-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathenCoder.py
127 lines (100 loc) · 3.72 KB
/
enCoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
def down_conv_layer(input_channels, output_channels, kernel_size):
return nn.Sequential(
nn.Conv2d(
input_channels,
output_channels,
kernel_size,
padding=(kernel_size - 1) // 2,
stride=1,
bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU(),
nn.Conv2d(
output_channels,
output_channels,
kernel_size,
padding=(kernel_size - 1) // 2,
stride=2,
bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU())
def conv_layer(input_channels, output_channels, kernel_size):
return nn.Sequential(
nn.Conv2d(
input_channels,
output_channels,
kernel_size,
padding=(kernel_size - 1) // 2,
bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU())
def depth_layer(input_channels):
return nn.Sequential(
nn.Conv2d(input_channels, 1, 3, padding=1), nn.Sigmoid())
def refine_layer(input_channels):
return nn.Conv2d(input_channels, 1, 3, padding=1)
def up_conv_layer(input_channels, output_channels, kernel_size):
return nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear'),
nn.Conv2d(
input_channels,
output_channels,
kernel_size,
padding=(kernel_size - 1) // 2,
bias=False),
nn.BatchNorm2d(output_channels),
nn.ReLU())
def get_trainable_number(variable):
num = 1
shape = list(variable.shape)
for i in shape:
num *= i
return num
class enCoder(nn.Module):
def __init__(self):
super(enCoder, self).__init__()
self.conv1 = down_conv_layer(67, 128, 7)
self.conv2 = down_conv_layer(128, 256, 5)
self.conv3 = down_conv_layer(256, 512, 3)
self.conv4 = down_conv_layer(512, 512, 3)
self.conv5 = down_conv_layer(512, 512, 3)
def getVolume(self, left_image, right_image, KRKiUV_T, KT_T):
idepth_base = 1.0 / 50.0
idepth_step = (1.0 / 0.5 - 1.0 / 50.0) / 63.0
costvolume = Variable(
torch.cuda.FloatTensor(left_image.shape[0], 64,
left_image.shape[2], left_image.shape[3]))
image_height = 256
image_width = 320
batch_number = left_image.shape[0]
normalize_base = torch.cuda.FloatTensor(
[image_width / 2.0, image_height / 2.0])
normalize_base = normalize_base.unsqueeze(0).unsqueeze(-1)
for depth_i in range(64):
this_depth = 1.0 / (idepth_base + depth_i * idepth_step)
transformed = KRKiUV_T * this_depth + KT_T
demon = transformed[:, 2, :].unsqueeze(1)
warp_uv = transformed[:, 0: 2, :] / (demon + 1e-6)
warp_uv = (warp_uv - normalize_base) / normalize_base
warp_uv = warp_uv.view(
batch_number, 2, image_width,
image_height)
warp_uv = Variable(warp_uv.permute(
0, 3, 2, 1))
warped = F.grid_sample(right_image, warp_uv)
costvolume[:, depth_i, :, :] = torch.sum(
torch.abs(warped - left_image), dim=1)
return costvolume
def forward(self, left_image, right_image, KRKiUV_T, KT_T):
plane_sweep_volume = self.getVolume(left_image, right_image, KRKiUV_T, KT_T)
x = torch.cat((left_image, plane_sweep_volume), 1)
conv1 = self.conv1(x)
conv2 = self.conv2(conv1)
conv3 = self.conv3(conv2)
conv4 = self.conv4(conv3)
conv5 = self.conv5(conv4)
return [conv5, conv4, conv3, conv2, conv1]