-
Notifications
You must be signed in to change notification settings - Fork 4
/
index.html
166 lines (152 loc) · 12.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<script type="text/javascript">
if (window.location.protocol != "https:") {
location.href = location.href.replace("http://", "https://");
};a
</script>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" type="text/css" href="css/style.css">
<link rel="stylesheet" type="text/css" href="css/mtgoatstyle.css">
<link rel="stylesheet" type="text/css" href="css/index.css">
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:400,300,700">
<link rel="stylesheet" type="text/css" href="font-awesome/css/font-awesome.min.css">
<title>AiAi.care CAD for Tuberculosis and Lung Cancer Screening in Chest X-rays (Open Source Project)</title>
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-135272827-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-135272827-1');
</script>
</head>
<body>
<div id="header"><section id="hero" class="hero full-height valign-wrapper scrollspy">
<canvas id="canvas"></canvas>
</section>
<h1 class="center">Project AiAi.care</h1>
<script type="text/javascript" src="js/yellow.js"></script></div>
<div>
<div class="mini-section more-than">
<div class="container">
<h1 id="more-than-just-code"><b>About</b></h1>
<h3 class="lead-graf">AiAi.care volunteer project is working to reduce <b>Tuberculosis</b>, <b>COVID-19</b> 👾 and <b>Lung Cancer</b> screening time and screening costs by teaching computers to "see" and interpret chest X-rays how a human Radiologist would.
<br><br>
We are using 700,000 labeled chest X-Rays dataset + Deep Learning to build an <b>FDA 💊 approved, open-source</b> screening tool for Tuberculosis, COVID-19, and Lung Cancer. After an MRMC clinical trial, AiAi.care CAD will be distributed for free to emerging nations and charitable hospitals everywhere 🌏 </h3>
</div>
</div>
<div class="mini-section">
<div class ="container">
<h1 id="more-than-just-code"><b>Tuberculosis</b> Screening</h1>
<h3 class="lead-graf">One in four people are exposed to M. Tuberculosis bacterium, but it does not become active TB unless mixed with malnutrition and overcrowding. These two factors have earned TB the nickname <i>"disease of poverty"</i>. </br> </br>
Emerging nations have 12x fewer Radiologists compared to developed world, so TB patients often remain undetected while continuing to spread the bacterium further through air (coughing, sneezing, spitting). In recent years Tuberculosis is massively resurgent with 8.6 million new cases of active TB diagnosed worldwide in 2012. India accounted for a record 2.76 million new cases in 2016. A lot of these cases are MDR (Multi-Drug Resistant) TB strain.</br></br>
AiAi's free TB screening tool will help emerging nations overcome shortage of Radiologists by screening X-rays <b style="color:red">within 45 seconds</b> of capture. Early results show that our algo can potentially deliver expert-panel grade TB screening capabilities to underserved regions.</h3>
</div>
</div>
<div class="mini-section">
<div class ="container">
<h1 id="more-than-just-code"><b>COVID-19</b>: Algorithm in Progress</h1>
<h3 class="lead-graf">We are re-training our algorithm to screen for COVID-19 pneumonia. Subscribe to our <a href="https://Twitter.com/AiAiHealthcare" class="freshr-button">Twitter</a> feed for the latest updates!
</h3>
</div>
</div>
<div class="mini-section">
<div class ="container">
<h1 id="more-than-just-code"><b>Lung Cancer</b> Screening</h1>
<h3 class="lead-graf">When it comes to cancer, early detection delivers a huge delta in survival rates compared to late detection. Unfortunately, Lung Cancer is mostly asymptomatic in earlier stages so detections in developing countries happen <b>around Stage (III A)</b>. This late detection causes more people to die of lung cancer than of colon, breast, and prostate cancers combined.
