forked from AMSC-24-25/amsc-24-25-classroom-20-fft-FFT
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbit-reversal.cpp
120 lines (111 loc) · 5.67 KB
/
bit-reversal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#include "utils/bit-reversal.hpp"
std::vector<std::complex<double>> & sequentialBitReversal(std::vector<std::complex<double>> &data) {
// size of the input data
const size_t N = data.size();
// logaritmic value of the size of the input data,
// it indicates the number of bits needed to represent the indices in N
// e.g. N = 8, log_N = 3, because 2^3 = 8
const size_t log_N = std::log2(N);
// for each element at index i,
// calculate the reversed index which is the bit-reversed counterpart of i
for (size_t i = 0; i < N; ++i) {
// reversed index
size_t reversed_index = 0;
// for each bit in the index i
for (size_t j = 0; j < log_N; ++j) {
/**
* if condition is true iff i & (1 << j) is not zero:
* - 1 << j shifts the number 1 left by j positions
* (e.g. 1 << 1 = 2 (10), 1 << 2 = 4 (100), 1 << 3 = 8 (1000))
* - i & (1 << j) bitwise AND operator to check if the j-th bit in i is set (1)
* example:
* - i = 5 (101)
* - j = 0: 5 & (1 << 0) = 101 & 001 = 001 (not equal to zero, so true)
* - j = 1: 5 & (1 << 1) = 101 & 010 = 000 (equal to zero, so false)
* - j = 2: 5 & (1 << 2) = 101 & 100 = 100 (not equal to zero, so true)
*/
if (i & (1 << j)) {
/**
* if the j-th bit in i is set (1), then:
* - use |= as a bitwise OR operator (OR logic gate)
* - shift the number 1 left by (log_N - j - 1) positions (<< operator)
* - set the j-th bit in the reversed_index registry to 1
* why (log_N - j - 1)?
* it is used to reverse the position of the bit in the binary representation of the index;
* therefore, if an index has n bits, the bit at position 0 of the original index should be moved
* to position n-1 in the inverted index;
* the bit at position 1 should be moved to position n-2, and so on.
* - log_N: is the total number of bits required to represent the index
* (base 2 logarithmic is a well-posed assumption, since N is a power of 2).
* - j: is the current bit position in the original index.
* - log_N - j - 1: is the position of the bit in the reversed index.
*/
reversed_index |= (1 << (log_N - j - 1));
}
}
/**
* swapping
* - why if condition?
* ~ bit-reversal algorithm is symmetric because for any given index i,
* there exists a unique index reversed_index such that reversing the
* bits of i gives reversed_index (and vice versa);
* simply put, the bit-reversal algorithm is a bijective function.
* ~ to avoid swapping the same element twice,
* we need to check if the reversed index is greater than i;
* - example:
* ~ N = 8, log_N = 3:
* ~ i = 0 (000), reversed_index = 0 (000) - no swap
* ~ i = 1 (001), reversed_index = 4 (100) - swap
* ~ i = 2 (010), reversed_index = 2 (010) - no swap
* ~ i = 3 (011), reversed_index = 6 (110) - swap
* ~ i = 4 (100), reversed_index = 1 (001) - no swap
* ~ i = 5 (101), reversed_index = 5 (101) - no swap
* ~ i = 6 (110), reversed_index = 3 (011) - no swap
* ~ i = 7 (111), reversed_index = 7 (111) - no swap
* Swapping results:
* ~ i = 0 (000), reversed_index = 0 (000)
* x i = 4 (100), reversed_index = 1 (001)
* ~ i = 2 (010), reversed_index = 2 (010)
* x i = 6 (110), reversed_index = 3 (011)
* x i = 1 (001), reversed_index = 4 (100)
* ~ i = 5 (101), reversed_index = 5 (101)
* x i = 3 (011), reversed_index = 6 (110)
* ~ i = 7 (111), reversed_index = 7 (111)
* As we can see, the elements at indices 0, 2, 4, 5, 6, and 7 are not swapped,
* but are in order because the bit-reversal algorithm is symmetric.
*/
if (reversed_index > i) {
// swap the element at index i with the element at the reversed index
// use utility function std::swap to swap the elements:
// https://en.cppreference.com/w/cpp/algorithm/swap
std::swap(data[i], data[reversed_index]);
}
}
return data;
}
std::vector<std::complex<double>> & parallelBitReversal(std::vector<std::complex<double>> &data) {
// algorithm without comments and with OpenMP parallelization
// see sequential version for commented version
const size_t N = data.size();
const size_t log_N = std::log2(N);
/**
* the pragma omp parallel for directive is used to parallelize the for loop.
*
* the parallelization of the bit-reversal algorithm focuses on the outer loop;
* each iteration of the outer loop (for different values of i) is independent of the others,
* so that it can be executed in parallel by different threads (thread safety is guaranteed).
*/
#pragma omp parallel for
for (size_t i = 0; i < N; ++i) {
size_t reversed_index = 0;
for (size_t j = 0; j < log_N; ++j) {
if (i & (1 << j)) {
reversed_index |= (1 << (log_N - j - 1));
}
}
if (reversed_index > i) {
std::swap(data[i], data[reversed_index]);
}
}
return data;
}