From 72eb36259c8fba6895a84b994e91c26e864a83ed Mon Sep 17 00:00:00 2001 From: Mansi Yadav <139609682+FreeSpirit11@users.noreply.github.com> Date: Wed, 5 Jun 2024 09:15:38 +0530 Subject: [PATCH] Add updated file --- .../betaweighted.ipynb | 2936 +++++++++++++++++ 1 file changed, 2936 insertions(+) create mode 100644 Beta-weighted-stock-portfolio/betaweighted.ipynb diff --git a/Beta-weighted-stock-portfolio/betaweighted.ipynb b/Beta-weighted-stock-portfolio/betaweighted.ipynb new file mode 100644 index 00000000..baf8b61e --- /dev/null +++ b/Beta-weighted-stock-portfolio/betaweighted.ipynb @@ -0,0 +1,2936 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# **Beta-Weighted Stock Portfolio**\n", + "**Introduction**
\n", + "A beta-weighted stock portfolio evaluates the risk relative to the market by considering each stock's beta. Beta measures a stock's volatility in relation to the market. A beta of 1 indicates that the stock moves with the market. A beta greater than 1 indicates higher volatility than the market, while a beta less than 1 indicates lower volatility." + ], + "metadata": { + "id": "4Hoq5HvWe9yB" + } + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "hkmBkpWMakWZ" + }, + "outputs": [], + "source": [ + "import datetime as dt\n", + "import pandas as pd\n", + "import numpy as np\n", + "from scipy import stats\n", + "import yfinance as yf" + ] + }, + { + "cell_type": "code", + "source": [ + "start = dt.datetime(2021, 1, 1)\n", + "end = dt.datetime.now()\n", + "stocklist=['SBIN', 'ICICIBANK', 'HDFCBANK', 'AXISBANK', 'RELIANCE']\n", + "stocks = ['^NSEI']+[i+'.NS' for i in stocklist]" + ], + "metadata": { + "id": "R3SM_4Nka6y4" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df = yf.download(stocks, start, end)\n", + "log_returns = np.log(df.Close / df.Close.shift(1)).dropna()\n", + "log_returns.head()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 255 + }, + "id": "eFwTcU6Ta603", + "outputId": "e4e07977-954d-4b79-bd60-bf73ba0bb713" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "[*********************100%%**********************] 6 of 6 completed\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Ticker AXISBANK.NS HDFCBANK.NS ICICIBANK.NS RELIANCE.NS SBIN.NS \\\n", + "Date \n", + "2021-01-04 0.001442 -0.006371 0.007931 0.001684 0.005888 \n", + "2021-01-05 0.061688 0.007528 0.010384 -0.012510 0.002488 \n", + "2021-01-06 -0.015470 -0.004320 0.017437 -0.026726 0.011644 \n", + "2021-01-07 0.025429 -0.003032 -0.010296 -0.001621 0.009254 \n", + "2021-01-08 0.002381 0.010815 0.001754 0.011730 -0.005927 \n", + "\n", + "Ticker ^NSEI \n", + "Date \n", + "2021-01-04 0.008128 \n", + "2021-01-05 0.004701 \n", + "2021-01-06 -0.003757 \n", + "2021-01-07 -0.000629 \n", + "2021-01-08 0.014738 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TickerAXISBANK.NSHDFCBANK.NSICICIBANK.NSRELIANCE.NSSBIN.NS^NSEI
Date
2021-01-040.001442-0.0063710.0079310.0016840.0058880.008128
2021-01-050.0616880.0075280.010384-0.0125100.0024880.004701
2021-01-06-0.015470-0.0043200.017437-0.0267260.011644-0.003757
2021-01-070.025429-0.003032-0.010296-0.0016210.009254-0.000629
2021-01-080.0023810.0108150.0017540.011730-0.0059270.014738
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "log_returns", + "summary": "{\n \"name\": \"log_returns\",\n \"rows\": 841,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2021-01-04 00:00:00\",\n \"max\": \"2024-05-31 00:00:00\",\n \"num_unique_values\": 841,\n \"samples\": [\n \"2022-12-19 00:00:00\",\n \"2024-04-26 00:00:00\",\n \"2021-02-16 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"AXISBANK.NS\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.016437351250855603,\n \"min\": -0.06866826714422139,\n \"max\": 0.08642600674250787,\n \"num_unique_values\": 841,\n \"samples\": [\n 0.011800526765262345,\n 0.002923892356169406,\n -0.02415593359582445\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"HDFCBANK.NS\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.014241941916460527,\n \"min\": -0.08813000683812074,\n \"max\": 0.09543093119288036,\n \"num_unique_values\": 841,\n \"samples\": [\n 0.0031055776683521436,\n -0.0006289921953538128,\n 0.006197537036113713\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ICICIBANK.NS\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.01475189272653889,\n \"min\": -0.051250817366691334,\n \"max\": 0.11724490254686257,\n \"num_unique_values\": 841,\n \"samples\": [\n 0.0049213648799089895,\n -0.005266346222050799,\n -0.0234192745783055\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RELIANCE.NS\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.014739430467673566,\n \"min\": -0.07474984574840186,\n \"max\": 0.06783811353596592,\n \"num_unique_values\": 841,\n \"samples\": [\n 0.013049865743872301,\n -0.005098629388895303,\n 0.013147496564137901\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SBIN.NS\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.017063232066226383,\n \"min\": -0.07086631862575557,\n \"max\": 0.10166459081723568,\n \"num_unique_values\": 836,\n \"samples\": [\n 0.005338459080591873,\n 0.011555167801178493,\n -0.048000401504401304\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"^NSEI\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.00900979419379447,\n \"min\": -0.04896026903082192,\n \"max\": 0.04633334971971787,\n \"num_unique_values\": 841,\n \"samples\": [\n 0.008255783729645224,\n -0.006685928069119567,\n -8.162425642763527e-05\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "def calc_beta(df):\n", + " np_array = df.values\n", + " # Market index is the first column 0\n", + " m = np_array[:,0]\n", + " beta = []\n", + " for ind, col in enumerate(df):\n", + " if ind > 0:\n", + " # stock returns are indexed by ind\n", + " s = np_array[:,ind]\n", + " # Calculate covariance matrix between stock and market\n", + " covariance = np.cov(s,m)\n", + " beta.append( covariance[0,1]/covariance[1,1] )\n", + " return pd.Series(beta, df.columns[1:], name='Beta')" + ], + "metadata": { + "id": "WfRRr0VVa63b" + }, + "execution_count": 4, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "calc_beta(log_returns)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "weoH3M6za65w", + "outputId": "18ee522f-a633-458d-bf87-eaf993632d9c" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Ticker\n", + "HDFCBANK.NS 0.359201\n", + "ICICIBANK.NS 0.575593\n", + "RELIANCE.NS 0.311406\n", + "SBIN.NS 0.585969\n", + "^NSEI 0.333082\n", + "Name: Beta, dtype: float64" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "#Linear regression\n", + "def regression_beta(df):\n", + " np_array = df.values\n", + " # Market index is the first column 0\n", + " m = np_array[:,0]\n", + " beta = []\n", + " for ind, col in enumerate(df):\n", + " if ind > 0:\n", + " s = np_array[:,ind] # stock returns are column one from numpy array\n", + " beta.append( stats.linregress(m,s)[0] )\n", + " return pd.Series(beta, df.columns[1:], name='Beta')" + ], + "metadata": { + "id": "FzcIKyf8blCd" + }, + "execution_count": 6, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "regression_beta(log_returns)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SlC-XoU6blEd", + "outputId": "8be5dd5b-3bee-4cf4-f7b3-4e51ffe76416" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Ticker\n", + "HDFCBANK.NS 0.359201\n", + "ICICIBANK.NS 0.575593\n", + "RELIANCE.NS 0.311406\n", + "SBIN.NS 0.585969\n", + "^NSEI 0.333082\n", + "Name: Beta, dtype: float64" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "def matrix_beta(df):\n", + " # Market index is the first column 0\n", + " X = df.values[:, [0]]\n", + " # add an additional column for the intercept (initalise as 1's)\n", + " X = np.concatenate([np.ones_like(X), X], axis=1)\n", + " # Apply matrix algebra for linear regression model\n", + " beta = np.linalg.pinv(X.T @ X) @ X.T @ df.values[:, 1:]\n", + " return pd.Series(beta[1], df.columns[1:], name='Beta')\n", + "\n", + "beta = matrix_beta(log_returns)\n", + "beta" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZWV3tI_SblG2", + "outputId": "12000af7-7023-4365-8938-87b9a0e14240" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Ticker\n", + "HDFCBANK.NS 0.359201\n", + "ICICIBANK.NS 0.575593\n", + "RELIANCE.NS 0.311406\n", + "SBIN.NS 0.585969\n", + "^NSEI 0.333082\n", + "Name: Beta, dtype: float64" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "units = np.array([100, 250, 300, 400, 200])\n", + "ASXprices = df.Close[-1:].values.tolist()[0]\n", + "price = np.array([round(price,2) for price in ASXprices[1:]])\n", + "value = [unit*pr for unit, pr in zip(units, price)]\n", + "weight = [round(val/sum(value),2) for