diff --git a/README.md b/README.md
index ffb3f2c..cb7078e 100644
--- a/README.md
+++ b/README.md
@@ -3,8 +3,8 @@
***ARM Summer School 2024: Open Science in the Department of Energy's Atmospheric Radiation Measurement (ARM) User Facility: Connecting State-of-the-Art Models with Diverse Field Campaign Observations***
-[![badge](https://img.shields.io/static/v1.svg?logo=Jupyter&label=ARM+JupyterHub&message=ACE+Environment&color=blue)](https://jupyterhub.arm.gov/hub/user-redirect/git-pull?repo=https%3A//github.com/ARM-Development/arm-ams-short-course-2024&urlpath=lab/tree/arm-ams-short-course-2024/notebooks&branch=main)
-[![nightly-build](https://github.com/ARM-Development/arm-ams-short-course-2024/actions/workflows/nightly-build.yaml/badge.svg)](https://github.com/ARM-Development/arm-ams-short-course-2024/actions/workflows/nightly-build.yaml)
+[![badge](https://img.shields.io/static/v1.svg?logo=Jupyter&label=ARM+JupyterHub&message=ACE+Environment&color=blue)](https://jupyterhub.arm.gov/hub/user-redirect/git-pull?repo=https%3A//github.com/ARM-Development/arm-summer-school-2024&urlpath=lab/tree/arm-summer-school-2024/notebooks&branch=main)
+[![nightly-build](https://github.com/ARM-Development/arm-summer-school-2024/actions/workflows/nightly-build.yaml/badge.svg)](https://github.com/ARM-Development/arm-summer-school-2024/actions/workflows/nightly-build.yaml)
## Motivation
@@ -27,7 +27,7 @@ ARM Summer School 2024 Instructors
### Contributors
-
+
## Structure
diff --git a/_toc.yml b/_toc.yml
index b7b6e59..7f3ab5a 100644
--- a/_toc.yml
+++ b/_toc.yml
@@ -36,4 +36,5 @@ parts:
- file: tutorials/comble/comble-mip-tutorial
- file: tutorials/emc2/InstrumentSimulatorsForModelEvaluation.ipynb
- file: tutorials/microhh/analyze_microhh
- - file: tutorials/machine_learning/ARM_DQO_Spike_Detection
\ No newline at end of file
+ - file: tutorials/machine_learning/ARM_DQO_Spike_Detection
+ - file: tutorials/pyart/sail_qpe_grid
diff --git a/images/github-token.png b/images/github-token.png
new file mode 100644
index 0000000..a41f20c
Binary files /dev/null and b/images/github-token.png differ
diff --git a/preliminary/checklist/git.md b/preliminary/checklist/git.md
index 70a9a13..b10aa6e 100644
--- a/preliminary/checklist/git.md
+++ b/preliminary/checklist/git.md
@@ -73,10 +73,10 @@ However, a better, more secure practice is to use a GitHub Personal Access Token
more customizable permissions and can be revoked without affecting your main GitHub user
account password.
-Take a moment to work through the instructions on the [GitHub personal access tokens](https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token) page. For this hackweek, you need to check the **repo**, **admin:org**, and **workflow** scope.
+Take a moment to work through the instructions on the [GitHub personal access tokens](https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token) page. Make sure you select the "classic" option. **Do not use the fine-grained personal access token option.
Screenshot from github.com setting up the token:
-![github-token](../../img/github-token.png)
+![github-token](../../images/github-token.png)
Once you have created your token, be sure to save it on your computer in case
you need to re-authenticate again. The token will give you access to your
@@ -111,7 +111,7 @@ of your mouse is accessible on the JupyterHub by using the 'Shift' key.
```
```shell
-Cloning into 'github_setup_check'...
+Cloning into 'check_github_setup'...
Username for 'https://github.com':
Password for 'https://attendee@github.com':
remote: Enumerating objects: 3, done.
diff --git a/preliminary/checklist_index.md b/preliminary/checklist_index.md
index 489d489..2f2c144 100644
--- a/preliminary/checklist_index.md
+++ b/preliminary/checklist_index.md
@@ -58,7 +58,7 @@ If this is your first time accessing the ARM Jupyterhub, then please follow the
When filling out the form, be sure to complete the entries as follows:
* **Visitor Role**: *Collaborator*
-* **Resources**: *ARM Data Center Enhanced Jupyterhub Access*
+* **Resources**: *ARM ADC JupyterHub Workshop*
* **Justification**: *Participation in the ARM Summer School*
* **Start Date**: May 19
* **End Date**: May 24
diff --git a/schedule.md b/schedule.md
index ebf040c..1ea34ca 100644
--- a/schedule.md
+++ b/schedule.md
@@ -12,10 +12,10 @@
| :---: | :----: | :---: |
| 08:30 AM - 09:30 AM | [Intro to ARM + Welcome](https://docs.google.com/presentation/d/1X1lc7fCF4jDaD_nUZ8l6X7-4O0ZR3eB7/edit?usp=sharing&ouid=104304750518137712212&rtpof=true&sd=true) | Sally McFarlane and Jim Mather |
| 09:30 AM - 10:00 AM | Coffee Break | |
-| 10:00 AM - 11:00 AM | [Intro to ARM Data Workbench](https://docs.google.com/presentation/d/1v8d_Fd6gqKap2MyonIx9YeTSakY_pUAL/edit?usp=sharing&ouid=104304750518137712212&rtpof=true&sd=true) | Sujata Goswami + Mike Giansiracusa |
+| 10:00 AM - 11:00 AM | [Intro to ARM Data Workbench](https://docs.google.com/presentation/d/1iZYW8Ch-pC5R0qn1eDfTA6YCqK1qugX4/edit?usp=sharing&ouid=104304750518137712212&rtpof=true&sd=true) | Sujata Goswami + Mike Giansiracusa |
| 11:00 AM - 12:00 PM | [Intro to ARM Open Source Software](https://docs.google.com/presentation/d/1e4IAEWNxw2ly8HTMcuz4fLhwpBNcrg2D/edit?usp=sharing&ouid=104304750518137712212&rtpof=true&sd=true) | Scott Collis + Joe O'Brien |
| 12:00 PM - 01:00 PM | Working Lunch: Elevator Pitch Intros | Max Grover |
-| 01:00 PM - 01:45 PM | [Intro to COMBLE-MIP](https://docs.google.com/presentation/d/1v1WGTEhguSBBQ_lAdj_9c85YpJwHDPqy/edit?usp=sharing&ouid=104304750518137712212&rtpof=true&sd=true) | Tim Juliano |
+| 01:00 PM - 01:45 PM | [Intro to COMBLE-MIP](https://docs.google.com/presentation/d/1pXFU-2K4PDwpAY9vHqQ-3pIBn0uFg-8M/edit?usp=sharing&ouid=109458928369860454495&rtpof=true&sd=true) | Tim Juliano |
| 01:45 PM - 02:30 PM | [Intro to LASSO](https://docs.google.com/presentation/d/1I4coa4yfnGot2Z_ksSxk0jIIu8X-WrGK/edit?usp=sharing&ouid=104304750518137712212&rtpof=true&sd=true) | William Gustafson |
| 02:30 PM - 03:00 PM | Coffee Break | |
| 03:00 PM - 03:45 PM | [Intro to SAIL and WRF Model Data](https://docs.google.com/presentation/d/1bnRNTT-cxB_tRSeWcEfbYGEbqqROMsve/edit?usp=sharing&ouid=104304750518137712212&rtpof=true&sd=true) | Dan Feldman |
@@ -27,7 +27,8 @@
| :---: | :----: | :---: |
| 08:30 AM - 09:30 AM | [AI/Machine Learning for Data Quality](tutorials/machine_learning/ARM_DQO_Spike_Detection.ipynb) | Mia Li |
| 09:30 AM - 10:00 AM | Coffee Break | |
-| 10:00 AM - 12:00 PM | [Aerosol + Profiling Measurements in ARM](https://docs.google.com/presentation/d/1cqg9WOEoMFUHuW10ajIFyrtJ45Q2mg-k/edit?usp=sharing&ouid=104304750518137712212&rtpof=true&sd=true)| Damao Zhang + Bobby Jackson |
+| 10:00 AM - 11:00 AM | [Aerosol + Profiling Measurements in ARM](https://docs.google.com/presentation/d/1cqg9WOEoMFUHuW10ajIFyrtJ45Q2mg-k/edit?usp=sharing&ouid=104304750518137712212&rtpof=true&sd=true)| Damao Zhang + Bobby Jackson |
+| 11:00 AM - 12:00 PM | [Intro to ARM Radar Data Products](https://docs.google.com/presentation/d/1D-x3ze1N0UK7elKoqb98MYj3rPr4PXGT/edit?usp=sharing&ouid=104304750518137712212&rtpof=true&sd=true) | Ya-Chien Feng and Joe O'Brien |
| 12:00 PM - 01:00 PM | [Working Lunch: Intro to xwrf](tutorials/xarray/xwrf-xarray-intro) | Max Grover |
| 01:00 PM - 05:00 PM | Break into Groups: Plot your Data! | |
@@ -47,8 +48,7 @@
| Time | Topic | Presenter(s) |
| :---: | :----: | :---: |
-| 08:30 AM - 09:30 AM | [Intro to ARM Radar Data Products](https://docs.google.com/presentation/d/14O3OSaZadIvVmZPHa3f5cf52avmp_zxx/edit?usp=sharing&ouid=104304750518137712212&rtpof=true&sd=true) | Ya-Chien Feng and Joe O'Brien |
-| 09:30 AM - 10:00 AM | Radar Data Retrievals | Joe O'Brien |
+| 08:30 AM - 10:00 AM | Radar Data Retrievals | Joe O'Brien |
| 10:00 AM - 10:30 AM | Coffee Break | |
| 10:30 AM - 12:00 PM | Office Hours: How is it going? | |
| 12:00 PM - 01:00 PM | Working Lunch: Installing Local Python | Max Grover |
diff --git a/tutorials/comble/comble-mip-tutorial.ipynb b/tutorials/comble/comble-mip-tutorial.ipynb
index 9880a4f..0000921 100644
--- a/tutorials/comble/comble-mip-tutorial.ipynb
+++ b/tutorials/comble/comble-mip-tutorial.ipynb
@@ -9,7 +9,9 @@
"source": [
"# COMBLE-MIP Tutorial\n",
"\n",
- "* Please direct any questions to Tim Juliano (NSF NCAR, tjuliano@ucar.edu); updated 5/16/24\n",
+ "* Please direct any questions to Tim Juliano (NSF NCAR, tjuliano@ucar.edu); updated 5/19/24\n",
+ "\n",
+ " * Credit to Florian Tornow (Columbia/NASA GISS) and Ann Fridlind (NASA GISS) for develping much of this code
\n",
"\n",
"* The below notebook focuses on the DOE-funded Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) that took place from 2019-2020. More information about COMBLE can be found in Geerts et al. (2022). Reference Geerts, B., et al., 2022: The COMBLE campaign: A study of marine boundary layer clouds in Arctic cold-air outbreaks, Bull. Amer. Meteor. Soc, 103, E1371–E1389. https://doi.org/10.1175/BAMS-D-21-0044.1\n",
"\n",
@@ -1453,7 +1455,7 @@
"source": [
"In addition to the raw model outputs, we have post-processed the WRF and DHARMA outputs for use with EMC^2. Those files may be found at the following paths:\n",
"* WRF: ```/data/project/ARM_Summer_School_2024_Data/comble-mip/output_les/wrf/WRF_Lx25_dx100_FixN_raw/emc2_prep*```\n",
- "* DHARMA: ```/data/project/ARM_Summer_School_2024_Data/comble-mip/output_les/dharma/emc2/emc2_prep*``` \\\n",
+ "* DHARMA: ```/data/project/ARM_Summer_School_2024_Data/comble-mip/output_les/dharma/emc2/emc2_prep*```\n",
"\n",
"EMC^2-ready files from WRF are available hourly while the three DHARMA files *11521.tgz, *20296.tgz, and *29549.tgz are from 06, 12, and 18 UTC, respectively."
]
diff --git a/tutorials/index.md b/tutorials/index.md
index df9c2ee..73d5a89 100644
--- a/tutorials/index.md
+++ b/tutorials/index.md
@@ -16,3 +16,10 @@ time you log in.
