-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
executable file
·99 lines (86 loc) · 3 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python3
"""
Resources
---------
* https://colab.research.google.com/drive/1boqy7ENpKrqaJoxFlbHIBnIODAs1Ih1T#scrollTo=VdFXzJV-oNEM
* https://github.com/LucasFidon/TRABIT_BraTS2021/blob/main/src/data/brats21_dataset.py
"""
import argparse
import logging
import monai
import torch
from torch.utils.tensorboard import SummaryWriter
from config import * # pylint: disable=wildcard-import,unused-wildcard-import
from data.containers import train_test_val_dataloaders
from data import transforms
from nn.unet import UNet
from nn.segresnet import SegResNet
DEFAULT_EPOCHS = 150
if __name__ == "__main__":
logging.basicConfig(
format="%(asctime)s %(name)-15s %(message)s", datefmt="%Y-%m-%d %H:%M:%S"
)
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model",
help="Neural Network type to use; one of [unet, segresnet] (default is unet)",
default="unet",
)
parser.add_argument(
"-e",
"--epochs",
help=f"Number of training epochs to use (default is {DEFAULT_EPOCHS})",
type=int,
default=DEFAULT_EPOCHS,
)
args = parser.parse_args()
monai.utils.set_determinism(seed=42, additional_settings=None)
if not torch.cuda.is_available():
print("WARNING: GPU is not available")
dataloader_kwargs = DATALOADER_KWARGS_CPU
else:
print("Using GPU")
dataloader_kwargs = DATALOADER_KWARGS_GPU
if SINGLE_CHANNEL:
transform_function = transforms.single_channel_binary_label
input_channels = 1
output_channels = 1
else:
transform_function = transforms.multi_channel_multiclass_label
input_channels = 4
output_channels = 3
if args.model.casefold() == "unet":
nnet = UNet(
input_channels=input_channels,
output_channels=output_channels,
learning_rate=LEARNING_RATE["unet"],
)
elif args.model.casefold() == "segresnet":
nnet = SegResNet(
input_channels=input_channels,
output_channels=output_channels,
learning_rate=LEARNING_RATE["segresnet"],
)
else:
raise ValueError("Invalid model type specified")
train_dataloader, test_dataloader, validation_dataloader = train_test_val_dataloaders(
train_ratio=TRAIN_RATIO,
test_ratio=TEST_RATIO,
val_ratio=VAL_RATIO,
dataloader_kwargs=dataloader_kwargs,
transform_function=transform_function,
single_channel=SINGLE_CHANNEL,
)
try:
with SummaryWriter(LOCAL_DATA["tensorboard_logs"]) as summary_writer:
nnet.run_training(
train_dataloader,
validation_dataloader,
args.epochs,
summary_writer,
)
except KeyboardInterrupt: # Allow us to end early and still test
print("Received KeyboardInterrupt. Ending Training now and testing the model.")
f1 = nnet.test(test_dataloader, summary_writer)
print(f"F1 score: {f1}")