forked from AMSC-24-25/amsc-24-25-classroom-20-fft-FFT
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
249 lines (229 loc) · 11.4 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#include <iostream>
#include "config-loader/json-configuration-loader.hpp"
#include "fourier-transform-solver/parallel-1d-fast-ft.hpp"
#include "fourier-transform-solver/parallel-1d-inverse-fast-ft.hpp"
#include "fourier-transform-solver/sequential-1d-fast-ft.hpp"
#include "fourier-transform-solver/sequential-1d-inverse-fast-ft.hpp"
#include "matplot/matplot.h"
#include "signal-generator/space-domain-signal-generator.hpp"
#include "signal-generator/time-domain-signal-generator.hpp"
#include "signal-saver/csv-signal-saver.hpp"
/**
* Environment variable name for the file path for the configuration file.
*/
#define ENV_FILE_PATH "CONFIG_FILE_PATH_FFT"
int main() {
// ============================================= Configuration Loading =============================================
// get the file path from environment variable
if (getenv(ENV_FILE_PATH) == nullptr) {
std::cerr << "Warning: Environment variable " << ENV_FILE_PATH << " is not set. "
"Using default configuration file path.\n";
// if the environment variable is not set, use the default configuration file path
setenv(ENV_FILE_PATH, "resources/sample-config.json", 0);
}
const std::string filePath = getenv(ENV_FILE_PATH);
// load the configuration from the file
const auto loader = new JSONConfigurationLoader();
loader->loadConfigurationFromFile(filePath);
const auto json_loaded = new JsonFieldHandler(loader->getConfigurationData());
// free unused memory
delete loader;
// get the simulation parameters
const int signal_length = json_loaded->getSignalLength();
const double *frequency = new double(json_loaded->getHzFrequency());
const double *phase = new double(json_loaded->getPhase());
const double *noise = new double(json_loaded->getNoise());
const std::string *signal_domain = new std::string(json_loaded->getSignalDomain());
// get the seed if it exists
const std::optional<int> seed = json_loaded->hasSeed() ? std::optional(json_loaded->getSeed()) : std::nullopt;
// prepare the signal saver and use the unique pointer to manage the memory
const auto csv_signal_saver = std::make_unique<CsvSignalSaver>();
// free unused memory
delete json_loaded;
// ================================================ Generate Signal ================================================
// generate the signal
std::vector<std::complex<double>> signal(signal_length);
if (*signal_domain == "time") {
// time domain
printf("Generating time domain signal of length: %d.\n", signal_length);
TimeDomainSignalGenerator domain_signal_generator(seed);
signal = domain_signal_generator.generate1DSignal(signal_length, *frequency, *phase, *noise);
} else {
// space domain
printf("Generating space domain signal of length: %d.\n", signal_length);
SpaceDomainSignalGenerator domain_signal_generator(seed);
signal = domain_signal_generator.generate1DSignal(signal_length, *frequency, *phase, *noise);
}
// free unused memory
delete frequency;
delete phase;
delete noise;
delete signal_domain;
// and save it to a file
csv_signal_saver->saveToFile(signal, "output/input_signal");
// since the transformation is in-place, we need to keep a copy of the original signal
std::vector<std::complex<double>> original_signal(signal_length);
std::vector<std::complex<double>> sequential_fft_input(signal_length);
std::vector<std::complex<double>> parallel_fft_input(signal_length);
std::vector<std::complex<double>> parallel_inverse_fft_input(signal_length);
std::vector<std::complex<double>> sequential_inverse_fft_input(signal_length);
for (size_t i = 0; i < signal_length; ++i) {
original_signal[i] = signal[i];
sequential_fft_input[i] = signal[i];
parallel_fft_input[i] = signal[i];
parallel_inverse_fft_input[i] = signal[i];
sequential_inverse_fft_input[i] = signal[i];
}
// ================================================ Sequential FFT ================================================
printf("\n\nFFT\n");
auto *solver = new Sequential1DFastFT(sequential_fft_input);
solver->compute();
const std::vector<std::complex<double>> &solution = solver->getSolution();
csv_signal_saver->saveToFile(solution, "output/fft_signal");
// free the memory
delete solver;
// ================================================= Parallel FFT =================================================
printf("\n\nParallel - FFT\n");
auto *parallel_solver = new Parallel1DFastFT(parallel_fft_input);
parallel_solver->compute();
const std::vector<std::complex<double>> ¶llel_solution = parallel_solver->getSolution();
csv_signal_saver->saveToFile(parallel_solution, "output/parallel_fft_signal");
// free the memory
delete parallel_solver;
// ============================================ Sequential Inverse FFT ============================================
printf("\n\nSequential - Inverse FFT\n");
auto *tmp_solver_seq = new Sequential1DFastFT(sequential_inverse_fft_input);
tmp_solver_seq->compute();
// use the FFT result as input
auto *inverse_solver_seq = new Sequential1DInverseFastFT(tmp_solver_seq->getSolution());
inverse_solver_seq->compute();
const std::vector<std::complex<double>> inverse_solution_seq = inverse_solver_seq->getSolution();
csv_signal_saver->saveToFile(inverse_solution_seq, "output/seq_inverse_fft_signal");
// free the memory