| [...and LASSO-ShCu part 2](./lasso/lasso-cacti_part2.ipynb) |
| [Introduction to LASSO-CACTI](./lasso/lasso-cacti.ipynb) |
| [...and LASSO-CACTI part 2](./lasso/lasso-cacti_part2.ipynb) |
+| [Introduction to xwrf](./xarray/xwrf-xarray-intro.ipynb) |
+| [COMBLE-MIP](./comble/comble-mip-tutorial.ipynb) |
+| [Harnessing Instrument Simulators for Model Evalution](./emc2/InstrumentSimulatorsForModelEvaluation.ipynb) |
+| [Analyze microhh LES data](./microhh/manalyze_microhh.ipynb) |
+| [ARM DQ Office ML Spike Detection](./machine_learning/ARM_DQO_Spike_Detection.ipynb) |
+| [Snowfall Retrievals from SAIL X-Band Radar](./pyart/sail_qpe_grid.ipynb) |
+
diff --git a/tutorials/machine_learning/ARM_DQO_Spike_Detection.ipynb b/tutorials/machine_learning/ARM_DQO_Spike_Detection.ipynb
index 06c3aee..058fabe 100644
--- a/tutorials/machine_learning/ARM_DQO_Spike_Detection.ipynb
+++ b/tutorials/machine_learning/ARM_DQO_Spike_Detection.ipynb
@@ -227,7 +227,8 @@
"source": [
"da_normal = ds_normal[target_variable].values\n",
"time_steps=1\n",
- "diff_normal = da_normal - np.roll(da_normal, shift = time_steps) # See Section 3 Feature Engineering"
+ "diff_normal = da_normal - np.roll(da_normal, shift = time_steps) # See Section 5 Feature Engineering\n",
+ "diff_normal[:time_steps] = [0]*time_steps"
]
},
{
diff --git a/tutorials/pyart/sail_qpe_grid.ipynb b/tutorials/pyart/sail_qpe_grid.ipynb
new file mode 100644
index 0000000..70acad0
--- /dev/null
+++ b/tutorials/pyart/sail_qpe_grid.ipynb
@@ -0,0 +1,381 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "fa933168-2433-421d-aa02-d65324c5ecd0",
+ "metadata": {},
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e52504ca",
+ "metadata": {},
+ "source": [
+ "# Snowfall Retrievals from SAIL X-Band Radar"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "496972cc",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "## You are using the Python ARM Radar Toolkit (Py-ART), an open source\n",
+ "## library for working with weather radar data. Py-ART is partly\n",
+ "## supported by the U.S. Department of Energy as part of the Atmospheric\n",
+ "## Radiation Measurement (ARM) Climate Research Facility, an Office of\n",
+ "## Science user facility.\n",
+ "##\n",
+ "## If you use this software to prepare a publication, please cite:\n",
+ "##\n",
+ "## JJ Helmus and SM Collis, JORS 2016, doi: 10.5334/jors.119\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "import warnings\n",
+ "warnings.simplefilter(\"ignore\", UserWarning)\n",
+ "\n",
+ "import glob\n",
+ "import os\n",
+ "import datetime\n",
+ "\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pyart\n",
+ "import xarray as xr\n",
+ "from matplotlib.dates import DateFormatter\n",
+ "\n",
+ "from metpy.plots import USCOUNTIES\n",
+ "\n",
+ "import cartopy.crs as ccrs\n",
+ "import cartopy.feature as cfeature"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1dbbf233",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "## Setup Helper Functions\n",
+ "We setup helper functions to calculate the snowfall retrieval, using following notation:\n",
+ "\n",
+ "$Z = A*S ^ {B}$\n",
+ "\n",
+ "Where:\n",
+ "- Z = Reflectivity in dBZ\n",
+ "- A = Coefficient applied to Z-S Relationship (not in the exponent)\n",
+ "- S = Liquid snowfall rate\n",
+ "- B = Coefficient applied to Z-S Relationship (in the exponent)\n",
+ "\n",
+ "We also need to apply a snow water equivalent ratio (`swe`) to convert from liquid to snow (ex. 8 inches of snow --> 1 inch of rain would be 8.0).\n",
+ "\n",
+ "This equation now becomes:\n",
+ "\n",
+ "$Z = swe*A*S ^ {B}$\n",
+ "\n",
+ "Solving for S, we get:\n",
+ "\n",
+ "$S = swe * (\\frac{z}{a})^{1/B}$\n",
+ "\n",
+ "Where z is reflectivity in units of dB ($z =10^{Z/10}$)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "ddb1d50e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def snow_rate(radar, swe_ratio, A, B, key=\"snow_z\"):\n",
+ " \"\"\"\n",
+ " Snow rate applied to a pyart.Radar object\n",
+ " \n",
+ " Takes a given Snow Water Equivilent ratio (swe_ratio), A and B value\n",
+ " for the Z-S relationship and creates a radar field similar to DBZ\n",
+ " showing the radar estimated snowfall rate in mm/hr. Then the given\n",
+ " SWE_ratio, A and B are stored in the radar metadata for later \n",
+ " reference.\n",
+ "\n",
+ " \"\"\"\n",
+ " # Setting up for Z-S relationship:\n",
+ " snow_z = radar.fields['corrected_reflectivity']['data'].copy()\n",
+ " # Convert it from dB to linear units\n",
+ " z_lin = 10.0**(radar.fields['corrected_reflectivity']['data']/10.)\n",
+ " # Apply the Z-S relation.\n",
+ " snow_z = swe_ratio * (z_lin/A)**(1./B)\n",
+ " # Add the field back to the radar. Use reflectivity as a template\n",
+ " radar.add_field_like('corrected_reflectivity', key, snow_z,\n",
+ " replace_existing=True)\n",
+ " # Update units and metadata\n",
+ " radar.fields[key]['units'] = 'mm/h'\n",
+ " radar.fields[key]['standard_name'] = 'snowfall_rate'\n",
+ " radar.fields[key]['long_name'] = 'snowfall_rate_from_z'\n",
+ " radar.fields[key]['valid_min'] = 0\n",
+ " radar.fields[key]['valid_max'] = 500\n",
+ " radar.fields[key]['swe_ratio'] = swe_ratio\n",
+ " radar.fields[key]['A'] = A\n",
+ " radar.fields[key]['B'] = B\n",
+ " return radar"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a3f43284-59c1-4e80-bdfe-3a4b373b5c58",
+ "metadata": {},
+ "source": [
+ "## List the Available Files\n",
+ "We will use files on the Oak Ridge Laboratory Computing Facility (ORLCF), within the shared SAIL directory `/gpfs/wolf/atm124/proj-shared/sail`.\n",
+ "\n",
+ "These radar files have been merged from a single sweep in each file, to whole volume scans in each file."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "d17b6a9b-4a2e-431e-b4b5-0729c19a7934",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "file_list = sorted(glob.glob(\"/data/project/ARM_Summer_School_2024_Data/sail/radar/*\"))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "14f86016-9679-4253-8943-b1c86fc2b8f8",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['../data/sail/radar/gucxprecipradarcmacS2.c1.20220310.011126.nc']"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "file_list"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "44fd7db6",
+ "metadata": {},
+ "source": [
+ "## Read Data + Apply Snowfall Retrieval"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "6e842671-fd63-4443-b6a6-c2cb4fdb60ee",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "radar = radar = pyart.io.read(file_list[0])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "f32eae14-4dfc-4273-9ec3-410f12533027",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/jrobrien/micromamba/envs/arm-summer-school-2024-dev/lib/python3.11/site-packages/numpy/ma/core.py:6980: RuntimeWarning: overflow encountered in power\n",
+ " result = np.where(m, fa, umath.power(fa, fb)).view(basetype)\n"
+ ]
+ }
+ ],
+ "source": [
+ "radar = snow_rate(radar, 8.5, 67, 1.28, key=\"snow_z_new\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "2dfc6f73-6c9f-4738-bc07-25b6396e3504",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['DBZ',\n",
+ " 'VEL',\n",
+ " 'WIDTH',\n",
+ " 'ZDR',\n",
+ " 'PHIDP',\n",
+ " 'RHOHV',\n",
+ " 'NCP',\n",
+ " 'DBZhv',\n",
+ " 'cbb_flag',\n",
+ " 'sounding_temperature',\n",
+ " 'height',\n",
+ " 'signal_to_noise_ratio',\n",
+ " 'velocity_texture',\n",
+ " 'gate_id',\n",
+ " 'simulated_velocity',\n",
+ " 'corrected_velocity',\n",
+ " 'unfolded_differential_phase',\n",
+ " 'corrected_differential_phase',\n",
+ " 'filtered_corrected_differential_phase',\n",
+ " 'corrected_specific_diff_phase',\n",
+ " 'filtered_corrected_specific_diff_phase',\n",
+ " 'corrected_differential_reflectivity',\n",
+ " 'corrected_reflectivity',\n",
+ " 'height_over_iso0',\n",
+ " 'specific_attenuation',\n",
+ " 'path_integrated_attenuation',\n",
+ " 'specific_differential_attenuation',\n",
+ " 'path_integrated_differential_attenuation',\n",
+ " 'rain_rate_A',\n",
+ " 'snow_rate_ws2012',\n",
+ " 'snow_rate_ws88diw',\n",
+ " 'snow_rate_m2009_1',\n",
+ " 'snow_rate_m2009_2',\n",
