-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMC_SEFRON.m
76 lines (64 loc) · 3.8 KB
/
MC_SEFRON.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
function Trained_model = MC_SEFRON(model,Spike_Train,Train_class,train_size,Spike_Test,Test_class)
rng('shuffle')
no_epoch=model.no_epoch;
Output_size=0;
model.theta=[];
Train_accu=zeros(1,no_epoch);
Test_accu=zeros(1,no_epoch);
Output_neuron.weight=zeros(model.dim*model.RF,model.T+1,model.no_class);
Output_neuron.theta=zeros(1,model.no_class);
% order=randperm(train_size);
order=1:train_size;
%Initialize weith and firing threshlod
for j=1:train_size
Sample=Spike_code(Spike_Train(order(j),:),Train_class(order(j)),model);
if (Output_neuron.theta(Sample.class)==0)
Output_size = Output_size+1;
Output_neuron.weight(:,:,Sample.class)=bsxfun(@times,bsxfun(model.fun,model.t_train,Sample.Spike_Time'),Sample.U_TID);
Output_neuron.theta(Sample.class)=Sample.U_TID'*Sample.Esto;
end
if(Output_size==model.no_class)
break
end
end
%% Training MC_SEFRON
for epoch=1:no_epoch
for j=1:train_size
Sample=Spike_code(Spike_Train(order(j),:),Train_class(order(j)),model);
tc=FiringTime(Output_neuron,Sample,model); %determine the firing time of all the output neurons
Other_class = setdiff(1:model.no_class,Sample.class);
tcc = tc(Sample.class);
tmc = min(tc(Other_class));
reference_time=tc;
if(tmc<tcc+model.Tm)
%% Determine reference postsynaptic spike time
if( tcc>model.Td)
reference_time(Sample.class)=model.Td;
end
trf_mc=min(model.TOID,tcc+model.Tm);
Wrng_class=find(tc(Other_class)<tcc+model.Tm);
reference_time(Other_class(Wrng_class))=trf_mc;
%% Weight Update
r_time=bsxfun(@minus,tc,Sample.Spike_Time');
Ut=STDP_norm(r_time,model.stdp); % normailzed STDP with respect to actual firing time
r_time=bsxfun(@minus,reference_time,Sample.Spike_Time');
Ut_de=STDP_norm(r_time,model.stdp); % normailzed STDP with respect to reference firing time
w_tf=Output_neuron.theta./sum(Ut.*spike_response(bsxfun(@minus, tc, Sample.Spike_Time'),model.tau));
w_td=Output_neuron.theta./sum(Ut_de.*spike_response(bsxfun(@minus,reference_time,Sample.Spike_Time'),model.tau));
delta_W = bsxfun(@times,Ut_de,(w_td-w_tf)); % change in weight
delta_wx=bsxfun(@times,bsxfun(model.fun,(0:1:model.T),repmat(Sample.Spike_Time,1,model.no_class)'),reshape(delta_W,[],1)); % Embedding the change in a time-varying function
Output_neuron.weight=Output_neuron.weight+model.l_rate*permute(reshape(delta_wx',[model.T+1,model.dim*model.RF,model.no_class]),[2,1,3]);
end
end
Trained_model=model;
Trained_model.Output_neuron=Output_neuron;
Train_accu(epoch)= validate(Spike_Train,Train_class,Trained_model);
Test_accu(epoch)=validate(Spike_Test,Test_class,Trained_model);
disp(['Epoch: ', num2str(epoch)])
disp(['Training accuracy: ', num2str(Train_accu(epoch))])
disp(['Testing accuracy: ', num2str(Test_accu(epoch))])
end
plot(Train_accu)
hold on
plot(Test_accu)
end