val in value]\n", + "beta = round(beta,2)" + ], + "metadata": { + "id": "Py7ZSklSblI8" + }, + "execution_count": 9, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "Portfolio = pd.DataFrame({\n", + " 'Stock': stocklist,\n", + " 'Direction': 'Long',\n", + " 'Type': 'S',\n", + " 'Stock Price': price,\n", + " 'Price': price,\n", + " 'Units': units,\n", + " 'Value': units*price,\n", + " 'Weight': weight,\n", + " 'Beta': beta,\n", + " 'Weighted Beta': weight*beta\n", + "})\n", + "Portfolio" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 275 + }, + "id": "Mw3EK4i3blMi", + "outputId": "8899a320-009f-40a6-cb28-dd75d2313d9e" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Stock Direction Type Stock Price Price Units \\\n", + "Ticker \n", + "HDFCBANK.NS SBIN Long S 1531.55 1531.55 100 \n", + "ICICIBANK.NS ICICIBANK Long S 1121.05 1121.05 250 \n", + "RELIANCE.NS HDFCBANK Long S 2860.80 2860.80 300 \n", + "SBIN.NS AXISBANK Long S 830.35 830.35 400 \n", + "^NSEI RELIANCE Long S 22530.70 22530.70 200 \n", + "\n", + " Value Weight Beta Weighted Beta \n", + "Ticker \n", + "HDFCBANK.NS 153155.0 0.02 0.36 0.0072 \n", + "ICICIBANK.NS 280262.5 0.05 0.58 0.0290 \n", + "RELIANCE.NS 858240.0 0.14 0.31 0.0434 \n", + "SBIN.NS 332140.0 0.05 0.59 0.0295 \n", + "^NSEI 4506140.0 0.74 0.33 0.2442 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StockDirectionTypeStock PricePriceUnitsValueWeightBetaWeighted Beta
Ticker
HDFCBANK.NSSBINLongS1531.551531.55100153155.00.020.360.0072
ICICIBANK.NSICICIBANKLongS1121.051121.05250280262.50.050.580.0290
RELIANCE.NSHDFCBANKLongS2860.802860.80300858240.00.140.310.0434
SBIN.NSAXISBANKLongS830.35830.35400332140.00.050.590.0295
^NSEIRELIANCELongS22530.7022530.702004506140.00.740.330.2442
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "Portfolio", + "summary": "{\n \"name\": \"Portfolio\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Ticker\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"ICICIBANK.NS\",\n \"^NSEI\",\n \"RELIANCE.NS\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Stock\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"ICICIBANK\",\n \"RELIANCE\",\n \"HDFCBANK\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Direction\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"Long\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"S\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Stock Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9398.959067324957,\n \"min\": 830.35,\n \"max\": 22530.7,\n \"num_unique_values\": 5,\n \"samples\": [\n 1121.05\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9398.959067324957,\n \"min\": 830.35,\n \"max\": 22530.7,\n \"num_unique_values\": 5,\n \"samples\": [\n 1121.05\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Units\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 111,\n \"min\": 100,\n \"max\": 400,\n \"num_unique_values\": 5,\n \"samples\": [\n 250\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Value\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1853305.6513261648,\n \"min\": 153155.0,\n \"max\": 4506140.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 280262.5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Weight\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.30520484924063707,\n \"min\": 0.02,\n \"max\": 0.74,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.05\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Beta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.13903237033151666,\n \"min\": 0.31,\n \"max\": 0.59,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.58\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Weighted Beta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0978725089082731,\n \"min\": 0.0072,\n \"max\": 0.2442,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.028999999999999998\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "Portfolio = Portfolio.drop(['Weight', 'Weighted Beta'], axis=1)\n", + "Portfolio['Delta'] = Portfolio['Units']\n", + "Portfolio" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 238 + }, + "id": "g6PKpM0Xa69V", + "outputId": "f18cbeb8-c0a1-46bc-d785-0ee41a03963f" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Stock Direction Type Stock Price Price Units \\\n", + "Ticker \n", + "HDFCBANK.NS SBIN Long S 1531.55 1531.55 100 \n", + "ICICIBANK.NS ICICIBANK Long S 1121.05 1121.05 250 \n", + "RELIANCE.NS HDFCBANK Long S 2860.80 2860.80 300 \n", + "SBIN.NS AXISBANK Long S 830.35 830.35 400 \n", + "^NSEI RELIANCE Long S 22530.70 22530.70 200 \n", + "\n", + " Value Beta Delta \n", + "Ticker \n", + "HDFCBANK.NS 153155.0 0.36 100 \n", + "ICICIBANK.NS 280262.5 0.58 250 \n", + "RELIANCE.NS 858240.0 0.31 300 \n", + "SBIN.NS 332140.0 0.59 400 \n", + "^NSEI 4506140.0 0.33 200 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StockDirectionTypeStock PricePriceUnitsValueBetaDelta