+ " 'snow_z_new']"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Check to see if the snowfall retrieval was applied\n",
+ "list(radar.fields.keys())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "9536b167-c6da-4539-a996-e30c4a9d95b0",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/jrobrien/micromamba/envs/arm-summer-school-2024-dev/lib/python3.11/site-packages/shapely/set_operations.py:131: RuntimeWarning: invalid value encountered in intersection\n",
+ " return lib.intersection(a, b, **kwargs)\n",
+ "/Users/jrobrien/micromamba/envs/arm-summer-school-2024-dev/lib/python3.11/site-packages/shapely/set_operations.py:131: RuntimeWarning: invalid value encountered in intersection\n",
+ " return lib.intersection(a, b, **kwargs)\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAHDCAYAAABmlWNhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACMkklEQVR4nOzdd3hUVfrA8e+90ye9Fwi9GRBBsSAqIlVsiIoFFbGXXeyunaaguCo2rLsotvWHZe1YUEFdVDpSFeklhfRkMvWe3x9DRmIoyWRCCPN+nuc+JGfuvPfMzZB5c6qmlFIIIYQQQkSQ3twVEEIIIcThRxIMIYQQQkScJBhCCCGEiDhJMIQQQggRcZJgCCGEECLiJMEQQgghRMRJgiGEEEKIiJMEQwghhBARJwmGEEIIISJOEowWYvr06YwcOZL27dujaRqnnnpqg57v8/mYOHEi7dq1w2az0a1bN5555pl6PffVV19F07TQYbfbyczMZMCAAUydOpWCgoIwXlHTWbx4MTfddBNHHnkkcXFxZGRkMGjQIL755pu9nr9hwwZGjhxJYmIisbGxDB48mCVLltQ6Z+fOndx///307duX1NRU4uPjOeaYY3jppZcIBAK1zv3mm2+48sor6datGzExMbRq1YpzzjmHxYsXN+h11KdeAFdffTU9evQgMTERh8NBly5duPPOO9m1a1e9r3X//fdz5pln0qpVKzRN44orrgi7XldccUWt98u+jj2vsWTJEgYNGkRsbCyJiYmMHDmSDRs21Ll2Y/8f/PDDD1x99dUcc8wx2Gw2NE1j06ZNez23MdcKBAI88cQTDBs2jNatW+N0OjniiCO4++67KS0t3etzNm/ezJVXXkl2djY2m41WrVpx7rnnhh7ftGlTve7rq6++Wv8bIkRTUqJF6Nq1qzr66KPVlVdeqdLS0lT//v0b9Pyrr75a2Ww2NW3aNPXtt9+qu+++W2maph5++OEDPnfmzJkKUDNnzlQLFixQ8+fPV++++6665ZZbVEJCgkpOTlZfffVVmK8s8m6//XbVp08f9cQTT6i5c+eqjz76SA0fPlwB6rXXXqt1bkFBgcrOzlbdu3dX7733nvr000/VSSedpOLi4tTatWtD53388ccqJydH3XffferTTz9VX375pbr11luVrutq7NixtWKef/75asCAAWrGjBnqu+++U7Nnz1YnnHCCMpvNau7cufV6DfWtl1JKXXTRReqpp55Sn376qZo7d6569NFHVXx8vMrNzVUej6de13M6neqEE05Q119/vbJarWrMmDFh12v9+vVqwYIFoeO5555TgJoyZUqt8vXr1yullFqzZo2Ki4tTJ598svr000/Ve++9p7p3766ys7NVQUFBres39v/BhAkTVNu2bdWIESPUqaeeqgC1cePGvZ7bmGtVVFSouLg4de2116rZs2erb7/9Vj3++OMqKSlJ5ebmKpfLVev8X3/9VaWkpKhjjz1Wvfnmm2revHnqP//5T633ltvtrnX/9jy+/PJLlZSUpJKSktSGDRsadE+EaCqSYLQQgUAg9HX37t0b9Mtu5cqVStM0NWXKlFrl11xzjXI4HKqoqGi/z69JMBYuXFjnsc2bN6ucnBwVFxen8vLy6l2nppSfn1+nzO/3q549e6qOHTvWKr/zzjuVxWJRmzZtCpWVlZWp1NRUNWrUqFBZcXGx8nq9deLedNNNClBbtmzZ7/UrKipURkaGGjhwYL1eQ33rtS8zZsxQQL0Tmj3fXzExMftMMMKp17fffqsANXv27L0+fsEFF6jU1FRVVlYWKtu0aZOyWCzqrrvu2mc9G/r/4K/Pf+yxx/abYDTmWn6/X+3atatO+ezZsxWgXn/99VCZYRiqV69eqlevXsrtdtf7Gns+/5xzzlG6rqvPP/+8wc8XoqlIF0kLoevh/6j++9//opRi7NixtcrHjh1LdXU1c+bMCTt2mzZtePzxx6moqODFF1+s9diiRYs4++yzSU5Oxm6307t3b/7v//6vTowffviBvn37YrfbadWqFQ888ACvvPLKfpuv9yc9Pb1Omclk4phjjmHr1q21yj/44ANOO+002rZtGyqLj49n5MiRfPzxx/j9fgCSkpKwWCx14h533HEAbNu2bb/Xj42NJTc3t87196W+9dqXtLQ0AMxmc72uV9/3V2Pr9Vd+v59PPvmE8847j/j4+FB527ZtGTBgAB988EFY9dyXhjy/MdcymUykpKTUKa95v+z5Ppg/fz7Lli3jlltuwWazNfhakydP5sMPP2TixIkMGzYs7DoLEWmSYESBlStXkpaWRmZmZq3ynj17hh5vjOHDh2MymZg/f36o7Ntvv6Vfv36Ulpbywgsv8OGHH9KrVy8uvPDCWn3EK1asYPDgwbhcLl577TVeeOEFlixZwsMPP9yoOv2V3+/n+++/p3v37qGy6upq/vjjj9B92FPPnj2prq7e6ziAPX3zzTeYzWa6dOmy3/PKyspYsmRJrevvS7j18vv9VFVV8eOPP/LAAw9w0kkn0a9fvwNer74icb/+6o8//qC6unqfMdevX4/b7W5wXWvGK+xvLEmkNORaNeOA9nwf1Py/iYuLY/jw4djtdmJjYznzzDNZu3btfuN99tlnTJw4kXPOOYf77rsv/BchRBOo3583okUrKioiOTm5TnlMTAxWq5WioqJGxY+JiSE1NZUdO3aEym688Ua6d+8e+gAGGDp0KLt27eLee+/l8ssvR9d1HnroIUwmE3PnziU1NRWAM844gyOPPLJRdfqrCRMmsH79ev773/+GykpKSlBK7fXe1JTt7958+eWXvP7669x88817/Wt1TzfddBNVVVX1+hAIp14//fQTffv2DX0/fPhw/vOf/2AymQ54vfpq7P3am5rz9xVTKUVJSQlZWVkNiqtpGiaTKaKvv7HX2r59O3fffTd9+vThzDPPrFUOwRbFCy64gE8//TQ0qPjkk09mxYoVe33969evZ/To0XTq1IlZs2ahaVpkX5gQjSQJRpTY3y+fSPxiUkqFvl6/fj1r167ln//8J0CtZvPhw4fzySefsG7dOo444gjmzZvHaaedFkouINg0PWrUKCZMmNDoegG88sorPPzww9x+++2cc845dR4P594sWbKEUaNGccIJJzB16tT9Xv+BBx7gzTff5JlnnuGYY44JlRuGgWEYta6154dUQ+p15JFHsnDhQlwuF8uWLeORRx5h8ODBfPPNNzidToA63Rcmkymsn31TvJciHbNt27YN7q4JV32uVVxczPDhw1FK8c4779Tqfql5D/Tt25dXXnklVN6jRw969+7Nc889x0MPPVQrXmVlJSNGjMDv9/PBBx/U6l4S4lAhXSRRICUlZa9/WVZVVeH1evf612NDVFVVUVRURHZ2NgD5+fkA3HHHHVgsllrHjTfeCBCaQllUVERGRkadmHsrC8fMmTO57rrruPbaa3nsscdqPZaUlISmaXu9N8XFxcDe/7JeunQpgwcPpnPnznz22Wf77TefOHEiDz30EA8//DB/+9vfaj02adKkWvemY8eOYdcrJiaGPn36cMoppzBu3Dg++OADfv7559C4mE2bNtX5WcybN2+f9d6bcO/X/tS0/OwrpqZpJCYmNijmoaakpITBgwezfft2vvrqKzp06FDr8Zp7MHTo0FrlvXr1Iisra69Tk8eOHcuqVauYOXMmubm5TVd5IRpBWjCiwJFHHsl//vMf8vLyao3D+PXXX4HgX0qN8emnnxIIBELrBNS0Rtxzzz2MHDlyr8/p2rUrEPzlWpOQ7CkvL69RdYJgcnH11VczZswYXnjhhTp/CTscDjp16hS6D3v69ddfcTgcdT4Mli5dyqBBg2jbti1ffvklCQkJ+7z+xIkTmTBhAhMmTODee++t8/i1115bq6m8JlEJp15/1adPH3Rd57fffgMgOzubhQsX1jqn5mdQX5Go11917NgRh8Oxz5idOnXCbrc3KOahpKSkhEGDBrFx40bmzp27z7Em+6KUqjPYdOrUqbz77rvcddddnH/++RGvsxAR03wTWES4wp2m+sgjj9Qqv+666yI2TTUhIaHWmgWdO3dWw4cPP2DdLrjgAhUTE6MKCwtDZYFAQOXm5u53CuGBzJw5U+m6ri6//PJa0w3/6q677lJWq7XWNNPy8nKVlpamLrzwwlrnLl26VCUnJ6uePXvudQriniZNmqQAdf/994dV/4bUa2/mzp2rAPXPf/6zwdfe3zTVcOp1oGmqo0aNUunp6aq8vDxUtnnzZmW1WtU//vGPfdYznGmqezrQNNXGXqu4uFgdffTRKjExca//d2qUlJQop9OpBg8eXKt88eLFClCTJ08Olc2ZM0fpuq4GDRqk/H5/g+ojxMEmLRgtxKJFi0JTNsvLy1FK8e677wJw7LHHhqYNzpo1iyuvvJJ///vfXH755UBwxPpVV13F+PHjMZlMHHvssXz55Ze89NJLPPTQQ/Vu1l65ciV+vx+/309BQQHff/89M2fOxGQy8cEHH4SmRgK8+OKLnH766QwdOpQrrriCVq1aUVxczJo1a1iyZAmzZ88G4L777uPjjz9m4MCB3HfffTgcDl544QWqqqqA2lMFr7rqKl577TX++OOPWtMk/2r27NlcddVV9OrVi+uuu45ffvml1uO9e/cOtRbccccdvP7665xxxhlMmjQJm83GI488gtvtrjUGZN26dQwaNAiAhx9+mN9//53ff/899HjHjh1Dr//xxx/nwQcfZNiwYZxxxhn89NNPta5/wgknHPBe17den3zyCS+//DJnn302bdu2xefzsWjRIqZPn06nTp24+uqrD3gtgHnz5lFYWAgEV6HcvHlz6P3Vv3//0Gurb70aYuLEiRx77LGceeaZ3H333bjdbh588EFSU1O5/fbba51b3/8HmzdvpmPHjowZM4Z//etfoecXFhaGuoZqWk0+//xz0tLSSEtLo3///hG5VnV1NUOHDmXp0qVMnz4dv99f632QlpYW6hJLTExk0qRJ3HHHHVxxxRVcfPHF5OXl8cADD9CmTZtQt+LGjRu5+OKLcTgc3HLLLXVapGq0bt2a1q1bN+RHIETTaOYER9TTmDFjFLDXY+bMmaHz9lx1c09er1eNHz9etWnTRlmtVtWlSxf19NNP1+vaNTFrDqvVqtLT01X//v3VlClT6qy2WGP58uWhv04tFovKzMxUp512mnrhhRdqnff999+r448/XtlsNpWZmanuvPNO9eijjypAlZaW1rkHB/qLc3/3am/PX79+vRoxYoSKj49XTqdTDRw4UC1evHi/92B/P4P+/fvv99z6qk+91qxZo84//3zVtm1bZbfbld1uV926dVN33nnnAVum9rS/On/77bcNrteeDtSCoZRSixYtUgMHDlROp1PFx8erESNGhFb63FN9/x9s3LhRAXVaYmrqsrfjry0UjblWTdm+jr21EL388suqR48eymq1qpSUFDV69Gi1devW0OMHeg/WHOPHj9/nfRbiYNKU2mP4vxCHiCFDhrBp06bQGAIhhBAti3SRiGZ322230bt3b3JyciguLubNN9/kq6++qtW0LYQQomWRBEM0u0AgwIMPPkheXh6appGbm8vrr7/OpZde2txVE0IIESbpIhFCCCFExMlCW0IIIYSIOEkwImDFihWMHTuW9u3bhzYqOvroo5k2bVpohcOWZMeOHUyYMIFly5ZFPParr74a9i6pB8t3332Hpml89913TXaNg3UfpkyZUmv/lYNh7ty59OnTh5iYGDRN47///W+Tv97Vq1czYcKEvca/4ooraNeuXVhxNU2rNf12f9dprGeeeYZOnTphtVrRNI3S0tKIxm/KuguxN5JgNNLLL7/MMcccw8KFC7nzzjuZM2cOH3zwARdccAEvvPACV111VXNXscF27NjBxIkTmyTBaAmOPvpoFixYwNFHH93cVWm0g51gKKUYNWoUFouFjz76iAULFtRaW6KprF69mokTJ+71w/OBBx6os+17fS1YsKDWWiL7u05jLFu2jHHjxjFgwAC++eYbFixYQFxcXESv0VR1F2JfZJBnIyxYsIAbbriBwYMH89///rfWnhSDBw/m9ttvZ86cORG5lsvlCm1atadAIIDf79/vfhiiYeLj4+u1GFY0aOj7a8eOHRQXF3PuuecycODAJq5d/dQsaBWOg/U+WLVqFQDXXHMNxx133EG5ZqTs63eTELLQViOceeaZymw211o2eX8CgYB69NFHVdeuXZXValVpaWnqsssuq7WYjlLBRY+6d++u5s2bp/r27ascDoe68MILQ4v3PProo2ry5MmqXbt2ymQyqc8//1wppdTChQvVWWedpZKSkpTNZlO9evVS77zzTp16bNu2TV1zzTWqdevWymKxqKysLHXeeeepvLy8fS5EtOfiPfW9zoIFC9SJJ56obDabysrKUnfffbd66aWX6r08c6Sv89fXUaNt27a1Fj6quQc1C0w9+eSTClC///57nefeddddymKxhJY6//LLL9XZZ5+tWrVqpWw2m+rYsaO69tpray2FrtSfiyb99T589dVX6rTTTlNxcXHK4XCoE088UX399de1zhk/frwC1MqVK9VFF12k4uPjVXp6uho7dmythcn29nPc33LXjX1/1dRrz6Nt27aNfr1KBRcUu+iii1R6erqyWq0qJydHXXbZZcrtdu9zAaqaxbDGjBkTqodSSvXq1UuddNJJda7h9/tVdna2Ovfcc2vdw5r3zP6uM2nSJGUymfb6u2Ds2LEqOTlZVVdX7/W+722Rs5r3Y33fT429R0op9a9//Uv17NlT2Ww2lZSUpEaMGKFWr15d6xpjxoxRMTExasWKFWrw4MEqNjZWnXDCCXt9XUJIghEmv9+vnE6nOv744+v9nGuvvVYB6m9/+5uaM2eOeuGFF1RaWprKycmp9Qujf//+Kjk5WeXk5KhnnnlGffvtt2revHmhD4BWrVqpAQMGqHfffVd9+eWXauPGjeqbb75RVqtVnXzyyeqdd95Rc+bMUVdccUWdXyLbtm1TWVlZKjU1VT3xxBPq66+/Vu+884668sor1Zo1a1RZWVnol9H999+vFixYoBYsWBBKgup7nVWrVimn06lyc3PV22+/rT788EM1dOhQ1aZNm3olGE1xnXATjMLCQmW1WtV9991X63k1H0gjR44MlT3//PNq6tSp6qOPPlLz5s1Tr732mjrqqKNU165dldfrDZ23tw/c119/XWmapkaMGKHef/999fHHH6szzzxTmUymWh+6NR/kXbt2VQ8++KD66quv1BNPPKFsNpsaO3Zs6LwFCxYoh8Ohhg8fHvo5rlq1ap/3vLHvr61bt6r3339fAervf/+7WrBggVqyZEmjX++yZctUbGysateunXrhhRfU3Llz1RtvvKFGjRqlysvLVUFBgZoyZYoC1HPPPRd6rTUrzP41wXjqqacUoH777bdar/+zzz5TgProo49CZXu+Z/Z3nfz8fGWz2