-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathuse_search_apis.py
526 lines (470 loc) · 22.4 KB
/
use_search_apis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
import argparse
import requests
import random
from tqdm import tqdm
import json
from openai import OpenAI
import time
import numpy as np
from src.utils import load_jsonlines
from bs4 import BeautifulSoup
import requests
import json
import re
from tqdm import tqdm
import argparse
import pandas as pd
from xml.etree import ElementTree as ET
import os
S2_API_KEY=os.environ["S2_API_KEY"]
# YOUR_API_KEY = os.environ["YOUR_API_KEY"]
PES2O_INDEX_URL="YOUR_PES2O_INDEX_URL"
keyword_extraction_prompt = """
Suggest semantic scholar search APIs to retrieve relevant papers to answer the following question related to the most recent NLP research. The search queries must be short, and commma separated. Here's an example. I'll show one example and the test instance you should suggest the search queries. \n
##\n
Question: How have prior work incorporated personality attributes to train personalized dialogue generation models?\n
Search queries: personalized dialogue generation, personalized language models, personalized dialogue\n
##\n
Question: How do retrieval-augmented LMs perform well in knowledge-intensive tasks?\n
Search queries: retrieval-augmented LMs, knowledge-intensive tasks, large language models for knowledge-intensive tasks, retrieval-augmented generation
##\n
Question: {question}\n
Search queries:
"""
def get_paper_data(paper_id):
url = 'https://api.semanticscholar.org/graph/v1/paper/CorpusID:' + paper_id
# Define which details about the paper you would like to receive in the response
paper_data_query_params = {'fields': 'title,year,abstract,url,authors.name,citationCount,year,openAccessPdf'}
# Send the API request and store the response in a variable
api_key = S2_API_KEY
headers = {'x-api-key': api_key}
try:
response = requests.get(url, params=paper_data_query_params, headers=headers)
# time.sleep(0.1)
if response.status_code == 200:
return response.json()
else:
return None
except:
return None
def is_integer_string(s):
return s.isdigit()
def get_paper_data(paper_id):
if is_integer_string(paper_id) is False:
url = 'https://api.semanticscholar.org/graph/v1/paper/' + paper_id
else:
url = 'https://api.semanticscholar.org/graph/v1/paper/CorpusID:' + paper_id
# Define which details about the paper you would like to receive in the response
paper_data_query_params = {'fields': 'title,year,abstract,url,authors.name,citationCount,year,openAccessPdf'}
# Send the API request and store the response in a variable
api_key = S2_API_KEY
headers = {'x-api-key': api_key}
try:
response = requests.get(url, params=paper_data_query_params, headers=headers)
# time.sleep(0.1)
if response.status_code == 200:
return response.json()
else:
return None
except:
return None
def call_api(input_query, client, model_name="meta-llama/Llama-3-70b-chat-hf", max_tokens=1500, ):
chat_completion = client.chat.completions.create(
model=model_name,
messages=[{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": input_query}],
temperature=0.1,
max_tokens=max_tokens,
)
return chat_completion.choices[0].message.content
def get_citations(paper_id):
paper_data = get_paper_data(paper_id)
if paper_data is None:
return 0
else:
return paper_data["citationCount"]
def search_paper_via_query(query, max_paper_num=10):
if "Search queries: " in query:
query = query.split("Search queries: ")[1]
query_params = {'query': query, 'limit': max_paper_num, "minCitationCount": 10, "sort": "citationCount:desc", 'fields': 'title,year,abstract,authors.name,citationCount,year,url,externalIds'}
api_key = S2_API_KEY
# Define headers with API key
headers = {'x-api-key': api_key}
# Send the API request
response = requests.get('https://api.semanticscholar.org/graph/v1/paper/search', params=query_params, headers=headers)
time.sleep(0.5)
if response.status_code == 200:
