This repository contains pretrained models. (converted from gluon-cv)
- PyTorch 1.1
- Python 3.6
- OpenCV
Model |
Acc@1(gluon-cv) |
Acc@5(gluon-cv) |
Acc@1 |
Acc@5 |
ResNet18_v1 |
70.93 |
89.92 |
70.18 |
89.52 |
ResNet34_v1 |
74.37 |
91.87 |
74.04 |
91.82 |
ResNet50_v1 |
77.36 |
93.57 |
77.16 |
93.56 |
ResNet101_v1 |
78.34 |
94.01 |
78.23 |
94.09 |
ResNet152_v1 |
79.22 |
94.64 |
|
|
ResNet18_v2 |
71.00 |
89.92 |
70.10 |
89.48 |
ResNet34_v2 |
74.40 |
92.08 |
74.37 |
92.02 |
ResNet50_v2 |
77.11 |
93.43 |
77.00 |
93.36 |
ResNet101_v2 |
78.53 |
94.17 |
78.52 |
94.15 |
ResNet152_v2 |
79.21 |
94.31 |
|
|
Model |
Acc@1(gluon-cv) |
Acc@5(gluon-cv) |
Acc@1 |
Acc@5 |
ResNet18_v1b |
70.94 |
89.83 |
70.08 |
89.44 |
ResNet34_v1b |
74.65 |
92.08 |
74.11 |
92.16 |
ResNet50_v1b |
77.67 |
93.82 |
77.57 |
93.58 |
ResNet50_v1b_gn |
77.36 |
93.59 |
77.22 |
93.54 |
ResNet101_v1b |
79.20 |
94.61 |
79.12 |
94.47 |
ResNet152_v1b |
79.69 |
94.74 |
78.07 |
93.97 |
ResNet50_v1c |
78.03 |
94.09 |
77.89 |
94.02 |
ResNet101_v1c |
79.60 |
94.75 |
79.48 |
94.72 |
ResNet152_v1c |
80.01 |
94.96 |
78.18 |
93.99 |
ResNet50_v1d |
79.15 |
94.58 |
79.04 |
94.61 |
ResNet101_v1d |
80.51 |
95.12 |
80.52 |
95.23 |
ResNet152_v1d |
80.61 |
95.34 |
80.75 |
95.34 |
ResNet_v1b
modifies ResNet_v1
by setting stride at the 3x3
layer for a bottleneck block.
ResNet_v1c
modifies ResNet_v1b
by replacing the 7x7
conv layer with three 3x3
conv layers.
ResNet_v1d
modifies ResNet_v1c
by adding an avgpool layer 2x2
with stride 2
downsample feature map on the residual path to preserve more information.
Model |
Acc@1(gluon-cv) |
Acc@5(gluon-cv) |
Acc@1 |
Acc@5 |
MobileNet1.0 |
73.28 |
91.30 |
72.85 |
91.12 |
MobileNet0.75 |
70.25 |
89.49 |
69.85 |
89.46 |
MobileNet0.5 |
65.20 |
86.34 |
64.19 |
85.71 |
MobileNet0.25 |
52.91 |
76.94 |
51.09 |
75.36 |
MobileNetV2_1.0 |
71.92 |
90.56 |
71.78 |
90.36 |
MobileNetV2_0.75 |
69.61 |
88.95 |
69.29 |
88.81 |
MobileNetV2_0.5 |
64.49 |
85.47 |
64.15 |
85.40 |
MobileNetV2_0.25 |
50.74 |
74.56 |
50.14 |
74.13 |
Model |
Acc@1(gluon-cv) |
Acc@5(gluon-cv) |
Acc@1 |
Acc@5 |
VGG11 |
66.62 |
87.34 |
67.26 |
87.73 |
VGG13 |
67.74 |
88.11 |
68.15 |
88.47 |
VGG16 |
73.23 |
91.31 |
70.09 |
89.70 |
VGG19 |
74.11 |
91.35 |
70.86 |
90.17 |
VGG11_bn |
68.59 |
88.72 |
68.94 |
88.88 |
VGG13_bn |
68.84 |
88.82 |
69.51 |
89.46 |
VGG16_bn |
73.10 |
91.76 |
72.07 |
90.97 |
VGG19_bn |
74.33 |
91.85 |
72.85 |
91.26 |
Note: the vgg model here is converted from torchvision
Model |
Acc@1(gluon-cv) |
Acc@5(gluon-cv) |
Acc@1 |
Acc@5 |
ResNext50_32x4d |
79.32 |
94.53 |
79.41 |
94.54 |
ResNext101_32x4d |
80.37 |
95.06 |
80.52 |
95.20 |
ResNext101_64x4d |
80.69 |
95.17 |
80.84 |
95.27 |
SE_ResNext50_32x4d |
79.95 |
94.93 |
80.17 |
94.97 |
SE_ResNext101_32x4d |
80.91 |
95.39 |
81.27 |
95.42 |
SE_ResNext101_64x4d |
81.01 |
95.32 |
81.19 |
95.60 |
Model |
Acc@1(gluon-cv) |
Acc@5(gluon-cv) |
Acc@1 |
Acc@5 |
resnet18_v1b_0.89 |
67.2 |
87.45 |
65.78 |
86.63 |
resnet50_v1d_0.86 |
78.02 |
93.82 |
77.61 |
93.90 |
resnet50_v1d_0.48 |
74.66 |
92.34 |
74.10 |
92.10 |
resnet50_v1d_0.37 |
70.71 |
89.74 |
69.47 |
89.12 |
resnet50_v1d_0.11 |
63.22 |
84.79 |
61.12 |
83.31 |
resnet101_v1d_0.76 |
79.46 |
94.69 |
79.55 |
94.81 |
resnet101_v1d_0.73 |
78.89 |
94.48 |
78.68 |
94.41 |
Model |
Acc@1(gluon-cv) |
Acc@5(gluon-cv) |
Acc@1 |
Acc@5 |
SqueezeNet1.0 |
56.11 |
79.09 |
55.67 |
78.47 |
SqueezeNet1.1 |
54.96 |
78.17 |
55.27 |
78.55 |
Model |
Acc@1(gluon-cv) |
Acc@5(gluon-cv) |
Acc@1 |
Acc@5 |
DenseNet121 |
74.97 |
92.25 |
74.65 |
92.15 |
DenseNet161 |
77.70 |
93.80 |
77.64 |
93.97 |
DenseNet169 |
76.17 |
93.17 |
76.26 |
93.18 |
DenseNet201 |
77.32 |
93.62 |
77.64 |
93.97 |
Model |
Acc@1(gluon-cv) |
Acc@5(gluon-cv) |
Acc@1 |
Acc@5 |
InceptionV3 |
78.77 |
94.39 |
78.62 |
94.42 |
InceptionV3
is evaluated with input size of 299x299.
Model |
Acc@1(gluon-cv) |
Acc@5(gluon-cv) |
Acc@1 |
Acc@5 |
AlexNet |
54.92 |
78.03 |
54.28 |
77.68 |
Model |
Acc@1(gluon-cv) |
Acc@5(gluon-cv) |
Acc@1 |
Acc@5 |
darknet53 |
78.56 |
94.43 |
78.54 |
94.54 |