-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
228 lines (186 loc) · 9.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import argparse,os,json,torch,sys,math
import numpy as np
import pandas as pd
import torch.nn as nn
import torch.distributed as dist
from time import time
from asset import *
from test import test
from utils import update_config,check_config,discretize_logit,cal_acc,time_trans,split_data
from data_loader import universed_loader
from torch.utils.tensorboard import SummaryWriter
def init_param(m):
if type(m)==nn.Linear:
nn.init.normal_(m.weight,std=0.01)
nn.init.constant_(m.bias,0)
def init_model(config):
seed = config.seed
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.benchmark = True
gpu_num = torch.cuda.device_count()
if gpu_num<2: # disable ddp
config.ddp=0
activate_type = config.activate_func.lower()
config.activate_func = activate_set[activate_type]()
if config.ddp: # enable ddp
local_rank=int(os.environ['LOCAL_RANK'])
backend='nccl' if sys.platform=='linux' else 'gloo'
dist.init_process_group(backend,init_method='env://')
model = nn.parallel.DistributedDataParallel(model_set[config.model.lower()](config),
device_ids=[local_rank],
output_device=local_rank)
config.local_rank=local_rank
else:
model = model_set[config.model.lower()](config)
if gpu_num == 1:
model.cuda()
config.local_rank=0
model.apply(init_param)
config.activate_func = activate_type
return model
def init_logger(config,fold=None):
dir_name = '-'.join([f'{config.task}',
f'{config.vectorizer}' if config.vectorizer != 'ngram' else f'{config.n}{config.vectorizer[1:]}',
f'{config.model}',
f'{config.train_plan}' if ':' not in config.train_plan else '{}'.format(''.join(config.train_plan.split(':'))),
f'lr({int(math.log10(config.lr))})',
f'dout({config.dropout_rate})' if 'dropout_rate' in config else '',
f'{config.loss_func}',
f'{config.optimizer}',
f'{config.activate_func}'])
suffix = os.path.join(dir_name,f'fold_{fold}') if fold is not None else dir_name
config.save_dir=os.path.join(config.record_dir,suffix)
os.makedirs(config.save_dir,exist_ok=True)
config.weight_save_path=os.path.join(config.save_dir, 'best.pth')
config.task_train_log_path=os.path.join(config.save_dir,'train_log.txt')
def init_optim(config, model):
params = model.module.parameters() if config.ddp else model.parameters()
try:
optimizer = optim_set[config.optimizer.lower()](params,
lr=config.lr,
weight_decay=config.weight_decay)
except:
optimizer = optim_set[config.optimizer.lower()](params,
lr=config.lr,
weight_decay=config.weight_decay,
momentum = config.momentum)
if config.model.lower() != 'logistic':
return optimizer
else:
config.model = 'sub_logistic'
optimizers = [init_optim(config, net) for net in model.bk]
config.model = 'logistic'
return optimizers
def train_step(config, model, dataloader, optimizer, criterion):
model.train()
iters_num=len(dataloader.train_loader)
loss_collect=torch.zeros(iters_num)
for batch,(datas,labels) in enumerate(dataloader.train_loader):
datas,labels = datas.to(config.device), labels.to(config.device)
optimizer.zero_grad()
logit = model(datas).squeeze(-1)
logit = discretize_logit(config,logit,test=False)
loss = criterion(logit,labels)
loss.backward()
optimizer.step()
loss_collect[batch]=loss
return loss_collect.mean().item()
def train(config, model, dataloader, fold=None):
init_logger(config,fold)
optimizer = init_optim(config, model)
criterion = loss_set[config.loss_func.lower()]()
writer=SummaryWriter(config.save_dir)
print("\033[0;33;40mtraining...\033[0m")
time_start=time()
time_collect=torch.zeros(config.epoch)
for i in range(config.epoch):
epoch_start_time=time()
if config.model.lower() != 'logistic':