response_data = response.json()
# Process and print the response data as needed
else:
response_data = None
print(f"Request failed with status code {response.status_code}: {response.text}")
# except:
# response_data = None
if response_data is None or len(response_data) == 0 or "data" not in response_data:
print("retrieval failed")
return None
else:
return response_data["data"]
def search_paper_via_title(title):
query_params = {'query': title, 'fields': 'title,year,abstract,authors.name,citationCount,year,url,externalIds,corpusId'}
api_key = S2_API_KEY
headers = {'x-api-key': api_key}
# Send the API request
try:
response = requests.get('https://api.semanticscholar.org/graph/v1/paper/search/match', params=query_params, headers=headers)
time.sleep(0.2)
# Check response status
if response.status_code == 200:
response_data = response.json()
# Process and print the response data as needed
else:
response_data = None
print(f"Request failed with status code {response.status_code}: {response.text}")
except:
response_data = None
if response_data is None or len(response_data) == 0 or "data" not in response_data:
return None
else:
return response_data["data"][0]
def retrieve_keywords(question, client, model_name):
keywords = call_api(keyword_extraction_prompt.format_map({"question": question}), client, model_name=model_name)
if "Search queries:" in keywords and len(keywords.split("\n\nSearch queries: ")) > 1:
keywords = keywords.split("\n\nSearch queries: ")[1]
queries = keywords.split(", ")[:5]
queries = [query.replace("Search queries: " , "") for query in queries if len(query) > 0]
return queries
def search_semantic_scholar(question, client, model_name):
new_keywords = retrieve_keywords(question, client, model_name=model_name)
paper_list = {}
for keyword in new_keywords:
top_papers = search_paper_via_query(keyword)
if top_papers is None:
return [], []
for paper in top_papers:
if paper["paperId"] not in paper_list:
paper["text"] = paper["abstract"]
paper["citation_counts"] = paper["citationCount"]
paper_list[paper["paperId"]] = paper
final_paper_list = []
for paper_id in paper_list:
final_paper_list.append({"semantic_scholar_id": paper_id, "type": "ss_abstract", "year": paper_list[paper_id]["title"], "authors": paper_list[paper_id]["authors"], "title": paper_list[paper_id]["title"], "text": paper_list[paper_id]["text"], "url": paper_list[paper_id]["url"], "citation_counts": paper_list[paper_id]["citationCount"], "abstract": paper_list[paper_id]["abstract"]})
if paper_list[paper_id]["externalIds"] is not None and "ArXiv" in paper_list[paper_id]["externalIds"]:
passages = retrieve_passages_single_paper(paper_list[paper_id]["externalIds"]["ArXiv"])
for p in passages:
final_paper_list.append({"semantic_scholar_id": paper_id, "type": "ss_abstract", "year": paper_list[paper_id]["title"], "authors": paper_list[paper_id]["authors"], "title": paper_list[paper_id]["title"], "text": p, "url": paper_list[paper_id]["url"], "citation_counts": paper_list[paper_id]["citationCount"], "abstract": paper_list[paper_id]["abstract"]})
return final_paper_list, new_keywords
def batch_paper_data(arxiv_ids):
api_key = S2_API_KEY
headers = {'x-api-key': api_key}
r = requests.post(
'https://api.semanticscholar.org/graph/v1/paper/batch',
params={'fields': 'referenceCount,citationCount,title,url,publicationDate,abstract'},
json={"ids": ['ARXIV:{0}'.format(id) for id in arxiv_ids]}, headers=headers)
time.sleep(1)
response_data = r.json()
return {id: data for id, data in zip(arxiv_ids, response_data)}
def batch_paper_data_pubmed(pubmed_ids):
api_key = S2_API_KEY
headers = {'x-api-key': api_key}
r = requests.post(
'https://api.semanticscholar.org/graph/v1/paper/batch',
params={'fields': 'referenceCount,citationCount,title,url,publicationDate,abstract'},
json={"ids": ['PMID:{0}'.format(id) for id in pubmed_ids]}, headers=headers)
time.sleep(0.1)
response_data = r.json()
return {id: data for id, data in zip(pubmed_ids, response_data)}
