-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmain.py
107 lines (95 loc) · 4.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import warnings
warnings.filterwarnings('ignore')
import platform
import traceback
import numpy as np
import os
import argparse as arg
from tool.utils import Util
from ml_builder import MLBuilder
import torch
def get_arguments():
parser = arg.ArgumentParser()
parser.add_argument('-v', '--version', default=0)
parser.add_argument('-i', '--iteration', type=int, default=3)
parser.add_argument('-e', '--epoch', type=int, default=80)
parser.add_argument('-b', '--batch', type=int, default=15)
parser.add_argument('-p', '--patience', type=int, default=16)
parser.add_argument('-w', '--workers', type=int, default=4)
parser.add_argument('-c', '--cuda', default=0)
parser.add_argument('-s', '--step', default=5)
parser.add_argument('-m', '--model', default='stconvs2s')
parser.add_argument('-l', '--num-layers', type=int, dest='num_layers', default=3)
parser.add_argument('-d', '--hidden-dim', type=int, dest='hidden_dim', default=32)
parser.add_argument('-k', '--kernel-size', type=int, dest='kernel_size', default=5)
parser.add_argument('-t', '--pre-trained', default=None, dest='pre_trained')
parser.add_argument('--email', action='store_true')
parser.add_argument('--plot', action='store_true')
parser.add_argument('--verbose', action='store_true')
parser.add_argument('--no-seed', action='store_true', dest='no_seed')
parser.add_argument('--no-stop', action='store_true', dest='no_stop')
parser.add_argument('--small-dataset', action='store_true', dest='small_dataset')
parser.add_argument('--chirps', action='store_true')
return parser.parse_args()
def log_mean_std(rmse_losses, mae_losses, times, times_epochs, iteration, util):
rmse_loss_mean, rmse_loss_std = np.mean(rmse_losses), np.std(rmse_losses)
mae_loss_mean, mae_loss_std = np.mean(mae_losses), np.std(mae_losses)
times_mean, times_std = np.mean(times), np.std(times)
times_epochs_mean, times_epochs_std = np.mean(times_epochs), np.std(times_epochs)
times_mean_readable = util.to_readable_time(times_mean)
times_epochs_mean_readable = util.to_readable_time(times_epochs_mean)
print('\nRMSE: ', rmse_losses)
print('\nMAE: ', mae_losses)
print('\nTraining times: ', times)
print('\nTraining times/epochs: ', times_epochs)
print('-----------------------')
print(f'Mean and standard deviation after {iteration} iterations')
print(f'=> Test RMSE: mean: {rmse_loss_mean:.4f}, std: {rmse_loss_std:.6f}')
print(f'=> Test MAE: mean: {mae_loss_mean:.4f}, std: {mae_loss_std:.6f}')
print(f'=> Training times: mean_readable: {times_mean_readable}, mean: {times_mean:.4f}, std: {times_std:.6f}')
if times_epochs_mean > 0.:
print('=> Training times/epochs: mean_readable: '\
f'{times_epochs_mean_readable}, mean: {times_epochs_mean:.4f}, std: {times_epochs_std:.6f}')
print('-----------------------')
return {'test_rmse_mean': rmse_loss_mean,
'test_rmse_std': rmse_loss_std,
'test_mae_mean': mae_loss_mean,
'test_mae_std': mae_loss_std,
'train_times_mean': times_mean_readable,
'train_times_std': times_std}
def run(builder, iteration, util):
test_rmse, test_mae, train_times, train_times_epochs = [],[],[],[]
for i in range(iteration):
model_info = builder.run_model(i)
if (iteration == 1):
return model_info
test_rmse.append(model_info['test_rmse'])
test_mae.append(model_info['test_mae'])
train_times.append(model_info['train_time'])
train_times_epochs.append(model_info['train_time_epochs'])
new_model_info = log_mean_std(test_rmse, test_mae, train_times, train_times_epochs, iteration, util)
new_model_info['dataset'] = model_info['dataset']
return new_model_info
if __name__ == '__main__':
args = get_arguments()
os.environ["CUDA_VISIBLE_DEVICES"]=str(args.cuda)
device = torch.device('cpu')
device_descr = 'CPU'
if torch.cuda.is_available():
device = torch.device('cuda')
device_descr = 'GPU'
message = None
model_builder = MLBuilder(args, device)
print(f'RUN MODEL: {args.model.upper()}')
print(f'Device: {device_descr}')
print(f'Settings: {args}')
# start time is saved when creating an instance of Util
util = Util(args.model, version=args.version)
try:
message = run(model_builder, args.iteration, util)
message['step'] = args.step
message['hostname'] = platform.node()
except Exception as e:
traceback.print_exc()
message = '=> Error: ' + str(e)
util.send_email(message, args.email)