</h3>
<div class="row section source-data-code">
<div class="col-md-3"></div>
<div class="col-md-3 col-sm-6 col-xs-6">
<h3>Cancer Stage: </h3>
<font size="8">I.<br>II.<br>III.<br>IV.</font>
</div>
<div class="col-md-3 col-sm-6 col-xs-6">
<h3>5-Yr Survival: </h3>
<font size="8">47%<br>26%<br>8%<br>2%</font>
</div>
<div class="col-md-3"></div>
</div>
<h3 class="lead-graf">71% of lung cancers detected in chest X-Rays were <b>visible in retrospect</b> on previous imaging studies. Furthermore, a 1999 NIH long-term study of American Radiologists found that <b>19% missed lung cancers</b> present in current chest X-Rays. These numbers may be more stark for developing nations where X-Rays are read by Primary Care Physians (PCP) instead of Radiologists. <br><br>
<b style="color:red">Herein lies a 5X life-saving opportunity for early detection:</b> We propose that a Machine-Learning screening tool with class leading sensitivity and specificity can help reduce missed-diagnose opportunities, and as a result improve survival rates 5X through early detection.
</h3>
</div>
</div>
<div class="mini-section more-than">
<div class="container">
<h1 id="more-than-just-code">Baseline <b>Sensitivity</b> and <b>Specificity</b> Targets</h1>
<h3 class="lead-graf">
- Experienced Radiologist’s Lung Cancer sensitivity is 67.5% and specificity is 91% according to (Ref: PLoS One | DOI:10.1371/journal.pone.0136624) <br>
- Commercial CAD algorithm "Riverain OnGuard v5.2" for lung cancer detection scored 77.78% sensitivity with 32% false-positives and 55.7% test efficiency (Ref: Journal of Digital Imaging (2013) 26:651–656 DOI 10.1007/s10278-012-9565-4). <br>
- CAD4TB by Delft Imaging scored sensitivity of 47% (95% CI range: 40-54) with 94% specificity (95% CI range: 91-97) for Tuberculosis screening (Ref: PLoS One | 2014;9:e106381). <br>
<br>
We are aiming to beat commercial CAD algorithms by applying latest breakthroughs in Artificial Intelligence, Deep Learning, ensembling, and data augmentation.
</h3>
<div style="height:50px;"></div>
<div style="height:50px;"></div>
<h1 id="more-than-just-code"><b>Price</b> of Commercial 💸 CADs</h1>
<h3 class="lead-graf">An FDA-approved commercial CADe / CADx package costs <b>$50,000</b> per year for low volume radiology facilities that consult <20 patients per day. A typical large hospital license with hundreds of studies per day costs <b>$500,000</b>🧐 per year or more. <br><br>
These costs are entirely out of reach for developing countries and charitable hospitals. This is why we are building AiAi to provide a <b><u>free 🗽 FDA-approved, open-source</u></b> alternative to the world.
</h3>
<div style="height:50px;"></div>
<img src="images/h1.png" class="center-block" style="width:60%; padding:5px;" alt="CAD algorithms from GE, Philips, Siemens are too expensive for charitable hospitals in developing countries.">
<div style="height:50px;"></div>
<div style="height:50px;"></div>
</div>
</div>
<div class="mini-section" style="overflow: hidden; background-color:#ffd740; color:#fff; ">
<div class="container" >
<h1 id="join-the-revolution" style="color:#fff; font-size: 500%;">Donate 💝 your Expertise</h1>
</div>
<div class="row section" >
<div class="col-md-1"></div>
<div class="col-md-5" >
<a href="https://github.com/AiAiHealthcare/ProjectAiAi/wiki"><img src="images/hammer.png" class="center-block" style="width: 50%;" alt="If you are a healthcare lawyer, you can contribute your advice to our Legal Wiki here on how to donate an open-source radiology computer-aided detection algorithm for clinical use around the world."></a>
<a href="https://github.com/AiAiHealthcare/ProjectAiAi/wiki"><h3 style="color:#fff; font-size:200%;">I am a Lawyer:<br><br></h3></a>
<p style="font-size: 130%;">You can donate your time to draft legal strategy for a unique legal challenge: donating a medical protocol, globally. Please contribute to the wiki for legal strategy by clicking above. <br><br><br> </p>
