-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
81 lines (60 loc) · 2.87 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
import torch.nn as nn
import torchvision.models as models
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
super(EncoderCNN, self).__init__()
resnet = models.resnet50(pretrained=True)
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
def forward(self, images):
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
return features
#class DecoderRNN(nn.Module):
# def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1):
# pass
# def forward(self, features, captions):
# pass
# def sample(self, inputs, states=None, max_len=20):
# " accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) "
# pass
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, dropout=0.5):
super().__init__()
self.embed_size = embed_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
# embedding layers
self.embed = nn.Embedding(vocab_size, embed_size)
# LSTM layer with droputout
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers=2, dropout=dropout, batch_first=True)
# Linear layer that maps the hidden state output dim to the # of words as output, vocab_size
self.fc = nn.Linear(hidden_size, vocab_size)
self.softmax = nn.LogSoftmax(dim=-1)
def forward(self, features, captions):
# add one more dimension for features as LSTM input
features = features.view(-1, 1, self.embed_size)
captions = self.embed(captions)
# Discard the <end> token and Stack the features and captions as inputs
inputs = torch.cat((features, captions[:, :-1,:]), dim=1)
#lstm_output shape : (batch_size, caption length, hidden_size)
lstm_output, lstm_hidden = self.lstm(inputs)
# Fully connected layer to turn the output into vectors in the size (batch_size, caption length, vocab_size)
output = self.fc(lstm_output)
output_scores = self.softmax(output)
return output_scores
def sample(self, inputs, states=None, max_len=20):
sampled_ids = []
for i in range(max_len):
hiddens, states = self.lstm(inputs, states)
outputs = self.fc(hiddens.squeeze(1))
predicted = outputs.max(1)[1]
sampled_ids.append(predicted.data[0].item())
inputs = self.embed(predicted)
inputs = inputs.unsqueeze(1)
return sampled_ids