forked from saylordotorg/text_intermediate-algebra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths06-03-applications-of-linear-systems.html
918 lines (901 loc) · 109 KB
/
s06-03-applications-of-linear-systems.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<link href="shared/bookhub.css" rel="stylesheet" type="text/css">
<title>Applications of Linear Systems with Two Variables</title>
</head>
<body>
<div id=navbar-top class="navbar">
<div class="navbar-part left">
<a href="s06-02-solving-linear-systems-with-tw.html"><img src="shared/images/batch-left.png"></a> <a href="s06-02-solving-linear-systems-with-tw.html">Previous Section</a>
</div>
<div class="navbar-part middle">
<a href="index.html"><img src="shared/images/batch-up.png"></a> <a href="index.html">Table of Contents</a>
</div>
<div class="navbar-part right">
<a href="s06-04-solving-linear-systems-with-th.html">Next Section</a> <a href="s06-04-solving-linear-systems-with-th.html"><img src="shared/images/batch-right.png"></a>
</div>
</div>
<div id="book-content">
<div class="section" id="fwk-redden-ch03_s03" version="5.0" lang="en">
<h2 class="title editable block">
<span class="title-prefix">3.3</span> Applications of Linear Systems with Two Variables</h2>
<div class="learning_objectives editable block" id="fwk-redden-ch03_s03_n01">
<h3 class="title">Learning Objectives</h3>
<ol class="orderedlist" id="fwk-redden-ch03_s03_o01" numeration="arabic">
<li>Set up and solve applications involving relationships between two variables.</li>
<li>Set up and solve mixture problems.</li>
<li>Set up and solve uniform motion problems (distance problems).</li>
</ol>
</div>
<div class="section" id="fwk-redden-ch03_s03_s01" version="5.0" lang="en">
<h2 class="title editable block">Problems Involving Relationships between Two Variables</h2>
<p class="para editable block" id="fwk-redden-ch03_s03_s01_p01">If we translate an application to a mathematical setup using two variables, then we need to form a linear system with two equations. Setting up word problems with two variables often simplifies the entire process, particularly when the relationships between the variables are not so clear.</p>
<div class="callout block" id="fwk-redden-ch03-s03_s01_n01">
<h3 class="title">Example 1</h3>
<p class="para" id="fwk-redden-ch03_s03_s01_p02">The sum of 4 times a larger integer and 5 times a smaller integer is 7. When twice the smaller integer is subtracted from 3 times the larger, the result is 11. Find the integers.</p>
<p class="simpara">Solution:</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p03">Begin by assigning variables to the larger and smaller integer.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p04">Let <em class="emphasis">x</em> represent the larger integer.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p05">Let <em class="emphasis">y</em> represent the smaller integer.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p06">When using two variables, we need to set up two equations. The first sentence describes a sum and the second sentence describes a difference.</p>
<div class="informalfigure large">
<img src="section_06/6067ca4722713c082fe0d8db0352899e.png">
</div>
<div class="informalfigure large">
<img src="section_06/2de77de906b622cc915fffb711c98a81.png">
</div>
<p class="para" id="fwk-redden-ch03_s03_s01_p09">This leads to the following system:</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p10"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0369" display="block"><mrow><mrow><mo>{</mo><mtable columnspacing="0.1em"><mtr><mtd><mn>4</mn><mi>x</mi><mo>+</mo><mn>5</mn><mi>y</mi><mo>=</mo><mn>7</mn></mtd></mtr><mtr><mtd><mn>3</mn><mi>x</mi><mo>−</mo><mn>2</mn><mi>y</mi><mo>=</mo><mn>11</mn></mtd></mtr></mtable></mrow></mrow></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p11">Solve using the elimination method. To eliminate the variable <em class="emphasis">y</em> multiply the first equation by 2 and the second by 5.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p12"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0370" display="block"><mrow><mrow><mo>{</mo><mtable columnspacing="0.1em"><mtr><mtd><mn>4</mn><mi>x</mi><mo>+</mo><mn>5</mn><mi>y</mi><mo>=</mo><mn>7</mn></mtd></mtr><mtr><mtd><mn>3</mn><mi>x</mi><mo>−</mo><mn>2</mn><mi>y</mi><mo>=</mo><mn>11</mn></mtd></mtr></mtable></mrow><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtable columnspacing="0.1em"><mtr><mtd><mrow><mover><mo>⇒</mo><mrow><mo>×</mo><mn>2</mn></mrow></mover></mrow></mtd></mtr><mtr><mtd><mrow><munder><mo>⇒</mo><mrow><mo>×</mo><mn>5</mn></mrow></munder></mrow></mtd></mtr></mtable><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mrow><mo>{</mo><mtable columnspacing="0.1em"><mtr><mtd><mn>8</mn><mi>x</mi><mo>+</mo><mn>10</mn><mi>y</mi><mo>=</mo><mn>14</mn></mtd></mtr><mtr><mtd><mn>15</mn><mi>x</mi><mo>−</mo><mn>10</mn><mi>y</mi><mo>=</mo><mn>55</mn></mtd></mtr></mtable></mrow></mrow></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p13">Add the equations in the equivalent system and solve for <em class="emphasis">x</em>.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p14"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0371" display="block"><mtable columnspacing="0.1em" rowlines="none solid none none"><mtr><mtd></mtd><mtd columnalign="right"><mn>8</mn><mi>x</mi><mstyle color="#ff0000"><mtext> </mtext><mo>+</mo><mn>10</mn><mi>y</mi></mstyle></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>14</mn></mtd></mtr><mtr><mtd columnalign="left" style="border-bottom:1px solid black"><mo>+</mo></mtd><mtd columnalign="right" style="border-bottom:1px solid black"><mn>15</mn><mi>x</mi><mstyle color="#ff0000"><mtext> </mtext><mo>−</mo><mn>10</mn><mi>y</mi></mstyle></mtd><mtd style="border-bottom:1px solid black"><mo>=</mo></mtd><mtd columnalign="left" style="border-bottom:1px solid black"><mn>55</mn></mtd></mtr><mtr><mtd></mtd><mtd columnalign="left"><mn>23</mn><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>69</mn></mtd></mtr><mtr><mtd></mtd><mtd columnalign="right"><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="right"><mfrac><mrow><mn>69</mn></mrow><mrow><mn>23</mn></mrow></mfrac></mtd></mtr><mtr><mtd></mtd><mtd columnalign="right"><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>3</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p15">Back substitute to find <em class="emphasis">y</em>.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p16"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0372" display="block"><mtable columnspacing="0.1em"><mtr><mtd columnalign="right"><mn>4</mn><mi>x</mi><mo>+</mo><mn>5</mn><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>7</mn></mtd></mtr><mtr><mtd columnalign="right"><mn>4</mn><mrow><mo>(</mo><mstyle color="#007f3f"><mn>3</mn></mstyle><mo>)</mo></mrow><mo>+</mo><mn>5</mn><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>7</mn></mtd></mtr><mtr><mtd columnalign="right"><mn>12</mn><mo>+</mo><mn>5</mn><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>7</mn></mtd></mtr><mtr><mtd columnalign="right"><mn>5</mn><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mo>−</mo><mn>5</mn></mtd></mtr><mtr><mtd columnalign="right"><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mo>−</mo><mn>1</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p17">Answer: The larger integer is 3 and the smaller integer is −1.</p>
</div>
<div class="callout block" id="fwk-redden-ch03-s03_s01_n01a">
<h3 class="title"></h3>
<p class="para" id="fwk-redden-ch03_s03_s01_p18"><strong class="emphasis bold">Try this!</strong> An integer is 1 less than twice that of another. If their sum is 20, find the integers.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p19">Answer: The two integers are 7 and 13.</p>
<div class="mediaobject">
<a data-iframe-code='<iframe src="http://www.youtube.com/v/LnzO1_J4X20" condition="http://img.youtube.com/vi/LnzO1_J4X20/0.jpg" vendor="youtube" width="450" height="340" scalefit="1"></iframe>' href="http://www.youtube.com/v/LnzO1_J4X20" class="replaced-iframe" onclick="return replaceIframe(this)">(click to see video)</a>
</div>
</div>
<p class="para editable block" id="fwk-redden-ch03_s03_s01_p21">Next consider applications involving simple interest and money.</p>
<div class="callout block" id="fwk-redden-ch03-s03_s01_n02">
<h3 class="title">Example 2</h3>
<p class="para" id="fwk-redden-ch03_s03_s01_p22">A total of $12,800 was invested in two accounts. Part was invested in a CD at a <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0373" display="inline"><mrow><mn>3</mn><mfrac><mn>1</mn><mn>8</mn></mfrac><mi>%</mi></mrow></math></span> annual interest rate and part was invested in a money market fund at a <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0374" display="inline"><mrow><mn>4</mn><mfrac><mn>3</mn><mn>4</mn></mfrac><mi>%</mi></mrow></math></span> annual interest rate. If the total simple interest for one year was $465, then how much was invested in each account?</p>
<p class="simpara">Solution:</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p23">Begin by identifying two variables.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p24">Let <em class="emphasis">x</em> represent the amount invested at <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0375" display="inline"><mrow><mn>3</mn><mfrac><mn>1</mn><mn>8</mn></mfrac><mi>%</mi><mo>=</mo><mn>3.125</mn><mi>%</mi><mo>=</mo><mn>0.03125</mn></mrow></math></span>.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p25">Let <em class="emphasis">y</em> represent the amount invested at <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0376" display="inline"><mrow><mn>4</mn><mfrac><mn>3</mn><mn>4</mn></mfrac><mi>%</mi><mo>=</mo><mn>4.75</mn><mi>%</mi><mo>=</mo><mn>0.0475</mn></mrow></math></span>.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p26">The total amount in both accounts can be expressed as</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p27"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0377" display="block"><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mn>12,800</mn></mrow></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p28">To set up a second equation, use the fact that the total interest was $465. Recall that the interest for one year is the interest rate times the principal (<span class="inlineequation"><math xml:id="fwk-redden-ch03_m0378" display="inline"><mrow><mi>I</mi><mo>=</mo><mi>p</mi><mi>r</mi><mi>t</mi><mo>=</mo><mi>p</mi><mi>r</mi><mo>⋅</mo><mn>1</mn><mo>=</mo><mi>p</mi><mi>r</mi></mrow></math></span>). Use this to add the interest in both accounts. Be sure to use the decimal equivalents for the interest rates given as percentages.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p29"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0379" display="block"><mtable columnspacing="0.1em"><mtr><mtd columnalign="right"><mstyle color="#007fbf"><mi>i</mi><mi>n</mi><mi>t</mi><mi>e</mi><mi>r</mi><mi>e</mi><mi>s</mi><mi>t</mi><mtext> </mtext><mi>f</mi><mi>r</mi><mi>o</mi><mi>m</mi><mtext> </mtext><mi>t</mi><mi>h</mi><mi>e</mi><mtext> </mtext><mi>C</mi><mi>D</mi><mi> </mi><mi> </mi></mstyle></mtd><mtd><mstyle color="#007fbf"><mtext> </mtext><mo>+</mo></mstyle></mtd><mtd><mstyle color="#007fbf"><mi> </mi><mi>i</mi><mi>n</mi><mi>t</mi><mi>e</mi><mi>r</mi><mi>e</mi><mi>s</mi><mi>t</mi><mtext> </mtext><mi>f</mi><mi>r</mi><mi>o</mi><mi>m</mi><mtext> </mtext><mi>t</mi><mi>h</mi><mi>e</mi><mtext> </mtext><mi>f</mi><mi>u</mi><mi>n</mi><mi>d</mi><mtext> </mtext></mstyle></mtd><mtd><mstyle color="#007fbf"><mo>=</mo></mstyle></mtd><mtd columnalign="left"><mstyle color="#007fbf"><mtext> </mtext><mi>t</mi><mi>o</mi><mi>t</mi><mi>a</mi><mi>l</mi><mtext> </mtext><mi>i</mi><mi>n</mi><mi>t</mi><mi>e</mi><mi>r</mi><mi>e</mi><mi>s</mi><mi>t</mi></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mn>0.03125</mn><mi>x</mi><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext></mtd><mtd><mo>+</mo></mtd><mtd><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>0.0475</mn><mi>y</mi><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>465</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p30">These two equations together form the following linear system:</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p31"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0380" display="block"><mrow><mrow><mo>{</mo><mrow><mtable columnspacing="0.1em"><mtr><mtd><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mn>12,800</mn></mrow></mtd></mtr><mtr><mtd><mrow><mi> </mi><mn>0.03125</mn><mi>x</mi><mo>+</mo><mn>0.0475</mn><mi>y</mi><mo>=</mo><mn>465</mn></mrow></mtd></mtr></mtable></mrow></mrow></mrow></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p32">Eliminate <em class="emphasis">x</em> by multiplying the first equation by −0.03125.</p>
<div class="informalfigure large">
<img src="section_06/aad3fb8dfed193a173a5f811fbcc3ff2.png">
</div>
<p class="para" id="fwk-redden-ch03_s03_s01_p34">Next, add the resulting equations.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p35"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0381" display="block"><mtable columnspacing="0.1em" rowlines="none solid none none"><mtr><mtd></mtd><mtd columnalign="right"><mstyle color="#ff0000"><mo>−</mo><mn>0.03125</mn><mi>x</mi></mstyle><mo>−</mo><mn>0.03125</mn><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mo>−</mo><mn>400</mn></mtd></mtr><mtr><mtd columnalign="left" style="border-bottom:1px solid black"><mo>+</mo></mtd><mtd columnalign="right" style="border-bottom:1px solid black"><mstyle color="#ff0000"><mn>0.03125</mn><mi>x</mi></mstyle><mtext> </mtext><mo>+</mo><mn>0.0475</mn><mi>y</mi></mtd><mtd style="border-bottom:1px solid black"><mo>=</mo></mtd><mtd columnalign="left" style="border-bottom:1px solid black"><mn>465</mn></mtd></mtr><mtr><mtd></mtd><mtd columnalign="right"><mn>0.01625</mn><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>65</mn></mtd></mtr><mtr><mtd></mtd><mtd columnalign="right"><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="right"><mfrac><mrow><mn>65</mn></mrow><mrow><mn>0.01625</mn></mrow></mfrac></mtd></mtr><mtr><mtd></mtd><mtd columnalign="right"><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>4,000</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p36">Back substitute to find <em class="emphasis">x</em>.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p37"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0382" display="block"><mtable columnspacing="0.1em"><mtr><mtd columnalign="right"><mi>x</mi><mo>+</mo><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>12,800</mn></mtd></mtr><mtr><mtd columnalign="right"><mi>x</mi><mo>+</mo><mn>4000</mn></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>12,800</mn></mtd></mtr><mtr><mtd columnalign="right"><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>8,800</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p38">Answer: $4,000 was invested at <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0383" display="inline"><mrow><mn>4</mn><mfrac><mn>3</mn><mn>4</mn></mfrac><mi>%</mi></mrow></math></span> and $8,800 was invested at <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0384" display="inline"><mrow><mn>3</mn><mfrac><mn>1</mn><mn>8</mn></mfrac><mi>%</mi></mrow></math></span>.</p>
</div>
<div class="callout block" id="fwk-redden-ch03-s03_s01_n03">
<h3 class="title">Example 3</h3>
<p class="para" id="fwk-redden-ch03_s03_s01_p39">A jar consisting of only nickels and dimes contains 58 coins. If the total value is $4.20, how many of each coin is in the jar?</p>
<p class="simpara">Solution:</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p40">Let <em class="emphasis">n</em> represent the number of nickels in the jar.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p41">Let <em class="emphasis">d</em> represent the number of dimes in the jar.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p42">The total number of coins in the jar can be expressed using the following equation:</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p43"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0385" display="block"><mrow><mi>n</mi><mo>+</mo><mi>d</mi><mo>=</mo><mn>58</mn></mrow></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p44">Next, use the value of each coin to determine the total value $4.20.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p45"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0386" display="block"><mtable columnspacing="0.1em" columnalign="left"><mtr><mtd><mstyle color="#007fbf"><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mtext> </mtext><mi>o</mi><mi>f</mi><mtext> </mtext><mi>n</mi><mi>i</mi><mi>c</mi><mi>k</mi><mi>e</mi><mi>l</mi><mi>s</mi><mtext> </mtext><mo>+ </mo><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi><mtext> </mtext><mi>o</mi><mi>f</mi><mtext> </mtext><mi>d</mi><mi>i</mi><mi>m</mi><mi>e</mi><mi>s</mi><mtext> </mtext><mo>= </mo><mi>t</mi><mi>o</mi><mi>t</mi><mi>a</mi><mi>l</mi><mtext> </mtext><mi>v</mi><mi>a</mi><mi>l</mi><mi>u</mi><mi>e</mi></mstyle></mtd></mtr><mtr><mtd><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>0.05</mn><mi>n</mi><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mo>+</mo><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>0.10</mn><mi>d</mi><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mo>=</mo><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>4.20</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p46">This leads us to following linear system:</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p47"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0387" display="block"><mrow><mrow><mo>{</mo><mtable columnspacing="0.1em" columnalign="left"><mtr><mtd><mi>n</mi><mo>+</mo><mi>d</mi><mo>=</mo><mn>58</mn></mtd></mtr><mtr><mtd><mn>0.05</mn><mi>n</mi><mo>+</mo><mn>0.10</mn><mi>d</mi><mo>=</mo><mn>4.20</mn></mtd></mtr></mtable></mrow></mrow></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p48">Here we will solve using the substitution method. In the first equation, we can solve for <em class="emphasis">n</em>.</p>
<div class="informalfigure large">
<img src="section_06/59473c94a3fd7f0dda5818f576d49bff.png">
</div>
<p class="para" id="fwk-redden-ch03_s03_s01_p50">Substitute <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0388" display="inline"><mrow><mi>n</mi><mo>=</mo><mn>58</mn><mo>−</mo><mi>d</mi></mrow></math></span> into the second equation and solve for <em class="emphasis">d</em>.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p51"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0389" display="block"><mtable columnspacing="0.1em"><mtr><mtd columnalign="right"><mn>0.05</mn><mrow><mo>(</mo><mrow><mstyle color="#007fbf"><mn>58</mn><mo>−</mo><mi>d</mi></mstyle></mrow><mo>)</mo></mrow><mo>+</mo><mn>0.10</mn><mi>d</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>4.20</mn></mtd></mtr><mtr><mtd columnalign="right"><mn>2.9</mn><mo>−</mo><mn>0.05</mn><mi>d</mi><mo>+</mo><mn>0.10</mn><mi>d</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>4.20</mn></mtd></mtr><mtr><mtd columnalign="right"><mn>2.9</mn><mo>+</mo><mn>0.05</mn><mi>d</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>4.20</mn></mtd></mtr><mtr><mtd columnalign="right"><mn>0.05</mn><mi>d</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>1.3</mn></mtd></mtr><mtr><mtd columnalign="right"><mi>d</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>26</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p52">Now back substitute to find the number of nickels.</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p53"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0390" display="block"><mtable columnspacing="0.1em"><mtr><mtd columnalign="right"><mi>n</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>58</mn><mo>−</mo><mi>d</mi></mtd></mtr><mtr><mtd columnalign="right"></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>58</mn><mo>−</mo><mn>26</mn></mtd></mtr><mtr><mtd columnalign="right"></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>32</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s01_p54">Answer: There are 32 nickels and 26 dimes in the jar.</p>
</div>
<div class="callout block" id="fwk-redden-ch03-s03_s01_n03a">
<h3 class="title"></h3>
<p class="para" id="fwk-redden-ch03_s03_s01_p55"><strong class="emphasis bold">Try this!</strong> Joey has a jar full of 40 coins consisting of only quarters and nickels. If the total value is $5.00, how many of each coin does Joey have?</p>
<p class="para" id="fwk-redden-ch03_s03_s01_p56">Answer: Joey has 15 quarters and 25 nickels.</p>
<div class="mediaobject">
<a data-iframe-code='<iframe src="http://www.youtube.com/v/41bxt_tThkA" condition="http://img.youtube.com/vi/41bxt_tThkA/0.jpg" vendor="youtube" width="450" height="340" scalefit="1"></iframe>' href="http://www.youtube.com/v/41bxt_tThkA" class="replaced-iframe" onclick="return replaceIframe(this)">(click to see video)</a>
</div>
</div>
</div>
<div class="section" id="fwk-redden-ch03_s03_s02" version="5.0" lang="en">
<h2 class="title editable block">Mixture Problems</h2>
<p class="para editable block" id="fwk-redden-ch03_s03_s02_p01">Mixture problems often include a percentage and some total amount. It is important to make a distinction between these two types of quantities. For example, if a problem states that a 20-ounce container is filled with a 2% saline (salt) solution, then this means that the container is filled with a mixture of salt and water as follows:</p>
<p class="para block" id="fwk-redden-ch03_s03_s02_p02"></p>
<div class="informaltable"> <table cellpadding="0" cellspacing="0">
<thead>
<tr>
<th align="center"><p class="para"> </p></th>
<th align="center"><p class="para"><strong class="emphasis bold">Percentage</strong></p></th>
<th align="center"><p class="para"><strong class="emphasis bold">Amount</strong></p></th>
</tr>
</thead>
<tbody>
<tr>
<td align="center"><p class="para"><strong class="emphasis bold">Salt</strong></p></td>
<td align="center"><p class="para">2% = 0.02</p></td>
<td align="center"><p class="para">0.02(20 ounces) = 0.4 ounces</p></td>
</tr>
<tr>
<td align="center"><p class="para"><strong class="emphasis bold">Water</strong></p></td>
<td align="center"><p class="para">98% = 0.98</p></td>
<td align="center"><p class="para">0.98(20 ounces) = 19.6 ounces</p></td>
</tr>
</tbody>
</table>
</div>
<p class="para editable block" id="fwk-redden-ch03_s03_s02_p03">In other words, we multiply the percentage times the total to get the amount of each part of the mixture.</p>
<div class="callout block" id="fwk-redden-ch03-s03_s02_n01">
<h3 class="title">Example 4</h3>
<p class="para" id="fwk-redden-ch03_s03_s02_p04">A 1.8% saline solution is to be combined and mixed with a 3.2% saline solution to produce 35 ounces of a 2.2% saline solution. How much of each is needed?</p>
<p class="simpara">Solution:</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p05">Let <em class="emphasis">x</em> represent the amount of 1.8% saline solution needed.</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p06">Let <em class="emphasis">y</em> represent the amount of 3.2% saline solution needed.</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p07">The total amount of saline solution needed is 35 ounces. This leads to one equation,</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p08"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0391" display="block"><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mn>35</mn></mrow></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s02_p09">The second equation adds up the amount of salt in the correct percentages. The amount of salt is obtained by multiplying the percentage times the amount, where the variables <em class="emphasis">x</em> and <em class="emphasis">y</em> represent the amounts of the solutions. The amount of salt in the end solution is 2.2% of the 35 ounces, or .022(35).</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p10"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0392" display="block"><mtable columnspacing="0.1em"><mtr><mtd columnalign="right"><mstyle color="#007fbf"><mi>s</mi><mi>a</mi><mi>l</mi><mi>t</mi><mtext> </mtext><mi>i</mi><mi>n</mi><mtext> </mtext><mn>1.8</mn><mi>%</mi><mtext> </mtext><mi>s</mi><mi>o</mi><mi>l</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mtext> </mtext></mstyle></mtd><mtd><mstyle color="#007fbf"><mtext> </mtext><mo>+</mo></mstyle></mtd><mtd><mstyle color="#007fbf"><mtext> </mtext><mi>s</mi><mi>a</mi><mi>l</mi><mi>t</mi><mtext> </mtext><mi>i</mi><mi>n</mi><mtext> </mtext><mn>3.2</mn><mi>%</mi><mtext> </mtext><mi>s</mi><mi>o</mi><mi>l</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mtext> </mtext></mstyle></mtd><mtd><mstyle color="#007fbf"><mo>=</mo></mstyle></mtd><mtd columnalign="left"><mstyle color="#007fbf"><mtext> </mtext><mi>s</mi><mi>a</mi><mi>l</mi><mi>t</mi><mtext> </mtext><mi>i</mi><mi>n</mi><mtext> </mtext><mi>t</mi><mi>h</mi><mi>e</mi><mtext> </mtext><mi>e</mi><mi>n</mi><mi>d</mi><mtext> </mtext><mi>s</mi><mi>o</mi><mi>l</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mn>0.018</mn><mi>x</mi><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext></mtd><mtd><mo>+</mo></mtd><mtd><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>0.032</mn><mi>y</mi><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>0.022</mn><mo stretchy="false">(</mo><mn>35</mn><mo stretchy="false">)</mo></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s02_p11">The algebraic setup consists of both equations presented as a system:</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p12"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0393" display="block"><mrow><mrow><mo>{</mo><mrow><mtable columnspacing="0.1em"><mtr><mtd><mrow><mi> </mi><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mn>35</mn></mrow></mtd></mtr><mtr><mtd><mrow><mn>0.018</mn><mi>x</mi><mo>+</mo><mn>0.032</mn><mi>y</mi><mo>=</mo><mn>0.022</mn><mo stretchy="false">(</mo><mn>35</mn><mo stretchy="false">)</mo></mrow></mtd></mtr></mtable></mrow></mrow></mrow></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s02_p13">Solve.</p>
<div class="informalfigure large">
<img src="section_06/2cfcf98e6e605f38d00e9952b645b020.png">
</div>
<p class="para" id="fwk-redden-ch03_s03_s02_p15">Add the resulting equations together</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p16"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0394" display="block"><mtable columnspacing="0.1em" rowlines="none solid none none none"><mtr><mtd></mtd><mtd columnalign="right"><mo>−</mo><mn>0.018</mn><mi>x</mi><mo>−</mo><mn>0.018</mn><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd><mo>−</mo><mn>0.63</mn></mtd></mtr><mtr><mtd style="border-bottom:1pt solid black"><mo>+</mo></mtd><mtd style="border-bottom:1pt solid black" columnalign="right"><mn>0.018</mn><mi>x</mi><mo>+</mo><mn>0.032</mn><mi>y</mi></mtd><mtd style="border-bottom:1pt solid black"><mo>=</mo></mtd><mtd style="border-bottom:1pt solid black"><mn>0.77</mn></mtd></mtr><mtr><mtd></mtd><mtd columnalign="right"><mn>0.014</mn><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd><mn>0.14</mn></mtd></mtr><mtr><mtd></mtd><mtd columnalign="right"><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd><mfrac><mrow><mn>0.14</mn></mrow><mrow><mn>0.014</mn></mrow></mfrac></mtd></mtr><mtr><mtd></mtd><mtd columnalign="right"><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd><mn>10</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s02_p17">Back substitute to find <em class="emphasis">x</em>.</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p18"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0395" display="block"><mtable columnspacing="0.1em"><mtr><mtd columnalign="right"><mi>x</mi><mo>+</mo><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>35</mn></mtd></mtr><mtr><mtd columnalign="right"><mi>x</mi><mo>+</mo><mstyle color="#007f3f"><mn>10</mn></mstyle></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>35</mn></mtd></mtr><mtr><mtd columnalign="right"><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>25</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s02_p19">Answer: We need 25 ounces of the 1.8% saline solution and 10 ounces of the 3.2% saline solution.</p>
</div>
<div class="callout block" id="fwk-redden-ch03-s03_s02_n02">
<h3 class="title">Example 5</h3>
<p class="para" id="fwk-redden-ch03_s03_s02_p20">An 80% antifreeze concentrate is to be mixed with water to produce a 48-liter mixture containing 25% antifreeze. How much water and antifreeze concentrate is needed?</p>
<p class="simpara">Solution:</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p21">Let <em class="emphasis">x</em> represent the amount of 80% antifreeze concentrate needed.</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p22">Let <em class="emphasis">y</em> represent the amount of water needed.</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p23">The total amount of the mixture must be 48 liters.</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p24"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0396" display="block"><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mn>48</mn></mrow></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s02_p25">The second equation adds up the amount of antifreeze from each solution in the correct percentages. The amount of antifreeze in the end result is 25% of 48 liters, or 0.25(48).</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p26"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0397" display="block"><mtable columnspacing="0.1em"><mtr><mtd columnalign="right"><mstyle color="#007fbf"><mi>a</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>f</mi><mi>r</mi><mi>e</mi><mi>e</mi><mi>z</mi><mi>e</mi><mtext> </mtext><mi>i</mi><mi>n</mi><mtext> 80% </mtext><mi>c</mi><mi>o</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mtext> </mtext></mstyle></mtd><mtd><mstyle color="#007fbf"><mtext> </mtext><mo>+</mo></mstyle></mtd><mtd><mstyle color="#007fbf"><mtext> </mtext><mi>a</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>f</mi><mi>r</mi><mi>e</mi><mi>e</mi><mi>z</mi><mi>e</mi><mtext> </mtext><mi>i</mi><mi>n</mi><mtext> </mtext><mi>w</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>r</mi><mtext> </mtext></mstyle></mtd><mtd><mstyle color="#007fbf"><mo>=</mo></mstyle></mtd><mtd columnalign="left"><mstyle color="#007fbf"><mi>a</mi><mi>n</mi><mi>t</mi><mi>i</mi><mi>f</mi><mi>r</mi><mi>e</mi><mi>e</mi><mi>z</mi><mi>e</mi><mtext> </mtext><mi>i</mi><mi>n</mi><mtext> </mtext><mi>t</mi><mi>h</mi><mi>e</mi><mtext> </mtext><mi>e</mi><mi>n</mi><mi>d</mi><mtext> mixture</mtext></mstyle></mtd></mtr><mtr><mtd columnalign="right"><mn>0.80</mn><mi>x</mi></mtd><mtd><mo>+</mo></mtd><mtd><mn>0</mn></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>0.25</mn><mo stretchy="false">(</mo><mn>48</mn><mo stretchy="false">)</mo></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s02_p27">Now we can form a system of two linear equations and two variables as follows:</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p28"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0398" display="block"><mrow><mrow><mo>{</mo><mrow><mtable columnspacing="0.1em"><mtr><mtd><mrow><mi> </mi><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mn>48</mn></mrow></mtd></mtr><mtr><mtd><mrow><mn>0.80</mn><mi>x</mi><mo>=</mo><mn>0.25</mn><mo stretchy="false">(</mo><mn>48</mn><mo stretchy="false">)</mo></mrow></mtd></mtr></mtable></mrow></mrow><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mover><mo>⇒</mo><mrow> </mrow></mover><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mrow><mo>{</mo><mrow><mtable columnspacing="0.1em"><mtr><mtd><mrow><mi> </mi><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mn>48</mn></mrow></mtd></mtr><mtr><mtd><mrow><mn>0.80</mn><mi>x</mi><mo>=</mo><mn>12</mn></mrow></mtd></mtr></mtable></mrow></mrow></mrow></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s02_p29">Use the second equation to find <em class="emphasis">x</em>:</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p30"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0399" display="block"><mtable columnspacing="0.1em"><mtr><mtd columnalign="right"><mn>0.80</mn><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>12</mn></mtd></mtr><mtr><mtd columnalign="right"><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mfrac><mrow><mn>12</mn></mrow><mrow><mn>0.80</mn></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="right"><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>15</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s02_p31">Back substitute to find <em class="emphasis">y</em>.</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p32"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0400" display="block"><mtable columnspacing="0.1em"><mtr><mtd columnalign="right"><mi>x</mi><mo>+</mo><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>48</mn></mtd></mtr><mtr><mtd columnalign="right"><mstyle color="#007f3f"><mn>15</mn></mstyle><mo>+</mo><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>48</mn></mtd></mtr><mtr><mtd columnalign="right"><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>33</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s02_p33">Answer: We need to mix 33 liters of water with 15 liters of antifreeze concentrate.</p>
</div>
<div class="callout block" id="fwk-redden-ch03-s03_s02_n02a">
<h3 class="title"></h3>
<p class="para" id="fwk-redden-ch03_s03_s02_p34"><strong class="emphasis bold">Try this!</strong> A chemist wishes to create 100 ml of a solution with 12% acid content. He uses two types of stock solutions, one with 30% acid content and another with 10% acid content. How much of each does he need?</p>
<p class="para" id="fwk-redden-ch03_s03_s02_p35">Answer: The chemist will need to mix 10 ml of the 30% acid solution with 90 ml of the 10% acid solution.</p>
<div class="mediaobject">
<a data-iframe-code='<iframe src="http://www.youtube.com/v/NXbyJNE9mWw" condition="http://img.youtube.com/vi/NXbyJNE9mWw/0.jpg" vendor="youtube" width="450" height="340" scalefit="1"></iframe>' href="http://www.youtube.com/v/NXbyJNE9mWw" class="replaced-iframe" onclick="return replaceIframe(this)">(click to see video)</a>
</div>
</div>
</div>
<div class="section" id="fwk-redden-ch03_s03_s03" version="5.0" lang="en">
<h2 class="title editable block">Uniform Motion Problems (Distance Problems)</h2>
<p class="para block" id="fwk-redden-ch03_s03_s03_p01">Recall that the distance traveled is equal to the average rate times the time traveled at that rate, <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0401" display="inline"><mrow><mi>D</mi><mo>=</mo><mi>r</mi><mo>⋅</mo><mi>t</mi></mrow></math></span>. These uniform motion problems usually have a lot of data, so it helps to first organize that data in a chart and then set up a linear system. In this section, you are encouraged to use two variables.</p>
<div class="callout block" id="fwk-redden-ch03-s03_s03_n01">
<h3 class="title">Example 6</h3>
<p class="para" id="fwk-redden-ch03_s03_s03_p02">An executive traveled a total of 4 hours and 875 miles by car and by plane. Driving to the airport by car, she averaged 50 miles per hour. In the air, the plane averaged 320 miles per hour. How long did it take her to drive to the airport?</p>
<p class="simpara">Solution:</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p03">We are asked to find the time it takes her to drive to the airport; this indicates that time is the unknown quantity.</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p04">Let <em class="emphasis">x</em> represent the time it took to drive to the airport.</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p05">Let <em class="emphasis">y</em> represent the time spent in the air.</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p06">Fill in the chart with the given information.</p>
<div class="informalfigure large">
<img src="section_06/5771a0fb98df4253ae93ba8326e9ac92.png">
</div>
<p class="para" id="fwk-redden-ch03_s03_s03_p08">Use the formula <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0402" display="inline"><mrow><mi>D</mi><mo>=</mo><mi>r</mi><mo>⋅</mo><mi>t</mi></mrow></math></span> to fill in the unknown distances.</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p09"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0403" display="block"><mtable columnspacing="0.1em" columnalign="left"><mtr><mtd><mtext>Distance traveled in the car: </mtext><mi>D</mi><mo>=</mo><mi>r</mi><mo>⋅</mo><mi>t</mi><mo>=</mo><mn>50</mn><mo>⋅</mo><mi>x</mi></mtd></mtr><mtr><mtd><mtext>Distance traveled in the air: </mtext><mi>D</mi><mo>=</mo><mi>r</mi><mo>⋅</mo><mi>t</mi><mo>=</mo><mn>320</mn><mo>⋅</mo><mi>y</mi></mtd></mtr></mtable></math></span></p>
<div class="informalfigure large">
<img src="section_06/e04d9f63e3a9b0ec709c4ca54babf3c9.png">
</div>
<p class="para" id="fwk-redden-ch03_s03_s03_p11">The distance column and the time column of the chart help us to set up the following linear system.</p>
<div class="informalfigure large">
<img src="section_06/61e7e9bbf3a5ebe7ec5d9632fe4b5de6.png">
</div>
<p class="para" id="fwk-redden-ch03_s03_s03_p13"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0404" display="block"><mrow><mrow><mo>{</mo><mtable columnspacing="0.1em"><mtr><mtd><mi>x</mi><mo>+</mo><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd><mn>4</mn></mtd><mtd columnalign="left"><mstyle color="#007fbf"><mo>←</mo><mi>t</mi><mi>o</mi><mi>t</mi><mi>a</mi><mi>l</mi><mtext> </mtext><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mtext> </mtext><mi>t</mi><mi>r</mi><mi>a</mi><mi>v</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>d</mi></mstyle></mtd></mtr><mtr><mtd><mn>50</mn><mi>x</mi><mo>+</mo><mn>320</mn><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd><mn>875</mn></mtd><mtd><mstyle color="#007fbf"><mo>←</mo><mi>t</mi><mi>o</mi><mi>t</mi><mi>a</mi><mi>l</mi><mtext> </mtext><mi>d</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>a</mi><mi>n</mi><mi>c</mi><mi>e</mi><mtext> </mtext><mi>t</mi><mi>r</mi><mi>a</mi><mi>v</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>d</mi></mstyle></mtd></mtr></mtable></mrow></mrow></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s03_p14">Solve.</p>
<div class="informalfigure large">
<img src="section_06/24d8d585988e1e020cef6c553296f99f.png">
</div>
<p class="para" id="fwk-redden-ch03_s03_s03_p16"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0405" display="block"><mtable columnspacing="0.1em" rowlines="none solid none none"><mtr><mtd></mtd><mtd columnalign="right"><mstyle color="#ff0000"><mo>−</mo><mn>50</mn><mi>x</mi></mstyle></mtd><mtd><mo>−</mo></mtd><mtd columnalign="left"><mn>50</mn><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mo>−</mo><mn>200</mn></mtd></mtr><mtr><mtd style="border-bottom:1pt solid black"><mo>+</mo></mtd><mtd columnalign="right" style="border-bottom:1pt solid black"><mstyle color="#ff0000"><mn>50</mn><mi>x</mi></mstyle></mtd><mtd style="border-bottom:1pt solid black"><mo>+</mo></mtd><mtd style="border-bottom:1pt solid black" columnalign="left"><mn>320</mn><mi>y</mi></mtd><mtd style="border-bottom:1pt solid black"><mo>=</mo></mtd><mtd columnalign="left" style="border-bottom:1pt solid black"><mn>875</mn></mtd></mtr><mtr><mtd></mtd><mtd></mtd><mtd></mtd><mtd columnalign="right"><mn>270</mn><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>675</mn></mtd></mtr><mtr><mtd></mtd><mtd></mtd><mtd></mtd><mtd columnalign="right"><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mfrac><mrow><mn>675</mn></mrow><mrow><mn>270</mn></mrow></mfrac></mtd></mtr><mtr><mtd></mtd><mtd></mtd><mtd></mtd><mtd columnalign="right"><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mfrac><mn>5</mn><mn>2</mn></mfrac></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s03_p17">Now back substitute to find the time <em class="emphasis">x</em> it took to drive to the airport:</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p18"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0406" display="block"><mtable columnspacing="0.1em"><mtr><mtd columnalign="right"><mi>x</mi><mo>+</mo><mi>y</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>4</mn></mtd></mtr><mtr><mtd columnalign="right"><mi>x</mi><mo>+</mo><mstyle color="#007f3f"><mfrac><mn>5</mn><mn>2</mn></mfrac></mstyle></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>4</mn></mtd></mtr><mtr><mtd columnalign="right"><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mfrac><mn>8</mn><mn>2</mn></mfrac><mo>−</mo><mfrac><mn>5</mn><mn>2</mn></mfrac></mtd></mtr><mtr><mtd columnalign="right"><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mfrac><mn>3</mn><mn>2</mn></mfrac></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s03_p19">Answer: It took her <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0407" display="inline"><mrow><mn>1</mn><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></math></span> hours to drive to the airport.</p>
</div>
<p class="para editable block" id="fwk-redden-ch03_s03_s03_p20">It is not always the case that time is the unknown quantity. Read the problem carefully and identify what you are asked to find; this defines your variables.</p>
<p class="para block"><span class="margin_term"><a class="glossterm"></a><span class="glossdef">Applications involving simple interest and money.</span></span></p>
<p class="para block"><span class="margin_term"><a class="glossterm"></a><span class="glossdef">Applications involving a mixture of amounts usually given as a percentage of some total.</span></span></p>
<p class="para block"><span class="margin_term"><a class="glossterm"></a><span class="glossdef">Applications relating distance, average rate, and time.</span></span></p>
<div class="callout block" id="fwk-redden-ch03-s03_s03_n02">
<h3 class="title">Example 7</h3>
<p class="para" id="fwk-redden-ch03_s03_s03_p21">Flying with the wind, a light aircraft traveled 240 miles in 2 hours. The aircraft then turned against the wind and traveled another 135 miles in <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0408" display="inline"><mrow><mn>1</mn><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></math></span> hours. Find the speed of the airplane and the speed of the wind.</p>
<p class="simpara">Solution:</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p22">Begin by identifying variables.</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p23">Let <em class="emphasis">x</em> represent the speed of the airplane.</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p24">Let <em class="emphasis">w</em> represent the speed of the wind.</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p25">Use the following chart to organize the data:</p>
<div class="informalfigure large">
<img src="section_06/f20df65499973cf6331d95dbe0826cf9.png">
</div>
<p class="para" id="fwk-redden-ch03_s03_s03_p27">With the wind, the airplane’s total speed is <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0409" display="inline"><mrow><mi>x</mi><mo>+</mo><mi>w</mi></mrow></math></span>. Flying against the wind, the total speed is <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0410" display="inline"><mrow><mi>x</mi><mo>−</mo><mi>w</mi></mrow></math></span>.</p>
<div class="informalfigure large">
<img src="section_06/f96797052559e19aab24932b4ac5f0e3.png">
</div>
<p class="para" id="fwk-redden-ch03_s03_s03_p29">Use the rows of the chart along with the formula <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0411" display="inline"><mrow><mi>D</mi><mo>=</mo><mi>r</mi><mo>⋅</mo><mi>t</mi></mrow></math></span> to construct a linear system that models this problem. Take care to group the quantities that represent the rate in parentheses.</p>
<div class="informalfigure large">
<img src="section_06/c022cb3a1a941cd94e502a1ff7afc0fa.png">
</div>
<p class="para" id="fwk-redden-ch03_s03_s03_p31"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0412" display="block"><mrow><mrow><mo>{</mo><mtable columnspacing="0.1em" columnalign="left"><mtr><mtd><mn>240</mn><mo>=</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mi>w</mi></mrow><mo>)</mo></mrow><mo>⋅</mo><mn>2</mn></mtd><mtd><mstyle color="#007fbf"><mo>←</mo><mi>d</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>a</mi><mi>n</mi><mi>c</mi><mi>e</mi><mtext> </mtext><mi>t</mi><mi>r</mi><mi>a</mi><mi>v</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>d</mi><mtext> </mtext><mi>w</mi><mi>i</mi><mi>t</mi><mi>h</mi><mtext> </mtext><mi>t</mi><mi>h</mi><mi>e</mi><mtext> </mtext><mi>w</mi><mi>i</mi><mi>n</mi><mi>d</mi></mstyle></mtd></mtr><mtr><mtd><mn>135</mn><mo>=</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>−</mo><mi>w</mi></mrow><mo>)</mo></mrow><mo>⋅</mo><mn>1.5</mn></mtd><mtd><mstyle color="#007fbf"><mo>←</mo><mi>d</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>a</mi><mi>n</mi><mi>c</mi><mi>e</mi><mtext> </mtext><mi>t</mi><mi>r</mi><mi>a</mi><mi>v</mi><mi>e</mi><mi>l</mi><mi>e</mi><mi>d</mi><mtext> </mtext><mi>a</mi><mi>g</mi><mi>a</mi><mi>i</mi><mi>n</mi><mi>s</mi><mi>t</mi><mtext> </mtext><mi>t</mi><mi>h</mi><mi>e</mi><mtext> </mtext><mi>w</mi><mi>i</mi><mi>n</mi><mi>d</mi></mstyle></mtd></mtr></mtable></mrow></mrow></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s03_p32">If we divide both sides of the first equation by 2 and both sides of the second equation by 1.5, then we obtain the following equivalent system:</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p33"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0413" display="block"><mrow><mrow><mo>{</mo><mrow><mtable columnspacing="0.1em"><mtr><mtd><mrow><mn>240</mn><mo>=</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>+</mo><mi>w</mi></mrow><mo>)</mo></mrow><mo>⋅</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mn>135</mn><mo>=</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>−</mo><mi>w</mi></mrow><mo>)</mo></mrow><mo>⋅</mo><mn>1.5</mn></mrow></mtd></mtr></mtable></mrow></mrow><mi> </mi><mi> </mi><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtable columnspacing="0.1em"><mtr><mtd><mrow><mover><mo>⇒</mo><mrow><mo>÷</mo><mn>2</mn></mrow></mover></mrow></mtd></mtr><mtr><mtd><mrow><munder><mo>⇒</mo><mrow><mo>÷</mo><mn>1.5</mn></mrow></munder></mrow></mtd></mtr></mtable><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi> </mi><mrow><mo>{</mo><mrow><mtable columnspacing="0.1em"><mtr><mtd><mrow><mn>120</mn><mo>=</mo><mi>x</mi><mo>+</mo><mi>w</mi></mrow></mtd></mtr><mtr><mtd><mrow><mn>90</mn><mo>=</mo><mi>x</mi><mo>−</mo><mi>w</mi></mrow></mtd></mtr></mtable></mrow></mrow></mrow></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s03_p34">Here <em class="emphasis">w</em> is lined up to eliminate.</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p35"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0414" display="block"><mtable columnspacing="0.1em" rowlines="none solid none none"><mtr><mtd></mtd><mtd columnalign="right"><mi>x</mi><mstyle color="#ff0000"><mtext> </mtext><mo>+</mo><mtext> </mtext><mi>w</mi></mstyle></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>120</mn></mtd></mtr><mtr><mtd style="border-bottom:1pt solid black"><mo>+</mo></mtd><mtd style="border-bottom:1pt solid black"><mi>x</mi><mstyle color="#ff0000"><mtext> </mtext><mo>−</mo><mi>w</mi></mstyle></mtd><mtd style="border-bottom:1pt solid black"><mo>=</mo></mtd><mtd style="border-bottom:1pt solid black" columnalign="left"><mn>90</mn></mtd></mtr><mtr><mtd></mtd><mtd columnalign="right"><mn>2</mn><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>210</mn></mtd></mtr><mtr><mtd></mtd><mtd columnalign="right"><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mfrac><mrow><mn>210</mn></mrow><mn>2</mn></mfrac></mtd></mtr><mtr><mtd></mtd><mtd columnalign="right"><mi>x</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>105</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s03_p36">Back substitute.</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p37"><span class="informalequation"><math xml:id="fwk-redden-ch03_m0415" display="block"><mtable columnspacing="0.1em"><mtr><mtd columnalign="right"><mi>x</mi><mo>+</mo><mi>w</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>120</mn></mtd></mtr><mtr><mtd columnalign="right"><mstyle color="#007f3f"><mn>105</mn></mstyle><mo>+</mo><mi>w</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>120</mn></mtd></mtr><mtr><mtd columnalign="right"><mi>w</mi></mtd><mtd><mo>=</mo></mtd><mtd columnalign="left"><mn>15</mn></mtd></mtr></mtable></math></span></p>
<p class="para" id="fwk-redden-ch03_s03_s03_p38">Answer: The speed of the airplane is 105 miles per hour and the speed of the wind is 15 miles per hour.</p>
</div>
<div class="callout block" id="fwk-redden-ch03-s03_s03_n02a">
<h3 class="title"></h3>
<p class="para" id="fwk-redden-ch03_s03_s03_p39"><strong class="emphasis bold">Try this!</strong> A boat traveled 27 miles downstream in 2 hours. On the return trip, which was against the current, the boat was only able to travel 21 miles in 2 hours. What were the speeds of the boat and of the current?</p>
<p class="para" id="fwk-redden-ch03_s03_s03_p40">Answer: The speed of the boat was 12 miles per hour and the speed of the current was 1.5 miles per hour.</p>
<div class="mediaobject">
<a data-iframe-code='<iframe src="http://www.youtube.com/v/EvdJQTFSUSs" condition="http://img.youtube.com/vi/EvdJQTFSUSs/0.jpg" vendor="youtube" width="450" height="340" scalefit="1"></iframe>' href="http://www.youtube.com/v/EvdJQTFSUSs" class="replaced-iframe" onclick="return replaceIframe(this)">(click to see video)</a>
</div>
</div>
<div class="key_takeaways editable block" id="fwk-redden-ch03_s03_s03_n03">
<h3 class="title">Key Takeaways</h3>
<ul class="itemizedlist" id="fwk-redden-ch03_s03_s03_l01" mark="bullet">
<li>Use two variables as a means to simplify the algebraic setup of applications where the relationship between unknowns is unclear.</li>
<li>Carefully read the problem several times. If two variables are used, then remember that you need to set up two linear equations in order to solve the problem.</li>
<li>Be sure to answer the question in sentence form and include the correct units for the answer.</li>
</ul>
</div>
<div class="qandaset block" id="fwk-redden-ch03_s03_qs01" defaultlabel="number">
<h3 class="title">Topic Exercises</h3>
<ol class="qandadiv" id="fwk-redden-ch03_s03_qs01_qd01">
<h3 class="title">Part A: Applications Involving Two Variables</h3>
<ol class="qandadiv" id="fwk-redden-ch03_s03_qs01_qd01_qd01">
<p class="para" id="fwk-redden-ch03_s03_qs01_p01"><strong class="emphasis bold">Set up a linear system and solve.</strong></p>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa01">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p02">The sum of two integers is 45. The larger integer is 3 less than twice the smaller. Find the two integers.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa02">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p04">The sum of two integers is 126. The larger is 18 less than 5 times the smaller. Find the two integers.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa03">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p06">The sum of two integers is 41. When 3 times the smaller is subtracted from the larger the result is 17. Find the two integers.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa04">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p08">The sum of two integers is 46. When the larger is subtracted from twice the smaller the result is 2. Find the two integers.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa05">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p10">The difference of two integers is 11. When twice the larger is subtracted from 3 times the smaller, the result is 3. Find the integers.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa06">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p12">The difference of two integers is 6. The sum of twice the smaller and the larger is 72. Find the integers.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa07">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p14">The sum of 3 times a larger integer and 2 times a smaller is 15. When 3 times the smaller integer is subtracted from twice the larger, the result is 23. Find the integers.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa08">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p16">The sum of twice a larger integer and 3 times a smaller is 10. When the 4 times the smaller integer is added to the larger, the result is 0. Find the integers.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa09">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p18">The difference of twice a smaller integer and 7 times a larger is 4. When 5 times the larger integer is subtracted from 3 times the smaller, the result is −5. Find the integers.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa10">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p20">The difference of a smaller integer and twice a larger is 0. When 3 times the larger integer is subtracted from 2 times the smaller, the result is −5. Find the integers.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa11">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p22">The length of a rectangle is 5 more than twice its width. If the perimeter measures 46 meters, then find the dimensions of the rectangle.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa12">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p24">The width of a rectangle is 2 centimeters less than one-half its length. If the perimeter measures 62 centimeters, then find the dimensions of the rectangle.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa13">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p26">A partitioned rectangular pen next to a river is constructed with a total 136 feet of fencing (see illustration). If the outer fencing measures 114 feet, then find the dimensions of the pen.</p>
<div class="informalfigure large">
<img src="section_06/a6db74dfe9aa12f391cfccf2644dcf60.png">
</div>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa14">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p29">A partitioned rectangular pen is constructed with a total 168 feet of fencing (see illustration). If the perimeter measures 138 feet, then find the dimensions of the pen.</p>
<div class="informalfigure large">
<img src="section_06/4b7f1655b80b49a11b27e38479d6494f.png">
</div>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa15">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p32">Find <em class="emphasis">a</em> and <em class="emphasis">b</em> such that the system <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0416" display="inline"><mrow><mrow><mo>{</mo><mtable columnspacing="0.1em" columnalign="left"><mtr><mtd><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo>=</mo><mn>8</mn></mtd></mtr><mtr><mtd><mi>b</mi><mi>x</mi><mo>+</mo><mi>a</mi><mi>y</mi><mo>=</mo><mn>7</mn></mtd></mtr></mtable></mrow></mrow></math></span> has solution <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0417" display="inline"><mrow><mrow><mo>(</mo><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow></math></span>. (Hint: Substitute the given <em class="emphasis">x</em>- and <em class="emphasis">y</em>-values and solve the resulting linear system in terms of <em class="emphasis">a</em> and <em class="emphasis">b</em>.)</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa16">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p34">Find <em class="emphasis">a</em> and <em class="emphasis">b</em> such that the system <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0420" display="inline"><mrow><mrow><mo>{</mo><mtable columnspacing="0.1em" columnalign="left"><mtr><mtd><mi>a</mi><mi>x</mi><mo>−</mo><mi>b</mi><mi>y</mi><mo>=</mo><mn>11</mn></mtd></mtr><mtr><mtd><mi>b</mi><mi>x</mi><mo>+</mo><mi>a</mi><mi>y</mi><mo>=</mo><mn>13</mn></mtd></mtr></mtable></mrow></mrow></math></span> has solution <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0421" display="inline"><mrow><mrow><mo>(</mo><mrow><mn>3</mn><mo>,</mo><mo>−</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow></math></span>.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa17">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p36">A line passes through two points <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0424" display="inline"><mrow><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mo>−</mo><mn>9</mn></mrow><mo>)</mo></mrow></mrow></math></span> and <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0425" display="inline"><mrow><mrow><mo>(</mo><mrow><mo>−</mo><mn>3</mn><mo>,</mo><mn>7</mn></mrow><mo>)</mo></mrow></mrow></math></span>. Use these points and <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0426" display="inline"><mrow><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>b</mi></mrow></math></span> to construct a system of two linear equations in terms of <em class="emphasis">m</em> and <em class="emphasis">b</em> and solve it.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa18">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p38">A line passes through two points <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0429" display="inline"><mrow><mrow><mo>(</mo><mrow><mn>2</mn><mo>,</mo><mn>7</mn></mrow><mo>)</mo></mrow></mrow></math></span> and <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0430" display="inline"><mrow><mo stretchy="false">(</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mo>−</mo><mn>2</mn><mo stretchy="false">)</mo></mrow></math></span>. Use these points and <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0431" display="inline"><mrow><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>b</mi></mrow></math></span> to construct a system of two linear equations in terms of <em class="emphasis">m</em> and <em class="emphasis">b</em> and solve it.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa19">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p40">A $5,200 principal is invested in two accounts, one earning 3% interest and another earning 6% interest. If the total interest for the year is $210, then how much is invested in each account?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa20">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p42">Harry’s $2,200 savings is in two accounts. One account earns 2% annual interest and the other earns 4%. His total interest for the year is $69. How much does he have in each account?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa21">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p44">Janine has two savings accounts totaling $6,500. One account earns <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0434" display="inline"><mrow><mn>2</mn><mfrac><mn>3</mn><mn>4</mn></mfrac><mi>%</mi></mrow></math></span> annual interest and the other earns <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0435" display="inline"><mrow><mn>3</mn><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>%</mi></mrow></math></span>. If her total interest for the year is $211, then how much is in each account?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa22">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p46">Margaret has her total savings of $24,200 in two different CD accounts. One CD earns 4.6% interest and another earns 3.4% interest. If her total interest for the year is $1,007.60, then how much does she have in each CD account?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa23">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p48">Last year Mandy earned twice as much interest in her Money Market fund as she did in her regular savings account. The total interest from the two accounts was $246. How much interest did she earn in each account?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa24">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p50">A small business invested $120,000 in two accounts. The account earning 4% annual interest yielded twice as much interest as the account earning 3% annual interest. How much was invested in each account?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa25">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p52">Sally earns $1,000 per month plus a commission of 2% of sales. Jane earns $200 per month plus 6% of her sales. At what monthly sales figure will both Sally and Jane earn the same amount of pay?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa26">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p54">The cost of producing specialty book shelves includes an initial set-up fee of $1,200 plus an additional $20 per unit produced. Each shelf can be sold for $60 per unit. Find the number of units that must be produced and sold where the costs equal the revenue generated.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa27">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p56">Jim was able to purchase a pizza for $12.35 with quarters and dimes. If he uses 71 coins to buy the pizza, then how many of each did he have?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa28">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p58">A cash register contains $5 bills and $10 bills with a total value of $350. If there are 46 bills total, then how many of each does the register contain?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa29">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p60">Two families bought tickets for the home basketball game. One family ordered 2 adult tickets and 4 children’s tickets for a total of $36.00. Another family ordered 3 adult tickets and 2 children’s tickets for a total of $32.00. How much did each ticket cost?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa30">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p62">Two friends found shirts and shorts on sale at a flea market. One bought 4 shirts and 2 shorts for a total of $28.00. The other bought 3 shirts and 3 shorts for a total of $30.75. How much was each shirt and each pair of shorts?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa31">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p64">A community theater sold 140 tickets to the evening musical for a total of $1,540. Each adult ticket was sold for $12 and each child ticket was sold for $8. How many adult tickets were sold?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa32">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p66">The campus bookstore sells graphing calculators for $110 and scientific calculators for $16. On the first day of classes 50 calculators were sold for a total of $1,646. How many of each were sold?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa33">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p68">A jar consisting of only nickels and quarters contains 70 coins. If the total value is $9.10, how many of each coin are in the jar?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa34">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p70">Jill has $9.20 worth of dimes and quarters. If there are 68 coins in total, how many of each does she have?</p>
</div>
</li>
</ol>
</ol>
<ol class="qandadiv" id="fwk-redden-ch03_s03_qs01_qd02">
<h3 class="title">Part B: Mixture Problems</h3>
<ol class="qandadiv" id="fwk-redden-ch03_s03_qs01_qd02_qd01" start="35">
<p class="para" id="fwk-redden-ch03_s03_qs01_p72"><strong class="emphasis bold">Set up a linear system and solve.</strong></p>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa35">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p73">A 17% acid solution is to be mixed with a 9% acid solution to produce 8 gallons of a 10% acid solution. How much of each is needed?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa36">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p75">A nurse wishes to obtain 28 ounces of a 1.5% saline solution. How much of a 1% saline solution must she mix with a 4.5% saline solution to achieve the desired mixture?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa37">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p77">A customer ordered 4 pounds of a mixed peanut product containing 12% cashews. The inventory consists of only two mixes containing 10% and 26% cashews. How much of each type must be mixed to fill the order?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa38">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p79">One alcohol solution contains 10% alcohol and another contains 25% alcohol. How much of each should be mixed together to obtain 2 gallons of a 13.75% alcohol solution?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa39">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p81">How much cleaning fluid concentrate, with 60% alcohol content, must be mixed with water to obtain a 24-ounce mixture with 15% alcohol content?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa40">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p83">How many pounds of pure peanuts must be combined with a 20% peanut mix to produce 2 pounds of a 50% peanut mix?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa41">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p85">A 50% fruit juice concentrate can be purchased wholesale. Best taste is achieved when water is mixed with the concentrate in such a way as to obtain a 15% fruit juice mixture. How much water and concentrate is needed to make a 60-ounce fruit juice drink?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa42">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p87">Pure sugar is to be mixed with a fruit salad containing 10% sugar to produce 65 ounces of a salad containing 18% sugar. How much pure sugar is required?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa43">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p89">A custom aluminum alloy is created by mixing 150 grams of a 15% aluminum alloy and 350 grams of a 55% aluminum alloy. What percentage of aluminum is in the resulting mixture?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa44">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p91">A research assistant mixed 500 milliliters of a solution that contained a 12% acid with 300 milliliters of water. What percentage of acid is in the resulting solution?</p>
</div>
</li>
</ol>
</ol>
<ol class="qandadiv" id="fwk-redden-ch03_s03_qs01_qd03">
<h3 class="title">Part C: Uniform Motion Problems</h3>
<ol class="qandadiv" id="fwk-redden-ch03_s03_qs01_qd03_qd01" start="45">
<p class="para" id="fwk-redden-ch03_s03_qs01_p93"><strong class="emphasis bold">Set up a linear system and solve.</strong></p>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa45">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p94">The two legs of a 432-mile trip took 8 hours. The average speed for the first leg of the trip was 52 miles per hour and the average speed for the second leg of the trip was 60 miles per hour. How long did each leg of the trip take?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa46">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p96">Jerry took two buses on the 265-mile trip from Los Angeles to Las Vegas. The first bus averaged 55 miles per hour and the second bus was able to average 50 miles per hour. If the total trip took 5 hours, then how long was spent in each bus?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa47">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p98">An executive was able to average 48 miles per hour to the airport in her car and then board an airplane that averaged 210 miles per hour. The 549-mile business trip took 3 hours. How long did it take her to drive to the airport?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa48">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p100">Joe spends 1 hour each morning exercising by jogging and then cycling for a total of 15 miles. He is able to average 6 miles per hour jogging and 18 miles per hour cycling. How long does he spend jogging each morning?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa49">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p102">Swimming with the current Jack can swim 2.5 miles in <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0441" display="inline"><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></math></span> hour. Swimming back, against the same current, he can only swim 2 miles in the same amount of time. How fast is the current?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa50">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p104">A light aircraft flying with the wind can travel 180 miles in <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0442" display="inline"><mrow><mn>1</mn><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></math></span> hours. The aircraft can fly the same distance against the wind in 2 hours. Find the speed of the wind.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa51">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p106">A light airplane flying with the wind can travel 600 miles in 4 hours. On the return trip, against the wind, it will take 5 hours. What are the speeds of the airplane and of the wind?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa52">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p108">A boat can travel 15 miles with the current downstream in <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0443" display="inline"><mrow><mn>1</mn><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></math></span> hours. Returning upstream against the current, the boat can only travel <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0444" display="inline"><mrow><mn>8</mn><mfrac><mn>3</mn><mn>4</mn></mfrac></mrow></math></span> miles in the same amount of time. Find the speed of the current.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa53">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p110">Mary jogged the trail from her car to the cabin at the rate of 6 miles per hour. She then walked back to her car at a rate of 4 miles per hour. If the entire trip took 1 hour, then how long did it take her to walk back to her car?</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa54">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p112">Two trains leave the station traveling in opposite directions. One train is 8 miles per hour faster than the other and in <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0446" display="inline"><mrow><mn>2</mn><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></math></span> hours they are 230 miles apart. Determine the average speed of each train.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa55">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p114">Two trains leave the station traveling in opposite directions. One train is 12 miles per hour faster than the other and in 3 hours they are 300 miles apart. Determine the average speed of each train.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa56">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p116">A jogger can sustain an average running rate of 8 miles per hour to his destination and 6 miles an hour on the return trip. Find the total distance the jogger ran if the total time running was <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0447" display="inline"><mrow><mn>1</mn><mfrac><mn>3</mn><mn>4</mn></mfrac></mrow></math></span> hour.</p>
</div>
</li>
</ol>
</ol>
<ol class="qandadiv" id="fwk-redden-ch03_s03_qs01_qd04">
<h3 class="title">Part E: Discussion Board</h3>
<ol class="qandadiv" id="fwk-redden-ch03_s03_qs01_qd04_qd01" start="57">
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa57">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p118">Compose a number or money problem of your own and share it on the discussion board.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa58">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p119">Compose a mixture problem of your own and share it on the discussion board.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa59">
<div class="question">
<p class="para" id="fwk-redden-ch03_s03_qs01_p120">Compose a uniform motion problem of your own and share it on the discussion board.</p>
</div>
</li>
</ol>
</ol>
</div>
<div class="qandaset block" id="fwk-redden-ch03_s03_qs01_ans" defaultlabel="number">
<h3 class="title">Answers</h3>
<ol class="qandadiv">
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa01_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p03_ans">The integers are 16 and 29.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa02_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa03_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p07_ans">The integers are 6 and 35.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa04_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa05_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p11_ans">The integers are 25 and 36.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa06_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa07_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p15_ans">The integers are −3 and 7.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa08_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa09_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p19_ans">The integers are −5 and −2.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa10_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa11_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p23_ans">Length: 17 meters; width: 6 meters</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa12_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa13_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p28_ans">Width: 22 feet; length: 70 feet</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa14_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa15_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p33_ans"><span class="inlineequation"><math xml:id="fwk-redden-ch03_m0418" display="inline"><mrow><mi>a</mi><mo>=</mo><mn>3</mn></mrow></math></span>, <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0419" display="inline"><mrow><mi>b</mi><mo>=</mo><mn>2</mn></mrow></math></span></p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa16_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa17_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p37_ans"><span class="inlineequation"><math xml:id="fwk-redden-ch03_m0427" display="inline"><mrow><mi>m</mi><mo>=</mo><mo>−</mo><mn>2</mn></mrow></math></span>, <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0428" display="inline"><mrow><mi>b</mi><mo>=</mo><mn>1</mn></mrow></math></span></p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa18_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa19_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p41_ans">$3,400 at 3% and $1,800 at 6%</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa20_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa21_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p45_ans">$2,200 at <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0436" display="inline"><mrow><mn>2</mn><mfrac><mn>3</mn><mn>4</mn></mfrac><mi>%</mi></mrow></math></span> and $4,300 at <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0437" display="inline"><mrow><mn>3</mn><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>%</mi></mrow></math></span></p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa22_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa23_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p49_ans">Savings: $82; Money Market: $164.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa24_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa25_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p53_ans">$20,000</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa26_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa27_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p57_ans">35 quarters and 36 dimes</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa28_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa29_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p61_ans">Adults $7.00 each and children $5.50 each.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa30_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa31_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p65_ans">105 adult tickets were sold.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa32_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa33_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p69_ans">The jar contains 42 nickels and 28 quarters.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa34_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
</ol>
<ol class="qandadiv" start="35">
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa35_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p74_ans">7 gallons of the 9% acid solution and 1 gallon of the 17% acid solution</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa36_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa37_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p78_ans">3.5 pounds of the 10% cashew mix and 0.5 pounds of the 26% cashew mix</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa38_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa39_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p82_ans">6 ounces of cleaning fluid concentrate</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa40_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa41_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p86_ans">18 ounces of fruit juice concentrate and 42 ounces of water</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa42_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa43_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p90_ans">43%</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa44_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
</ol>
<ol class="qandadiv" start="45">
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa45_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p95_ans">The first leg of the trip took 6 hours and the second leg took 2 hours.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa46_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa47_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p99_ans">It took her <span class="inlineequation"><math xml:id="fwk-redden-ch03_m0439" display="inline"><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></math></span> hour to drive to the airport.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa48_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa49_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p103_ans">0.5 miles per hour.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa50_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa51_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p107_ans">Airplane: 135 miles per hour; wind: 15 miles per hour</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa52_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa53_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p111_ans"><span class="inlineequation"><math xml:id="fwk-redden-ch03_m0445" display="inline"><mrow><mfrac><mn>3</mn><mn>5</mn></mfrac></mrow></math></span> hour</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa54_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa55_ans">
<div class="answer">
<p class="para" id="fwk-redden-ch03_s03_qs01_p115_ans">One train averaged 44 miles per hour and the other averaged 56 miles per hour.</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa56_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
</ol>
<ol class="qandadiv" start="57">
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa57_ans">
<div class="answer">
<p class="para">Answer may vary</p>
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa58_ans" audience="instructoronly">
<div class="answer" audience="instructoronly" d="" html="http://www.w3.org/1999/xhtml" mml="http://www.w3.org/1998/Math/MathML" xlink="http://www.w3.org/1999/xlink" xml="http://www.w3.org/XML/1998/namespace">
</div>
</li>
<li class="qandaentry" id="fwk-redden-ch03_s03_qs01_qa59_ans">
<div class="answer">
<p class="para">Answer may vary</p>
</div>
</li>
</ol>
</div>
</div>
</div>
</div>
<div id=navbar-bottom class="navbar">
<div class="navbar-part left">
<a href="s06-02-solving-linear-systems-with-tw.html"><img src="shared/images/batch-left.png"></a> <a href="s06-02-solving-linear-systems-with-tw.html">Previous Section</a>
</div>
<div class="navbar-part middle">
<a href="index.html"><img src="shared/images/batch-up.png"></a> <a href="index.html">Table of Contents</a>
</div>
<div class="navbar-part right">
<a href="s06-04-solving-linear-systems-with-th.html">Next Section</a> <a href="s06-04-solving-linear-systems-with-th.html"><img src="shared/images/batch-right.png"></a>
</div>
</div>
</div>
<script type="text/javascript" src="shared/book.js"></script>
<script type="text/javascript" src="https://c328740.ssl.cf1.rackcdn.com/mathjax/latest/MathJax.js?config=MML_HTMLorMML"></script>
</body>
</html>