-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels-amplitude_Corbalan.Rmd
104 lines (83 loc) · 3.28 KB
/
models-amplitude_Corbalan.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
title: "R Notebook"
output: html_notebook
---
```{r}
library(tidyverse)
library(nlme)
library(MuMIn)
```
```{r}
df <- read.csv('cooked-data/amplitudeAndClimate-Corbalan.csv')
df <- df %>% mutate_at (vars(site, class, series), \(x) {as.factor(x)}) %>% mutate(date = as.Date(date)) %>% dplyr::rename(id = series)
df <- df %>% mutate( year = year(date), doy_yearoffset = (year - 2022) * 365 + doy)
str(df)
summary(df)
```
```{r}
date_start2022 <- "2022-04-01" # from first of April
date_end2022 <-"2022-10-30" # to 30 October
date_start2023 <- "2023-04-01" # from first of April
date_end2023 <-"2023-10-30" # to 30 October
df2022 <- df[which(df$date>=date_start2022 & df$date<=date_end2022),]
df2023 <- df[which(df$date>=date_start2023 & df$date<=date_end2023),]
df <- rbind.data.frame(df2022, df2023)
summary(df)
str(df)
```
```{r}
ggplot() + geom_line( aes (x = date, y = ampl, col = id), data = df)
# library(plotly)
# plot_ly(data = df, y = ~ampl, x = ~ date, color = ~id)
# plot_ly(data = df, mapping = aes(x = date, y = ampl, col = id)) + geom_line()
```
```{r}
boxplot(log10(ampl+1) ~ class, data = df)
```
```{r}
pines <- df %>% filter(class == "D" | class == "ND") %>% mutate(class= factor(class), id = factor(id))
str(pines)
```
```{r}
# The following would be the proper autocorrelation correction but it takes too long, so I simplify it to form = ~1|id, which gives similar results in less time.
# model.lme.pines <- lme(log10(ampl+1) ~ class, random = ~ 1|id, correlation=corAR1(form = ~doy_yearoffset|id), data = pines, method = "ML")
model.lme.pines <- lme(log10(ampl+1) ~ class, random = ~ 1|id, correlation=corAR1(form = ~1|id), data = pines, method = "ML")
sel.pines <- dredge(model.lme.pines)
View(sel.pines)
print(sel.pines)
# model.lme.clim.pines <- lme(log10(ampl+1) ~ class * max.vwc + class * mean.temp, random = ~ 1|id, correlation=corAR1(), data = pines, method = "ML")
# sel.pines.clim <- dredge(model.lme.clim.pines)
# View(sel.pines.clim)
```
Adding specie column to see if there's difference between species:
```{r}
df <- df %>% mutate(sp = case_when(class == 'D' | class == 'ND' ~ factor('Pine'),
class == 'Quercus' ~ factor('Quercus')
))
```
```{r}
# model.lme.ar <- lme(log10(ampl+1) ~ sp, random = ~ 1|id, correlation=corAR1(form = ~doy_yearoffset|id), data = df, method = "ML")
model.lme.ar <- lme(log10(ampl+1) ~ sp, random = ~ 1|id, correlation=corAR1(form = ~1|id), data = df, method = "ML")
sel.sp <- dredge(model.lme.ar)
View(sel.sp)
print(sel.sp)
```
Now, see if climate vars are relevant
```{r}
# model.lme.clim.ar <- lme(log10(ampl+1) ~ max.vwc + mean.temp, random = ~ 1|id, correlation=corAR1(form = ~doy_yearoffset|id), data = df, method = "ML")
model.lme.clim.ar <- lme(log10(ampl+1) ~ max.vwc + mean.temp, random = ~ 1|id, correlation=corAR1(form = ~1|id), data = df, method = "ML")
sel.clim <- dredge(model.lme.clim.ar)
View(sel.clim)
print(sel.clim)
```
Extra, try again using lme4:
# ```{r}
# library('lme4')
# options(na.action = "na.fail")
# mod_pines <- lmer(log10(ampl+1) ~ class+(1|id)+(1|doy),data=pines)
# sel.pines2 <- dredge(mod_pines)
# View(sel.pines2)
# mod_all <- lmer(log10(ampl+1) ~ class+max.vwc*mean.temp+(1|id)+(1|doy), data=df, REML="FALSE")
# sel.all <- dredge(mod_all)
# View(sel.all)
```