-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexpanded_translation_metrics.py
218 lines (165 loc) · 8.71 KB
/
expanded_translation_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
""" This module contains the functions used to compute the following Speech
Translation metrics:- ASR BLEU (and BP, HRR), COMET, METEOR, and BLASER 2.0.
This module is called after inferencing the S2ST system and is used to create
a csv file with all 4 metrics for each sample in the dev dataset.
"""
import numpy as np
import pandas as pd
from string import punctuation
import string
import os
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
from sonar.models.blaser.loader import load_blaser_model
import evaluate
from utils.macro_average_results import segment_bleu_score_string
DEV_SOURCE_PATH = "/home/aaditd/2_Speech_Project/dev_source.tsv"
DEV_TARGET_PATH = "/home/aaditd/2_Speech_Project/dev_target.tsv"
FILE_PATH = "/home/aaditd/2_Speech_Project/metrics/raw/"
OUTPUT_PATH = "/home/aaditd/2_Speech_Project/metrics/scored/"
def text_normalizer(text):
"""
Converts sentences to lower case and removes punctuation.
Used to normalize source and target sentences for BLEU scoring.
"""
text = text.lower()
return text.translate(str.maketrans('', '', string.punctuation))
def blaser_score_vectorized(source_texts, pred_texts, blaser, text_embedder):
"""
Computes the BLASER 2.0 score for a list of source texts and corresponding predictions.
Args:
source_texts: A list of source language sentences.
pred_texts: A list of predictions by the S2ST model.
blaser: The huggingface instance that computes the BLASER 2.0 metric.
text_embedder: The text embedder model used by the blaser instance.
Returns:
The vector of BLASER 2.0 scores for the predictions.
"""
assert len(source_texts) == len(pred_texts), f"The number of source sentences ({len(source_texts)}) is not the same as the number of predictions ({len(pred_texts)})"
src_embs = text_embedder.predict(source_texts, source_lang="spa_Latn") # "Le chat s'assit sur le tapis."
mt_embs = text_embedder.predict(pred_texts, source_lang="eng_Latn") # "The cat sat down on the carpet."
return [b.item() for b in list(blaser(src=src_embs, mt=mt_embs))] # 4.708
def comet_score_vectorized(pred_texts, ref_texts, source_texts, comet):
"""
Computes the COMET score for a list of source texts, ref texts, and corresponding predictions.
Args:
pred_texts: A list of predictions by the S2ST model.
ref_texts: A list of target language sentences (reference translations)
source_texts: A list of source language sentences.
comet: The huggingface instance that computes the COMET metric
Returns:
The vector of COMET scores for the predictions.
"""
assert len(source_texts) == len(ref_texts), f"The number of source sentences ({len(source_texts)}) is not the same as the number of reference sentences ({len(ref_texts)})"
assert len(source_texts) == len(pred_texts), f"The number of source sentences ({len(source_texts)}) is not the same as the number of predictions ({len(pred_texts)})"
results = comet.compute(predictions=pred_texts,
references=ref_texts,
sources=source_texts)
return results["scores"]
def meteor_score_vectorized(pred_texts, ref_texts, meteor):
"""
Computes the METEOR score for a list of reference texts and corresponding predictions.
Args:
pred_texts: A list of predictions by the S2ST model.
ref_texts: A list of target language sentences (reference translations).
meteor: The huggingface instance that computes the METEOR metric.
Returns:
The vector of METEOR scores for the predictions.
"""
return meteor.compute(predictions=[pred_texts], references=[[ref_texts]])['meteor']
def add_source_text_path_to_file(input_df, save_path = None):
"""
Adds the source_text to a dataframe of references and predictions (both in target language),
if it does not already contain it.
Used before running the evaluation metrics in generate_metrics_for_file_vectorized(), since some of
them require the source_text along with the pred_text and ref_text.
Args:
input_df: A DataFrame containing the pred_texts and ref_texts, but potentially lacking source_texts.
save_path: Optional parameter to save the DataFrame with the source_text column included. Defaults to None.
