-
Notifications
You must be signed in to change notification settings - Fork 35
/
pisstv.c
602 lines (470 loc) · 16.6 KB
/
pisstv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
// SSTV test program
// 2013 Robert Marshall KI4MCW
// 2014 Gerrit Polder, PA3BYA fixed header.
// Note: Compile me thus: gcc -lgd -lmagic -o sstvX sstvX.c
// ===========
// includes
// ===========
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <gd.h>
#include <time.h>
#include <math.h>
#include <tgmath.h>
#include <magic.h>
// ================
// macros/defines
// ================
#define RATE 11025
#define MAXRATE 22050
#define BITS 16
#define CHANS 1
#define VOLPCT 20
// ^-- 90% max
#define MAXSAMPLES (180 * MAXRATE)
// uncomment only one of these
#define AUDIO_WAV
//#define AUDIO_AIFF
#define MAGIC_PNG ("PNG image data,")
#define MAGIC_JPG ("JPEG image data")
#define MAGIC_CNT 15
#define FILETYPE_ERR 0
#define FILETYPE_PNG 1
#define FILETYPE_JPG 2
// =========
// globals
// =========
uint16_t g_audio[MAXSAMPLES] ;
uint32_t g_scale, g_samples ;
double g_twopioverrate , g_uspersample ;
double g_theta, g_fudge ;
FILE * g_imgfp ;
FILE * g_outfp ;
gdImagePtr g_imgp ;
uint16_t g_rate;
// ========
// protos
// ========
uint8_t filetype (char *filename) ;
void playtone (uint16_t tonefreq , double tonedur) ;
void addvisheader (void) ;
void addvistrailer (void) ;
uint16_t toneval (uint8_t colorval) ;
void buildaudio (void) ;
#ifdef AUDIO_AIFF
void writefile_aiff (void) ;
#endif
#ifdef AUDIO_WAV
void writefile_wav (void) ;
#endif
// ================
// main
// ================
int main(int argc, char *argv[])
{
int errorexit = 0;
if (argc>1) {
g_rate = (argc>2?atoi(argv[2]):RATE);
} else {
errorexit = 1;
}
if (g_rate > MAXRATE) {
errorexit=1;
}
if (errorexit) {
fprintf(stderr, "Usage: %s wavfile.wav [sample rate]\n",argv[0]);
fprintf(stderr, " default sample rate = %d\n",RATE);
fprintf(stderr, " maximum samplerate = %d\n",MAXRATE);
return 1;
}
// locals
uint32_t starttime = time(NULL) ;
uint8_t ft ;
char inputfile[255], outputfile[255] ;
// string hygeine
memset( inputfile , 0 , 255 ) ;
memset( outputfile , 0 , 255 ) ;
// assign values to globals
double temp1, temp2, temp3 ;
temp1 = (double)( 1 << (BITS - 1) ) ;
temp2 = VOLPCT / 100.0 ;
temp3 = temp1 * temp2 ;
g_scale = (uint32_t)temp3 ;
g_twopioverrate = 2.0 * M_PI / g_rate ;
g_uspersample = 1000000.0 / (double)g_rate ;
g_theta = 0.0 ;
g_samples = 0.0 ;
g_fudge = 0.0 ;
printf( "Constants check:\n" ) ;
printf( " rate = %d\n" , g_rate ) ;
printf( " BITS = %d\n" , BITS ) ;
printf( " VOLPCT = %d\n" , VOLPCT ) ;
printf( " scale = %d\n" , g_scale ) ;
printf( " us/samp = %f\n" , g_uspersample ) ;
printf( " 2p/rate = %f\n\n" , g_twopioverrate ) ;
// set filenames
strncpy( inputfile , argv[1] , strlen( argv[1] ) ) ;
ft = filetype( inputfile ) ;
if ( ft == FILETYPE_ERR )
{
printf( "Exiting.\n" ) ;
return 2 ;
}
strncpy( outputfile, inputfile , strlen( inputfile ) ) ;
#ifdef AUDIO_AIFF
strcat( outputfile , ".aiff" ) ;
#endif
#ifdef AUDIO_WAV
strcat( outputfile , ".wav" ) ;
#endif
printf( "Input file is [%s].\n" , inputfile ) ;
printf( "Output file is [%s].\n" , outputfile ) ;
// prep
g_imgfp = fopen( inputfile , "r" ) ;
g_outfp = fopen( outputfile , "w" ) ;
printf( "FILE ptrs opened.\n" ) ;
if ( ft == FILETYPE_JPG )
{ g_imgp = gdImageCreateFromJpeg( g_imgfp ) ; }
else if ( ft == FILETYPE_PNG )
{ g_imgp = gdImageCreateFromPng( g_imgfp ) ; }
else
{
printf( "Some weird error!\n" ) ;
return 3 ;
}
printf( "Image ptr opened.\n" ) ;
// go!