delete inverse_solver_seq;
delete tmp_solver_seq;
// ============================================= Parallel Inverse FFT =============================================
printf("\n\nParallel - Inverse FFT\n");
auto *tmp_solver = new Sequential1DFastFT(parallel_inverse_fft_input);
tmp_solver->compute();
// use the FFT result as input
auto *inverse_solver = new Parallel1DInverseFastFT(tmp_solver->getSolution());
inverse_solver->compute();
const std::vector<std::complex<double>> inverse_solution = inverse_solver->getSolution();
csv_signal_saver->saveToFile(inverse_solution, "output/parallel_inverse_fft_signal");
// free the memory
delete inverse_solver;
delete tmp_solver;
// =================================================== Plotting ===================================================
// prepare the data for plotting
// original signal comparison:
std::vector<double> plot_original_signal(signal_length),
plot_inverse_signal_parallel(signal_length),
plot_inverse_signal_sequential(signal_length);
// FFT signal comparison:
// sequential FFT
std::vector<double> plot_sequential_fft_magnitude(signal_length), plot_sequential_fft_phase(signal_length);
// parallel FFT
std::vector<double> plot_parallel_fft_magnitude(signal_length), plot_parallel_fft_phase(signal_length);
// sequential Inverse FFT:
std::vector<double> plot_sequential_inverse_fft_magnitude(signal_length),
plot_sequential_inverse_fft_phase(signal_length);
// parallel Inverse FFT:
std::vector<double> plot_parallel_inverse_fft_magnitude(signal_length),
plot_parallel_inverse_fft_phase(signal_length);
// linear space for x-axis
std::vector<double> x = matplot::linspace(0, signal_length - 1, signal_length);
// fill the data
for (size_t i = 0; i < signal_length; ++i) {
// comparison of the original signal
plot_original_signal[i] = original_signal[i].real();
plot_inverse_signal_parallel[i] = inverse_solution[i].real();
plot_inverse_signal_sequential[i] = inverse_solution_seq[i].real();
// magnitude
plot_sequential_fft_magnitude[i] = std::abs(sequential_fft_input[i]);
plot_parallel_fft_magnitude[i] = std::abs(parallel_fft_input[i]);
plot_parallel_inverse_fft_magnitude[i] = std::abs(parallel_inverse_fft_input[i]);
plot_sequential_inverse_fft_magnitude[i] = std::abs(sequential_inverse_fft_input[i]);
// phase
plot_sequential_fft_phase[i] = std::arg(sequential_fft_input[i]);
plot_parallel_fft_phase[i] = std::arg(parallel_fft_input[i]);
plot_parallel_inverse_fft_phase[i] = std::arg(parallel_inverse_fft_input[i]);
plot_sequential_inverse_fft_phase[i] = std::arg(sequential_inverse_fft_input[i]);
}
// create the plot for original signal comparison
auto comparison_figure = matplot::figure();
// title of the window
comparison_figure->name("Plot 1D FFT Signal Comparison");
// title of the plot
comparison_figure->title("Original Signal vs. Inverse FFT Signal");
// size of the window (width, height)
comparison_figure->size(1200, 800);
// position of the window (x, y)
comparison_figure->x_position(0);
comparison_figure->y_position(0);
// plot
comparison_figure->add_subplot(3,1,1);
matplot::plot(x, plot_original_signal);
matplot::title("Original Signal");
comparison_figure->add_subplot(3,1,2);
matplot::plot(x, plot_inverse_signal_sequential);
matplot::title("Sequential IFFT");
comparison_figure->add_subplot(3,1,3);
matplot::plot(x, plot_inverse_signal_parallel);
matplot::title("Parallel IFFT");
// show the plot and block the execution
comparison_figure->show();
// create the plot for magnitude comparison
auto magnitude_figure = matplot::figure();
// title of the window
magnitude_figure->name("Magnitude 1D FFT Signal Comparison");
// title of the plot
magnitude_figure->title("Magnitude Comparison");
// size of the window (width, height)
magnitude_figure->size(1300, 800);
// position of the window (x, y)
magnitude_figure->x_position(0);
magnitude_figure->y_position(0);
// plot
magnitude_figure->add_subplot(2,2,1);
matplot::plot(x, plot_sequential_fft_magnitude);
matplot::title("Sequential FFT");
magnitude_figure->add_subplot(2,2,2);
matplot::plot(x, plot_parallel_fft_magnitude);
matplot::title("Parallel FFT");
magnitude_figure->add_subplot(2,2,3);
matplot::plot(x, plot_sequential_inverse_fft_magnitude);
matplot::title("Inverse Sequential FFT");
magnitude_figure->add_subplot(2,2,4);
matplot::plot(x, plot_parallel_inverse_fft_magnitude);
matplot::title("Inverse Parallel FFT");
// show the plot and block the execution
magnitude_figure->show();
// create the plot for phase comparison
auto phase_figure = matplot::figure();
// title of the window
phase_figure->name("Phase 1D FFT Signal Comparison");
// title of the plot
phase_figure->title("Phase Comparison");
// size of the window (width, height)
phase_figure->size(1300, 800);
// position of the window (x, y)
phase_figure->x_position(0);
phase_figure->y_position(0);
// plot
phase_figure->add_subplot(2,2,1);
matplot::plot(x, plot_sequential_fft_phase);
matplot::title("Sequential FFT");
phase_figure->add_subplot(2,2,2);
matplot::plot(x, plot_parallel_fft_phase);
matplot::title("Parallel FFT");
phase_figure->add_subplot(2,2,3);
matplot::plot(x, plot_sequential_inverse_fft_phase);
matplot::title("Inverse Sequential FFT");
phase_figure->add_subplot(2,2,4);
matplot::plot(x, plot_parallel_inverse_fft_phase);
matplot::title("Inverse Parallel FFT");
// show the plot and block the execution
phase_figure->show();
return 0;
}