Ticker
HDFCBANK.NSSBINLongS1531.551531.55100153155.00.36100
ICICIBANK.NSICICIBANKLongS1121.051121.05250280262.50.58250
RELIANCE.NSHDFCBANKLongS2860.802860.80300858240.00.31300
SBIN.NSAXISBANKLongS830.35830.35400332140.00.59400
^NSEIRELIANCELongS22530.7022530.702004506140.00.33200
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "Portfolio", + "summary": "{\n \"name\": \"Portfolio\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Ticker\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"ICICIBANK.NS\",\n \"^NSEI\",\n \"RELIANCE.NS\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Stock\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"ICICIBANK\",\n \"RELIANCE\",\n \"HDFCBANK\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Direction\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"Long\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"S\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Stock Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9398.959067324957,\n \"min\": 830.35,\n \"max\": 22530.7,\n \"num_unique_values\": 5,\n \"samples\": [\n 1121.05\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9398.959067324957,\n \"min\": 830.35,\n \"max\": 22530.7,\n \"num_unique_values\": 5,\n \"samples\": [\n 1121.05\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Units\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 111,\n \"min\": 100,\n \"max\": 400,\n \"num_unique_values\": 5,\n \"samples\": [\n 250\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Value\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1853305.6513261648,\n \"min\": 153155.0,\n \"max\": 4506140.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 280262.5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Beta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.13903237033151666,\n \"min\": 0.31,\n \"max\": 0.59,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.58\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Delta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 111,\n \"min\": 100,\n \"max\": 400,\n \"num_unique_values\": 5,\n \"samples\": [\n 250\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "#add options\n", + "Options = [\n", + " {'option': 'SBIN0Z8', 'underlying': 'SBIN', 'price': 3.950, 'units': 2, 'delta': 0.627, 'direction': 'Short', 'type': 'Call'},\n", + " {'option': 'RELIANCEQB9', 'underlying': 'RELIANCE', 'price': 1.325, 'units': 2, 'delta': -0.425, 'direction': 'Long', 'type': 'Put'}\n", + "]\n", + "for index, row in enumerate(Options):\n", + " Portfolio.loc[row['option']] = [row['underlying'], row['direction'], row['type'], Portfolio.loc[row['underlying']+'.NS', 'Price'],\n", + " row['price'], row['units'], row['price']*row['units']*100, beta[row['underlying']+'.NS'],\n", + " (row['delta']*row['units']* 100 if row['direction'] == 'Long' else -row['delta']*row['units']*100)]\n", + "Portfolio" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 300 + }, + "id": "oMElDmxEdnog", + "outputId": "e774a687-09d4-45f0-e0e0-34b9e30ac0b2" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Stock Direction Type Stock Price Price Units \\\n", + "Ticker \n", + "HDFCBANK.NS SBIN Long S 1531.55 1531.550 100 \n", + "ICICIBANK.NS ICICIBANK Long S 1121.05 1121.050 250 \n", + "RELIANCE.NS HDFCBANK Long S 2860.80 2860.800 300 \n", + "SBIN.NS AXISBANK Long S 830.35 830.350 400 \n", + "^NSEI RELIANCE Long S 22530.70 22530.700 200 \n", + "SBIN0Z8 SBIN Short Call 830.35 3.950 2 \n", + "RELIANCEQB9 RELIANCE Long Put 2860.80 1.325 2 \n", + "\n", + " Value Beta Delta \n", + "Ticker \n", + "HDFCBANK.NS 153155.0 0.36 100.0 \n", + "ICICIBANK.NS 280262.5 0.58 250.0 \n", + "RELIANCE.NS 858240.0 0.31 300.0 \n", + "SBIN.NS 332140.0 0.59 400.0 \n", + "^NSEI 4506140.0 0.33 200.0 \n", + "SBIN0Z8 790.0 0.59 -125.4 \n", + "RELIANCEQB9 265.0 0.31 -85.0 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StockDirectionTypeStock PricePriceUnitsValueBetaDelta
