forked from joeVenner/FaceRecognition-GUI-APP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgender_prediction.py
83 lines (64 loc) · 3.01 KB
/
gender_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import cv2
from mtcnn.mtcnn import MTCNN
from keras.models import load_model
from keras.preprocessing.image import img_to_array
import numpy as np
frame = cv2.VideoCapture(0)
detector= MTCNN()
emotion_model = "./data/_mini_XCEPTION.106-0.65.hdf5"
ageProto="./data/age_deploy.prototxt"
ageModel="./data/age_net.caffemodel"
genderProto="./data/gender_deploy.prototxt"
genderModel="./data/gender_net.caffemodel"
MODEL_MEAN_VALUES=(78.4263377603, 87.7689143744, 114.895847746)
ageList=['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList=['Male','Female']
Emotions = ["angry","disgust","scared","happy","sad","surprised","neutral"]
face_cascade = cv2.CascadeClassifier('./data/haarcascade_frontalface_default.xml')
emotion_classifier = load_model(emotion_model,compile=False)
ageNet=cv2.dnn.readNet(ageModel,ageProto)
genderNet=cv2.dnn.readNet(genderModel,genderProto)
def ageAndgender():
while True:
ret, img = frame.read()
default_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
face = face_cascade.detectMultiScale(image=default_img, scaleFactor=1.3, minNeighbors=5)
for x, y, w, h in face:
roi = default_img[y:y + h, x:x + w]
blob = cv2.dnn.blobFromImage(roi, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
genderNet.setInput(blob)
genderPreds = genderNet.forward()
gender = genderList[genderPreds[0].argmax()]
ageNet.setInput(blob)
agePreds = ageNet.forward()
age = ageList[agePreds[0].argmax()]
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.putText(img, f"{gender}, {age} year", (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255))
cv2.imshow("Gender and Age Prediction", img)
key = cv2.waitKey(1) & 0xFF
if key == ord("q") or key == 27:
break
cv2.destroyAllWindows()
def emotion():
while True:
ret, img = frame.read()
/*img2 = cv2.imread("./data/emojis/sad.png")*/
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
face = face_cascade.detectMultiScale(image=gray, scaleFactor=1.3, minNeighbors=5)
for x, y, w, h in face:
roi = gray[y:y + h, x:x + w]
roi = cv2.resize(roi, (48, 48))
roi = roi.astype("float") / 255.0
roi = img_to_array(roi)
roi = np.expand_dims(roi, axis=0)
preds = emotion_classifier.predict(roi)[0]
emotion_probability = np.max(preds)
label = Emotions[preds.argmax()]
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(img, f"{label}", (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0))
#cv2.face.drawFacemarks(img,)
cv2.imshow("Gender and Age Prediction", img)
key = cv2.waitKey(1) & 0xFF
if key == ord("q") or key == 27:
break
cv2.destroyAllWindows()