addvisheader() ;
buildaudio() ;
addvistrailer() ;
#ifdef AUDIO_AIFF
writefile_aiff() ;
#endif
#ifdef AUDIO_WAV
writefile_wav();
#endif
// cleanup
fclose( g_imgfp ) ;
fclose( g_outfp ) ;
// brag
uint32_t endtime = time(NULL) ;
printf( "Created soundfile in %d seconds.\n" , ( endtime - starttime ) ) ;
return 0 ;
}
// =====================
// subs
// =====================
// filetype -- Check to see if input file is in one of our
// supported formats (currently jus JPEG and PNG).
// Uses libmagic.
uint8_t filetype( char *filename )
{
magic_t m ;
char m_str[ MAGIC_CNT + 2 ] ;
uint8_t retval ;
printf( " Checking filetype for file [%s]\n" , filename ) ;
retval = FILETYPE_ERR ;
m = magic_open( MAGIC_NONE ) ;
if ( m && ( magic_load(m, NULL) == 0 ) )
{
strncpy(m_str, magic_file(m, filename), MAGIC_CNT+1) ;
if ( strncmp(m_str, MAGIC_JPG, MAGIC_CNT) == 0 )
{
printf( " File is a JPEG image.\n" ) ;
retval = FILETYPE_JPG ;
}
else if ( strncmp(m_str, MAGIC_PNG, MAGIC_CNT) == 0 )
{
printf( " File is a PNG image.\n" ) ;
retval = FILETYPE_PNG ;
}
else
{
printf( " This file format is not supported!\n" ) ;
printf( " Please use a JPEG or PNG file instead.\n" ) ;
}
}
if ( m ) { magic_close(m) ; }
return retval ;
}
// playtone -- Add waveform info to audio data. New waveform data is
// added in a phase-continuous manner according to the
// audio frequency and duration provided. Note that the
// audio is still in a purely hypothetical state - the
// format of the output file is not determined until
// the file is written, at the end of the process.
// Also, yes, a nod to Tom Hanks.
void playtone( uint16_t tonefreq , double tonedur )
{
uint16_t tonesamples, voltage, i ;
double deltatheta ;
tonedur += g_fudge ;
tonesamples = ( tonedur / g_uspersample ) + 0.5 ;
deltatheta = g_twopioverrate * tonefreq ;
for ( i=1 ; i<=tonesamples ; i++ )
{
g_samples++ ;
if ( tonefreq == 0 ) { g_audio[ g_samples ] = 32768 ; }
else
{
#ifdef AUDIO_AIFF
voltage = 32768 + (int)( sin( g_theta ) * g_scale ) ;
#endif
#ifdef AUDIO_WAV
voltage = 0 + (int)( sin( g_theta ) * g_scale ) ;
#endif
g_audio[g_samples] = voltage ;
g_theta += deltatheta ;
}
} // end for i
g_fudge = tonedur - ( tonesamples * g_uspersample ) ;
} // end playtone
// addvisheader -- Add the specific audio tones that make up the
// Martin 1 VIS header to the audio data. Basically,
// this just means lots of calls to playtone().
void addvisheader()
{
printf( "Adding VIS header to audio data.\n" ) ;
// bit of silence
playtone( 0 , 500000 ) ;
// attention tones
playtone( 1900 , 100000 ) ; // you forgot this one
playtone( 1500 , 100000 ) ;
playtone( 1900 , 100000 ) ;
playtone( 1500 , 100000 ) ;
playtone( 2300 , 100000 ) ;
playtone( 1500 , 100000 ) ;
playtone( 2300 , 100000 ) ;
playtone( 1500 , 100000 ) ;
// VIS lead, break, mid, start
playtone( 1900 , 300000 ) ;
playtone( 1200 , 10000 ) ;
// playtone( 1500 , 300000 ) ;
playtone( 1900 , 300000 ) ;
playtone( 1200 , 30000 ) ;
// VIS data bits (Martin 1)
playtone( 1300 , 30000 ) ;
playtone( 1300 , 30000 ) ;
playtone( 1100 , 30000 ) ;
playtone( 1100 , 30000 ) ;
playtone( 1300 , 30000 ) ;
playtone( 1100 , 30000 ) ;
playtone( 1300 , 30000 ) ;
playtone( 1100 , 30000 ) ;
// VIS stop
playtone( 1200 , 30000 ) ;
printf( "Done adding VIS header to audio data.\n" ) ;
} // end addvisheader
// addvistrailer -- Add tones for VIS trailer to audio stream.