def batch_paper_data_SS_ID(paper_ids):
api_key = S2_API_KEY
headers = {'x-api-key': api_key}
r = requests.post(
'https://api.semanticscholar.org/graph/v1/paper/batch',
params={'fields': 'referenceCount,citationCount,title,url,publicationDate,abstract,year,authors.name'},
json={"ids": ["CorpusId:{0}".format(id) for id in paper_ids]}, headers=headers)
time.sleep(0.1)
response_data = r.json()
return {id: data for id, data in zip(paper_ids, response_data)}
def parsing_paragraph(link):
response = requests.get(link, verify=False)
time.sleep(0.1)
html = response.text
# Parse the HTML content
soup = BeautifulSoup(html, "html.parser")
# Find all sections with an id attribute that contains the letter "S"
raw_abstract = soup.find_all("div", "ltx_abstract")
try:
abstract = ''.join(raw_abstract[0].text.split("\n")[2:])
except:
abstract = ""
sections = soup.find_all("section", attrs={"id": re.compile(r"^S\d+$")})
subsections = soup.find_all(class_= 'ltx_para', id=re.compile(r"^S\d+\.+(p|S)"))
# Count the number of sections
count = len(subsections)
paragraphs = []
section_names = []
for i in range(count):
paragraphs.append(re.sub(r"\n", "", subsections[i].text))
return paragraphs
def retrieve_passages(arxiv_ids):
ar5iv_links = []
print("retrieved arxive papers: for {}".format(arxiv_ids))
for arxiv_id in arxiv_ids:
ar5iv_links.append(f"https://ar5iv.labs.arxiv.org/html/{arxiv_id}")
ids2paragraphs = {}
for arxiv_id, ar5iv_link in zip(arxiv_ids, ar5iv_links):
paragraphs = parsing_paragraph(ar5iv_link)
ids2paragraphs[arxiv_id] = paragraphs
# print(ar5iv_link)
# print(ids2paragraphs)
return ids2paragraphs
def retrieve_passages_single_paper(arxiv_id):
ar5iv_link = "https://ar5iv.labs.arxiv.org/html/{0}".format(arxiv_id)
paragraphs = parsing_paragraph(ar5iv_link)
return paragraphs
def get_pubmed_abstract_title(pmid):
# Define the base URL for the efetch utility
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
# Set the parameters for the API request
params = {
"db": "pubmed", # Specify the database
"id": pmid, # Provide the PubMed ID
"retmode": "xml" # Return results in XML format
}
# Make the request to the NCBI E-utilities API
response = requests.get(base_url, params=params)
# Check if the request was successful
if response.status_code == 200:
# Parse the XML response
root = ET.fromstring(response.content)
# Extract the title
if root.find(".//ArticleTitle") is None:
return None, None
title = root.find(".//ArticleTitle").text
# Extract the abstract (there can be multiple parts)
abstract = " ".join([elem.text for elem in root.findall(".//AbstractText") if type(elem.text) is str])
return title, abstract
else:
return None, None
def search_google_non_restricted(query):
search_results = search("site: https://arxiv.org/ OR https://pubmed.ncbi.nlm.nih.gov/ {}".format(query), advanced=True)
arxiv_ids = []
pubmed_ids = []
for result in search_results:
# try:
print(result.url)
arxiv_id = None
if "https://arxiv.org/abs/" in result.url:
arxiv_id = result.url.split("https://arxiv.org/abs/")[1]
if "https://arxiv.org/pdf/" in result.url:
arxiv_id = result.url.split("https://arxiv.org/pdf/")[1]
if "https://arxiv.org/html/" in result.url:
arxiv_id = result.url.split("https://arxiv.org/html/")[1]
if "v" in arxiv_id:
arxiv_id = arxiv_id.split("v")[0]
if arxiv_id is not None and len(arxiv_id) > 0:
arxiv_ids.append(arxiv_id)
if "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC" in result.url:
pubmed_id = result.url.split("https://www.ncbi.nlm.nih.gov/pmc/articles/PMC")[1][:-1]
pubmed_ids.append(pubmed_id)
if "https://pubmed.ncbi.nlm.nih.gov/" in result.url:
pubmed_id = result.url.split("https://pubmed.ncbi.nlm.nih.gov/")[1][:-1]
pubmed_ids.append(pubmed_id)
# except:
# continue
arxiv_ids = list(set(arxiv_ids))
pubmed_ids = list(set(pubmed_ids))
passages = retrieve_passages(arxiv_ids)
paper_meta_data_results = batch_paper_data(arxiv_ids)
ctxs = []
for arxiv_id in arxiv_ids:
paper_parsed = passages[arxiv_id]