Ticker
HDFCBANK.NSSBINLongS1531.551531.550100153155.00.36100.0
ICICIBANK.NSICICIBANKLongS1121.051121.050250280262.50.58250.0
RELIANCE.NSHDFCBANKLongS2860.802860.800300858240.00.31300.0
SBIN.NSAXISBANKLongS830.35830.350400332140.00.59400.0
^NSEIRELIANCELongS22530.7022530.7002004506140.00.33200.0
SBIN0Z8SBINShortCall830.353.9502790.00.59-125.4
RELIANCEQB9RELIANCELongPut2860.801.3252265.00.31-85.0
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "Portfolio", + "summary": "{\n \"name\": \"Portfolio\",\n \"rows\": 7,\n \"fields\": [\n {\n \"column\": \"Ticker\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 7,\n \"samples\": [\n \"HDFCBANK.NS\",\n \"ICICIBANK.NS\",\n \"SBIN0Z8\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Stock\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"ICICIBANK\",\n \"RELIANCE\",\n \"HDFCBANK\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Direction\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"Short\",\n \"Long\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"S\",\n \"Call\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Stock Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 7931.7877530256455,\n \"min\": 830.35,\n \"max\": 22530.7,\n \"num_unique_values\": 5,\n \"samples\": [\n 1121.05,\n 22530.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8174.759493671664,\n \"min\": 1.325,\n \"max\": 22530.7,\n \"num_unique_values\": 7,\n \"samples\": [\n 1531.55,\n 1121.05\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Units\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 151,\n \"min\": 2,\n \"max\": 400,\n \"num_unique_values\": 6,\n \"samples\": [\n 100,\n 250\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Value\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1627079.5815943882,\n \"min\": 265.0,\n \"max\": 4506140.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 153155.0,\n 280262.5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Beta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.13957418235817245,\n \"min\": 0.31,\n \"max\": 0.59,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.58,\n 0.33\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Delta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 196.23740238608463,\n \"min\": -125.4,\n \"max\": 400.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 100.0,\n 250.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "code", + "source": [ + "Portfolio['ASX200 Weighted Delta (point)'] = round(Portfolio['Beta'] * (Portfolio['Stock Price']/ASXprices[0]) * Portfolio['Delta'],2)\n", + "Portfolio['ASX200 Weighted Delta (1%)'] = round(Portfolio['Beta'] * (Portfolio['Stock Price']) * Portfolio['Delta'] * 0.01,2)\n", + "Portfolio" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 372 + }, + "id": "pZezskDmdnkI", + "outputId": "2cae31cc-7171-41f5-e002-0c72a03933a2" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Stock Direction Type Stock Price Price Units \\\n", + "Ticker \n", + "HDFCBANK.NS SBIN Long S 1531.55 1531.550 100 \n", + "ICICIBANK.NS ICICIBANK Long S 1121.05 1121.050 250 \n", + "RELIANCE.NS HDFCBANK Long S 2860.80 2860.800 300 \n", + "SBIN.NS AXISBANK Long S 830.35 830.350 400 \n", + "^NSEI RELIANCE Long S 22530.70 22530.700 200 \n", + "SBIN0Z8 SBIN Short Call 830.35 3.950 2 \n", + "RELIANCEQB9 RELIANCE Long Put 2860.80 1.325 2 \n", + "\n", + " Value Beta Delta ASX200 Weighted Delta (point) \\\n", + "Ticker \n", + "HDFCBANK.NS 153155.0 0.36 100.0 47.44 \n", + "ICICIBANK.NS 280262.5 0.58 250.0 139.87 \n", + "RELIANCE.NS 858240.0 0.31 300.0 228.93 \n", + "SBIN.NS 332140.0 0.59 400.0 168.62 \n", + "^NSEI 4506140.0 0.33 200.0 1279.55 \n", + "SBIN0Z8 790.0 0.59 -125.4 -52.86 \n", + "RELIANCEQB9 265.0 0.31 -85.0 -64.86 \n", + "\n", + " ASX200 Weighted Delta (1%) \n", + "Ticker \n", + "HDFCBANK.NS 551.36 \n", + "ICICIBANK.NS 1625.52 \n", + "RELIANCE.NS 2660.54 \n", + "SBIN.NS 1959.63 \n", + "^NSEI 14870.26 \n", + "SBIN0Z8 -614.34 \n", + "RELIANCEQB9 -753.82 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StockDirectionTypeStock PricePriceUnitsValueBetaDeltaASX200 Weighted Delta (point)ASX200 Weighted Delta (1%)