eq8R4qKipTD4VB33nnnPu/7qlWr1P333x+6lwsWLAitYlrf91Nj71HNYxdffLH69NNP1axZs1SHDh1UQkJCrfs0ZswYZbFYVLt27dTUqVPV3Llz1RdffLHP1yaimyQYYcrLy1OAuuiii+p1/po1axSgbrzxxlrlP//8swLUvffeGyqr+Ytm7ty5tc6t+QDo2LFjrV8uSinVrVs31bt3b+Xz+WqVn3nmmSorKyu04deVV16pLBZLnb9M9rRw4cI6H+QNvc6FF16oHA6HysvLC53j9/tVt27d6pVgNMV1wk0wlFJq5MiRqnXr1rU2Tqv5QPr444/3+hoMw1A+n09t3rxZAerDDz8MPfbXD9yqqiqVnJyszjrrrFoxAoGAOuqoo9Rxxx0XKqtJMKZNm1br3BtvvFHZ7XZlGEaobH8bl/1VJN5fNTEee+yxWuc15vWedtppKjExcZ9L0iul1OzZs/e6rLlSdROMXbt2KavVWuv/nFLBTdcyMjJqvca/vmcOdJ309HTl8XhCZY8++qjSdf2A7/f9bShYY3/vp8bco5KSklAiuqctW7Yom82mLrnkklqvEVD//ve/9/t6hFBKKRnkeZB8++23QHBE+56OO+44jjjiCObOnVurPCkpidNOO22vsc4++2wsFkvo+/Xr17N27VpGjx4NENqQzO/3M3z4cHbu3Mm6deuA4MZOAwYM4Igjjmjwa2jIdb799lsGDhxIRkZG6Pkmk4kLL7zwkLlOQ4wdO5Zt27bx9ddfh8pmzpxJZmYmp59+eqisoKCA66+/npycHMxmMxaLJbQp1po1a/YZ/3//+x/FxcWMGTOm1us1DINhw4axcOHC0AZwNc4+++xa3/fs2RO3201BQUGjXmtj3l/1Vd/X63K5mDdvHqNGjaq1mV5jpKSkcNZZZ/Haa69hGAYQ3Fb9ww8/5PLLL8dsDm9o2s0330xBQUFoIz/DMHj++ec544wzwp7FUp/3U2Pv0YIFC6iurq7zuyknJ4fTTjutzu8mgPPOO6/hL0ZEHRnkGabU1FScTicbN26s1/lFRUUAZGVl1XksOzubzZs31yrb23n7eiw/Px8I7nR5xx137PU5u3btAoK7SYa702JDrlNUVERmZmadx/dW1lzXaYjTTz+drKwsZs6cyZAhQygpKeGjjz7i5ptvxmQyAcEPlCFDhrBjxw4eeOABjjzySGJiYjAMgxNOOIHq6up9xq95zeeff/4+zykuLiYmJib0fUpKSq3HawZi7u869dGY91d91ff16rpOIBCI+O6gV155Je+99x5fffUVQ4cO5e2338bj8dT5kG2I3r17c/LJJ/Pcc88xevRoPvnkEzZt2sSLL74YVrz6vp9KSkoadY8O9Lvpq6++qlXmdDqJj48P61oiukiCESaTycTAgQP5/PPP2bZt2wH/c9d8GOzcubPOuTt27CA1NbVWmaZp+4z118dqnnvPPfcwcuTIvT6na9euQHCb6G3btu23rvvSkOukpKSQl5dX5/G9lR2s69hsNjweT53yml+w+2Mymbjssst4+umnKS0t5a233sLj8TB27NjQOStXrmT58uW8+uqrjBkzJlS+fv36A8avec3PPPPMPmcu7NlK05Qa8/6qr/q+3kAggMlkCvs9uy9Dhw4lOzubmTNnMnToUGbOnMnxxx9Pbm5uo+KOGzeOCy64gCVLlvDss8/SpUsXBg8eHFas+r6fkpOTG3WP9vzd9FcN/d0kxJ4kwWiEe+65h88++4xrrrmGDz/8EKvVWutxn8/HnDlzOOuss0LdHW+88QbHHnts6JyFCxeyZs0a7rvvvrDr0bVrVzp37szy5cuZMmXKfs89/fTTef3111m3bt0+PxT29ZdwQ64zYMAAPvroI/Lz80MfjIFAgHfeeSeir6ch12nXrh0rVqyoVfbNN99QWVl5wDpBsJtk2rRpvP3227z66qv07duXbt26hR6v+cX71ymd9fkLtl+/fiQmJrJ69Wr+9re/1as+9WGz2RrdotGQn0d9NeT19u/fn9mzZ/Pwww/X+bCr0dDWm5qEcfr06Xz//fcsWrSoXj+nA13n3HPPpU2bNtx+++3MmzePJ598MuwP5Pq+nxwOR6PuUd++fXE4HLzxxhtccMEFofJt27bxzTff7LeVSYj9kQSjEfr27cvzzz/PjTfeyDHHHMMNN9xA9+7d8fl8LF26lJdeeokePXpw1lln0bVrV6699lqeeeYZdF3n9NNPZ9OmTTzwwAPk5ORw6623NqouL774IqeffjpDhw7liiuuoFWrVhQXF7NmzRqWLFkS6heeNGkSn3/+Oaeccgr33nsvRx55JKWlpcyZM4fbbruNbt260bFjRxwOB2+++SZHHHEEsbGxZGdnk52dXe/r3H///Xz00UecdtppPPjggzidTp577rk64wga+3oacp3LLruMBx54gAcffJD+/fuzevVqnn32WRISEupVp27dutG3b1+mTp3K1q1beemll+o83rFjR+6++26UUiQnJ/Pxxx/XaWLem9jYWJ555hnGjBlDcXEx559/Punp6RQWFrJ8+XIKCwt5/vnn61XPPR155JF89913fPzxx2RlZREXF9fg1gao/8+jvhryep944glOOukkjj/+eO6++246depEfn4+H330ES+++CJxcXH06NEDgJdeeom4uDjsdjvt27ev0420pyuvvJJHH32USy65BIfDUa9xOwe6jslk4qabbuIf//gHMTExjepyacj7qbH36IEHHuDee+/l8ssv5+KLL6aoqIiJEydit9sZP3582K9BRLnmHmV6OFi2bJkaM2aMatOmjbJarSomJkb17t1bPfjgg7VGddesg9GlSxdlsVhUamqquvTSS/e5DsZf7WuEfo3ly5erUaNGqfT0dGWxWFRmZqY67bTT1AsvvFDrvK1bt6orr7xSZWZmKovForKzs9WoUaNUfn5+6Jy3335bdevWTVksljoj6et7nR9//FGdcMIJymazqczMTHXnnXc2aB2MSF/H4/Gou+66S+Xk5CiHw6H69++vli1bVq9ZJDVq4jocDlVWVlbn8dWrV6vBgweruLg4lZSUpC644AK1ZcuWOvdwX+tCzJs3T51xxhkqOTlZWSwW1apVK3XGGWeo2bNnh86pmUVSn7U1li1bpvr166ecTme918FozPurvrNIGvJ6lQre1wsuuEClpKQoq9Wq2rRpo6644grldrtD50yfPl21b99emUym/a6DsacTTzxRAWr06NF7ffyvP7f9XafGpk2bFKCuv/76vcbcm33NIqnv+6nm3HDvkVJKvfLKK6pnz57KarWqhIQEdc4559SZ1lyzDoYQ9SG7qYrD0quvvsrYsWPZuHFj2CP4hQjHM888w7hx41i5ciXdu3dv7uoI0Wyki0QIISJg6dKlbNy4kUmTJnHOOedIciGiniQYQggRAeeeey55eXmcfPLJvPDCC81dHSGanXSRCCGEECLiZCVPIYQQQkScJBhCCCGEiDhJMIQQQggRcZJgCCGEECLiDutZJG63G6/X29zVEEIIEQar1Yrdbm/Sa0Tyc+Jg1LclOWwTDLfbTfv27eu1uZYQQohDT2ZmJhs3bmyyD223202Ww0FphOI1dX1bmsM2wfB6veTl5bF161bZWlg0my1btrBz506OP/745q6KEC1KeXk5OTk5eL3eJvvA9nq9lALPAo5GxqoG/paX16T1bWkO2wSjRnx8vCQYotnExcVRXl4u70EhDmEOwNnclTgMHfYJhhBCCLE/2u6jsTFEbZJgCCGEiGqSYDQNSTCEEEJENUkwmoasgyGEEEKIiJMWDCGEEFFNWjCahiQYQgghopokGE1DukiEEEIIEXGSYAghhBAi4qSLRAghRFSTLpKmIS0YQgghhIg4acEQQggR1aQFo2lIgiGEECKqSYLRNKSLRIgmpmnyq0cIEX2kBUMIIURUkxaMpiEJhhBCiKgmCUbTkC4SIZqQUqq5qyCEEM1CEgwhhBBCRJx0kQghhIhq0kXSNCTBEEIIEdUkwWga0kUihBBCiIiTFgwhhBBRTVowmoYkGEIIIaKaJBhNQ7pIhBBCCBFx0oIhhBAiqkkLRtOQFgzRYD+57m7uKgghhDjESYIh6u0X112h5EKSDCGEEPsjCYaol19cd2HV/aHv7bqXD/LHN2ONhBAicrRGHqIuSTDEAX1Zcj+lHitew4xd92LXvWwsi6NtfCVrPX9r7uoJIUSjNDa5OJySDI/HE7FYkmCIfbrjl2eYX3FP6PtEcxU6CkNptI2vBMCrLM1VPSGEEI30xRdfcMUVV9CxY0csFgtOp5O4uDj69+/Pww8/zI4dO8KOLQmG2KtfXHdxac+NtcrchhW77g19b9YMzFqA37w3HezqCSGEaIT//ve/dO3alTFjxqDrOnfeeSfvv/8+X3zxBf/617/o378/X3/9NR06dOD666+nsLCwwdeQaaqijo8KHyQzBt5Y0Z5T2hfSLq4CgAq/DafVQ3XAQpLFBYBZC+BXJuZX3MMpcVObs9pCCBGWaJymOmXKFP75z39yxhlnoOt12xpGjRoFwPbt23nqqaeYNWsWt99+e4OuIQmGqOPstEl8VPggZx+xg3RrBV5lwal7cFo9WHUfDpMvdK5fmSgPOEm2upqxxoc2TWtpv3qEiC7RmGD88ssv9TqvVatWTJs2LaxrSBeJ2Kuz0yaRbHXhVRb8SqfSsAPgNSyYNQO3YaE84KQ84CTWVE2x1ylTV4UQogXZunXrfh/3+XzMnz8/7PiSYIh9cgVsuI3gIE5DabgMGy7DhleZMWsGdt2LN6BR7HViNSm8gZaWwwshRPRq164d5557LpWVlXt9vLi4mAEDBoQdXxIMsU/HOaeha4pdbgclHjteFexRs2p+/Eqn1Gsn0eIGCCUXe846EaCUau4qCCEOIFqnqSqlWLhwISeccAIbNmzY5znhkgRD7Fcfx2MUuSwk2dxsKInlt9IEftiexk87UlhfHMP2qlhizX/OLDFpShbgEkKIFkDTNObOnUvr1q059thj+frrr/d6TrgkwRAH1DW5HAOdDkmVtIl3YTUprCZFwNA4PWUyO6ucmDSFSVOUeyzEWAPNXWUhhKg3DdC0Rh7N/SLCoJQiKSmJzz//nKuuuorhw4fz5JNPRiy+zCIRB3S043EWVd8JgM/QOSK1gn6xj9Q6x+03EVAaJl0xJOmh5qimEEKERTMFk4RGxVBAC/3bStM0pk2bRu/evbn66qtZtmwZL7/8cqPjSoIh6qWP47F9PnZG6uQ6ZbIuhhBCtCwXX3wx3bp149xzz+WUU05hxowZjYonXSQi4moGesqATyFEi6BH6DgM9O7dm4ULF2Kz2Rg0aFCjYh0mt0QcKj7d9UCt7z8qfLCZaiKEEPWj6ZE5Wpq2bdtiMpnqlKelpTF37lwuvvjiRs0ikS4S0Wjv5k3AajIASHH4CKhgZ2ap24JFl2maQohDW8TGYLQwGzdu3OdjZrOZ5557jueeey7s+C0w5xKHknfzJpAV6w59bzMFSLdWUOU1Y9EVGU4X6703NmMNhRBC1JdSim+++YZPP/2UkpKSRsWSBEM0SpLdx85Ke+h7T8CEVfeT4XSR4XQRb6rGrntlx1UhxKErSsdglJaWMmbMGI488kiuueYaysvLOfnkkxk0aBBnnXUW3bp1Y8WKFWHHb4G3RBxKFmxNJtXpJTPGzfqiGH7elkSxPw6r7ifdUoZd9+IybBT745q7qkIIsVfROgbjjjvuYMGCBVx44YX8+uuvDBs2jEAgwIIFC/j555/Jzc3lvvvuCzt+C7wl4lAyoH0h5R4zuqY4pe0uTmm7i09/y2JrZTzrKjPY5k2l2B8nrRhCCLGH7du3c+mll5KSkoLT6aRXr14sXrw49LhSigkTJpCdnY3D4eDUU09l1apVEa3D559/zssvv8z999/Pe++9x08//cTUqVM5/vjjOfbYY3n00UdZuHBh2PElwRCNYjMFaBNXiaE0zFoAQ2mc3jkPn6FRUGXFrnux616cuge77j1wQCGEOMgOdgtGSUkJ/fr1w2Kx8Pnnn7N69Woef/xxEhMTQ+dMmzaNJ554gmeffZaFCxeSmZnJ4MGDqaioiNjrzs/Pp0uXLkBwW3a73U5OTk7o8TZt2lBYWBh2fEkwRKP0cTyGjmJ7hQOn7iHZXImBTnqMl0FZG7BrXpLNFdh1LwW+xNCKoEIIccjQAVMjjwZ8mj766KPk5OQwc+ZMjjvuONq1a8fAgQPp2LEjEGy9mD59Ovfddx8jR46kR48evPbaa7hcLt56663IvGbAMIxa01RNJlOtvUcasw8JyDRVEQE97U+SV30/SeZKKgIOOtp3AuBTZuZtzybe5qNzcnA7YLMW4MUNU7iuw73NWWUhhGgS5eXltb632WzYbLZaZR999BFDhw7lggsuYN68ebRq1Yobb7yRa665BghOH83Ly2PIkCG14vTv35///e9/XHfddRGr7yuvvEJsbCwAfr+fV199ldTUVIBGt5ZIgiEiItHmpcQfi133srQsh0RbsDukdXw1MdYAZi24SP/PO1I5JqtxU5+EECKSIjFIs+Zv/T27GADGjx/PhAkTapVt2LCB559/nttuu417772XX375hXHjxmGz2bj88svJy8sDICMjo9bzMjIy2Lx5c+Mquoc2bdrU2nMkMzOT119/vc454ZIEQ0TEcc5p/Oa9Ca9hIdnuQSe48FZWjAur7mdrZTxpTjfHZJUQb3KxwXc9HSwvNHOtD47GNjMKIZpWJBOMrVu3Eh8fHyr/a+sFBLsm+vTpw5QpU4Dg8tyrVq3i+eef5/LLL/8z5l9+dyilIvr7ZNOmTRGLtTcyBkNETBfrc+zyx+MJmNA1hV+Z8CsTds3HEfEFGEoj2VyBWQvgNqyyAJcQ4rATHx9f69hbgpGVlUVubm6tsiOOOIItW7YAwZYEINSSUaOgoKBOq8ahTFowRETFmqrx6ybMWgCryU+iuQoAr2HGqvtxG1YArJofvzr889vGrOMvhDhIGjhIc68a0LDQr18/1q1bV6vst99+o23btgC0b9+ezMxMvvrqK3r37g2A1+tl3rx5PProo42saNDTTz9d73PHjRsX1jUkwRAR1cP2FGs9f8Np8lDgS8TttWDs/p8bq1fjNHlwBWz4lY5ZM/jNexNdrOGvdS+EEI0VyS6S+rj11ls58cQTmTJlCqNGjeKXX37hpZde4qWXXgrG0jRuueUWpkyZQufOnencuTNTpkzB6XRyySWXNK6iuz355JO1vi8sLMTlcoWmypaWluJ0OklPTw87wTj8/4QUB10327O1Vu4sdtsodtuINblxBWyYNQOzZmCgYde9bPJFbkS0EEI02EFeKvzYY4/lgw8+4O2336ZHjx5MnjyZ6dOnM3r06NA5d911F7fccgs33ngjffr0Yfv27Xz55ZfExUVmVeSNGzeGjocffphevXqxZs0aiouLKS4uZs2aNRx99NFMnjw57Gto6jBtwy0vLychIYGysrJaA27EwfNd+b3EWnzYdS/G7u4QXTNINleGukecWjXlRuxhO+Bzw4YNFBYWcvzxxzd3VYRoUQ7G7/Caa3yRAzGN/HO7yoChW2mRnzkdO3bk3XffDXXH1Fi8eDHnn3/+fndd3R9pwRBNprW9FLMWwKl7cOoezFoAHYXFCI7L8CsT5UYsXsMsC3AJIZpNtO5FUmPnzp34fL465YFAgPz8/LDjtuBbIg51nawzsGp+zFoAl2Ej1lRNrKkanx6DjsJrmPEaZioNB6nm8gMHFEKIptDYVTxrjhZq4MCBXHPNNSxatCg0MH3RokVcd911DBo0KOy4kmCIJpVre5rKQHAZcadWjUP3YtH86JrCrBnYdR+p5nL8ysQG3/XNXV0hhIg6//73v2nVqhXHHXccdrsdm83G8ccfT1ZWFq+88krYcWUWiWhyOgalgRh+r0jhqMQdlPsdAMSa3Bho+JUJXTNw6B7yjSvI0F9t3goLIaKKpkVgFkkLHs2YlpbGZ599xu+//86aNWtQSnHEEUeENkILlyQYosl1sz3Lj5V34/brWDQ/dj3Y12dTlVSQiEP3AKBrCj3glnY1IcTB1cBZIHvVghOMGjVTYiNFfpWLg6Jf7CMcm7IdA40YyojxF4I/uF