epoch_loss=train_step(config, model, dataloader, optimizer, criterion)
else:
epoch_loss = []
dataloaders = dataloader.dataloaders # binary train & val dataloader
for net_idx,net in enumerate(model.bk): # train each classifier
net_epoch_loss=train_step(config, net,
dataloaders[net_idx], optimizer[net_idx],
criterion)
epoch_loss.append(net_epoch_loss)
epoch_loss = sum(epoch_loss)/len(epoch_loss)
top1_acc,top5_acc=cal_acc(config,
dataloader.val_loader if config.model.lower() != 'logistic' else dataloader.origin_val_loader.val_loader,
model)
time_end=time()
time_collect[i]=time_end-epoch_start_time
avg_epoch_time=time_collect.sum()/(i+1)
writer.add_scalar('{}/epoch_loss'.format(config.dataset),epoch_loss,i)
writer.add_scalar('{}/top1_acc'.format(config.dataset), top1_acc, i)
writer.add_scalar('{}/top5_acc'.format(config.dataset), top5_acc, i)
if i==0:
best_epoch=i
best_loss=epoch_loss
best_acc=top1_acc
best_acc5=top5_acc
else:
if top1_acc>=best_acc:
best_epoch=i
best_loss=epoch_loss
best_acc=top1_acc
best_acc5=top5_acc
torch.save(model.state_dict(), config.weight_save_path)
log_context="epoch: {}, avg_loss: {:.3f}, Top 1_acc: {:.3f}, Top 5_acc: {:.3f}\n".format(i+1,epoch_loss,top1_acc,top5_acc)
log_context+="Average {:.1f} s/epoch | ".format(avg_epoch_time)
log_context+="Spend: {}\n".format(time_trans(time_end-time_start))
log_context+='Best: epoch_{}, loss_{:.3f}, Top 1_acc: {:.3f}, Top 5_acc: {:.3f}\n'.format(best_epoch+1,best_loss,best_acc,best_acc5)
log_context+='-'*40+'\n'
with open(config.task_train_log_path,'a',encoding='utf-8') as log_writer:
print('\033[0;33;40m'+'-'*40+'\033[0m')
log_writer.writelines(log_context)
print("\033[0;33;40m{}\033[0m".format(log_context))
writer.close()
return best_acc
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-c','--config_file', type=str, default=r'E:\AIL\project\NLP-Laboratary\Config\pick_optim\sgd.json')#f'{sys.path[0]}/Config/softmax_pattern.json')
parser.add_argument('-r','--record_dir', type=str, default=r'E:\AIL\project\NLP-Laboratary\Results\pick_optim')#f'{sys.path[0]}/Results')
config = parser.parse_args()
config = update_config(config)
config.task = os.path.split(config.dataset)[-1]
config.dataset = os.path.join(sys.path[0],config.dataset)
check_config(config)
vectorizer, train_val_data, _ = preprocess_set[config.vectorizer](config)
train_num, val_num, train_val_sections = split_data(config, train_val_data)
if isinstance(val_num,list): # k-fold mode
fold_acc = []
for fold_idx, val_idx in enumerate(val_num):
config.seed += val_idx
val_data = train_val_sections[val_idx].copy()
train_data = pd.concat(train_val_sections[train_num[fold_idx][0]].copy() + \
train_val_sections[train_num[fold_idx][1]].copy())
dataloader = universed_loader(config, vectorizer, train_data, val_data)
model = init_model(config)
acc = train(config, model, dataloader, fold_idx)
fold_acc.append(acc)
if config.ddp:
dist.destroy_process_group()
del model
max_fold_idx = np.argmax(fold_acc)
best_weight_dir = os.path.join(os.path.dirname(config.save_dir),
f'fold_{max_fold_idx}')
new_dir_name = os.path.join(os.path.dirname(best_weight_dir),
f'(best)fold_{max_fold_idx}')
os.renames(best_weight_dir,
new_dir_name)
config.best_weight_path = os.path.join(new_dir_name,'best.pth')
config.save_dir = os.path.dirname(new_dir_name)
else:
train_data = pd.concat(train_val_sections[:train_num])
val_data = pd.concat(train_val_sections[train_num:])
dataloader = universed_loader(config, vectorizer, train_data, val_data)
model = init_model(config)
train(config, model, dataloader)
config.best_weight_path = config.weight_save_path
with open(os.path.join(config.save_dir, 'config.json'), 'w') as f:
json.dump(config.__dict__, f, indent=4)
test(config)