forked from Themaister/GLFFT
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathglfft_wisdom.cpp
603 lines (516 loc) · 21 KB
/
glfft_wisdom.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/* Copyright (C) 2015 Hans-Kristian Arntzen <maister@archlinux.us>
*
* Permission is hereby granted, free of charge,
* to any person obtaining a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "glfft_wisdom.hpp"
#include "glfft_interface.hpp"
#include "glfft.hpp"
#include <utility>
#include <stdexcept>
template<typename A, typename B> auto min(A a, B b) { return a < b ? a : b; }
template<typename A, typename B> auto max(A a, B b) { return a > b ? a : b; }
#ifdef GLFFT_SERIALIZATION
#include "rapidjson/include/rapidjson/reader.h"
#include "rapidjson/include/rapidjson/prettywriter.h"
#include "rapidjson/include/rapidjson/stringbuffer.h"
#include "rapidjson/include/rapidjson/document.h"
using namespace rapidjson;
#endif
#ifdef GLFFT_CLI_ASYNC
#include "glfft_cli.hpp"
#endif
using namespace std;
using namespace GLFFT;
FFTStaticWisdom FFTWisdom::get_static_wisdom_from_renderer(Context *context)
{
FFTStaticWisdom res;
const char *renderer = context->get_renderer_string();
unsigned threads = context->get_max_work_group_threads();
if (strstr(renderer, "GeForce") || strstr(renderer, "Quadro"))
{
context->log("Detected GeForce/Quadro GPU.\n");
res.min_workgroup_size = 32; // Warp threads.
res.min_workgroup_size_shared = 32;
res.max_workgroup_size = min(threads, 256u); // Very unlikely that more than 256 threads will do anything good.
res.min_vector_size = 2;
res.max_vector_size = 2;
res.shared_banked = FFTStaticWisdom::True;
}
else if (strstr(renderer, "Radeon"))
{
context->log("Detected Radeon GPU.\n");
res.min_workgroup_size = 64; // Wavefront threads (GCN).
res.min_workgroup_size_shared = 128;
res.max_workgroup_size = min(threads, 256u); // Very unlikely that more than 256 threads will do anything good.
// TODO: Find if we can restrict this to 2 or 4 always.
res.min_vector_size = 2;
res.max_vector_size = 4;
res.shared_banked = FFTStaticWisdom::True;
}
else if (strstr(renderer, "Mali"))
{
context->log("Detected Mali GPU.\n");
res.min_workgroup_size = 4;
res.min_workgroup_size_shared = 4;
res.max_workgroup_size = 64; // Going beyond 64 threads per WG is not a good idea.
res.min_vector_size = 4;
res.max_vector_size = 4;
res.shared_banked = FFTStaticWisdom::False;
}
// TODO: Add more GPUs.
return res;
}
pair<double, FFTOptions::Performance> FFTWisdom::learn_optimal_options(
Context *context, unsigned Nx, unsigned Ny, unsigned radix,
Mode mode, Target input_target, Target output_target,
const FFTOptions::Type &type)
{
WisdomPass pass = {
{
Nx, Ny, radix, mode, input_target, output_target,
type,
},
0.0,
};
auto itr = library.find(pass);
if (itr != end(library))
{
return make_pair(itr->first.cost, itr->second);
}
else
{
auto result = study(context, pass, type);
pass.cost = result.first;
library[pass] = result.second;
return result;
}
}
void FFTWisdom::learn_optimal_options_exhaustive(Context *context,
unsigned Nx, unsigned Ny,
Type type, Target input_target, Target output_target, const FFTOptions::Type &fft_type)
{
bool learn_resolve = type == ComplexToReal || type == RealToComplex;
Mode vertical_mode = type == ComplexToComplexDual ? VerticalDual : Vertical;
Mode horizontal_mode = type == ComplexToComplexDual ? HorizontalDual : Horizontal;
// Create wisdom for horizontal transforms and vertical transform.
static const unsigned radices[] = { 4, 8, 16, 64 };
for (auto radix : radices)
{
try
{
// If we're doing SSBO -> Image or Image -> SSBO. Create wisdom for the two variants.
