forked from ml-implementations/machine-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconditional_gan.py
199 lines (161 loc) · 7.13 KB
/
conditional_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import numpy as np
import fire
import cv2
import matplotlib.pyplot as plt
import torch.nn as nn
import torch
from torchvision.transforms import transforms
from torchvision.datasets import MNIST
from torch.optim import Adam
from multiprocessing import set_start_method
torch.set_default_tensor_type(torch.cuda.FloatTensor)
try:
set_start_method('spawn')
except RuntimeError:
pass
class CGAN:
def __init__(self):
self.discriminator = Discriminator()
self.generator = Generator()
self.gan = None
self.gan_input = 100
self.batch_size = 32
self.test_count = 9
self.classes = 10
self.train_mnist_dataloader = None
self.test_mnist_dataloader = None
self.mnist_epochs = 50
self.discriminator_opt = Adam(self.discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
self.generator_opt = Adam(self.generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
self.loss = nn.BCELoss()
self.generator_model_path = 'models/cgan.hdf5'
def load_data(self):
transform = transforms.Compose(
[transforms.ToTensor()]
)
train_set = MNIST(root='./data/mnist', train=True, download=True, transform=transform)
self.train_mnist_dataloader = torch.utils.data.DataLoader(train_set,
batch_size=self.batch_size,
shuffle=True, num_workers=1)
test_set = MNIST(root='./data/mnist', train=False, download=True, transform=transform)
self.test_mnist_dataloader = torch.utils.data.DataLoader(test_set, batch_size=self.batch_size,
shuffle=False, num_workers=1)
def train(self):
self.load_data()
for epoch in range(self.mnist_epochs):
for i, data in enumerate(self.train_mnist_dataloader, 0):
real, real_labels = data
real_target = torch.ones(size=(self.batch_size, 1), requires_grad=False) - 0.1
fake_target = torch.zeros(size=(self.batch_size, 1), requires_grad=False)
# generator update
self.generator_opt.zero_grad()
noise = torch.tensor(np.random.normal(0, 1, (self.batch_size, 100)), dtype=torch.float)
noise_labels = torch.tensor(np.random.randint(0, self.classes, size=(self.batch_size, 1)),
dtype=torch.long)
fake = self.generator(noise, noise_labels)
g_loss = self.loss(self.discriminator(fake, noise_labels), real_target)
g_loss.backward()
self.generator_opt.step()
# discriminator update
self.discriminator_opt.zero_grad()
real_loss = self.loss(self.discriminator(real.cuda().detach(), real_labels), real_target)
fake_loss = self.loss(self.discriminator(fake.detach(), noise_labels), fake_target)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
self.discriminator_opt.step()
print("Generator Loss: ", g_loss)
print("Discriminator Loss: ", d_loss)
# print results
self.sample_and_save_gan(epoch)
print("Epoch: ", epoch + 1)
print('Finished Training')
def sample_and_save_gan(self, epoch):
noise = torch.randn(size=(1, self.gan_input))
labels = torch.randint(self.classes - 1, size=(1, 1))
img = self.generator(noise, labels)
img = img.cpu().detach().numpy()
img = np.squeeze(img, axis=0)
img = np.squeeze(img, axis=0)
img = img * 255.0
print(img)
cv2.imwrite('gan_generated/img_{}.png'.format(epoch), img)
torch.save(self.generator.state_dict(), self.generator_model_path)
def plot_results(self, generated):
fig = plt.figure(figsize=(28, 28))
columns = np.sqrt(self.test_count)
rows = np.sqrt(self.test_count)
generated = generated.cpu().detach().numpy()
generated = np.squeeze(generated, axis=1)
generated = generated * 255.0
for i in range(1, int(columns) * int(rows) + 1):
fig.add_subplot(rows, columns, i)
plt.imshow(generated[i - 1], cmap='gray_r')
plt.show()
def test(self):
self.load_generator()
noise = torch.randn(size=(self.test_count, self.gan_input))
labels = torch.randint(self.classes - 1, size=(self.test_count, 1))
print(labels)
generated = self.generator(noise, labels)
self.plot_results(generated)
def load_generator(self):
self.generator = Generator()
self.generator.load_state_dict(torch.load(self.generator_model_path))
self.generator.eval()
class Discriminator(nn.Module):
def __init__(self, n_classes=10):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(in_channels=2, out_channels=64, kernel_size=3, stride=2, padding=1)
self.leaky_relu1 = nn.LeakyReLU(negative_slope=0.2)
self.drop_out1 = nn.Dropout(0.4)
self.conv2 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=2, padding=1)
self.leaky_relu2 = nn.LeakyReLU(negative_slope=0.2)
self.drop_out2 = nn.Dropout(0.4)
self.fc1 = nn.Linear(7 * 7 * 64, 1)
self.sigmoid = nn.Sigmoid()
self.embedding1 = nn.Embedding(n_classes, 50)
self.fc1_label = nn.Linear(50, 784)
def forward(self, x, y):
y = self.embedding1(y)
y = self.fc1_label(y)
y = y.view(-1, 1, 28, 28)
x = torch.cat([x, y], dim=1)
x = self.conv1(x)
x = self.leaky_relu1(x)
x = self.drop_out1(x)
x = self.conv2(x)
x = self.leaky_relu2(x)
x = self.drop_out2(x)
x = torch.flatten(x, start_dim=1)
x = self.sigmoid(self.fc1(x))
return x
class Generator(nn.Module):
def __init__(self, n_classes=10):
super(Generator, self).__init__()
self.fc1_out = 128 * 7 * 7
self.fc1 = nn.Linear(100, self.fc1_out)
self.leaky_relu1 = nn.LeakyReLU(negative_slope=0.2)
self.conv1 = nn.ConvTranspose2d(129, 128, kernel_size=4, stride=2, padding=1)
self.leaky_relu2 = nn.LeakyReLU(negative_slope=0.2)
self.conv2 = nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1)
self.leaky_relu3 = nn.LeakyReLU(negative_slope=0.2)
self.conv3 = nn.Conv2d(128, 1, kernel_size=7, padding=3)
self.sigmoid = nn.Sigmoid()
self.embedding1 = nn.Embedding(n_classes, 50)
self.fc1_label = nn.Linear(50, 49)
def forward(self, x, y):
x = self.fc1(x)
x = self.leaky_relu1(x)
x = x.view(-1, 128, 7, 7)
y = self.embedding1(y)
y = self.fc1_label(y)
y = y.view(-1, 1, 7, 7)
x = torch.cat([x, y], dim=1)
x = self.conv1(x)
x = self.leaky_relu2(x)
x = self.conv2(x)
x = self.leaky_relu3(x)
x = self.sigmoid(self.conv3(x))
return x
if __name__ == "__main__":
fire.Fire(CGAN)