 lines (106 loc) · 3.98 KB
/
main_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Copyright 2017 Abien Fred Agarap
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Main program using the SVM class"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
__version__ = "0.1.5"
__author__ = "Abien Fred Agarap"
import argparse
from models.svm import SVM
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import utils
BATCH_SIZE = 128
LEARNING_RATE = 1e-3
NUM_CLASSES = 2
def parse_args():
parser = argparse.ArgumentParser(
description="SVM built using TensorFlow, for Wisconsin Breast Cancer Diagnostic Dataset"
)
group = parser.add_argument_group("Arguments")
group.add_argument(
"-c", "--svm_c", required=True, type=int, help="Penalty parameter C of the SVM"
)
group.add_argument(
"-n", "--num_epochs", required=True, type=int, help="number of epochs"
)
group.add_argument(
"-l",
"--log_path",
required=True,
type=str,
help="path where to save the TensorBoard logs",
)
group.add_argument(
"-r",
"--result_path",
required=True,
type=str,
help="path where to save the NumPy array consisting of the actual and predicted labels",
)
arguments = parser.parse_args()
return arguments
def main(arguments):
# load the features of the dataset
features = datasets.load_breast_cancer().data
# standardize the features
features = StandardScaler().fit_transform(features)
# get the number of features
num_features = features.shape[1]
# load the corresponding labels for the features
labels = datasets.load_breast_cancer().target
# transform the labels to {-1, +1}
labels[labels == 0] = -1
# split the dataset to 70/30 partition: 70% train, 30% test
train_features, test_features, train_labels, test_labels = train_test_split(
features, labels, test_size=0.3, stratify=labels
)
train_size = train_features.shape[0]
test_size = test_features.shape[0]
# slice the dataset as per the batch size
train_features = train_features[: train_size - (train_size % BATCH_SIZE)]
train_labels = train_labels[: train_size - (train_size % BATCH_SIZE)]
test_features = test_features[: test_size - (test_size % BATCH_SIZE)]
test_labels = test_labels[: test_size - (test_size % BATCH_SIZE)]
# instantiate the SVM class
model = SVM(
alpha=LEARNING_RATE,
batch_size=BATCH_SIZE,
svm_c=arguments.svm_c,
num_classes=NUM_CLASSES,
num_features=num_features,
)
# train the instantiated model
model.train(
epochs=arguments.num_epochs,
log_path=arguments.log_path,
train_data=[train_features, train_labels],
train_size=train_features.shape[0],
validation_data=[test_features, test_labels],
validation_size=test_features.shape[0],
result_path=arguments.result_path,
)
test_conf, test_accuracy = utils.plot_confusion_matrix(
phase="testing", path=arguments.result_path, class_names=["benign", "malignant"]
)
print("True negatives : {}".format(test_conf[0][0]))
print("False negatives : {}".format(test_conf[1][0]))
print("True positives : {}".format(test_conf[1][1]))
print("False positives : {}".format(test_conf[0][1]))
print("Testing accuracy : {}".format(test_accuracy))
if __name__ == "__main__":
args = parse_args()
main(args)