// Learn plain transforms.
if (Ny > 1)
{
learn_optimal_options(context, Nx >> learn_resolve, Ny, radix, vertical_mode, SSBO, SSBO, fft_type);
}
learn_optimal_options(context, Nx >> learn_resolve, Ny, radix, horizontal_mode, SSBO, SSBO, fft_type);
// Learn the first/last pass transforms. Can be fairly significant since accessing textures makes more sense with
// block interleave and larger WG_Y sizes.
if (input_target != SSBO)
{
if (Ny > 1)
{
learn_optimal_options(context, Nx >> learn_resolve, Ny, radix, vertical_mode, input_target, SSBO, fft_type);
}
learn_optimal_options(context, Nx >> learn_resolve, Ny, radix, horizontal_mode, input_target, SSBO, fft_type);
}
if (output_target != SSBO)
{
if (Ny > 1)
{
learn_optimal_options(context, Nx >> learn_resolve, Ny, radix, vertical_mode, SSBO, output_target, fft_type);
}
learn_optimal_options(context, Nx >> learn_resolve, Ny, radix, horizontal_mode, SSBO, output_target, fft_type);
}
}
#ifdef GLFFT_CLI_ASYNC
catch (const AsyncCancellation &)
{
throw;
}
#endif
catch (...)
{
// If our default options cannot successfully create the radix pass (i.e. throws),
// just ignore it for purpose of creating wisdom.
}
}
auto resolve_type = fft_type;
resolve_type.input_fp16 = resolve_type.output_fp16;
Mode resolve_mode = type == ComplexToReal ? ResolveComplexToReal : ResolveRealToComplex;
Target resolve_input_target = SSBO;
// If we have C2R Nx1 transform, the first pass is resolve, so use those types.
if (type == ComplexToReal && Ny == 1)
{
resolve_type = fft_type;
resolve_input_target = input_target;
}
// If we need to do a resolve pass, train this case as well.
if (learn_resolve)
{
try
{
// If Ny == 1 and we're doing RealToComplex, this will be the last pass, so use output_target as target.
if (Ny == 1 && resolve_mode == ResolveRealToComplex)
{
learn_optimal_options(context, Nx >> learn_resolve, Ny, 2, resolve_mode, resolve_input_target, output_target, resolve_type);
}
else
{
learn_optimal_options(context, Nx >> learn_resolve, Ny, 2, resolve_mode, resolve_input_target, SSBO, resolve_type);
}
}
#ifdef GLFFT_CLI_ASYNC
catch (const AsyncCancellation &)
{
throw;
}
#endif
catch (...)
{
// If our default options cannot successfully create the radix pass (i.e. throws),
// just ignore it for purpose of creating wisdom.
}
}
}
double FFTWisdom::bench(Context *context, Resource *output, Resource *input,
const WisdomPass &pass, const FFTOptions &options, const shared_ptr<ProgramCache> &cache) const
{
FFT fft(context, pass.pass.Nx, pass.pass.Ny, pass.pass.radix, pass.pass.input_target != SSBO ? 1 : pass.pass.radix,
pass.pass.mode, pass.pass.input_target, pass.pass.output_target,
cache, options);
return fft.bench(context,
output, input, params.warmup, params.iterations, params.dispatches, params.timeout);
}
static inline unsigned mode_to_size(Mode mode)
{
switch (mode)
{
case VerticalDual:
case HorizontalDual:
case ResolveRealToComplex:
case ResolveComplexToReal:
return 4;
default:
return 2;
}
}
std::pair<double, FFTOptions::Performance> FFTWisdom::study(Context *context, const WisdomPass &pass, FFTOptions::Type type) const
{
auto cache = make_shared<ProgramCache>();
unique_ptr<Resource> output;
unique_ptr<Resource> input;
unsigned mode_size = mode_to_size(pass.pass.mode);
vector<float> tmp(mode_size * pass.pass.Nx * pass.pass.Ny);
if (pass.pass.input_target == SSBO)
{
input = context->create_buffer(tmp.data(), tmp.size() * sizeof(float) >> type.input_fp16, AccessStaticCopy);
}
else
{
Format format = FormatUnknown;
unsigned Nx = pass.pass.Nx;
unsigned Ny = pass.pass.Ny;
switch (pass.pass.mode)
{
case VerticalDual:
case HorizontalDual:
format = FormatR32G32B32A32Float;
break;
case Vertical:
case Horizontal:
format = FormatR32G32Float;
break;
case ResolveComplexToReal:
format = FormatR32G32Float;
Nx *= 2;
break;
default:
throw logic_error("Invalid input mode.\n");
}
input = context->create_texture(tmp.data(), Nx, Ny, format);
}
if (pass.pass.output_target == SSBO)
{
output = context->create_buffer(nullptr, tmp.size() * sizeof(float) >> type.output_fp16, AccessStreamCopy);
}
else
{
Format format = FormatUnknown;
unsigned Nx = pass.pass.Nx;
unsigned Ny = pass.pass.Ny;
switch (pass.pass.mode)
{
case VerticalDual:
case HorizontalDual:
format = FormatR32G32B32A32Float;
break;
case Vertical:
case Horizontal:
format = FormatR32G32Float;
break;
case ResolveRealToComplex:
format = FormatR32G32Float;
Nx *= 2;
break;
default:
throw logic_error("Invalid output mode.\n");
}
output = context->create_texture(nullptr, Nx, Ny, format);
}
// Exhaustive search, look for every sensible combination, and find fastest parameters.