Ticker
HDFCBANK.NSSBINLongS1531.551531.550100153155.00.36100.047.44551.36
ICICIBANK.NSICICIBANKLongS1121.051121.050250280262.50.58250.0139.871625.52
RELIANCE.NSHDFCBANKLongS2860.802860.800300858240.00.31300.0228.932660.54
SBIN.NSAXISBANKLongS830.35830.350400332140.00.59400.0168.621959.63
^NSEIRELIANCELongS22530.7022530.7002004506140.00.33200.01279.5514870.26
SBIN0Z8SBINShortCall830.353.9502790.00.59-125.4-52.86-614.34
RELIANCEQB9RELIANCELongPut2860.801.3252265.00.31-85.0-64.86-753.82
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "Portfolio", + "summary": "{\n \"name\": \"Portfolio\",\n \"rows\": 7,\n \"fields\": [\n {\n \"column\": \"Ticker\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 7,\n \"samples\": [\n \"HDFCBANK.NS\",\n \"ICICIBANK.NS\",\n \"SBIN0Z8\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Stock\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"ICICIBANK\",\n \"RELIANCE\",\n \"HDFCBANK\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Direction\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"Short\",\n \"Long\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"S\",\n \"Call\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Stock Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 7931.7877530256455,\n \"min\": 830.35,\n \"max\": 22530.7,\n \"num_unique_values\": 5,\n \"samples\": [\n 1121.05,\n 22530.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8174.759493671664,\n \"min\": 1.325,\n \"max\": 22530.7,\n \"num_unique_values\": 7,\n \"samples\": [\n 1531.55,\n 1121.05\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Units\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 151,\n \"min\": 2,\n \"max\": 400,\n \"num_unique_values\": 6,\n \"samples\": [\n 100,\n 250\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Value\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1627079.5815943882,\n \"min\": 265.0,\n \"max\": 4506140.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 153155.0,\n 280262.5\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Beta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.13957418235817245,\n \"min\": 0.31,\n \"max\": 0.59,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.58,\n 0.33\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Delta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 196.23740238608463,\n \"min\": -125.4,\n \"max\": 400.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 100.0,\n 250.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ASX200 Weighted Delta (point)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 467.4502569512712,\n \"min\": -64.86,\n \"max\": 1279.55,\n \"num_unique_values\": 7,\n \"samples\": [\n 47.44,\n 139.87\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ASX200 Weighted Delta (1%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5432.46654447262,\n \"min\": -753.82,\n \"max\": 14870.26,\n \"num_unique_values\": 7,\n \"samples\": [\n 551.36,\n 1625.52\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "Portfolio.loc['Total', ['Value', 'ASX200 Weighted Delta (point)', 'ASX200 Weighted Delta (1%)']] \\\n", + "= Portfolio[['Value','ASX200 Weighted Delta (point)', 'ASX200 Weighted Delta (1%)']].sum()\n", + "Portfolio" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 404 + }, + "id": "wvznlXZ3dnmF", + "outputId": "e09eadbc-0e0d-4c90-a033-c0534c9f2486" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Stock Direction Type Stock Price Price Units \\\n", + "Ticker \n", + "HDFCBANK.NS SBIN Long S 1531.55 1531.550 100.0 \n", + "ICICIBANK.NS ICICIBANK Long S 1121.05 1121.050 250.0 \n", + "RELIANCE.NS HDFCBANK Long S 2860.80 2860.800 300.0 \n", + "SBIN.NS AXISBANK Long S 830.35 830.350 400.0 \n", + "^NSEI RELIANCE Long S 22530.70 22530.700 200.0 \n", + "SBIN0Z8 SBIN Short Call 830.35 3.950 2.0 \n", + "RELIANCEQB9 RELIANCE Long Put 2860.80 1.325 2.0 \n", + "Total NaN NaN NaN NaN NaN NaN \n", + "\n", + " Value Beta Delta ASX200 Weighted Delta (point) \\\n", + "Ticker \n", + "HDFCBANK.NS 153155.0 0.36 100.0 47.44 \n", + "ICICIBANK.NS 280262.5 0.58 250.0 139.87 \n", + "RELIANCE.NS 858240.0 0.31 300.0 228.93 \n", + "SBIN.NS 332140.0 0.59 400.0 168.62 \n", + "^NSEI 4506140.0 0.33 200.0 1279.55 \n", + "SBIN0Z8 790.0 0.59 -125.4 -52.86 \n", + "RELIANCEQB9 265.0 0.31 -85.0 -64.86 \n", + "Total 6130992.5 NaN NaN 1746.69 \n", + "\n", + " ASX200 Weighted Delta (1%) \n", + "Ticker \n", + "HDFCBANK.NS 551.36 \n", + "ICICIBANK.NS 1625.52 \n", + "RELIANCE.NS 2660.54 \n", + "SBIN.NS 1959.63 \n", + "^NSEI 14870.26 \n", + "SBIN0Z8 -614.34 \n", + "RELIANCEQB9 -753.82 \n", + "Total 20299.15 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StockDirectionTypeStock PricePriceUnitsValueBetaDeltaASX200 Weighted Delta (point)ASX200 Weighted Delta (1%)