// More calls to playtone().
void addvistrailer ()
{
printf( "Adding VIS trailer to audio data.\n" ) ;
playtone( 2300 , 300000 ) ;
playtone( 1200 , 10000 ) ;
playtone( 2300 , 100000 ) ;
playtone( 1200 , 30000 ) ;
// bit of silence
playtone( 0 , 500000 ) ;
printf( "Done adding VIS trailer to audio data.\n" ) ;
}
// toneval -- Map an 8-bit value to a corresponding number between
// 1500 and 2300, on a simple linear scale. This is used
// to map an 8-bit color intensity (I know, wrong word)
// to an audio frequency. This is the lifeblood of SSTV.
uint16_t toneval ( uint8_t colorval )
{
return ( ( 800 * colorval ) / 256 ) + 1500 ;
}
// buildaudio -- Primary code for converting image data to audio.
// Reads color data for individual pixels from a libGD
// object, calls toneval() to convert the color data
// to an audio frequency, then calls playtone() to add
// that to the audio data. This routine assumes an image
// 320 wide x 256 tall x 24 bit colorspace (8 bits each
// for R, G, and B).
//
// In Martin 1, the image data is sent one row at a time,
// once for green, once for blue, and once for red. There
// is a separator tone between each channel's audio, and
// a sync tone at the beginning of each new row. This
// routine handles the sep/sync details as well.
void buildaudio ()
{
uint16_t x , y , k ;
uint32_t pixel ;
uint8_t r[320], g[320], b[320] ;
printf( "Adding image to audio data.\n" ) ;
for ( y=0 ; y<256 ; y++ )
{
// printf( "Row [%d] Sample [%d].\n" , y , g_samples ) ;
// read image data
for ( x=0 ; x<320 ; x++ )
{
pixel = gdImageGetTrueColorPixel( g_imgp, x, y ) ;
//printf( "Got pixel.\n" ) ;
// get color data
r[x] = gdTrueColorGetRed( pixel ) ;
g[x] = gdTrueColorGetGreen( pixel ) ;
b[x] = gdTrueColorGetBlue( pixel ) ;
}
// add row markers to audio
// sync
playtone( 1200 , 4862 ) ;
// porch
playtone( 1500 , 572 ) ;
// each pixel is 457.6us long in Martin 1
// add audio for green channel for this row
for ( k=0 ; k<320 ; k++ )
{ playtone( toneval( g[k] ) , 457.6 ) ; }
// separator tone
playtone( 1500 , 572 ) ;
// bloo channel
for ( k=0 ; k<320 ; k++ )
{ playtone( toneval( b[k] ) , 457.6 ) ; }
playtone( 1500 , 572 ) ;
// red channel
for ( k=0 ; k<320 ; k++ )
{ playtone( toneval( r[k] ) , 457.6 ) ; }
playtone( 1500 , 572 ) ;
} // end for y
printf( "Done adding image to audio data.\n" ) ;
} // end buildaudio
// writefile_aiff -- Save audio data to an AIFF file. Playback for
// AIFF format files is tricky. This worked on
// ARM Linux:
// aplay -r 11025 -c 1 -f U16_BE file.aiff
// The WAV output is much easier and more portable,
// but who knows - this code might be useful for
// something.
#ifdef AUDIO_AIFF
void writefile_aiff ()
{
uint32_t totalsize , audiosize , i ;
audiosize = 8 + ( 2 * g_samples ) ; // header + 2bytes/samp
totalsize = 4 + 8 + 18 + 8 + audiosize ;
printf( "Writing audio data to file.\n" ) ;
printf( "Got a total of [%d] samples.\n" , g_samples ) ;
// "form" chunk
fputs( "FORM" , g_outfp ) ;
fputc( (totalsize & 0xff000000) >> 24 , g_outfp ) ;
fputc( (totalsize & 0x00ff0000) >> 16 , g_outfp ) ;
fputc( (totalsize & 0x0000ff00) >> 8 , g_outfp ) ;
fputc( (totalsize & 0x000000ff) , g_outfp ) ;
fputs( "AIFF" , g_outfp ) ;
// "common" chunk
fputs( "COMM" , g_outfp ) ;
fputc( 0 , g_outfp ) ; // size
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 18 , g_outfp ) ;
fputc( 0 , g_outfp ) ; // channels = 1
fputc( 1 , g_outfp ) ;
fputc( (g_samples & 0xff000000) >> 24 , g_outfp ) ; // size
fputc( (g_samples & 0x00ff0000) >> 16 , g_outfp ) ;
fputc( (g_samples & 0x0000ff00) >> 8 , g_outfp ) ;
fputc( (g_samples & 0x000000ff) , g_outfp ) ;
fputc( 0 , g_outfp ) ; // bits/sample
fputc( 16 , g_outfp ) ;
fputc( 0x40 , g_outfp ) ; // 10 byte sample rate (??)