// Get initial best cost with defaults.
FFTOptions::Performance best_perf;
double minimum_cost = bench(context, output.get(), input.get(), pass, { best_perf, type }, cache);
static const FFTStaticWisdom::Tristate shared_banked_values[] = { FFTStaticWisdom::False, FFTStaticWisdom::True };
static const unsigned vector_size_values[] = { 2, 4, 8 };
static const unsigned workgroup_size_x_values[] = { 4, 8, 16, 32, 64, 128, 256 };
static const unsigned workgroup_size_y_values[] = { 1, 2, 4, 8, };
bool test_resolve = pass.pass.mode == ResolveComplexToReal || pass.pass.mode == ResolveRealToComplex;
bool test_dual = pass.pass.mode == VerticalDual || pass.pass.mode == HorizontalDual;
unsigned bench_count = 0;
for (auto shared_banked : shared_banked_values)
{
// Useless test, since shared banked is only relevant for radix 16/64.
if (pass.pass.radix < 16 && shared_banked)
{
continue;
}
bool fair_shared_banked = (pass.pass.radix < 16) ||
(static_wisdom.shared_banked == FFTStaticWisdom::DontCare) ||
(shared_banked == static_wisdom.shared_banked);
if (!fair_shared_banked)
{
continue;
}
for (auto vector_size : vector_size_values)
{
// Resolve passes currently only support vector size 2. Shared banked makes no sense either.
if (test_resolve && (vector_size != 2 || shared_banked))
{
continue;
}
// We can only use vector_size 8 with FP16.
if (vector_size == 8 && (!type.fp16 || !type.input_fp16 || !type.output_fp16))
{
continue;
}
// Makes little sense to test since since vector_size will be bumped to 4 anyways.
if (test_dual && vector_size < 4)
{
continue;
}
for (auto workgroup_size_x : workgroup_size_x_values)
{
for (auto workgroup_size_y : workgroup_size_y_values)
{
unsigned workgroup_size = workgroup_size_x * workgroup_size_y;
unsigned min_workgroup_size = pass.pass.radix >= 16 ? static_wisdom.min_workgroup_size_shared :
static_wisdom.min_workgroup_size;
unsigned min_vector_size = test_dual ? max(4u, static_wisdom.min_vector_size) : static_wisdom.min_vector_size;
unsigned max_vector_size = test_dual ? max(4u, static_wisdom.max_vector_size) : static_wisdom.max_vector_size;
bool fair_workgroup_size = workgroup_size <= static_wisdom.max_workgroup_size &&
workgroup_size >= min_workgroup_size;
if (pass.pass.Ny == 1 && workgroup_size_y > 1)
{
fair_workgroup_size = false;
}
if (!fair_workgroup_size)
{
continue;
}
// If we have dual mode, accept vector sizes larger than max.
bool fair_vector_size = test_resolve || (vector_size <= max_vector_size &&
vector_size >= min_vector_size);
if (!fair_vector_size)
{
continue;
}
FFTOptions::Performance perf;
perf.shared_banked = !!shared_banked;
perf.vector_size = vector_size;
perf.workgroup_size_x = workgroup_size_x;
perf.workgroup_size_y = workgroup_size_y;
try
{
// If workgroup sizes are too big for our test, this will throw.
double cost = bench(context, output.get(), input.get(), pass, { perf, type }, cache);
bench_count++;
#if 1
context->log("\nWisdom run (mode = %u, radix = %u):\n", pass.pass.mode, pass.pass.radix);
context->log(" Width: %4u\n", pass.pass.Nx);
context->log(" Height: %4u\n", pass.pass.Ny);
context->log(" Shared banked: %3s\n", shared_banked ? "yes" : "no");
context->log(" Vector size: %u\n", vector_size);
context->log(" Workgroup size: (%u, %u)\n", workgroup_size_x, workgroup_size_y);
context->log(" Cost: %8.3g\n", cost);
#endif
if (cost < minimum_cost)
{
#if 1
context->log(" New optimal solution! (%g -> %g)\n", minimum_cost, cost);
#endif
best_perf = perf;
minimum_cost = cost;
}
}
#ifdef GLFFT_CLI_ASYNC
catch (const AsyncCancellation &)
{
throw;
}
#endif
catch (...)
{
// If we pass in bogus parameters,
// FFT will throw and we just ignore this.
