-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
126 lines (86 loc) · 4.29 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import pandas as pd
def fetch_medal_tally(df, year, country):
medal_df = df.drop_duplicates(subset=['Team', 'NOC', 'Games', 'Year', 'City', 'Sport', 'Event', 'Medal'])
flag = 0
if year == 'Overall' and country == 'Overall':
temp_df = medal_df
if year == 'Overall' and country != 'Overall':
flag = 1
temp_df = medal_df[medal_df['region'] == country]
if year != 'Overall' and country == 'Overall':
temp_df = medal_df[medal_df['Year'] == int(year)]
if year != 'Overall' and country != 'Overall':
temp_df = medal_df[(medal_df['Year'] == year) & (medal_df['region'] == country)]
if flag == 1:
x = temp_df.groupby('Year').sum()[['Gold', 'Silver', 'Bronze']].sort_values('Year').reset_index()
else:
x = temp_df.groupby('region').sum()[['Gold', 'Silver', 'Bronze']].sort_values('Gold',
ascending=False).reset_index()
x['total'] = x['Gold'] + x['Silver'] + x['Bronze']
x['Gold'] = x['Gold'].astype('int')
x['Silver'] = x['Silver'].astype('int')
x['Bronze'] = x['Bronze'].astype('int')
x['total'] = x['total'].astype('int')
return x
def country_year_list(df):
years = df['Year'].unique().tolist()
years.sort()
years.insert(0, 'Overall')
country = np.unique(df['region'].dropna().values).tolist()
country.sort()
country.insert(0, 'Overall')
return years,country
def data_over_time(df,col):
nations_over_time = df.drop_duplicates(['Year', col])['Year'].value_counts().reset_index().sort_values('Year').rename(columns={'Year': 'Edition', 'index': col})
nations_over_time.rename(columns={'index': 'Edition', 'Year': col}, inplace=True)
return nations_over_time
def most_successful(df, sport):
temp_df = df.dropna(subset=['Medal'])
if sport != 'Overall':
temp_df = temp_df[temp_df['Sport'] == sport]
# Count the number of medals per athlete
x = temp_df['Name'].value_counts().reset_index()
x.columns = ['Name', 'Medals'] # Renaming columns to avoid confusion
# Merge with the original DataFrame to get additional information
x = x.head(15).merge(df, on='Name', how='left')[['Name', 'Medals', 'Sport', 'region']].drop_duplicates('Name')
return x
def yearwise_medal_tally(df,country):
temp_df = df.dropna(subset=['Medal'])
temp_df.drop_duplicates(subset=['Team', 'NOC', 'Games', 'Year', 'City', 'Sport', 'Event', 'Medal'], inplace=True)
new_df = temp_df[temp_df['region'] == country]
final_df = new_df.groupby('Year').count()['Medal'].reset_index()
return final_df
def country_event_heatmap(df,country):
temp_df = df.dropna(subset=['Medal'])
temp_df.drop_duplicates(subset=['Team', 'NOC', 'Games', 'Year', 'City', 'Sport', 'Event', 'Medal'], inplace=True)
new_df = temp_df[temp_df['region'] == country]
pt = new_df.pivot_table(index='Sport', columns='Year', values='Medal', aggfunc='count').fillna(0)
return pt
def most_successful_countrywise(df, country):
temp_df = df.dropna(subset=['Medal'])
temp_df = temp_df[temp_df['region'] == country]
# Count the number of medals per athlete
x = temp_df['Name'].value_counts().reset_index()
x.columns = ['Name', 'Medals'] # Rename columns for clarity
# Get the top 10 athletes
top_athletes = x.head(10)
# Merge with the original DataFrame to get additional information
result = top_athletes.merge(df, on='Name', how='left')[['Name', 'Medals', 'Sport', 'region']].drop_duplicates('Name')
return result
def weight_v_height(df,sport):
athlete_df = df.drop_duplicates(subset=['Name', 'region'])
athlete_df['Medal'].fillna('No Medal', inplace=True)
if sport != 'Overall':
temp_df = athlete_df[athlete_df['Sport'] == sport]
return temp_df
else:
return athlete_df
def men_vs_women(df):
athlete_df = df.drop_duplicates(subset=['Name', 'region'])
men = athlete_df[athlete_df['Sex'] == 'M'].groupby('Year').count()['Name'].reset_index()
women = athlete_df[athlete_df['Sex'] == 'F'].groupby('Year').count()['Name'].reset_index()
final = men.merge(women, on='Year', how='left')
final.rename(columns={'Name_x': 'Male', 'Name_y': 'Female'}, inplace=True)
final.fillna(0, inplace=True)
return final