-
Notifications
You must be signed in to change notification settings - Fork 30
/
app.py
159 lines (129 loc) · 4.33 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import pandas as pd
from fastapi import FastAPI
from pyproj import Proj
from gamma.utils import association
app = FastAPI()
@app.get("/")
def greet_json():
return {"Hello": "GaMMA!"}
@app.post("/predict/")
def predict(picks: dict, stations: dict, config: dict):
picks = picks["data"]
stations = stations["data"]
picks = pd.DataFrame(picks)
picks["phase_time"] = pd.to_datetime(picks["phase_time"])
stations = pd.DataFrame(stations)
events_, picks_ = run_gamma(picks, stations, config)
if events_ is None:
return {"events": None, "picks": picks_}
events_ = events_.to_dict(orient="records")
picks_ = picks_.to_dict(orient="records")
return {"events": events_, "picks": picks_}
def set_config(region="ridgecrest"):
config = {
"min_picks": 8,
"min_picks_ratio": 0.2,
"max_residual_time": 1.0,
"max_residual_amplitude": 1.0,
"min_score": 0.6,
"min_s_picks": 2,
"min_p_picks": 2,
"use_amplitude": False,
}
# ## Domain
if region.lower() == "ridgecrest":
config.update(
{
"region": "ridgecrest",
"minlongitude": -118.004,
"maxlongitude": -117.004,
"minlatitude": 35.205,
"maxlatitude": 36.205,
"mindepth_km": 0.0,
"maxdepth_km": 41.0,
}
)
lon0 = (config["minlongitude"] + config["maxlongitude"]) / 2
lat0 = (config["minlatitude"] + config["maxlatitude"]) / 2
proj = Proj(f"+proj=sterea +lon_0={lon0} +lat_0={lat0} +units=km")
xmin, ymin = proj(config["minlongitude"], config["minlatitude"])
xmax, ymax = proj(config["maxlongitude"], config["maxlatitude"])
zmin, zmax = config["mindepth_km"], config["maxdepth_km"]
xlim_km = (xmin, xmax)
ylim_km = (ymin, ymax)
zlim_km = (zmin, zmax)
config.update(
{
"xlim_km": xlim_km,
"ylim_km": ylim_km,
"zlim_km": zlim_km,
"z(km)": zlim_km,
"proj": proj,
}
)
config.update(
{
"min_picks_per_eq": 5,
"min_p_picks_per_eq": 0,
"min_s_picks_per_eq": 0,
"max_sigma11": 3.0,
"max_sigma22": 1.0,
"max_sigma12": 1.0,
}
)
config["use_dbscan"] = False
config["use_amplitude"] = True
config["oversample_factor"] = 8.0
config["dims"] = ["x(km)", "y(km)", "z(km)"]
config["method"] = "BGMM"
config["ncpu"] = 1
vel = {"p": 6.0, "s": 6.0 / 1.75}
config["vel"] = vel
config["bfgs_bounds"] = (
(xlim_km[0] - 1, xlim_km[1] + 1), # x
(ylim_km[0] - 1, ylim_km[1] + 1), # y
(0, zlim_km[1] + 1), # z
(None, None), # t
)
config["event_index"] = 0
return config
config = set_config()
def run_gamma(picks, stations, config_):
# %%
config.update(config_)
proj = config["proj"]
picks = picks.rename(
columns={
"station_id": "id",
"phase_time": "timestamp",
"phase_type": "type",
"phase_score": "prob",
"phase_amplitude": "amp",
}
)
stations = stations.rename(columns={"station_id": "id"})
stations[["x(km)", "y(km)"]] = stations.apply(
lambda x: pd.Series(proj(longitude=x.longitude, latitude=x.latitude)), axis=1
)
stations["z(km)"] = stations["elevation_m"].apply(lambda x: -x / 1e3)
events, assignments = association(picks, stations, config, 0, config["method"])
if events is None:
return None, None
events = pd.DataFrame(events)
events[["longitude", "latitude"]] = events.apply(
lambda x: pd.Series(proj(longitude=x["x(km)"], latitude=x["y(km)"], inverse=True)), axis=1
)
events["depth_km"] = events["z(km)"]
events.drop(columns=["x(km)", "y(km)", "z(km)"], inplace=True, errors="ignore")
picks = picks.rename(
columns={
"id": "station_id",
"timestamp": "phase_time",
"type": "phase_type",
"prob": "phase_score",
"amp": "phase_amplitude",
}
)
assignments = pd.DataFrame(assignments, columns=["pick_index", "event_index", "gamma_score"])
picks = picks.join(assignments.set_index("pick_index")).fillna(-1).astype({"event_index": int})
return events, picks