-
Notifications
You must be signed in to change notification settings - Fork 2
/
illusion.py
114 lines (85 loc) · 3.12 KB
/
illusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
'''
Name -> Abhinav Anil
'''
# importing OpenCV, time and Pandas library
import cv2, time, pandas
# importing datetime class from datetime library
from datetime import datetime
# Assigning our static_back to None
static_back = None
# List when any moving object appear
motion_list = [ None, None ]
# Time of movement
time = []
# Initializing DataFrame, one column is start
# time and other column is end time
df = pandas.DataFrame(columns = ["Start", "End"])
# Capturing video
video = cv2.VideoCapture(0)
# Infinite while loop to treat stack of image as video
while True:
# Reading frame(image) from video
check, frame = video.read()
# Initializing motion = 0(no motion)
motion = 0
# Converting color image to gray_scale image
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Converting gray scale image to GaussianBlur
# so that change can be find easily
gray = cv2.GaussianBlur(gray, (21, 21), 0)
# In first iteration we assign the value
# of static_back to our first frame
if static_back is None:
static_back = gray
continue
# Difference between static background
# and current frame(which is GaussianBlur)
diff_frame = cv2.absdiff(static_back, gray)
# If change in between static background and
# current frame is greater than 30 it will show white color(255)
thresh_frame = cv2.threshold(diff_frame, 30, 255, cv2.THRESH_BINARY)[1]
thresh_frame = cv2.dilate(thresh_frame, None, iterations = 2)
# Finding contour of moving object
cnts,_ = cv2.findContours(thresh_frame.copy(),
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in cnts:
if cv2.contourArea(contour) < 10000:
continue
motion = 1
(x, y, w, h) = cv2.boundingRect(contour)
# making green rectangle arround the moving object
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 3)
# Appending status of motion
motion_list.append(motion)
motion_list = motion_list[-2:]
# Appending Start time of motion
if motion_list[-1] == 1 and motion_list[-2] == 0:
time.append(datetime.now())
# Appending End time of motion
if motion_list[-1] == 0 and motion_list[-2] == 1:
time.append(datetime.now())
# Displaying image in gray_scale
#cv2.imshow("Gray Frame", gray)
# Displaying the difference in currentframe to
# the staticframe(very first_frame)
cv2.imshow("Difference Frame", diff_frame)
# Displaying the black and white image in which if
# intensity difference greater than 30 it will appear white
#cv2.imshow("Threshold Frame", thresh_frame)
# Displaying color frame with contour of motion of object
cv2.imshow("Color Frame", frame)
key = cv2.waitKey(1)
# if q entered whole process will stop
if key == ord('q'):
# if something is movingthen it append the end time of movement
if motion == 1:
time.append(datetime.now())
break
# Appending time of motion in DataFrame
for i in range(0, len(time), 2):
df = df.append({"Start":time[i], "End":time[i + 1]}, ignore_index = True)
# Creating a CSV file in which time of movements will be saved
df.to_csv("Time_of_movements.csv")
video.release()
# Destroying all the windows
cv2.destroyAllWindows()