+JT5kxG9XoATd+3SErfAohRBN75JFHcLlc9Tr3559/5tNPP23wNSTBEAdNa/MrVAXs/FLWmaXuXMpMmRhKp9Qfi0eLpUwlUxVwYNYCFBpjmru6QogooZkic7Qkq1evpk2bNtxwww18/vnnFBYWhh7z+/2sWLGCGTNmcOKJJ3LRRReFNfVWukjEQbWuPI0qr5mAAkgGwKQprA5fqOskxuSm2rBK+iuEOCgispJnC+simTVrFitWrOC5555j9OjRlJWVYTKZsNlsoZaN3r17c+211zJmzJi97qlyILLQljjoVnpupjLgIGBAkiX4Rl6+K4XBmb/jUsEBoA7di0+ZyTb9qzmr2miy0JYQ4TmYC23NzYWYRrZAVAVg4OqWudCWUooVK1awadMmqqurSU1NpVevXqSmpjYqrrRgiIOuh+0p1ntvZJs7kXiTi+WlWcTb/HgJZshmzcCnzJi0QDPXVAgRFaJ8kKemaRx11FEcddRREY0rCYZoNpm2cor9cfRO2hEqM2tGKLGoDtjYELj+sF1GXAhxiIjESpwtOMFoKtLLLZpFJ+sM3MpKlrUYKx40DDQM8ryJlPljqArYgyVKZ1fg0uaurhDicBblK3k2FUkwRLPpZX+CasNKnj+FrZ40KgJOYk1uEsxVGErHUDqJpvLQuAwhhBAthyQYolmtKstkh6v29sNFvnicJg9W3YdLOTBrhiwjLoRoMtG+2VlTkVsimtXpKZMxaQpdU7gMG4bS0DHwGmYMpeNXJtyGBZdhY7VnXHNXVwhxONL4c6BnuId20GsdEX6/H7PZzMqVKyMeWxIM0ewGJj5MrF5NuqWMeHM1Zs3Ar4Idmi7DhsuwoaNwG5ZmrmnDHaazwIUQhwmz2Uzbtm0JBCI/a08SDHFIsOs+yv0ONAycJg9Ok4fygJPKgAOvYcZtWLDq/uauphDiMBSNK3nu6f777+eee+6huLg4onFlmqo4JLSzvMh35fdSGogl1lTN1srgQjWGgrZx1UBw/QwhhIi4SKyD0YL/XH/66adZv3492dnZtG3blpiYmFqPL1myJKy4kmCIQ8ap8VOYX3EPu/wx+AyNgqrgwlsWk2JI0kPNXDshhDg8jRgxokniSoIhDikmTVFQZaOgykqn5OAy4lvKHJDUzBUTQhy2IrIXSQtuwRg/fnyTxJUEQxxS+sU+wpe++6nwmIOJBXBiVn4z16pxNK2FDi8XIkpEe4JRY/HixaxZswZN08jNzaV3796NiicJhjjkDEl6iC+5n0SbF4Bc29PNXCMhhDh8FRQUcNFFF/Hdd9+RmJiIUoqysjIGDBjAf/7zH9LS0sKKexjkXOJwNCTpIY5zTuM457TmrooQ4nAX5UuF//3vf6e8vJxVq1ZRXFxMSUkJK1eupLy8nHHjwl9/SFowRIvzQf54jkwqJMYUnF2SZZrZzDUSQrRoUT6LZM6cOXz99dccccQRobLc3Fyee+45hgwZEnZcSTBEi7HSczO/lyZyfOo2NIxQ+c7AWBYW55Bo9wFwStzU5qqiEKIFivYxGIZhYLHUXcjQYrFgGMZenlE/LfiWiGhSk1wA7PLF13psYXEO7eIqQt/Pr7jnYFZNCCFatNNOO42bb76ZHTt2hMq2b9/OrbfeysCBA8OOKwmGaDHs5mAmnWiuxOwto8Qfx2ZPRp3zEi3ug101IURLFsV7kQA8++yzVFRU0K5dOzp27EinTp1o3749FRUVPPPMM2HHlS4S0SL0sD3F1soHANBRYATY7EogyeGjb8pm8n2JocSi2OtgGbfRy/5Ec1ZZCNFCRGKpby38noRml5OTw5IlS/jqq69Yu3YtSilyc3MZNGhQo+JKC4ZoMU5PmcxRyfl4lRnMVo5O2kqmpQS/0kk2V+JXOgYaiVY3Tt0ju68KIUQ9zJo1C4/Hw+DBg/n73//OuHHjGDRoEF6vl1mzZoUdVxIM0WKs996Iy7DhVyaqTYkYSsOme/EpM6X+GLzKglP34NQ9od1YhRDigBrbPRKJWSjNaOzYsZSVldUpr6ioYOzYsWHHbcG3RESbTtYZ2LXgTBGzZmDWDHRN4dSqSbGUk2kpwa57ayUX6703Nld1hRAtRM0sksYeLZVSaq8rDm/bto2EhISw48oYDNGidLLOoKDiDLaZuxFvqibGVE1ZIAGr9udW7m7DQvzuNTJKAzH7CiWEEFGtd+/eaJqGpmkMHDgQs/nPlCAQCLBx40aGDRsWdnxJMESLkx73KV7/1cGxGLu5DQuxpuAgT7vuCyUWiaYqVnvGyXLjQoh9i9KFtmp2UV22bBlDhw4lNjY29JjVaqVdu3acd955YceXBEO0SAW+BFIt5VQFHMSZgruulvjj0DFw6h6smh+vMuNVZhLNVWzyXUc7y4vNXGshxKEoWhfaqtlFtV27dlx00UXYbLaIxm+Bt0QIONrxOJUBB1bdR5k/hoAyoRMclwHgVhYSzVUkmqvwGmYqDXsz11gIIQ5Nubm5LFu2rE75zz//zKJFi8KOKwmGaLFybU9TGXCEkop4czVW3YdV94cGehb7Y6k07JgJsMl3XXNWVwhxqIryzc5uuukmtm7dWqd8+/bt3HTTTWHHlS4S0aKlWMrxGWZ0TWHSAmgYlPjjiDe5cAVsxOp/ruopU1eFEHsVpWMwaqxevZqjjz66Tnnv3r1ZvXp12HFb8C0RAjL0VzF2r9Gro/ApM7GmasxaALvuRdcM/MqEX5kwawG2+K9p5hoLIQ41mhaBaaoteKlwm81Gfn5+nfKdO3fWmlnSUJJgiBavjfllTFoAnzKjozCUjitg251UGDhNHqy6D10zcBvWg16/vc0vF0KIQ8XgwYO55557ai22VVpayr333svgwYPDjisJhjgs5HuTADBpAcoDTozdb20Ng22eFNyGFbdhxWXYWOa+rTmrKoQ41ET5Sp6PP/44W7dupW3btgwYMIABAwbQvn178vLyePzxx8OO24JviRB/6ml/EpMWQNcUWdZiEs1VmHe3aiSbK6kM2HEZwSlYsbqbRdV3NnONhRCHiprNzhp7tFStWrVixYoVTJs2jdzcXI455hieeuopfv31V3JycsKOK4M8xWEjQ3+Vbf6rKQ84SWPn7v1KdPxKx6wZoYW5SgMxJJqqDkqdlFIH5TpCCNEYMTExXHvttRGNKQmGOKwYaFg1P4Y5BgdeyvwxxJurcQUMDEMLzSoxawE2+K6ng+WFZq6xEKLZRfkskhqrV69my5YteL3eWuVnn312WPEkwRCHlTbml9ngux494Ea5SomJzaLasKFrBmYtgFeZseve0MwTIYSI1pU8a2zYsIFzzz2XX3/9FU3TQi2vNQPUA4FAWHFb8C0RYu86WF6gWosjUJNcoNBRWDV/rU3RygNOVnpubsaaCiFE87v55ptp3749+fn5OJ1OVq1axfz58+nTpw/fffdd2HElwRCHNYfuwUDDZdgwVPBfvzLhMmzBFg3DLEmGENEuymeRLFiwgEmTJpGWloau6+i6zkknncTUqVMZN25c2HFb8C0RYt/amF/Gp8wElAmr5ife5CLeXE2qpTzUogFg1f2hr4UQ0anRi2xFoIulOQUCgdBOqqmpqezYsQOAtm3bsm7durDjtuBbIsT+tTG/jMuwYdN96JrCUBp+paNrRnCVz92JRqypmnzjiuaurhBCNIsePXqwYsUKAI4//nimTZvGjz/+yKRJk+jQoUPYcSXBEIe1LtbnqDaseI3geGZDBd/ycZQSa6omxVKOTfdRFbDLZmhCRKso3+zs/vvvxzCCm0Y+9NBDbN68mZNPPpnPPvuMp59+Ouy4MotEHPYqAw5SLOUYSkPXFH6l49ccoKAqENzG3VA6RjPXUwjRTDQa/+d2C5uYtmLFCnr06IGu6wwdOjRU3qFDB1avXk1xcTFJSUmN2upAWjDEYS/X9jQVfifVhg2vYcai+Qns3lnVrAVCrRpeZZZlxIWIQtE4BqN3797s2rULCCYVRUVFtR5PTk5u9D5KLeyWCBGeTtYZwTEXmoFPmXfPIjGw6T5KAzFUGna8yoyhWtifIUIIEYbExEQ2btwIwKZNm0JdJJEkXSQiauiagUXzUxFw4lVmKgN2zFqAWL06tE+JX5nY5LuOdpYXm7m2QoiDJgpX8jzvvPPo378/WVlZaJpGnz59MJn2PpBkw4YNYV1DEgwRNdqYX2aF+1Z0zQhu564Hp7CatQCJ5qrQdFVdMyTJECKaRGGC8dJLLzFy5EjWr1/PuHHjuOaaa4iLi4voNSTBEFGlp/1J1ntvBBOkVSwlkNQZDYOKgBO7Hlx/31A6Nt17gEhCCNGyDRs2DIDFixdz8803RzzBaGE5lxCN18k6g2RzJZrZhp6/HLO3jCTfNvzKhEXzY9O96Jpii/+a5q6qEOIgiMZBnnuaOXNmxJMLkBYMEaUs3hIMvwdTQiuUpwJMVuIopVrt/k+mwGtYmreSQoiDIxLrWLTgdTCaSgvOuYQIX5rjffB7UT4XmKwEnOkAOHxFeA0LXsNCjKmaQt9Fjb5WY6d6CSFESyQJhohaGZk/geEHnwuzUQ3eajSrkwRVSIJWHCwTQhz+onyzs6Yit0RENcNdgeEqxSjahFG1i0DJFgD8uiN0bPNf3cy1FEI0peYegzF16lQ0TeOWW24JlSmlmDBhAtnZ2TgcDk499VRWrVrV+Be7F1VVVU0SVxIMEdUysxeBEQBA+T1ougl0EwqdgDIRUCZ0TVFojAkrvlKyU6sQYt8WLlzISy+9RM+ePWuVT5s2jSeeeIJnn32WhQsXkpmZyeDBg6moqIh4HTIyMrjyyiv54YcfIhpXEgwR9TLbrMCo2oVmtqG81aiKfMyV27HpPmy6D4vmb+4qCiGaUjN1kVRWVjJ69GhefvllkpKSQuVKKaZPn859993HyJEj6dGjB6+99houl4u33nor/Ne5D2+//TZlZWUMHDiQLl268Mgjj4S2bG8MSTCEAPS4DJTfg1G1C8NdgWZ1okq3hB5XVbsiMuBTCHHo0bQIdJGEMZb7pptu4owzzmDQoEG1yjdu3EheXh5DhgwJldlsNvr378///ve/xr7cOs466yzee+89duzYwQ033MDbb79N27ZtOfPMM3n//ffx+8P7I0sSDCGAjPQf0Z1J6DGpYAQI5K8FCCYZAQ+aPQ5Vkd/MtRRCNIkItmCUl5fXOjwez14v+Z///IclS5YwderUOo/l5eUBwa6LPWVkZIQeawopKSnceuutLF++nCeeeIKvv/6a888/n+zsbB588EFcLleD4kmCIcRu6YlfofwelKcCzZmE8gdX81QV+aHkIm9Hn+asohDiEJeTk0NCQkLo2FsCsXXrVm6++WbeeOMN7Hb7PmP9dYq7UqpJp73n5eUxbdo0jjjiCO6++27OP/985s6dy5NPPskHH3zAiBEjGhRPFtoSYg96bCo1ewoqdwUK0OMzMFwloXMKyoaRnjDngLEKKs4ApjdFNYUQkRTBhba2bt1KfHx8qNhms9U5dfHixRQUFHDMMceEygKBAPPnz+fZZ59l3bp1QPADPysrK3ROQUFBnVaNSHj//feZOXMmX3zxBbm5udx0001ceumlJCYmhs7p1asXvXv3blBcSTCE2EN64lfke/uhdicUmj34i0Iz29BswVU+0xPm8M810wC444i79honmFxApeffwHlNXGshRGNEYqnvmufHx8fXSjD2ZuDAgfz666+1ysaOHUu3bt34xz/+QYcOHcjMzOSrr74Kfah7vV7mzZvHo48+2riK7sXYsWO56KKL+PHHHzn22GP3ek6HDh247777GhRXEgwh/iIj/Ud2/tEJ5fei+arBVYJmdeJJzgUIJRc1X+8ryQjScPvmAdK1IoQIiouLo0ePHrXKYmJiSElJCZXfcsstTJkyhc6dO9O5c2emTJmC0+nkkksuiXh9du7cidPp3O85DoeD8ePHNyiujMEQYi9MqZ0obTcCzRaHZnWiOxMB2OpOqXPungkHwAr3rWj6n7m7Zq7bRCqEOIQcgit53nXXXdxyyy3ceOON9OnTh+3bt/Pll182yaZkcXFxFBQU1CkvKirCZAq/76hBt+T555+nZ8+eoSagvn378vnnn4cez8/P54orriA7Oxun08mwYcP4/fffa8VYt24d/fr1o3Xr1kyaNKnWY+3atUPTNH766ada5bfccgunnnpqA1+aEOFLT5hDStliNHscujMRzZGEvWorOd8/ypD2O2ude2nMG+RtCS6S8+jqxwBQPheaPS6YXChDprgKcSg7BBKM7777junTp4e+1zSNCRMmsHPnTtxuN/PmzavT6hEp+1oQ0OPxYLVaw47boC6S1q1b88gjj9CpUycAXnvtNc455xyWLl1Kbm4uI0aMwGKx8OGHHxIfH88TTzzBoEGDWL16NTExMUBw3u9ll13Gsccey/XXX8/AgQPp169f6Bp2u51//OMfzJs3L+wXJUQkZKT/yI41rbB0HYRRvBHvqu+xdOlI2o7POLXd2Xy3KY1LY94AIC99EJ6PNcYccww7VH80ixNVVRSKpSryIbm5XokQQtT19NNPA8Fk5pVXXiE2Njb0WM2g027duoUdv0EJxllnnVXr+4cffpjnn3+en376CYvFwk8//cTKlSvp3r07ADNmzCA9PZ23336bq68O7udQWlpK79696dmzJ9nZ2ZSVldWKed111/H888/z2WefMXz48LBfmBCRkH3EdvK29UZ3JmLp2AvlqeBNz1WM3vkv+rQ6j9e2XcbQDjv5YkMWFwG6M4nWnhXgSERVl6A8lSi/A0zSTSLEISsCgzxb4oCDJ598Egi2YLzwwgu1ukOsVivt2rXjhRdeCDt+2IM8A4EAs2fPpqqqir59+4YWE9lzTq/JZMJqtfLDDz+EEoxJkyYxePBgqqurOfPMMxk6dGituO3ateP666/nnnvuYdiwYeh6/X5qHo+n1oIm5eXlABQWFtYqr5lDvOdc4gN9vbfnNOR5jX1ufZ9Tn8dEwymvC8MIgOHHqCxhdNy/QAXosvMNnO0uwq4F18uw5nZEszgJFG1EFa5HGQGUvxcEfBhVuyhQg0lP/Kp5X4xoMfZstv5rE/a+HttbU/eBzg0n9oGee6Bz6xO3Kfbc2KdIjKFogQnGxo0bARgwYADvv/9+reXKI6HBCcavv/5K3759cbvdxMbG8sEHH5Cbm4vP56Nt27bcc889vPjii8TExPDEE0+Ql5fHzp1/9lkPHz6cwsJCysvLSUtL2+s17r//fmbOnMmbb77JZZddVq96TZ06lYkTJ9YpX7VqVa3RsX99szfkP1Bjvj6U1Dc52V95fZ63v+SmIec3tDzS52jaC/iqVwXXAlYKzWRGoUAp1DovZXYnvVWAlaa7Uet2r3RnGKDr+FUSBlZ+XXM9KIXF/N0B63MoCfc9fKDn1Sdufa99oA/VSJfv7wO5IbHq+7zm1pA/nsI5d1/nNdUOn6Kub7/9tkniNjjB6Nq1K8uWLaO0tJT33nuPMWPGMG/ePHJzc3nvvfe46qqrSE5OxmQyMWjQIE4//fQ6MWw22z6TC4C0tDTuuOMOHnzwQS688MJ61euee+7htttuC31fXl5OTk4Op5566gHnJB8M9U1C6vNXRUPiNSbWvuLV97zG/NJuzHMa8ou6/ufmUrzzKjAUhrsSzeZEeYMtY6q8Aj09E6OsED0hEZQBuhlMZkoqeuExssjOWQZooH4hIWbS/i7U7BrT6tWQ50bi3IYmtpGIFW5ZQ1oaGxIv3OvUt0W0udS0Qh8UGo1vgTg0blu93XbbbUyePJmYmJhan51788QTT4R1jQYnGFarNTTIs0+fPixcuJCnnnqKF198kWOOOYZly5ZRVlaG1+slLS2N448/nj59Gr4GwG233caMGTOYMWNGvc632Wx7XTHtUHEo/gcWDWOUryJQvAM9ISm4xbsVlGGgJdrRrCUoayVG+S702CQ0ZwKaxUm1JwOl4klO2RAMoplIT8ja/4WEEAdVJBfaaimWLl2Kz+cLfb0vjfm8avRCW0qpOpu5JCQkAPD777+zaNEiJk+e3OC4sbGxPPDAA0yYMKHO4FIhmkNW541sX56C4SpHj08Fb3Uw0fB7CVSWoJmtaM4EjMoSdEBZvaAUeCpAa+w6xEKIJhPBpcJbij27RZqqi6RBOde