}
}
}
}
}
context->log("Tested %u variants!\n", bench_count);
return make_pair(minimum_cost, best_perf);
}
const pair<const WisdomPass, FFTOptions::Performance>* FFTWisdom::find_optimal_options(unsigned Nx, unsigned Ny, unsigned radix,
Mode mode, Target input_target, Target output_target, const FFTOptions::Type &type) const
{
WisdomPass pass = {
{
Nx, Ny, radix, mode, input_target, output_target,
type,
},
0.0,
};
auto itr = library.find(pass);
return itr != end(library) ? (&(*itr)) : nullptr;
}
FFTOptions::Performance FFTWisdom::find_optimal_options_or_default(unsigned Nx, unsigned Ny, unsigned radix,
Mode mode, Target input_target, Target output_target, const FFTOptions &base_options) const
{
WisdomPass pass = {
{
Nx, Ny, radix, mode, input_target, output_target,
base_options.type,
},
0.0,
};
auto itr = library.find(pass);
#if 0
if (itr == end(library))
{
context->log("Didn't find options for (%u x %u, radix %u, mode %u, input_target %u, output_target %u)\n",
Nx, Ny, radix, unsigned(mode), unsigned(input_target), unsigned(output_target));
}
#endif
return itr != end(library) ? itr->second : base_options.performance;
}
#ifdef GLFFT_SERIALIZATION
std::string FFTWisdom::archive() const
{
StringBuffer s;
PrettyWriter<StringBuffer> writer{s};
writer.StartObject();
writer.String("library");
// Serialize all wisdom accumulated to a string.
writer.StartArray();
for (auto &entry : library)
{
writer.StartObject();
writer.String("scenario");
writer.StartObject();
writer.String("nx");
writer.Uint(entry.first.pass.Nx);
writer.String("ny");
writer.Uint(entry.first.pass.Ny);
writer.String("radix");
writer.Uint(entry.first.pass.radix);
writer.String("mode");
writer.Uint(entry.first.pass.mode);
writer.String("input_target");
writer.Uint(entry.first.pass.input_target);
writer.String("output_target");
writer.Uint(entry.first.pass.output_target);
writer.EndObject();
writer.String("type");
writer.StartObject();
writer.String("fp16");
writer.Bool(entry.first.pass.type.fp16);
writer.String("input_fp16");
writer.Bool(entry.first.pass.type.input_fp16);
writer.String("output_fp16");
writer.Bool(entry.first.pass.type.output_fp16);
writer.String("normalize");
writer.Bool(entry.first.pass.type.normalize);
writer.EndObject();
writer.String("performance");
writer.StartObject();
writer.String("shared_banked");
writer.Bool(entry.second.shared_banked);
writer.String("vector_size");
writer.Uint(entry.second.vector_size);
writer.String("workgroup_size_x");
writer.Uint(entry.second.workgroup_size_x);
writer.String("workgroup_size_y");
writer.Uint(entry.second.workgroup_size_y);
writer.EndObject();
writer.String("cost");
writer.Double(entry.first.cost);
writer.EndObject();
}
writer.EndArray();
writer.EndObject();
return s.GetString();
}
void FFTWisdom::extract(const char *json)
{
Document document;
document.Parse(json);
// Exception safe, we don't want to risk throwing in the middle of the
// loop, leaving the library is broken state.
unordered_map<WisdomPass, FFTOptions::Performance> new_library;
auto &lib = document["library"];
// y u no begin(), end() :(
for (Value::ConstValueIterator itr = lib.Begin(); itr != lib.End(); ++itr)
{
auto &v = *itr;
WisdomPass pass;
FFTOptions::Performance perf;
pass.cost = v["cost"].GetDouble();
auto &scenario = v["scenario"];
pass.pass.Nx = scenario["nx"].GetUint();
pass.pass.Ny = scenario["ny"].GetUint();
pass.pass.radix = scenario["radix"].GetUint();
pass.pass.mode = static_cast<Mode>(scenario["mode"].GetUint());
pass.pass.input_target = static_cast<Target>(scenario["input_target"].GetUint());
pass.pass.output_target = static_cast<Target>(scenario["output_target"].GetUint());
auto &type = v["type"];
pass.pass.type.fp16 = type["fp16"].GetBool();
pass.pass.type.input_fp16 = type["input_fp16"].GetBool();
pass.pass.type.output_fp16 = type["output_fp16"].GetBool();
pass.pass.type.normalize = type["normalize"].GetBool();
auto &performance = v["performance"];
perf.shared_banked = performance["shared_banked"].GetBool();
perf.vector_size = performance["vector_size"].GetUint();
perf.workgroup_size_x = performance["workgroup_size_x"].GetUint();
perf.workgroup_size_y = performance["workgroup_size_y"].GetUint();
new_library[pass] = perf;
}
// Exception safe.
swap(library, new_library);
}
#endif