if arxiv_id in paper_meta_data_results and type(paper_meta_data_results[arxiv_id]) is dict:
paper_meta_data = paper_meta_data_results[arxiv_id]
for p in paper_parsed:
ctxs.append({"title": paper_meta_data["title"], "text": p, "type": "google_search_arxiv", "url": paper_meta_data["url"], "citation_counts": paper_meta_data["citationCount"], "abstract": paper_meta_data["abstract"]})
pubmed_paper_data = batch_paper_data_pubmed(pubmed_ids)
for pubmed_id in pubmed_ids:
title, abstract = get_pubmed_abstract_title(pubmed_id)
if title is None or abstract is None:
continue
paper_data = pubmed_paper_data[pubmed_id]
ctxs.append({"title": title, "text": abstract, "type": "google_search_pubmed", "url": paper_data["url"], "citation_counts": paper_data["citationCount"], "abstract": paper_data["abstract"]})
return ctxs
def search_youcom_non_restricted(query):
headers = {"X-API-Key": YOUR_API_KEY}
query = "site: https://arxiv.org/ OR https://pubmed.ncbi.nlm.nih.gov/ {}".format(query)
params = {"query": query, "num_web_results": 20}
search_results = requests.get(
f"https://api.ydc-index.io/search",
params=params,
headers=headers,
).json()
search_results = search_results["hits"]
arxiv_ids = []
pubmed_ids = []
for result in search_results:
arxiv_id = None
if "https://arxiv.org/abs/" in result["url"]:
arxiv_id = result["url"].split("https://arxiv.org/abs/")[1]
if "https://arxiv.org/pdf/" in result["url"]:
arxiv_id = result["url"].split("https://arxiv.org/pdf/")[1]
if "https://arxiv.org/html/" in result["url"]:
arxiv_id = result["url"].split("https://arxiv.org/html/")[1]
if "v" in arxiv_id:
arxiv_id = arxiv_id.split("v")[0]
if arxiv_id is not None and len(arxiv_id) > 0:
arxiv_ids.append(arxiv_id)
if "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC" in result["url"]:
pubmed_id = result["url"].split("https://www.ncbi.nlm.nih.gov/pmc/articles/PMC")[1][:-1]
pubmed_ids.append(pubmed_id)
if "https://pubmed.ncbi.nlm.nih.gov/" in result["url"]:
pubmed_id = result["url"].split("https://pubmed.ncbi.nlm.nih.gov/")[1][:-1]
pubmed_ids.append(pubmed_id)
arxiv_ids = list(set(arxiv_ids))
pubmed_ids = list(set(pubmed_ids))
passages = retrieve_passages(arxiv_ids)
paper_meta_data_results = batch_paper_data(arxiv_ids)
ctxs = []
for arxiv_id in arxiv_ids:
paper_parsed = passages[arxiv_id]
if arxiv_id in paper_meta_data_results and type(paper_meta_data_results[arxiv_id]) is dict:
paper_meta_data = paper_meta_data_results[arxiv_id]
for p in paper_parsed:
ctxs.append({"title": paper_meta_data["title"], "text": p, "type": "you.com_arxiv", "url": paper_meta_data["url"], "citation_counts": paper_meta_data["citationCount"], "abstract": paper_meta_data["abstract"]})
pubmed_paper_data = batch_paper_data_pubmed(pubmed_ids)
for pubmed_id in pubmed_ids:
title, abstract = get_pubmed_abstract_title(pubmed_id)
if title is None or abstract is None:
continue
if pubmed_id not in pubmed_paper_data:
continue
paper_data = pubmed_paper_data[pubmed_id]
if type(paper_data) is str:
continue
ctxs.append({"title": title, "text": abstract, "type": "you.com_pubmed", "url": paper_data["url"] if paper_data is not None else "", "citation_counts": paper_data["citationCount"] if paper_data is not None else 0, "abstract": paper_data["abstract"] if paper_data is not None else ""})
return ctxs
def retrieve_pes2o_passages(query, n_docs, domains):
json_data = {
'query': query,
"n_docs": n_docs,
"domains": "pes2o"
}
headers={"Content-Type": "application/json"}
start = time.perf_counter()
search_results = requests.post(PES2O_INDEX_URL, json=json_data, headers=headers).json()
end = time.perf_counter()
print(f"search took {end - start:0.4f} seconds")
ctxs = []
print("loading paper data")
start = time.perf_counter()
paper_data = {id: get_paper_data(id) for id in search_results["results"]["pes2o IDs"]}
print(f"paper data took {end - start:0.4f} seconds")
end = time.perf_counter()
print("loaded paper data")
