-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscore.py
56 lines (41 loc) · 1.86 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
def get_signal_diff_score(signal_1, signal_2):
diffs_1 = np.ediff1d(signal_1, to_begin=signal_1[0])
diffs_2 = np.ediff1d(signal_2, to_begin=signal_2[0])
subtracted = np.absolute(diffs_1 - diffs_2)
return np.sum(subtracted) / diffs_1.shape[0]
def get_ordered_tuples(sums):
# map of sum value -> index
sum_map = {}
for i in range(len(sums)):
if sums[i] not in sum_map:
sum_map[sums[i]] = []
sum_map[sums[i]].append(i)
tuples = []
for value in sorted(list(sum_map), reverse=True):
tuple_list = [(value, index) for index in sum_map[value]]
tuples += tuple_list
return tuples
def get_alternate_axis_sum_score(bucketed_1, bucketed_2, axis):
score = 0
frequency_sums_1 = np.sum(bucketed_1, axis=axis)
frequency_sums_2 = np.sum(bucketed_2, axis=axis)
# create tuples
tuples_1 = get_ordered_tuples(frequency_sums_1)
tuples_2 = get_ordered_tuples(frequency_sums_2)
# assume lists are the same length (they will be if proper params were provided)
tuple_len = len(tuples_1)
for i in range(tuple_len):
# tuples like (bucket value, index of sum)
# TODO alternatively, refactor to use zip syntax?
# value distribution penalty
score += abs(tuples_1[i][0] - tuples_2[i][0])
# axis position penalty (i.e. replaces (3) energy distribution penalty)
score += abs(tuples_1[i][1] - tuples_2[i][1])
return score
def get_alternate_frequency_sum_score(bucketed_1, bucketed_2):
# want frequencies which are much higher/lower to have a higher score
return get_alternate_axis_sum_score(bucketed_1, bucketed_2, axis=1)
def get_alternate_time_sum_score(bucketed_1, bucketed_2):
# want frequencies occurring much earlier/later to have a higher score
return get_alternate_axis_sum_score(bucketed_1, bucketed_2, axis=0)