This repository has been archived by the owner on Jun 7, 2023. It is now read-only.
forked from nfrumkin/forecast-prometheus
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathanomaly_detector.py
189 lines (163 loc) · 5.58 KB
/
anomaly_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import pickle
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
import matplotlib.transforms as mtransforms
class Accumulator:
def __init__(self,thresh):
self._counter = 0
self.thresh = thresh
def inc(self, val):
self._counter += val
def count(self):
return self._counter
class AnomalyDetector:
def __init__(self, window=8000, small_window=80, epsilon=0.61, bounds_thresh=22000, peak_thresh=130000, acc_thresh=1000):
# accumulator parameters
self.large_window = window
self.small_window = small_window
self.epsilon = epsilon
# tail probability parameters
self.bounds_thresh = bounds_thresh
self.peak_thresh = peak_thresh
self.acc_thresh = acc_thresh
def anomaly_tail_distribution(self, w, w_prime):
if len(w) != self.large_window:
return "ERROR: input values do not match window size"
mu = np.mean(w)
std = np.std(w)
mu_bar = np.mean(w_prime)
L_t = norm.sf(((mu_bar - mu)/std))
# print(L_t)
if L_t >= 1 - self.epsilon:
return 1
return 0
def anomaly_accumulator(self, y, y_hat):
s_t = []
anomaly_inds = []
acc_thresh = self.acc_thresh
acc = Accumulator(acc_thresh)
for i in range(0, len(y_hat)):
diff = y_hat[i] - y[i]
if abs(diff) > self.bounds_thresh:
# upper bound anomaly, increment counter
acc.inc(1)
elif y[i] > self.peak_thresh:
# found peak, decrement so that acc will decay to 0
acc.inc(-3)
else:
# no anomaly, decrement by 2
acc.inc(-2)
if acc.count() > acc.thresh:
anomaly_inds.append(i)
s_t.append(max(diff, 0))
return s_t, anomaly_inds
def get_anomalies(self, y, y_hat):
if len(y) != len(y_hat):
return "ERROR: lengths of inputs do not match"
s_t, anomaly_inds_acc = self.anomaly_accumulator(y, y_hat)
cum_window = self.large_window+self.small_window
anomaly_inds_tail = []
print("st:", len(s_t))
print("cum_wind:", cum_window)
for i in range(0,(len(s_t)-cum_window)):
window = s_t[i:int(i+self.large_window)]
small_window = s_t[int(i+self.large_window):int(i+cum_window)]
val = self.anomaly_tail_distribution(window, small_window)
anomaly_inds_tail.append(val)
anomaly_inds_tail = np.argwhere(anomaly_inds_tail).flatten()
print("a_i_tail: ", len(anomaly_inds_tail))
print("a_i_accum: ", len(anomaly_inds_acc))
# get intersection of both
set_tail = set(anomaly_inds_tail)
set_acc = set(anomaly_inds_acc)
flag_anomaly = set_tail.intersection(set_acc)
return flag_anomaly
def detect_anomalies(predictions, data):
if len(predictions) != len(data) :
raise IndexError
# parameters
lower_bound_thresh = predictions["yhat_lower"].min()
upper_bound_thresh = predictions["yhat_upper"].max()
diff_thresh = 2*data["values"].std()
acc_thresh = int(0.1*np.shape(predictions)[0])
epsilon = .1
diffs = []
acc = Accumulator(acc_thresh)
preds = np.array(predictions["yhat"])
dat = np.array(data["values"])
for i in range(0, np.shape(predictions)[0]):
diff = preds[i] - dat[i]
if abs(diff) > diff_thresh:
# upper bound anomaly, increment counter
acc.inc(1)
elif dat[i] < lower_bound_thresh:
# found trough, decrement so that acc will decay to 0
acc.inc(-3)
elif dat[i] > upper_bound_thresh:
# found peak, decrement so that acc will decay to 0
acc.inc(-3)
else:
# no anomaly, decrement by 2
acc.inc(-2)
diffs.append(max(diff, 0))
if acc.count() > acc.thresh:
acc_anomaly = True
else:
acc_anomaly = False
w_size = int(0.8*len(data))
w_prime_size = len(data) - w_size
w = diffs[0:w_size]
w_prime = diffs[w_size:]
w_mu = np.mean(w)
w_std = np.std(w)
w_prime_mu = np.mean(w_prime)
if w_std == 0:
L_t = 0
else:
L_t = 1 - norm.sf((w_prime_mu - w_mu)/w_std)
print(L_t)
if L_t >= 1 - epsilon:
tail_prob_anomaly = True
else:
tail_prob_anomaly = False
return acc_anomaly and tail_prob_anomaly
def graph(train, test, forecast, anomalies, metric_name):
len_train = len(train)
fig = plt.figure(figsize=(20,10))
ax = plt.axes()
ax.plot(np.array(train["timestamps"]), np.array(train["values"]), 'b', label = 'train', linewidth = 3)
ax.plot(np.array(test["timestamps"]), np.array(test["values"]), 'g', label = 'test', linewidth = 3)
ax.plot(np.array(forecast["ds"]), np.array(forecast["yhat"]), 'y', label = 'yhat')
title = "Forecast for " + metric_name
ax.set_title(title)
ax.set_xlabel("Timestamp")
ax.set_ylabel("Value")
trans = mtransforms.blended_transform_factory(ax.transData, ax.transAxes)
for a in anomalies:
bool_arr = np.repeat(False,len(forecast))
for i in range(a,a+100):
bool_arr[i] = True
ax.fill_between(np.array(forecast["ds"]),0,1, where=bool_arr, facecolor='red', alpha=0.5, transform=trans)
plt.legend(loc=3)
plt.show()
metric_name = "http_request_duration_microseconds_quantile_728"
filename = "../fourier_forecasts/forecast_" + metric_name + ".pkl"
pkl_file = open(filename, "rb")
forecast = pickle.load(pkl_file)
train = pickle.load(pkl_file)
test = pickle.load(pkl_file)
pkl_file.close()
forecast = forecast[np.shape(train)[0]:]
print(len(forecast))
print(len(test))
inc = 0
anomaly_inds = []
for i in range(0,len(test)-100,100):
if detect_anomalies(forecast[i:i+100], test[i:i+100]) :
inc += 1
anomaly_inds.append(i)
print(inc)
#ad = AnomalyDetector()
#anomaly_inds = ad.get_anomalies(test, forecast[-len(test):])
graph(train, test, forecast, anomaly_inds, metric_name)