for doc, s_id in zip(search_results["results"]["passages"], search_results["results"]["pes2o IDs"]):
if s_id not in paper_data:
continue
ctx = paper_data[s_id]
print(ctx)
if type(ctx) is not dict:
continue
ctx["text"] = doc
ctxs.append(ctx)
return ctxs
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--input_file", required=True, type=str)
parser.add_argument("--output_file", type=str)
parser.add_argument("--api_key_fp", type=str)
parser.add_argument("--model_name", type=str)
parser.add_argument("--sample_n", type=int, default=-1)
parser.add_argument("--api", type=str)
parser.add_argument("--use_google", action="store_true")
parser.add_argument("--you_search", action="store_true")
parser.add_argument("--use_semantic_scholar", action="store_true")
args = parser.parse_args()
if args.api_key_fp is not None:
with open(args.api_key_fp) as f:
api_key = f.read()[:-1]
if args.api == "together":
base_url = "https://api.together.xyz"
elif args.api =="anyscale":
base_url = "https://api.endpoints.anyscale.com/v1"
else:
base_url = None
client = OpenAI(base_url=base_url, api_key = api_key)
else:
client = None
if args.input_file.endswith(".jsonl"):
input_data = load_jsonlines(args.input_file)
elif args.input_file.endswith(".json"):
input_data = json.load(open(args.input_file))
if "data" in input_data:
input_data = input_data["data"]
elif args.input_file.endswith(".tsv"):
df = pd.read_csv(args.input_file, sep="\t")
input_data = [{"input": row["input"]} for _, row in df.iterrows()]
if args.sample_n > 0:
random.shuffle(input_data)
input_data = input_data[:args.sample_n]
for id, item in tqdm(enumerate(input_data)):
if "input" not in item:
query = item["question"] if "question" in item else item["query"]
item["input"] = query
query = item["input"]
# re-process the data format.
for ctx in item["ctxs"]:
if "pes2o score" in ctx:
ctx["pes2o_paper_id"] = ctx["pes2o score"]
if "retrieval text" in ctx:
ctx["text"] = ctx["retrieval text"]
if "ctxs" in item and type(item["ctxs"][0]["text"]) is dict:
processed_ctxs = []
for ctx in item["ctxs"]:
ctx["pes2o_paper_id"] = ctx["text"]["doc_id"]
ctx["text"] = ctx["text"]["text"]
ctx["id"] = ctx["id"]
processed_ctxs.append(ctx)
item["ctxs"] = processed_ctxs
retrieved_passages = []
if args.use_google is True:
try:
retrieved_passages = search_google_non_restricted(query)
time.sleep(1)
print("papers retrieved from google: {0}".format(len(retrieved_passages)))
except:
print("google search error")
if args.you_search is True:
retrieved_passages_you = search_youcom_non_restricted(query)
print("papers retrieved from you.com: {0}".format(len(retrieved_passages_you)))
retrieved_passages += retrieved_passages_you
if args.use_semantic_scholar is True:
ss_retrieved_passages, _ = search_semantic_scholar(query, client, args.model_name)
print("papers retrieved from ss: {0}".format(len(ss_retrieved_passages)))
retrieved_passages += ss_retrieved_passages
if "ctxs" not in item:
item["ctxs"] = retrieved_passages
else:
# collect all paper data
ctxs_ids = [ctx["pes2o_paper_id"] for ctx in item["ctxs"]]
paper_data_ctxs = batch_paper_data_SS_ID(ctxs_ids)
for ctx in item["ctxs"]:
if paper_data_ctxs is None:
continue
if "pes2o_paper_id" not in ctx or type(ctx["pes2o_paper_id"]) is not str or ctx["pes2o_paper_id"] not in paper_data_ctxs or type(paper_data_ctxs[ctx["pes2o_paper_id"]]) is not dict:
continue
ctx["abstract"] = paper_data_ctxs[ctx["pes2o_paper_id"]]["abstract"]
ctx["citation_counts"] = paper_data_ctxs[ctx["pes2o_paper_id"]]["citationCount"]
ctx["title"] = paper_data_ctxs[ctx["pes2o_paper_id"]]["title"]
ctx["url"] = paper_data_ctxs[ctx["pes2o_paper_id"]]["url"]
ctx["type"] = "dense_retriever"
item["ctxs"] += retrieved_passages
if "orig_ctxs" in item:
item["ctxs"] = item["orig_ctxs"] + item["ctxs"]
if id % 20 == 0:
with open(args.output_file, "w") as outfile:
json.dump({"data": input_data}, outfile)
with open(args.output_file, "w") as outfile:
json.dump({"data": input_data}, outfile)
if __name__ == '__main__':
main()