9997L999/z6ZNm/j111+57777+O677xg9ejQAs2fP5rvvvmPDhg18+OGHDB48mBEjRtTacrYhrr32WhISEnj77bfDer4QkdbqqCI0qwOjNB+jsgTNGhzUrDvjUbsTDj0xA6wOlKs8uA6GyQK6KXTULCMuhBCHgtdee61Jxrw0KMHIz8/nsssuo2vXrgwcOJCff/6ZOXPmMHjwYCC43Ohll11Gt27dGDduHJdddlmjkgOLxcLkyZNxu91hxxAi0jRdR7PHoidmYLjKUV43hqsczWwNJhF+L6qyBM0eg1FeiPJUgu/PbY6V5yCOjhdCHNghsNBWc7rjjjtIT0/noosu4pNPPsHv90ckrqYO1aHLjVReXk5CQgJlZWWHxCBPcXjZ8eufg5SV143mjA92jTjjQTehXMEBanmuc6kOtKdDxiuYs3L/fI7fQ0bq/INebyFaioPxO7zmGsuehjhH42JVVEOvcbTIzxy/38+cOXN4++23+fDDD3E4HFxwwQVceumlnHjiiWHHbcE5lxDNJ/vIQjBbQ4fyutGd8egxySivO1gOYLGjAj40a/C3l/J7UH6P7E8ihDhkmM1mzjzzTN58800KCgqYPn06mzdvZsCAAXTs2DH8uBGsoxBRJfuI7exY1yY4DkM3oekm/IWbQq0YmjMerdgEmoZmi8Moz0ezBtdkUX4vhZ4LSLPNbuZXIYSI1oW29sbpdDJ06FBKSkrYvHkza9asCTvWYXJLhGge5rSOwZkkEEwqrI7gv2YrmiXYaqGZrBhVRWD40RyJ6Ek56Ek5KLeMxRDikBDlYzAAXC4Xb775JsOHDyc7O5snn3ySESNGsHLlyrBjSguGEI2Qnvwt2/5wYm6Vi1Gxe7tj3YQyAuj2eDR7LG4tCz0mBc1sw6jID/0eUtWlkNBcNRdCiKCLL76Yjz/+GKfTyQUXXMB3333XqLEXNSTBEKKRWh/rIm9HH9wdhuPY9AWaLS441sLrAk3H7skPJheuEgh40ZLaAKDFZZC3ow+Z2Yua+RUIEd2icaGtPWmaxjvvvMPQoUMxmyOXFkiCIUQEaFYnsRXrIKUdyu9FN6dguEqDj5lt6AnZKMMPfi9GRX7wa/ize0UI0XyifAzGW2+91SRxJcEQIgIyUucHF9AyAmi6GeX3YEpqAxUxgIZRtQtVXYpRvgvNbMGU0SX03PyCfmSk/9h8lRci2kXhXiRPP/001157LXa7naeffnq/544bNy6sa0iCIaJKoe8i0iz/aZLY6XGfUlA6mEDhevSknOCiWz4XKCuqclewFcNbHVyIa4+pqjUzS4QQ4mB58sknGT16NHa7nSeffHKf52maJgmGEHvavjQRPSEDgKwO64BgchH61wg0yRRR5fegx2Wg2eKCBWY7mCyYMrqhPBXoMSkonwu8LjRnUsSvL4RouGgcg7Fx48a9fh1JLeyWCFHXSs/NADyx9lGeWPsoO1ZlYkppE3p854auFJQOrv0kI0Ch54KI1yUjdT6aIzHYHVKRj/KUh65Xk3SYUjthVBQGN0Dbfcj+JEI0oyifpjpp0iRcLled8urqaiZNmhR23BZ8S4SonVwAXGx5GaO04M+VNAHlqyZQvAVVVQR+L/i9eCzJ4PdSUDYs4nVKT5iDJzk3OIDTZEczWYKbn3ldmFLao8emYup+Bpo9LrQBmopJ44YfnufTXQ+Qv+uUiNdJCCH2ZeLEiVRWVtYpd7lcTJw4Mey4kmCIFm/u5iwAzu6wmbd912DK7IBRUYDyVaN81bwe+Duz3Ffj37k6uNGYEcDmKQyOg7DHUWiMId+4IqJ1amN+efcYjOpgl4gRABUAsxUfFkzKj/K60KxONKuTCf87njO77aAP8wAkyRDiYIryFgylFJpWd5Tq8uXLSU5ODjtuC74lQkAP21MMbLsTk674aENbAALFO1CVJajKEoxd2+ibUwyAZrbiz1+H8pSjDD9aXAZYnGgqgFa+PeJJRkb6jyhfNaAFrxOfjWGJwewuxqjchd+ZGWpRObf79jrPb4ouHCHEXkRpgpGUlERycjKaptGlSxeSk5NDR0JCAoMHD2bUqFFhx5dBnqLFSyv5mYBxLhdpzwVbCuwxYHUEP7yBTjveJLHDeRQygvSCuRiVRWh2L5rViaouRQEqvhU+w8yGwPV0sLwQsbrFJd9G9Y5ZqKpdwfUwjADVtnRsDh8WXznKU04goR09ts3C6DiEgNYZiz84bkM2RBNCNKXp06ejlOLKK69k4sSJJCT8ubSw1WqlXbt29O3bN+z4kmCIFi8j8ydG6/0wykxgcaDFOTGqitAcCWiOBAh4yfSsocDelYL0gaRt/xh0E0bZDjSzFW98RzBA1xQo2BG4CotRFbHprI64c0mPe4j8vBNQ7nLs8eXoCa1Qfi/+wj+wOJLwm61YSn9DdyQFx2ZAcDEuU0SqIITYj2icRQIwZswYANq3b0+/fv0iuoontMhGHSFq+8V1F28Wn01Rm7MpajUsOLbBbEXTd3866yb8eatJWvsGqZvfA80UXHvCCIBuxuYpxKQFV9S0675QC0LNtNZIycj8CRXwYpTn489fS6BoI+a0jvi3LcWUlIOmmwgUbUS5K1DuiiZbr0MI8RemCB0tVFVVFXPnzq1T/sUXX/D555+HHVcSDNGivbFtEq23/odLW80HwKl7MKV1QjNZUUYA5avGKM3HKN4R7DLxVqOqyzDKdmBU5GOUbidQsgVt+2JMRWvRMPCbYwHQdDMbfNezzH1b5CqsmcBsC66DYY/DcFdg7ngKmILdIXpSDsrw80Nlr8hdUwgh9uPuu+8mEKi7bYFSirvvvjvsuJJgiBbvm5ir8e/4lWKvk2J/HIGC4MJaqqoYTTehWe3o8aloVjuGuwqjfBfKHZySZVQUYpRsC04VdZWgl/yB2aimWovDpYLbraeay8NOMpRStb7X7HHBmSy6Gc2RiKabMYo3QsBDaWwu31Ucx4+uPgB8uuuBA8a/5Kt/hVUvIcQeonSQZ43ff/+d3NzcOuXdunVj/fr1YcdtwbdECLi09YMMTVmGHpNC58L3ySn7HgCjqnj32hPVoJvQ7LFozoRgomGPRRlGcFOyhCywOjCqisBsQ3ldqKoinFo1Ogqr5meXPx6ARdV3Nqquedt6B6elOhKDCY2nIrjqp8VJIKEdSb5tnMLHAFhNBjsr7az27HuJ3prkQpIMIRqnZgxGY4+WKiEhgQ0bNtQpX79+PTExMWHHbcG3RIigNMf7wQ9qqxOjaheayYpmdQTHYTgSgsmFyYrmSER3JKJZ7cENx9I6AqDbYtEsDnRnsEVBuSswXCUYaBT4EvArE35lQsdghfvWsBKNvG29cWcch3JXoO9eYEtV7iJQth1UAL3oNyA4c6Sf/Wd6J+3gxKx8AN7eHv5CN0KIeqjZ7KwxRwvb7GxPZ599Nrfccgt//PFHqGz9+vXcfvvtnH322WHHlVkk4rCQnjAHEoIf5BgBNIsj9JjyeVF40a2pwVaLuPTgIE+/Fz02BeWtRnckouIy0cq3B5f0NlvRUWRaS9nhTcblD/5XSbS4seteFlXfSR/HY/Wqm9v/zZ/fGAG0xDaYAh5UVVFwsS9bXPCwOmH3rqul9uBuq8t3pTAw5gfe3j6Ri1uNrxX3rcFXhb4+f85MAN4dNjas+yeEiF6PPfYYw4YNo1u3brRu3RqAbdu2cfLJJ/PPf/4z7LiSYIjDSmbrpQDkbcoNDqY0/hy4pLwu9IRsALZZu9O6egmaLR7NFh+cEgrB5EI3YZjsWPDjMSzk2ArJ15LQNQMAt2HFEzDxXfm96JrilLip+6+U34Mem4qz4jcMsxVVtSu4yyq717rQTaFVPY2ULpgqtrEwP43TE35kYEyAG3+6hGcGz+e1LZNxmA0+XZvNa6ddA8CXJffz0s8dQ5c6f85MSTKEaKhIjKFowf0BCQkJ/O9//+Orr75i+fLlOBwOevbsySmnNG5FYUkwxGEps91qYPe4B0cima2XUlg9ElVdgvJ7aVX9I9TsBWK2ohkBNF9VMCExAui6CfxeHLoJVe0iy1xOtTmFHd4U3P4/f5P4AjrzK+7Zb5LhcAxHuT9BT8rB5EgCWxx4KsAWxy/FbTjWvRCjIh98LkxAoGQrp6eAUVWCZnXyzOD5fLm9Qyi5mNr/J3YEfmJleVZT30YhokK0roOxJ03TGDJkCKeccgo2m22vS4c3VAu/JULsX2brpWS2Xsqi6jvZTEe0xDboCdl/LmbldYG3Go8pgSo9OZhwWB0odwXoJnzmeDACrPJ1w1A6qeZy2jiKCRgaAUPDYjKwmhRLqm/fbz0yMn8KtlT4PeBzEchfi1G8kT7GN8E9SnQT6GaU3xtcEyM+OzhWw+/F5Crg9PjgNNyp/X8CYF5eG3rE76S02sK1x//Zb/rusLGc9cmsJrqbQojDkWEYTJ48mVatWhEbGxvavv2BBx7gX/8KfxC5JBgiqsz49ajgCp62ODRLcKMx5fdg0f3EGMWh87SYVDSzDYvmR7M66W77HavuJ8FchV33cURcHjHWAFaTwqr5KPfZ+Ml1N9+V37vPa6dZ/gM+V3DZ8NhUVOUu9JhUDFcJmtm2R328wXNiUtFiUoDgUuYDUlYCweRigPovP+QHt6Qvrbbw7rCxvDtsLOd8+hq6pjjn09ea8C4KcZiJ8mmqDz30EK+++irTpk3Dav1zJ+ojjzySV155Jey4LfiWCFF/fRyPUeiyc1zrEl7YeR7s3hMEI4DmTESryAOLM3iyEQi2MmjmYFfG7nEcJi2ApgJY3LsAaG3dhV334lUW7Obg+Ixqn4n5Fffssx7pyd8Gp84aATRnUnCRL/3PnkrNFsfP2kAIePmlohv4XGi6mYAy4TfH4jYsDFD/DQ4I/YumarnYGRhLfkG/JoktxCEhyhOMWbNm8dJLLzF69GhMpj+XJO3Zsydr164NO66MwRBR4/SUybv/hbwdb+FIsQYXvvJ70JyJ+JQZszc4+DIQmwUKAtYkAPxKx161A5zBvUIs3hL81gRSzeXs8sezsyo4V9xhCSYj35Xfy/K8eIZxbp16aI7E4BbuEGyx8LqCA0urS1huOoWjk3ageZwcqy1EVVeDbsZUtRZSOxPr2gSxqSivi1P876En5WCUbAWCM0wMpaFrig/PCG5BX+YP1quL9bk69fi/HRMZlT2+TvmeCqtHorYs4r68+3iYfmSk/9jAuy6EONRt376dTp061Sk3DAOfzxd23BaccwkRvszsRSivC6Nse2jXUotRFeyqsMfhMayU+WPQMLDiwaL5qbTn8E1+Z77J74zyVFBtBJ9n1gKkOd2h5MJQGrtcwWbGBUXz61w7PWEOekxqcO0Os5X5+gj0uAzwe+mlfsRavTO4OJjZhmYNTrfVY1LRPeXB8t1dKXpSTvCxpBxe2zIZlyf494LHZ6Kw6hwAXlrWjZeWdeM3702h618970X+b8dEBqSt2WdrS0HZMPJ29MG/cxWW1r2ZctS73Lfm8kbfdyEOSVHegtG9e3e+//77OuWzZ8+md+/eYceVFgwRtdyObBzmolALAkYArA58egw2vMTqVSivC581AV1TlPpjaBVfTanbghafTRzVlPljcOoeYnU3Tt1GgSeW9cV/rnwXZw2wruJXjuboWtdOc7xPoe8itLgM+ns/R3mskN4NrbqEFb4e9LTuXnjLFo/yuTAcSeiofa7lM2thR/q2L2D5jmRmDXybEks7XlrUjZzEKiCYaPzzuGBycWxOEbuqLeCtZk1hHFB7Fkzelp7o8RnB2TTOJHxbFmHO6MKwrjt5N28C52dOiOSPIWIKq0cGl2E3WTGKNsLubqTM7EXNXDNxqAvOImncrAlNVwc+6RA1fvx4LrvsMrZv345hGLz//vusW7eOWbNm8cknn4QdV1N/3SzhMFFeXk5CQgJlZWXEx8c3d3XEIWiF+1aytG0EijaGxjTojiSqrJl4lRmzFsCvTNh1LzoKm6+YycsGhp4/7phVu8dgmPEaZrzKQqnPTkGVDcMI/rLyb80CtxVf+63EWAN7/XAuKB0cXD68ZgyIzxX8OuAJboLmc+ExJWDSAljwBRMiwLD9+b5+4deeLNqayvk9NzM8bSl+awL/90fXWtdZuDWVe09agV+ZyApsCK394XVkccvX/Xh32FgKSgej/B6M8nw03YRRUQhWB6aEbJTXxQ/WkQCHRJJRUDwAdHNwA7mAJ/S1UbYDU0r74NTf3TIyf2rGmopwHIzf4TXXWP0FxMU0LsGoqFLkDqXFfuZ88cUXTJkyhcWLF2MYBkcffTQPPvggQ4YMCTtmC27UEaJxetqfJM02G81sQ09uH+yysMcRQxnJpjLiTNXEmtxYND8GGprVyd3HLeHu45ZgKI248pXYNTdmLYCuBfP0dGsF3ZJKSI/1AKBrCouuiLcFP8zfzZtQpx5XzL+crUYbqo1gt0qZlgY+F0VGKkW+ODymBADMmoFb2fFYkqkwp+MxLKFjaOcCAHqnFxMo2sjbv3erdY2FW1ODU2o1P6mb3yNQFJyGVmnPwbJrJc90fpgda1oFl0kv24Een4HmTEJPyEKPSydQtAlTVi6frs1ucHKRt6Vng87fl4LiAezc0JW8bb3J33UKWJwYrpJgC4+7Ith1ZLZhSuuEUZEfSsQA8vNOiEgdxGFK1yNztGBDhw5l3rx5VFZW4nK5+OGHHxqVXIAkGCLK3b9kOs9suwBNBfCbYyk3Ysk3MjAqd0HAg0kLYDaCG59VGjGU+x3oO5cAUBTXC6NsO2bNQCeYYHiVJbhehq2KFKcXhzk4LqN89/gIk6aYsrL20ruvdLyTVhU/YdODg6nMWoALPh5JpeHgkw1tuGHOKZi0AD5lxkDDpirrvI5JX3fH5TGTUbqAHSmnsbYwgW9+zwodFx+1mWl9vyLesxnlDnabuB3ZxFb9gfJ70BOy0ePSMVwlABglW4Mf0GYr+L0odxW/edrxaO/3GfvdSwe8rzvWtaGgeADbF8dhVJdy18KnG/yzKSgbFjryd52C4a5AdyYFx6sAqqoouHmcbkJVl+43lrRgiP3STZE5RC0yBkNEtet7ruSFFT2YvrwPN/dayjfbcxjUagvbrN2JVW7MgQA6Nhy6B5MKdpn4M49hfMrX+Nb/D63DiVi8JSToJtDTMNCwan68ykzn2ALyHAlUG1Dp9OIN/JnPf5A/niqfCauuIOkGTip8HpNuQtnicMSk8caIueT5kji1XSEjO22g0JdIsrkCs2aAgjjvTjy2NDZUp9HBUYhhaNw7cBVGcQnv7wgO/kyLdQNwasd8jk/aiH/rKj7XLmH4kWls96TQunIFyl2BKalNcNM1IFC4CVNydnAqLRAo3oG5VXAb507u/6GMAFPaPA5cW+de5m0KnqcCXjSLI7gMe2wSgYKt3Bw/kbsWwrRj9747bEHZMIyyHcFBrFZnMIkIeFC7pwjrjiQMvzfYlXQAylOBnpCNUbYD5XWR2WZFPd4JIqppJmjkGAw0BYQ/4+JgS0pKqvdqncXFxQc+aS8kwRBRrbX5Fc7PvY0MSwl+pXNO2i98uP04emWUhnZR9Soz5QEnieZKElQhVSoZtymTx0vGc0x+8D9e+0QXuXE7MBvV+HUHNrwodJTSsOh+Upw+tpXbMWmKI9IqsJsNqnwmqnwmjskoQvcm83HlUM5J+BW/MmHR/bS1FWCg8c3O9mwpc3JOx82kGDuotqSALY5N1akAbKhOw+030dO2hqqcU/l9fTw//J5B344FZCe4GOL8ljk7B/DKojN4Y8RcdBStq4OtMJojEX/+WjR7HJrZhq3HML4tO5qT3M+CyYoprV1wKq8RwLfuBzb0/AczV7dnZofg/cvPOwE9IZtA4Xo0Z1Jwyq9hQ7M68eevDY7d2N1icrN1IhBMMPJ29AmOezECaLa4YFKQlBNMMowAyusKJRf7o7wusDoxJeXgz1tFVsf1fz7o2PfzhIh206dPb/JrSIIhol4v+xN/fhMDJ5rHkWYpo8Qfi1+ZsGp+7LqXyoCDShyU+5y0teVzSvsCvt2QwXE5RWQ5KjD7K8EIYNYDoVkpFtwEDBOZlhI6prsp8ceyw53AtnI7AClOL4vzUxjc+kTO0Nbjx4ErYCPBXBWqUv/MLbjTLTh0D9UquLKnRfPXeg3JMR4wW3ltdVd+3ZZEgsNLdoKLu45div+PPxiob+LEc4Yyd0dbTo/9Bs+q7zBndwy2CKgARtlOdEcCAcPPiVvnQHwqBIItBkbJVvT4VJS7im7GUi7tpTP2u5d4pNu/UX4PgcL1mFLao/welLsimJC4K2rVT7PHoDsSyc87AWX40XRzaEVVPSYVb0xrrFXbMCW1qTU486+UpyK0Cmt66l+mACeH8cMXAtB0U9TNIlm+fDmTJ08mJiaG+fPnc+KJJ2I2RzYlkARDRI0fK+8GIMNazk8FmZyQnkcn64w651k1Pz5lJs7kCnZJ+FxU7f708isTiaZKivzxdE4OjoWYuz6TM3LWgzcQ2mtEqxknUF2KoSUGp7x6XNgtVlrbS8m2B3+ZLS5Mp3taOZbS3yC5A7qvCl23QXVpcMt4ixOf0nDoHsz+SpQ5Hr8KdrUcYd8YqvMVfSz49BjeWdwegDbJVVxy1FZMW74Hs5VA21OxLHiRIZntIL4T5uyOKFcZRmk+mtWOZo/FqC4DTyWm5OzgGhtGILjDq98T/Fo38Y+lwVkkU1pNRYvJhaoiNKsjuHCYtkcftNmK7kwMbR5nTuuIf/tKNGcCyluNcpVjSslBj8vAqC7BUl1CQVxv0t3r0OMygi0hFmdoQbK0mA/hz9m/QkSWHoEukhaWYDzzzDP84x//ICYmhgEDBrBz507S09Mjeg1JMERUqEku9vRTQSak38i68hRSnMG+03dXtmJAhxTaxpXjCthw+c0cEbsDsxHArnuJoxSfHoPbsJBoqiI+zUXn5Eo2ezJINMVgt/swOwJYy/9AS2yDFpOKXuYK7jdideLwFOC0x+FSDhy+Iv4o7sCpmZsw2doQ2PU7syvO4II2K6i2pfPRxg6c2iaPuZuzGNVxHegmLEYV6DGY3cUUmtuGXssJ1l+YuvBMIJhcPDR0OcnmitDCYfqulaj2vVBeF/6dqzGltCPg96LHJIcWGjN37I1/00/o8Rn4t6/ClJARPD//D8xZXVkcP4pH02YDoFl6YlSXhK5vVO5Cj00NrkNhtgYTq7KdWDqdjF6RT6BoE3pKW4yKApS7CkvHE3h6wxlQDH9Lf43fEobRzb2UAntXUgvnk9l6aZO9F4QQ0K5dO55++mmGDBmCUooFCxaQlJS013PD3bZdEgwRFfrFPlInyTglcytew1Ln3G83pAPptEuqxO03sYhEnFY/PdIryLSZ0AOKOHPwL+ukQBmfbz2GfjlFFHjjyLaVkedLonU8uPw2UAbKHIPuTArt0Gq4SnDEBP/an7c+k2Snh/NiPqIkqQ/nO37Er6fj8JcyKvMH3KZszu0Q3C3VKNuBnpCNxahC+T3E2/6chqlZnXy4vA0ev4lL+/xK65Jvg10P2cdhKV6DUbUL5a1Gj0tH+apR7gr0uOBeLKq6FFN6V/x/zA+2HlTuwpTUCozgRm/4fRjVpdjjDe5cMoppuf8KJRSG10Vg5xrMrY5EeV3oCdmo3TNRNLOVwM7VaCYrhrsYKEK5yrF26U+huS3n527h3dVtKEg9lS675rA2YRin2KZC6yZ4AwixP1HYgvHYY49x/fXXM3XqVDRN49xz625rAMFt3AOBA4+H2utzZaEtEQ1m/DGFJLsv1K2RaAqOcSgPONhZ5Qy1YCzZGc+GouBW7qd3ySPO6kPXFJvKYvhuQzqJ9uDYhk7JLuJtftItpQA4dA+FvkQK3U7s5gBrdsXRM72Mot/aEuOH9CPXYNYMzFoAm+4N7nuiBZchD2hm9IAbTDbK/DG4DBuJ5krMmoHFWwJGAKMiP7SzKgSnmNZMawW44YtT+XlDGjecspZrW30CFmdwnEPVruCAyepStJgUvjbOZpD/P7tnevy5myx+T7CLBMDvDU2505NaYxRtxqgswdL5RNbZ+tHN91NoymigeAua2RbqIqkZLGpU5GNUlqA744PjPPzBdUGeKLyeoZ3zSbEHZ6m8uzq4I+yQzvm1VhMV4mAutLX2f8nExTZu1YaKSoNuJxa3uM+cyspK4uPjWbdu3T67SBISEsKKLS0YImqsKfzzP73FFIMvEPyLJT3GGypPj/GyoQj6td1FucfMwMSHuX/JdPq2KeL8Htuo9pkoqrbw0Zrs0LTT7hml3NzlbrJM8KP/bgJKo0d6BfM3p5JRbcWrdGING8nmSioNO5WGnURTFa6ADYvZj88w41bJGH6N8oATHQO3YSXO5MJvTSCgTJjsyeiFa8hP7EuqpZxKv6NW68sPv2cwpPt2rm31CXpCK4zKXfgL1qE5EtHjMvCXbEOPy2Cg+02M6jL0mGQCJdvR41JRnkrMrXuh8lajWRwoI4Aen4FRnk+gcCN6bBLWVj0IlGyli+lDAkYAU1on/Dt+RY9JAb8neB1nEkblrtD4iT86XEC6tSK4WJnux6T83JoT7PpYXZFNir2a83O31B5kK4Q4qGJjY/n2229p3769DPIUIhw3dryXGX9MocQd/FAudtloFV9NSbWFnRV20mM9lHvMOMwG/zzu77We+9DRt/Dihim4/Tq/7gz2UWYnBLsnMuOq8e2xvkW/2EcAuGvh04zsvgN3wIarKoZdbgflJhsBQ8NiMsAKds1HkS+OSsOBJ2CioMrGzkobJ2QXYdX8mP2V+Mzx2FQlJUYKsWndSdy9yFaaXrB7F9UaZzGl/88sLjuJYyp+QnMkYkrKCa5w6UxEi0kOLqKlAmhWR3CVTiMQ/N4WG1y0KiYFPSaVQMHugZauUkwpbYKtHEYg2P3hrgCvC78zE1NSKXpCNj5zPBbNjyrdgvK6MCVmY1QW0TnvP2xtdQEritIAODljE8tKa/d/SHIhDgm6qfErcTa2i6UZ9e/fnz/++IOZM2fyxx9/8NRTT5Gens6cOXPIycmhe/fuYcWVLhIRVZ767RGydi/jPSp7PK9sehjv7pYMh9lgbNv79/ncS+e+QoeUClKcntDS39V+nRs73gvA2O9eItEebA3JSawir8JBXEEaiTponTbRp1UZyeYKtroS2VLmoE1CNSn2asp9NtYUxtEmoZoqn4lUp5cOzkK8hoUYUzVmzaDMH0OlYSfZXMG0X3pzx7HLce/RgpFkqSSgTGib5gWTi4RWwa4P3RTc20Q3Y5Tng24Kzu4A/DvXYM46Ai0mNThldPeU1JpVCc0Z3UKDU42yHcHkwhxcztyU0Aqjahea2YpRWRRc2KpqF6a0TuCtDrZiWJ1UmINNrosKswCIs/05vfb0lMmN/nmKw9dB7SL5JTMyXSTH5bXIz5x58+Zx+umn069fP+bPn8+aNWvo0KED06ZN45dffuHdd98NK64kGEJEwJ7JBQQTjHl/ZNIHK0enVlHSagcrdiYC0DOrlKPTdu1eyEsn3+WkqNpCj9RStlfGcERCYWj9DV0zKPbHkWoux6L7KfHFomuKJN+20BROAC0mBU03EyjZPSbC6wpt4IZmCq514SpB082h83VnUmg2i2GLR21bgh6bgto9JVXtnmKKbkKPSQXdRGDnKvTEVvi3/4oppV1oSikBD4arNDQjRU/viirfgTe2LTZfMRXmdOKMIvzmWJaVtpbkQhyQJBgHT9++fbngggu47bbbiIuLY/ny5XTo0IGFCxcyYsQItm/fHlZc2YtEiAiYeeq1lLqtdcoNpbGuMI5yj5l2yZVsLoklxhJgc2UC327J4LvN6RgKuiRXsnJXIj9vC6634TJsoRaKdEsZuqao8DsxawYJpcuosmaiORJDB95qAkUb0WNS0SzO4F4q8OfS2lpwCe6a1gl996qbDk8BgZIteAxLMLnwe9F2D/BUu8dTKK8L3/rv8f32XbDc68LS7niU4Q8OIvVUYLhK0eMyMKV14rEto/EseB0V34q5O9ryWWFvvt/ZijTbbLJMMyW5EIeeKN+L5Ndff93rLJK0tDSKiorCjisJhhARMvPU4P4cO8qd/LwljQ/PGEOVx4zFZPDz5jQ2FceSFuvmy98z+XZDGr6Ajs/Q+eL3TLaUOymtttAzs4ydnkR2VsWwqDCdPG8Si4pbsd6VTkIgjwnfH81dK68gVq+ikKzQUWHNoirpSKYsPy24vXpKe1R8KwxLDCouE82ZiJ6QTVXSkVQn9aDSiMFjSkD5XKiMIzGUjpbYhqKEY3DHdwKLE1NWd0wJrdDtcZhzemHNHYoen0EgpRs4EvGn9wou753SBT0ug132LpQG4rm+1xqmW57Ct2BWM/9EhKif4EqejT9aqsTERHbu3FmnfOnSpbRq1SrsuDLIU4gIevKEv9X6/sruPaiurubvvXtz1iezcFr9xNl8uP0milw2fi+Mp9Jt4aeN6XTJKCM73sX6XfHkZpRiMRn8tiuOzLhqtpXbuXXBJXxy8afs9CZz+7z+PN5/HgBZ08YCcE7vLVx+zEY8WiyWODslvlgAkr0bUcCsbf3RNcXIjhsAKPbHgb0Hut8gY/d02xRLOQCabkZVBVtB0M1o8cExFlic6PnL8WccibVqG/7YLBQ6/thWpPl3MnHRgNBrt/S9nOHVi/isqA9j2jzQVLdciMbTIjDIs54bhx2KLrnkEv7xj38we/ZsNE3DMAx+/PFH7rjjDi6//PKw40qCIcRB8vGZf/5H1e6bx0lHBf9i+H7URbXOO+Ht/6PMZcVmCbB8azJOqx9dVwzvvo0PNnWmdbybUT238HNJ+1rPe/DUFcSbXPiVCcPQiDUFd1P1OrKwVm7m8tbBhEQjDkw2zFqAze5U0qwV7PQmk2XaCUWbgkt/A5hsoIIL7Gx0Z4Apg1RLOdhzWFOSBrQmsdpHucfCb0XBdbyvPno9a4oS+HFzGhn6qxADY2SJbyEOaQ8//DBXXHEFrVq1QilFbm4ugUCASy65hPvv3/fA9wORBEOIZqAe7o92X/ADn1G1H/vp4toF2qRvMVsMni04AsMAY/e0WPVgTWvB3L1eQ9cUlQE7Tt2DO7ZdcF8VwGuYsSo/ds1NF8sfYHaiynegIDiF1ZEEtjiqAvbdcQziAy6suh+zFkw4jotbC4DfHAsOaBsbXJws1f0bRTHH0K9tYWNujxAHl6bX3ksnrBiRqcrBppRix44dvPzyy0yePJklS5ZgGAa9e/emc+fOjYotCYYQzUQ93L9+5z04AG3St+gmg8B9A+s87runpmwgm3zXHTCeWQvgCtgwdA1MdvwBE25HV1LID26X7nWB14U5pjU2XzFG2Q5suolASjcMpWELlLGiugsp9moKyoMzVZLtwam/T/8xjHGdvyK91af1uwlCHAIiMYZCa6EjGpVSdO7cmVWrVtG5c2c6dOgQsdiSYAjRAvzZWrF/7Swv1vr+t8BN+zzXr0zEmNzs8sYTb3KRb2RDQjaxupvygJNEKoPrWdjj0ByJVBtmDDTcWho94rdjKI0MSwnrqrKo9FnQNUWRy8bTvw/moaMb9XKFEAeJrut07tyZoqKiRrdY1Ikd0WhCiENKF+tztDa/Qhvzy2Sb/rXfc72GGbvmw21Y0DUDs2bgd2ayzdaTH0pzqTTsxFGKVfdRHQjum/K7KxNdU+xyWXl7eRuGdM6jyGU7SK9OiAjRzZE56mnq1Kkce+yxxMXFkZ6ezogRI1i3bl2tc5RSTJgwgezsbBwOB6eeeiqrVq2K9CsHYNq0adx5552sXLkyonGlBUOIKPLXJKPQGLPPc0v9MRholPtsmHTF1sp4thJcQMjt1yl1W2iTUM07v+Zwf9/F5FXY6JhQzvMnTWzS1yBExEViHYsG/Lk+b948brrpJo499lj8fj/33XcfQ4YMYfXq1cTEBEdFT5s2jSeeeIJXX32VLl268NBDDzF48GDWrVtHXFxc4+r6F5deeikul4ujjjoKq9WKw+Go9XhxcXFYcSXBECKKpemvkWbf/Y0F1ntv3Oe5PkMjxhLAbg5g0s2kxwTHXZzZbQfPLj2Svm2K6Gl/8iDUWoiWbc6cObW+nzlzJunp6SxevJhTTjkFpRTTp0/nvvvuY+TIkQC89tprZGRk8NZbb3HddQcea9UQ06dPj2i8GpJgCCFCOlln1Pp+pefmfZ4bZ/bgNoKbxXVMqWTBlhTOzWjqGgrRBCLYglFeXl6r2GazYbPtv9uwrKwMgOTk4Eq+GzduJC8vjyFDhtSK079/f/73v/9FPMEYM2bfLZmNIQmGEGKfetiegj1+N84tvW+f53ZMqQydY9IVH67OBuouPibEoSY4i6RxH4c1s0hycnJqlY8fP54JEybs83lKKW677TZOOukkevToAUBeXh4AGRm1M/aMjAw2b97cqHoeTJJgCCHqbWDiw7W+/8V1V+jr6zrcu9fn3PrTs5JkiKixdevWWpudHaj14m9/+xsrVqzghx9+qPOY9pfVQZVSdcoOZZJgCCHCdpxzGsdFbtq8EM0jIl0kwY3J4+Pj672b6t///nc++ugj5s+fT+vWrUPlmZmZQLAlIysrK1ReUFBQp1XjUCbTVIUQETUw8WFOjZ8SarWQ1gtxyDvIu6kqpfjb3/7G+++/zzfffEP79rWX/W/fvj2ZmZl89dVXoTKv18u8efM48cQTI/aym5okGEKIJiPJhWgJNC0Cu6k2YKnxm266iTfeeIO33nqLuLg48vLyyMvLo7q6end9NG655RamTJnCBx98wMqVK7niiitwOp1ccsklEX/9V155JRUVFXXKq6qquPLKK8OOKwmGEE2sJfWZCiGa3vPPP09ZWRmnnnoqWVlZoeOdd94JnXPXXXdxyy23cOONN9KnTx+2b9/Ol19+GfE1MCA4BbYmudlTdXU1s2bNCjuujMEQQggR3Rq4EufeY9T/VKXUAc/RNI0JEybsdwZKY5WXl6OUQilFRUUFdrs99FggEOCzzz4jPT097PiSYAghhIhumikCu6keOGk41CQmJqJpGpqm0aVLlzqPa5rGxInhr8wrCYYQTag+f6kIIURz+Pbbb1FKcdppp/Hee++FFvoCsFqttG3bluzs7LDjS4IhhBAiuul6BKapGpGpy0HUv39/ILhyaE5ODroe2WGZkmAIIYSIappujsBKni23tbJt27aUlpbyyy+/UFBQgGHUTpYuv/zysOJKgiGEEEJEsY8//pjRo0dTVVVFXFxcrZlvmqaFnWDINFUhhBDR7SAvtHWouf3220NrYZSWllJSUhI6wt2qHaQFQwghRLSLyFLhLW8MRo3t27czbtw4nE5nRONKC4YQQggRxYYOHcqiRYsiHldaMIQQQkS3KG/BOOOMM7jzzjtZvXo1Rx55JBaLpdbjZ599dlhxJcEQQggR1aJ9Fsk111wDwKRJk+o8pmkagUAgrLiSYAghhIhqStNRjVzJU2nhfQgfCv46LTVSZAyGEEIIIQBwu90RiyUJhhBCiKhmoEXkaKkCgQCTJ0+mVatWxMbGsmHDBgAeeOAB/vWvf4UdVxIMIYQQUc1QWkSOlurhhx/m1VdfZdq0aVit1lD5kUceySuvvBJ2XEkwhBBCiCg2a9YsXnrpJUaPHo3J9OdYlJ49e7J27dqw48ogTyGEEFFNoaMa+fd2Y5/fnLZv306nTp3qlBuGgc/nCztuy70jQgghRAREexdJ9+7d+f777+uUz549m969e4cdV1owhGhie24cJIQQh5rx48dz2WWXsX37dgzD4P3332fdunXMmjWLTz75JOy40oIhhBAiqkX7LJKzzjqLd955h88++wxN03jwwQdZs2YNH3/8MYMHDw47rrRgCCGEiGqG0jFU4/7ebuzzm9vQoUMZOnRoRGO27DsixCFOqZa7fLAQQjSGtGAIIYSIapHo4mhpXSRJSUn1Hh9WXFwc1jUkwRBCCBHVorGLZPr06U1+DUkwhBBCRDUVgRYM1cJaMMaMGdPk15AEQwghhBAAVFdX11lcKz4+PqxYkmAIIYSIapFYKKslL7RVVVXFP/7xD/7v//6PoqKiOo8HAuFtRd+yOo2EEEKICDPQI3K0VHfddRfffPMNM2bMwGaz8corrzBx4kSys7OZNWtW2HGlBUMIIYSIYh9//DGzZs3i1FNP5corr+Tkk0+mU6dOtG3bljfffJPRo0eHFbflplxCCCFEBBhEYjXPlqu4uJj27dsDwfEWNdNSTzrpJObPnx92XEkwhBBCRLWaaaqNPVqqDh06sGnTJgByc3P5v//7PyDYspGYmBh23JZ7R4QQQgjRaGPHjmX58uUA3HPPPaGxGLfeeit33nln2HFlDIYQQoioFo0ree7p1ltvDX09YMAA1q5dy6JFi+jYsSNHHXVU2HElwRBCCBHVon2a6qZNm2jXrl3o+zZt2tCmTZtGx5UuEiGEECKKdejQgZNOOokXX3wx7H1H9kYSDCGEEFEt2tfBWLRoEX379uWhhx4iOzubc845h9mzZ+PxeBoVt+XeESGEECICarpIGnu0VEcffTSPPfYYW7Zs4fPPPyc9PZ3rrruO9PR0rrzyyrDjSoIhhBAiqqkItF6ow+DjVNM0BgwYwMsvv8zXX39Nhw4deO2118KO1/LviBBCCCEabevWrUybNo1evXpx7LHHEhMTw7PPPht2PJlFIkQTUko1dxWEEAcQMIJHY2O0VC+99BJvvvkmP/74I127dmX06NH897//rTWzJBySYAghhIhqAaURaOQYisY+vzlNnjyZiy66iKeeeopevXpFLK4kGEIIIUQU27JlC5oW+QRJEgwhhBBRLRoX2lqxYgU9evRA13V+/fXX/Z7bs2fPsK4hCYYQQoioFjA0AkYju0ga+fyDrVevXuTl5ZGenk6vXr3QNK3WmLGa7zVNIxAIhHUNSTCEaGJN0fQohBCNsXHjRtLS0kJfNwVJMIQQQkS1aBzk2bZt271+HUmSYAghhIhqhmp8F0lLG4Oxp1mzZu338csvvzysuJJgCCGEEFHs5ptvrvW9z+fD5XJhtVpxOp2SYAghhBDhMFTwaGyMlqqkpKRO2e+//84NN9zAnXfeGXZcSTCEEEJEtWgcg3EgnTt35pFHHuHSSy9l7dq1YcWQBEMIIURUi8ZpqvVhMpnYsWNH2M+XBEMIIYSIYh999FGt75VS7Ny5k2effZZ+/fqFHVcSDCGEEFEt2rtIRowYUet7TdNIS0vjtNNO4/HHHw87riQYQgghopphgNHYaaoteDdVo4kqrzdJVCGEEEJENWnBEEIIEdUCKng0NkZLddttt9X73CeeeKLe50qCIYQQIqoZERiD0ZJX8ly6dClLlizB7/fTtWtXAH777TdMJhNHH3106LyG7qskCYYQQggRxc466yzi4uJ47bXXSEpKAoKLb40dO5aTTz6Z22+/Pay4kmAIIYSIatG+Dsbjjz/Ol19+GUouAJKSknjooYcYMmRI2AmGDPIUQggR1QylReRoqcrLy8nPz69TXlBQQEVFRdhxJcEQQgghmsGMGTNo3749drudY445hu+//75Z6nHuuecyduxY3n33XbZt28a2bdt49913ueqqqxg5cmTYcaWLRAghRFRrjoW23nnnHW655RZmzJhBv379ePHFFzn99NNZvXo1bdq0aVRdGuqFF17gjjvu4NJLL8Xn8wFgNpu56qqreOyxx8KOKy0YQggholrNGIzGHg3xxBNPcNVVV3H11VdzxBFHMH36dHJycnj++eeb6FXum9PpZMaMGRQVFYVmlBQXFzNjxgxiYmLCjisJhhBNrKFTu4QQB1fNOhiNPerL6/WyePFihgwZUqt8yJAh/O9//4vwq6u/nTt3snPnTrp06UJMTAxKNW5xD0kwhBBCiAgpLy+vdXg8njrn7Nq1i0AgQEZGRq3yjIwM8vLyDlZVQ4qKihg4cCBdunRh+PDh7Ny5E4Crr7467BkkIAmGEEKIKGcoDcNo5LF7DEZOTg4JCQmhY+rUqfu87l9bN5VSzdLieeutt2KxWNiyZQtOpzNUfuGFFzJnzpyw48ogTyGaUGObGIUQTS+SK3lu3bqV+Pj4ULnNZqtzbmpqKiaTqU5rRUFBQZ1WjYPhyy+/5IsvvqB169a1yjt37szmzZvDjistGEIIIUSExMfH1zr2lmBYrVaOOeYYvvrqq1rlX331FSeeeOLBqmpIVVVVrZaLGrt27dpr/etLEgwhhBBRrTlmkdx222288sor/Pvf/2bNmjXceuutbNmyheuvv76JXuW+nXLKKcyaNSv0vaZpGIbBY489xoABA8KOK10kQggholokVuJs6PMvvPBCioqKmDRpEjt37qRHjx589tlntG3btlH1CMdjjz3GqaeeyqJFi/B6vdx1112sWrWK4uJifvzxx7DjSoIhhBBCNIMbb7yRG2+8sbmrQW5uLitWrOD555/HZDJRVVXFyJEjuemmm8jKygo7riQYQggholpzrOR5qMnMzGTixIkRjSkJhhBCiKgW7bupNhUZ5CmEEEKIiJMWDCGEEFGtOQZ5RgNJMIQQQkQ16SJpGpJgCCGEiGqRXMlT/EkSDCGEECLK9O7du977nixZsiSsa0iCIYQQIqrVbFjW2BgtyYgRI0Jfu91uZsyYQW5uLn379gXgp59+YtWqVY1ap0MSDCGEEFEtGtfBGD9+fOjrq6++mnHjxjF58uQ652zdujXsa8g0VSGEECKKzZ49m8svv7xO+aWXXsp7770XdlxJMIQQQkS15tjs7FDicDj44Ycf6pT/8MMP2O32sONKF4kQTay+A6mEEM3DUI2fBWKoCFWmGdxyyy3ccMMNLF68mBNOOAEIjsH497//zYMPPhh2XEkwhBBCiCh2991306FDB5566ineeustAI444gheffVVRo0aFXZcSTCEaEJKKWnBEOIQF1ARWGirhQ3y/KtRo0Y1KpnYGxmDIYQQIqrVLLTVmKOlL7RVWlrKK6+8wr333ktxcTEQXP9i+/btYceUFgwhhBAiiq1YsYJBgwaRkJDApk2buPrqq0lOTuaDDz5g8+bNzJo1K6y40oIhhBAiqtVsdtbYo6W67bbbuOKKK/j9999rzRo5/fTTmT9/fthxpQVDCCFEVIv2zc4WLlzIiy++WKe8VatW5OXlhR1XEgwhhBBRLRpX8tyT3W6nvLy8Tvm6detIS0sLO650kQghhBBR7JxzzmHSpEn4fD4guHbPli1buPvuuznvvPPCjisJhhBCiKhWs9lZY4+W6p///CeFhYWkp6dTXV1N//796dSpE3FxcTz88MNhx5UuEiGEEFEt2rtI4uPj+eGHH/jmm29YsmQJhmFw9NFHM2jQoEbFlQRDCCGEiGKzZs3iwgsv5LTTTuO0004LlXu9Xv7zn//sdSO0+pAuEiGEEFEt2rtIxo4dS1lZWZ3yiooKxo4dG3ZcacEQQggR1YwIdJG05HUw9rWlwbZt20hISAg7riQYQgghRBTq3bs3mqahaRoDBw7EbP4zJQgEAmzcuJFhw4aFHV8SDCGEEFEtEl0cLbGLZMSIEQAsW7aMoUOHEhsbG3rMarXSrl27Rk1TlQRDCCFEVAsoDT0KZ5GMHz8egHbt2nHRRRdhs9kiGl8GeQohhBBRLDc3l2XLltUp//nnn1m0aFHYcSXBEKKJ7W3wlBDi0FGzF0ljj5bqpptuYuvWrXXKt2/fzk033RR2XOkiEUIIEdUMGr8bqkHLTTBWr17N0UcfXae8d+/erF69Ouy40oIhhBAiqkV7C4bNZiM/P79O+c6dO2vNLGkoSTCEaEJKqeaughBC7NfgwYO55557ai22VVpayr333svgwYPDjitdJEIIIaKaoSLQRdICZ5HUePzxxznllFNo27YtvXv3BoJTVzMyMnj99dfDjisJhhBCiKgWMDT0RnZxtOQuklatWrFixQrefPNNli9fjsPhYOzYsVx88cVYLJaw40qCIYQQQkS5mJgYrr322ojGlDEYQgghopqKwEZnqgW3YAC8/vrrnHTSSWRnZ7N582YAnnzyST788MOwY0qCIYQQIqoFVHAlzsYdzf0qwvf8889z2223cfrpp1NSUkIgEAAgKSmJ6dOnhx1XEgwhhBAiij3zzDO8/PLL3HfffbWmpfbp04dff/017LgyBkMIIURUi9bNzmps3LgxNHtkTzabjaqqqrDjSguGEEKIqNb47hGtRW52VqN9+/Z73Yvk888/Jzc3N+y40oIhhBBCRLE777yTm266CbfbjVKKX375hbfffpupU6fyyiuvhB1XEgwhhBBRLWBoaFG8DsbYsWPx+/3cdddduFwuLrnkElq1asVTTz3FRRddFHZcSTCEEEJEtWheydPv9/Pmm29y1llncc0117Br1y4MwyA9Pb3RsSXBEEIIEdWiuQXDbDZzww03sGbNGgBSU1MjFlsGeQohhBBR7Pjjj2fp0qURjystGEIIIaKaikAXiWqhXSQAN954I7fffjvbtm3jmGOOISYmptbjPXv2DCuuJBhCCCGiWkBp0NgukhacYFx44YUAjBs3LlSmaRpKKTRNC63s2VCSYAghhBBRbOPGjU0SVxIMIYQQUc1QGlqUziLx+XwMGDCATz75pFGLau2NJBhCCCGiWsCIQBdJC51FYrFY8Hg8aFrk6y+zSIRoQkq14C0WhRBR4e9//zuPPvoofr8/onGlBUOIJtYUfxkIISInmrtIAH7++Wfmzp3Ll19+yZFHHllnFsn7778fVlxJMIQQQkQ1wwDNaHyMlioxMZHzzjsv4nElwRBCCCGi2MyZM5skriQYQggholpAadDILo6WvA5GjcLCQtatW4emaXTp0oW0tLRGxZNBnkIIIaKaMjSMRh6qhc4iAaiqquLKK68kKyuLU045hZNPPpns7GyuuuoqXC5X2HElwRBCCBHVAoYWkaOluu2225g3bx4ff/wxpaWllJaW8uGHHzJv3jxuv/32sONKF4kQQggRxd577z3effddTj311FDZ8OHDcTgcjBo1iueffz6suJJgCCGEiGpGBMZgtORpqi6Xi4yMjDrl6enp0kUihBBChOtQ7iLZtGkTV111Fe3bt8fhcNCxY0fGjx+P1+utdd6WLVs466yziImJITU1lXHjxtU5Z1/69u3L+PHjcbvdobLq6momTpxI3759w667tGAIIYQQh6i1a9diGAYvvvginTp1YuXKlVxzzTVUVVXxz3/+E4BAIMAZZ5xBWloaP/zwA0VFRYwZMwalFM8888wBr/HUU08xbNgwWrduzVFHHYWmaSxbtgy73c4XX3wRdt0lwRBCCBHVDuUukmHDhjFs2LDQ9x06dGDdunU8//zzoQTjyy+/ZPXq1WzdupXs7GwAHn/8ca644goefvhh4uPj93uNHj168Pvvv/PGG2+wdu1alFJcdNFFjB49GofDEXbdJcEQQggR1YwIbHZm7H5+eXl5rXKbzYbNZmtU7L8qKysjOTk59P2CBQvo0aNHKLkAGDp0KB6Ph8WLFzNgwIADxnQ4HFxzzTURraeMwRBCCCEiJCcnh4SEhNAxderUiMb/448//r+9+wmJ6t3jOP45P68z/imlKJy0sVoIaYsCE/9MMI6Q1KK4XAhCqEANSlpEhNGisgtZVrQxSgutVS2KW5uCtNCEisjAFhWUZBjpkGQ4WXqV5txFNZdp7Kc2Z/w37xccap4z5znPiXQ+PM93zlFtba127doVaPN6vSFFmgsWLJDNZpPX6x23z+PHj6uxsTGkvbGxUTU1NX88VgIGACCqfZOhb2aYm77PYLx7904DAwOB7eDBg2Oes6qqSoZh/O3W3t4edExPT482bNigLVu2qLy8PGjfWA9VNE1zQg9brK+v18qVK0PaV61apbq6unGP/x2WSAAAUc3vlwVLJN//TEpKGrfmQZL27NmjrVu3/u17li9fHvh7T0+PPB6P8vPzdeHChaD3ORwOPX78OKjt06dPGh0dHfPrp7/yer1asmRJSPvixYvV29s77vG/Q8AAAGCKLVq0SIsWLZrQe9+/fy+Px6Ps7GxdunRJf/0VvPiQn5+vY8eOqbe3NxAUmpqaZLfblZ2dPW7/TqdTDx480IoVK4LaHzx4EFTXMVkEDABAVLPiWSKRehZJT0+PCgsLlZ6ertOnT6uvry+wz+FwSJKKi4uVlZWlbdu26dSpU+rv79f+/fu1c+fOCc2mlJeXa+/evRodHVVRUZEk6d69e6qsrORW4QAA/Cm/KRlmeH2YYR7/O01NTers7FRnZ6eWLl36yzm/nzQmJka3bt1SRUWFXC6X4uPjVVJSEvga63gqKyvV39+vioqKwM254uLidODAgd/WkEyEYZqR+meZXj6fT8nJyRoYGJhQggMi4dmzZ7LZbMrMzJzuoQCzylT8Dv95joR//0dGXGJYfZnDX/T18L9m9WfO4OCgXr58qfj4eGVkZIT99VpmMAAAgObNm6ecnBzL+iNgAACimt80ZIR5J05zFj/sLFIIGEAEzdEVSGBO8fsNGTO0yHM240ZbAADAcsxgAACi2jeWSCKCgAEAiGp+v2T4w+vDDPP4uYglEgAAYDlmMAAAUc204E6e4T7LZC4iYAAAoptpfN/C7QNBWCIBAACWYwYDABDdTEnhFmlyy5sQBAwAQHRjiSQiCBgAgOjmN8Iv0qTIMwQ1GAAAwHLMYAAAoptf4ddgcKOtEAQMAEB0owYjIlgiAQAAlmMGAwAQ3SjyjAgCBhBhhsEvHmBGMxX+fSy4D0YIlkgAAIDlmMEAAEQ3lkgigoABRJBpMm8KzHgEjIhgiQQAAFiOGQwAQHSjyDMiCBgAgOjGEklEEDAAANGNO3lGBDUYAADAcnN+BsPn8033EBDFBgcH9e3bN/4fApM0pT8z//0Sfg3FyBdLhjKXzNmAYbPZ5HA45HQ6p3soAIA/4HA4ZLPZItb/z88J7+V/WtJfpMc72xjmHP6i/vDwsEZGRqZ7GIhiPp9PTqdT7969U1JS0nQPB5hVbDab4uLiInoOKz8npmK8s8mcDhjAdPP5fEpOTtbAwAABA0BUocgTAABYjoABAAAsR8AAIshut+vIkSOy2+3TPRQAmFLUYAAAAMsxgwEAACxHwAAAAJYjYAAAAMsRMAAAgOUIGMAPbW1t2rRpk1JTU2UYhm7evBm03zRNVVVVKTU1VfHx8SosLNTz588D+9++fSvDMMbcrl27Fnjfo0ePtGbNGi1btkwXL14MtOfl5Wn37t1B5zx//rwMw1BDQ0NQe1lZmQoKCiy8egCwFgED+OHLly9avXq1zp49O+b+kydP6syZMzp79qyePHkih8Oh9evX6/Pnz5Ikp9Op3t7eoO3o0aNKTEzUxo0bA/2Ulpbq0KFDunr1qmpqatTd3S1J8ng8amlpCTpna2urnE7nmO0ej8fKywcAa5kAQkgyb9y4EXjt9/tNh8NhnjhxItA2PDxsJicnm3V1db/tZ82aNWZpaWlQW3p6uvnmzRtzcHDQXLt2rfn8+XPTNE3zzp07piSzp6cn8N6UlBTz3LlzZlpaWqCtu7vblGQ2NzeHe5kAEDHMYAAT0NXVJa/Xq+Li4kCb3W6X2+3Ww4cPxzzm6dOn6ujoUFlZWVD74cOHlZmZqeTkZOXl5SkrK0uS5HK5FBsbq9bWVknSixcvNDQ0pNLSUvl8Pr1+/VqS1NLSIpvNxhIJgBmNgAFMgNfrlSSlpKQEtaekpAT2/aqhoUGZmZkhQaCsrEwfP35UX1+famtrA+2JiYnKyckJBIzW1latW7dOdrtdLpcrqD03N1cJCQkWXR0AWI+AAUyCYRhBr03TDGmTpKGhIV25ciVk9uKnxMRELViwIKTd4/EEBYnCwkJJktvtDmovKir684sAgClAwAAmwOFwSFLIbMWHDx9CZjUk6fr16/r69au2b98+qfN4PB69evVK79+/1/379+V2uyX9P2B0d3erq6uLAk8AMx4BA5iAFStWyOFwqLm5OdA2MjKi+/fvj1kL0dDQoM2bN2vx4sWTOk9BQYHsdrvOnTunoaEhZWdnS5LWrl2rgYEB1dfXKy4uTnl5eeFdEABE2D+mewDATDE4OKjOzs7A666uLnV0dGjhwoVKT0/X3r17VV1drYyMDGVkZKi6uloJCQkqKSkJ6qezs1NtbW26ffv2pMcQHx+v3Nxc1dbWyuVyKSYmRpIUGxur/Px81dbWBkIIAMxkBAzgh/b29qClh3379kmSduzYocuXL6uyslJDQ0OqqKjQp0+flJubq6amJs2fPz+on8bGRqWlpQV942QyPB6P2traAvUXP7ndbt29e5flEQCzAo9rBwAAlqMGAwAAWI6AAQAALEfAAAAAliNgAAAAyxEwAACA5QgYAADAcgQMAABgOQIGAACwHAEDAABYjoABAAAsR8AAAACWI2AAAADL/Q9QMIT08Xok4AAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "