diff --git "a/docs/blog/posts/\345\237\272\344\272\216\344\274\230\345\214\226\347\232\204\350\275\250\350\277\271\350\247\204\345\210\222.md" "b/docs/blog/posts/\345\237\272\344\272\216\344\274\230\345\214\226\347\232\204\350\275\250\350\277\271\350\247\204\345\210\222.md" new file mode 100644 index 0000000..4123ffb --- /dev/null +++ "b/docs/blog/posts/\345\237\272\344\272\216\344\274\230\345\214\226\347\232\204\350\275\250\350\277\271\350\247\204\345\210\222.md" @@ -0,0 +1,39 @@ +--- +title: 基于优化的轨迹规划 +date: + created: 2024-10-30 + updated: 2024-10-30 +categories: + - 机器人 + - 移动机器人运动规划 +--- + +## 1. 全局方法 和 局部方法 + +![](https://picgo-1257309505.cos.ap-guangzhou.myqcloud.com/20241030211947.png) + + + +## 2. 轨迹规划 + +### 2.1 什么是轨迹 + +时间参数化的路径 + +### 2.2 平滑意味着什么 + +1. 满足动力学约束 $\dot{x} = f(x, u)$ +2. 最小化能量泛函 $min \int_{t_0}^{t_f} L(x(t), u(t)) dt$ + +### 2.3 为什么需要轨迹优化 + +1. 能量最优 +2. 时间最优 +3. 驱动器限制 +4. 任务需求 (保持fov) + +## 3. 微分平坦(Differential Flatness) + +![](https://picgo-1257309505.cos.ap-guangzhou.myqcloud.com/20241106115907.png) + +微分平坦是使用系统的输出和输出的导数对系统的状态$x$和输入$u$进行描述,从而把系统方程$\dot{x} = f(x) + g(x)u$约束消掉 \ No newline at end of file diff --git "a/docs/blog/posts/\345\270\270\345\276\256\345\210\206\346\226\271\347\250\213\347\256\200\344\273\213.md" "b/docs/blog/posts/\345\270\270\345\276\256\345\210\206\346\226\271\347\250\213\347\256\200\344\273\213.md" new file mode 100644 index 0000000..219e17a --- /dev/null +++ "b/docs/blog/posts/\345\270\270\345\276\256\345\210\206\346\226\271\347\250\213\347\256\200\344\273\213.md" @@ -0,0 +1,50 @@ +--- +title: 常微分方程简介 +date: + created: 2024-11-22 + updated: 2024-11-26 +categories: + - 数学 +--- +ODE of order k: + +$$ F(t, x, \dot{x}, ..., x^{(k)}) = 0 $$ + + +(explicit) ODE of order 1: + +$$ \dot{x} = w(t, x) $$ + +autonomous ODE of order 1: + +$$ \dot{x} = v(x) $$ + +separable ODE of order 1 (**with solution**): + +$$ \dot{x} = g(t)h(x) $$ + +linear ODE of order 1 (**with solution**): + +$$ \dot{x} = a(t)x + b(t) $$ + +homogeneous linear ODE of order 1 (**with solution**): + +$$ \dot{x} = a(t)x $$ + +!!! note "Lipschitz Continuity" + + $$ |f(z) - f(y)| \leq L|z - y| $$ + +!!! note "Banach Fixed Point Theorem" + + ![](https://picgo-1257309505.cos.ap-guangzhou.myqcloud.com/20241122181656.png) + +!!! note "Picard-Lindelöf Theorem" + + ![](https://picgo-1257309505.cos.ap-guangzhou.myqcloud.com/20241122200147.png) + +![](https://picgo-1257309505.cos.ap-guangzhou.myqcloud.com/20241125121905.png) + +![](https://picgo-1257309505.cos.ap-guangzhou.myqcloud.com/20241125122011.png) + +![](https://picgo-1257309505.cos.ap-guangzhou.myqcloud.com/20241125210032.png) \ No newline at end of file