</div>
<div class="col-md-5" >
<a href="https://aiai.typeform.com/to/zeVTP9"><img src="images/radiology.png" class="center-block" style="width: 50%;" alt="If you are a Radiologist, please donate one weekend to our project and help us validate the accuracy of AiAi in a MRMC study here."></a>
<a href="https://aiai.typeform.com/to/zeVTP9"><h3 style="color:#fff; font-size:200%; ">I am a 🎖 Radiologist:<br><br></h3></a>
<p style="font-size: 130%;">You can donate one weekend to validate AiAi CAD algorithm and its results. Please click above to fill out Radiologist volunteer form. <br> </p>
</div>
<div class="col-md-1"></div>
</div>
<div class="row section" >
<div class="col-md-1"></div>
<div class="col-md-5">
<a href="https://github.com/AiAiHealthcare/ProjectAiAi/projects/1?fullscreen=true"><img src="images/machine.png" class="center-block" style="width: 50%;" alt="If you have experience in data science, machine learning, or deep learning algorithms for images, speech, or NLP text, then please help project AiAi by contributing some code / pull requests on our Github page here."></a>
<a href="https://github.com/AiAiHealthcare/ProjectAiAi/projects/1?fullscreen=true"><h3 style="color:#fff; font-size:200%;">I am a Machine Learning/Deep Learning Scientist:</h3></a>
<p style="font-size: 130%;">Dip your toes in Swish, GELU, Capsules, Multiscale-Networks, DenseNet, Wide ResNet, ResNext, PyTorch, Ensembling, XGBoost, Scikit-Image, Python 3.6, Docker, NVidia CUDA cuDNN, DICOM, HL7/FHIR, and soon PACS/VNA. Visit our Github! <br><br><br> </p>
</div>
<div class="col-md-5">
<a href="http://www.google.com/recaptcha/mailhide/d?k=01O9TGiBVBTfEuurVyCkwQQA==&c=gAX38MX809iYVb98YA-M5inbaOnbQx8O85HstGFuF78=" onclick="window.open('http://www.google.com/recaptcha/mailhide/d?k\x3d01O9TGiBVBTfEuurVyCkwQQA\x3d\x3d\x26c\x3dgAX38MX809iYVb98YA-M5inbaOnbQx8O85HstGFuF78\x3d', '', 'toolbar=0,scrollbars=0,location=0,statusbar=0,menubar=0,resizable=0,width=500,height=300'); return false;" title="Reveal this e-mail address"><img src="images/hospital.png" class="center-block" style="width: 50%;" alt="If you represent a charitable hospital or non-governmental aid organization, then please contact us and we will set you up with free clinical software for computer aided detection from Digital X-ray Radiology modality."></a>
<a href="http://www.google.com/recaptcha/mailhide/d?k=01O9TGiBVBTfEuurVyCkwQQA==&c=gAX38MX809iYVb98YA-M5inbaOnbQx8O85HstGFuF78=" onclick="window.open('http://www.google.com/recaptcha/mailhide/d?k\x3d01O9TGiBVBTfEuurVyCkwQQA\x3d\x3d\x26c\x3dgAX38MX809iYVb98YA-M5inbaOnbQx8O85HstGFuF78\x3d', '', 'toolbar=0,scrollbars=0,location=0,statusbar=0,menubar=0,resizable=0,width=500,height=300'); return false;" title="Reveal this e-mail address"><h3 style="color:#fff; font-size:200%; ">I represent an NGO or Hospital:<br><br></h3></a>
<p style="font-size: 130%;">If your NGO or charitable hospital can benefit from a Tuberculosis or Lung Cancer CAD, please click here to send me an email. I will set you up with free access to a cloud-hosted CAD. <br><br><br> </p>
</div>
<div class="col-md-1"></div>
</div>
</div>
</div>
<footer class="mg-main-footer">
<div class="container">
<div class="mg-social-lists">
<h1 class="center">Connect 📨 with Us</h1>
<ul>
<li>
<a href="https://Twitter.com/AiAiHealthcare" class="freshr-button"><i class="fa fa-twitter"></i><span>Twitter</span></a>
</li>
<li>
<a href="https://github.com/AiAiHealthcare/ProjectAiAi/projects/1?fullscreen=true" class="freshr-button"><i class="fa fa-github"></i><span>GitHub</span></a>
</li>
<li>
<a href="https://gitter.im/AiAi-care/Lobby" class="freshr-button"><i class="fa fa-link"></i><span>Gitter</span></a>
</li>
</ul>
</div>
</div>
</footer>
</body>
</html>