fputc( 0x0c , g_outfp ) ; // <--- 11025
fputc( 0xac , g_outfp ) ;
fputc( 0x44 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
// audio data chunk
fputs( "SSND" , g_outfp ) ;
fputc( (audiosize & 0xff000000) >> 24 , g_outfp ) ;
fputc( (audiosize & 0x00ff0000) >> 16 , g_outfp ) ;
fputc( (audiosize & 0x0000ff00) >> 8 , g_outfp ) ;
fputc( (audiosize & 0x000000ff) , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
// FINALLY, the audio data itself
for ( i=0 ; i<=g_samples ; i++ )
{
fputc( ( g_audio[i] & 0xff00 ) >> 8 , g_outfp ) ;
fputc( ( g_audio[i] & 0x00ff ) , g_outfp ) ;
}
printf( "Done writing to audio file.\n" ) ;
}
#endif
// writefile_wav -- Write audio data to a WAV file. Once the file
// is written, any audio player in the world ought
// to be able to play the file without any funky
// command-line params.
#ifdef AUDIO_WAV
void writefile_wav ()
{
uint32_t totalsize , audiosize , byterate , blockalign ;
uint32_t i ;
audiosize = g_samples * CHANS * (BITS / 8) ; // bytes of audio
totalsize = 4 + (8 + 16) + (8 + audiosize) ; // audio + some headers
byterate = g_rate * CHANS * BITS / 8 ; // audio bytes / sec
blockalign = CHANS * BITS / 8 ; // total bytes / sample
printf( "Writing audio data to file.\n" ) ;
printf( "Got a total of [%d] samples.\n" , g_samples ) ;
// RIFF header
fputs( "RIFF" , g_outfp ) ;
// total size, audio plus some headers (LE!!)
fputc( (totalsize & 0x000000ff) , g_outfp ) ;
fputc( (totalsize & 0x0000ff00) >> 8 , g_outfp ) ;
fputc( (totalsize & 0x00ff0000) >> 16 , g_outfp ) ;
fputc( (totalsize & 0xff000000) >> 24 , g_outfp ) ;
fputs( "WAVE" , g_outfp ) ;
// sub chunk 1 (format spec)
fputs( "fmt " , g_outfp ) ; // with a space!
fputc( 16 , g_outfp ) ; // size of chunk (LE!!)
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 0 , g_outfp ) ;
fputc( 1 , g_outfp ) ; // format = 1 (PCM) (LE)
fputc( 0 , g_outfp ) ;
fputc( 1 , g_outfp ) ; // channels = 1 (LE)
fputc( 0 , g_outfp ) ;
// samples / channel / sec (LE!!)
fputc( (g_rate & 0x000000ff) , g_outfp ) ;
fputc( (g_rate & 0x0000ff00) >> 8 , g_outfp ) ;
fputc( (g_rate & 0x00ff0000) >> 16 , g_outfp ) ;
fputc( (g_rate & 0xff000000) >> 24 , g_outfp ) ;
// bytes total / sec (LE!!)
fputc( (byterate & 0x000000ff) , g_outfp ) ;
fputc( (byterate & 0x0000ff00) >> 8 , g_outfp ) ;
fputc( (byterate & 0x00ff0000) >> 16 , g_outfp ) ;
fputc( (byterate & 0xff000000) >> 24 , g_outfp ) ;
// block alignment (LE!!)
fputc( (blockalign & 0x00ff) , g_outfp ) ;
fputc( (blockalign & 0xff00) >> 8 , g_outfp ) ;
fputc( (BITS & 0x00ff) , g_outfp ) ; // bits/sample (LE)
fputc( (BITS & 0xff00) >> 8 , g_outfp ) ;
// sub chunk 2
// header
fputs( "data" , g_outfp ) ;
// audio bytes total (LE!!)
fputc( (audiosize & 0x000000ff) , g_outfp ) ;
fputc( (audiosize & 0x0000ff00) >> 8 , g_outfp ) ;
fputc( (audiosize & 0x00ff0000) >> 16 , g_outfp ) ;
fputc( (audiosize & 0xff000000) >> 24 , g_outfp ) ;
// FINALLY, the audio data itself (LE!!)
for ( i=0 ; i<=g_samples ; i++ )
{
fputc( ( g_audio[i] & 0x00ff ) , g_outfp ) ;
fputc( ( g_audio[i] & 0xff00 ) >> 8 , g_outfp ) ;
}
// no trailer
printf( "Done writing to audio file.\n" ) ;
}
#endif
// end