Returns:
A DataFrame with the source_text column included
"""
df = input_df
if "source_text" in list(df.columns):
return df
else:
dev_source_df = pd.read_csv(DEV_SOURCE_PATH, sep='\t')
dev_target_df = pd.read_csv(DEV_TARGET_PATH, sep='\t', names=['path', 'sentence'])
source_dic, target_dic = {}, {}
paths, sentences = dev_source_df["path"], dev_source_df["sentence"]
for a, b in zip(paths, sentences):
source_dic[a] = text_normalizer(b)
paths, sentences = dev_target_df["path"], dev_target_df["sentence"]
for a, b in zip(paths, sentences):
target_dic[a] = text_normalizer(b)
reverse_target_dic = {v:k for k, v in target_dic.items()}
new_dic = {"path": [],
"source_text": [],
"pred_text": [],
"ref_text": [],
"ASR_BLEU": []}
i = 0
for index, row in df.iterrows():
pred_text = row["Prediction"]
ref_text = row["Gold"]
asr_bleu = row["ASR_BLEU"]
path = reverse_target_dic[ref_text]
source_text = source_dic[path]
new_dic["path"].append(path)
new_dic["source_text"].append(source_text)
new_dic["pred_text"].append(pred_text)
new_dic["ref_text"].append(ref_text)
new_dic["ASR_BLEU"].append(asr_bleu)
i += 1
new_df = pd.DataFrame(new_dic)
if save_path:
new_df.to_csv(save_path)
return new_df
def generate_metrics_for_file_vectorized(filename, bleu, comet, meteor, blaser, text_embedder):
"""
Generates the 4 translation metrics (ASR BLEU, COMET, METEOR, BLASER 2.0), along with
BP (Brevity Penalty) and HRR (Hypothesis-Reference Ratio) for each sample in the input DataFrame.
Args:
filename: The path to the input DataFrame with at least pred_text and ref_text columns.
bleu: The huggingface instance that computes the ASR-BLEU metric.
comet: The huggingface instance that computes the COMET metric.
meteor: The huggingface instance that computes the METEOR metric.
blaser: The huggingface instance that computes the BLASER 2.0 metric.
text_embedder: The text embedder model used by the blaser instance.
Returns:
The input DataFrame with 6 new columns (4 Translation metrics, BP, and HRR)
"""
df = pd.read_csv(filename)
df = df.replace(np.nan, '', regex=True)
# Add Source Texts column if it doesn't already exist
df = add_source_text_path_to_file(input_df=df)
meteor_list, comet_list, blaser_list = [], [], []
pred_texts = df["pred_text"]
ref_texts = df["ref_text"]
source_texts = df["source_text"]
asr_bleu_list = [segment_bleu_score_string(str(bleu.sentence_score(text_normalizer(p), [text_normalizer(r)]) ) ) for p, r in zip(pred_texts, ref_texts)]
bleu_score_list = [segment_bleu_score_string(s)[0] for s in asr_bleu_list]
brevity_penalty_list = [segment_bleu_score_string(b)[1] for b in asr_bleu_list]
hypothesis_reference_ratio_list = [segment_bleu_score_string(b)[2] for b in asr_bleu_list]
comet_list = comet_score_vectorized(pred_texts=pred_texts, ref_texts=ref_texts, source_texts=source_texts, comet=comet)
meteor_list = [meteor_score_vectorized(p, r, meteor) for p, r in zip(pred_texts, ref_texts)]
blaser_list = blaser_score_vectorized(source_texts=source_texts, pred_texts=pred_texts, blaser=blaser, text_embedder=text_embedder)
df["ASR_BLEU"] = bleu_score_list
df["BP"] = brevity_penalty_list
df["HRR"] = hypothesis_reference_ratio_list
df["COMET"] = comet_list
df["METEOR"] = meteor_list
df["BLASER"] = blaser_list
title = filename.split("/")[-1]
df.to_csv(f"{OUTPUT_PATH}{title}")
return df
def main():
# Sample Usage
blaser = load_blaser_model("blaser_2_0_qe").eval()
text_embedder = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder", tokenizer="text_sonar_basic_encoder")
meteor = evaluate.load('meteor')
comet = evaluate.load('comet')
expanded_filename = "/home/aaditd/2_Speech_Project/metrics/raw/casc_finetuned_1e-7_1_epoch.csv"
generate_metrics_for_file_vectorized(expanded_filename, comet, meteor, blaser, text_embedder)
print("DONE!!")
if __name__ == "__main__":
main()