Ticker
HDFCBANK.NSSBINLongS1531.551531.550100.0153155.00.36100.047.44551.36
ICICIBANK.NSICICIBANKLongS1121.051121.050250.0280262.50.58250.0139.871625.52
RELIANCE.NSHDFCBANKLongS2860.802860.800300.0858240.00.31300.0228.932660.54
SBIN.NSAXISBANKLongS830.35830.350400.0332140.00.59400.0168.621959.63
^NSEIRELIANCELongS22530.7022530.700200.04506140.00.33200.01279.5514870.26
SBIN0Z8SBINShortCall830.353.9502.0790.00.59-125.4-52.86-614.34
RELIANCEQB9RELIANCELongPut2860.801.3252.0265.00.31-85.0-64.86-753.82
TotalNaNNaNNaNNaNNaNNaN6130992.5NaNNaN1746.6920299.15
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "Portfolio", + "summary": "{\n \"name\": \"Portfolio\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"Ticker\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 8,\n \"samples\": [\n \"ICICIBANK.NS\",\n \"SBIN0Z8\",\n \"HDFCBANK.NS\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Stock\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"ICICIBANK\",\n \"RELIANCE\",\n \"HDFCBANK\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Direction\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"Short\",\n \"Long\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"S\",\n \"Call\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Stock Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 7931.7877530256455,\n \"min\": 830.35,\n \"max\": 22530.7,\n \"num_unique_values\": 5,\n \"samples\": [\n 1121.05,\n 22530.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8174.759493671665,\n \"min\": 1.325,\n \"max\": 22530.7,\n \"num_unique_values\": 7,\n \"samples\": [\n 1531.55,\n 1121.05\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Units\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 151.58213238090715,\n \"min\": 2.0,\n \"max\": 400.0,\n \"num_unique_values\": 6,\n \"samples\": [\n 100.0,\n 250.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Value\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2391912.842164625,\n \"min\": 265.0,\n \"max\": 6130992.5,\n \"num_unique_values\": 8,\n \"samples\": [\n 280262.5,\n 790.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Beta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.13957418235817245,\n \"min\": 0.31,\n \"max\": 0.59,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.58,\n 0.33\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Delta\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 196.23740238608463,\n \"min\": -125.4,\n \"max\": 400.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 100.0,\n 250.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ASX200 Weighted Delta (point)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 683.7259266642279,\n \"min\": -64.86,\n \"max\": 1746.69,\n \"num_unique_values\": 8,\n \"samples\": [\n 139.87,\n -52.86\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ASX200 Weighted Delta (1%)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 7945.915141085747,\n \"min\": -753.82,\n \"max\": 20299.15,\n \"num_unique_values\": 8,\n \"samples\": [\n 1625.52,\n -614.34\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Plotting portfolio value\n", + "plt.figure(figsize=(10, 6))\n", + "plt.bar(Portfolio.index[:-1], Portfolio['Value'][:-1], color='blue', alpha=0.7)\n", + "plt.title('Portfolio Value by Stock')\n", + "plt.xlabel('Stock')\n", + "plt.ylabel('Value')\n", + "plt.xticks(rotation=45)\n", + "plt.show()\n", + "\n", + "# Plotting ASX200 weighted delta\n", + "plt.figure(figsize=(10, 6))\n", + "plt.bar(Portfolio.index[:-1], Portfolio['ASX200 Weighted Delta (point)'][:-1], color='green', alpha=0.7)\n", + "plt.title('ASX200 Weighted Delta (point) by Stock')\n", + "plt.xlabel('Stock')\n", + "plt.ylabel('Delta (points)')\n", + "plt.xticks(rotation=45)\n", + "plt.show()\n", + "\n", + "# Plotting ASX200 weighted delta as a percentage\n", + "plt.figure(figsize=(10, 6))\n", + "plt.bar(Portfolio.index[:-1], Portfolio['ASX200 Weighted Delta (1%)'][:-1], color='orange', alpha=0.7)\n", + "plt.title('ASX200 Weighted Delta (1%) by Stock')\n", + "plt.xlabel('Stock')\n", + "plt.ylabel('Delta (1%)')\n", + "plt.xticks(rotation=45)\n", + "plt.show()\n" + ], + "metadata": { + "id": "ejMCkFd8dnt6", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "99102260-71cc-4a69-8214-db7d6fc6d919" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAJmCAYAAACaI4vjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABz5ElEQVR4nO3dd3hU1fr28XsIpBBC772D9N5BRHoRkKIo0gSEQ0dAaSJFOoiKIqD0IoKCgFTpYqH33pHeS4AkJM/7B2/mRw6g4CGZkP39XFcunbXXzDyTzWT2PWvttV1mZgIAAAAAh4jl6QIAAAAAICoRggAAAAA4CiEIAAAAgKMQggAAAAA4CiEIAAAAgKMQggAAAAA4CiEIAAAAgKMQggAAAAA4CiEIAAAAgKMQggAgBtm8ebNKlSolf39/uVwu7dix46nvO2XKFLlcLp04ccLdVr58eZUvX/651/m8fPzxx3K5XB55bpfLpfbt23vkuT3lxIkTcrlcGjlypKdLAYD/CSEIAJ6D8AAR/uPr66vs2bOrffv2unDhwnN9rsGDB2vBggWPtIeEhKhBgwa6evWqPv30U02fPl0ZMmR4rs/9b128eFGxY8dW48aNn9jn1q1b8vPz0+uvvx6FlUV/J06cUPPmzZUlSxb5+voqZcqUKleunPr16xeh31dffaUpU6Z4pkgAeMHE9nQBABCTDBgwQJkyZdK9e/f066+/aty4cVqyZIn27NmjuHHjPpfnGDx4sOrXr686depEaD969KhOnjypiRMnqmXLls/luVasWPFcHid58uSqVKmSfvrpJ925c+exv4sff/xR9+7d+9ug5DRHjhxR0aJF5efnpxYtWihjxow6d+6ctm3bpmHDhql///7uvl999ZWSJk2qZs2aea5gAHhBEIIA4DmqVq2aihQpIklq2bKlkiRJotGjR+unn35So0aN/vXjmpnu3bsnPz+/J/a5ePGiJClhwoT/+nn+m7e393N7rLffflvLli3TwoUL9eabbz6yfdasWUqQIIFq1Kjx3J7zRffpp5/q9u3b2rFjxyOjeuH7GwDw7JgOBwCRqEKFCpKk48ePS5Lu37+vgQMHKkuWLPLx8VHGjBnVq1cvBQUFRbhfxowZVbNmTS1fvlxFihSRn5+fxo8fL5fLpcDAQE2dOtU99a5Zs2Zq1qyZXn75ZUlSgwYN5HK5IpzLs3r1apUtW1b+/v5KmDChateurf379/9j/Y87J+jixYt69913lSJFCvn6+ip//vyaOnXqPz5W3bp15e/vr1mzZj2y7eLFi1q1apXq168vHx8fbdiwQQ0aNFD69Onl4+OjdOnSqUuXLrp79+7fPkf4OSuPmxbmcrn08ccfR2g7c+aMWrRooRQpUsjHx0e5c+fWpEmT/vG1PGzmzJnKkSOHfH19VbhwYa1fv969bc2aNXK5XJo/f/4j95s1a5ZcLpd+//33Jz720aNHlTZt2sdOa0yePLn7/zNmzKi9e/dq3bp17n8XD++3Y8eOqUGDBkqcOLHixo2rEiVK6Oeff37kMe/du6ePP/5Y2bNnl6+vr1KlSqXXX39dR48efWKNZqbWrVvL29tbP/744xP7AUB0wkgQAESi8IPHJEmSSHowOjR16lTVr19f77//vv78808NGTJE+/fvf+RA+eDBg2rUqJHee+89tWrVSjly5ND06dPVsmVLFStWTK1bt5YkZcmSRZKUJk0aDR48WB07dlTRokWVIkUKSdIvv/yiatWqKXPmzPr444919+5dffHFFypdurS2bdumjBkzPvXruXv3rsqXL68jR46offv2ypQpk+bOnatmzZrp+vXr6tSp0xPv6+/vr9q1a2vevHm6evWqEidO7N42Z84chYaG6u2335YkzZ07V3fu3FHbtm2VJEkSbdq0SV988YX++usvzZ0796nr/TsXLlxQiRIl3AscJEuWTEuXLtW7776rmzdvqnPnzv/4GOvWrdOcOXPUsWNH+fj46KuvvlLVqlW1adMm5cmTR+XLl1e6dOk0c+ZM1a1bN8J9Z86cqSxZsqhkyZJPfPwMGTLol19+0erVq92B+nHGjBmjDh06KF68eOrdu7ckuff/hQsXVKpUKd25c0cdO3ZUkiRJNHXqVL322muaN2+eu67Q0FDVrFlTq1at0ptvvqlOnTrp1q1bWrlypfbs2eP+d/aw0NBQtWjRQnPmzNH8+fMZxQPw4jAAwP9s8uTJJsl++eUXu3Tpkp0+fdq+++47S5Ikifn5+dlff/1lO3bsMEnWsmXLCPft1q2bSbLVq1e72zJkyGCSbNmyZY88l7+/vzVt2vSR9jVr1pgkmzt3boT2AgUKWPLkye3KlSvutp07d1qsWLGsSZMmj7yG48ePu9tefvlle/nll923x4wZY5JsxowZ7rbg4GArWbKkxYsXz27evPm3v6eff/7ZJNn48eMjtJcoUcLSpEljoaGhZmZ2586dR+47ZMgQc7lcdvLkSXdbv3797OGPsuPHj5skmzx58iP3l2T9+vVz33733XctVapUdvny5Qj93nzzTUuQIMFja/jvx5NkW7ZscbedPHnSfH19rW7duu62nj17mo+Pj12/ft3ddvHiRYsdO3aEeh5nz5495ufnZ5KsQIEC1qlTJ1uwYIEFBgY+0jd37twR9lW4zp07myTbsGGDu+3WrVuWKVMmy5gxo/t3PmnSJJNko0ePfuQxwsLCzOz/fr8jRoywkJAQe+ONN8zPz8+WL1/+t68DAKIbpsMBwHNUsWJFJUuWTOnSpdObb76pePHiaf78+UqTJo2WLFkiSeratWuE+7z//vuS9Mj0pEyZMqlKlSr/Uz3nzp3Tjh071KxZswgjL/ny5VOlSpXcNT2tJUuWKGXKlBHOb4oTJ446duyo27dva926dX97/8qVKytZsmQRpsQdP35cf/zxhxo1aqRYsR58LD187lNgYKAuX76sUqVKycy0ffv2Z6r5ccxMP/zwg2rVqiUz0+XLl90/VapU0Y0bN7Rt27Z/fJySJUuqcOHC7tvp06dX7dq1tXz5coWGhkqSmjRpoqCgIM2bN8/db86cObp///4/LgKRO3du7dixQ40bN9aJEyf02WefqU6dOkqRIoUmTpz4VK91yZIlKlasmMqUKeNuixcvnlq3bq0TJ05o3759kqQffvhBSZMmVYcOHR55jP9ehjw4OFgNGjTQ4sWLtWTJElWuXPmpagGA6CLGhKD169erVq1aSp06tVwu12OXj/0nZqaRI0cqe/bs8vHxUZo0afTJJ588/2IBxFhffvmlVq5cqTVr1mjfvn06duyYO8icPHlSsWLFUtasWSPcJ2XKlEqYMKFOnjwZoT1Tpkz/cz3hj5kjR45Htr300ku6fPmyAgMDn+nxsmXL5g4rDz/Ww8/3JLFjx9Ybb7yhDRs26MyZM5LkDkThU+Ek6dSpU+7gFi9ePCVLlsx9ztONGzeeut4nuXTpkq5fv64JEyYoWbJkEX6aN28u6ekWHsiWLdsjbdmzZ9edO3d06dIlSVLOnDlVtGhRzZw5091n5syZKlGixCP/Fh4ne/bsmj59ui5fvqxdu3Zp8ODBih07tlq3bq1ffvnlH+9/8uTJJ+7/8O3Sg6mbOXLkUOzY/zxTfsiQIVqwYIHmzZsXra8jBQBPEmPOCQoMDFT+/PnVokWLf32NiU6dOmnFihUaOXKk8ubNq6tXr+rq1avPuVIAMVmxYsXcq8M9ydNe3PPvVoJ7kTVu3Fhjx47V7Nmz1a1bN82ePVu5cuVSgQIFJD04z6RSpUq6evWqPvjgA+XMmVP+/v46c+aMmjVrprCwsCc+9pN+t+GjMuHCH6Nx48Zq2rTpY++TL1++f/HqHq9Jkybq1KmT/vrrLwUFBemPP/7Q2LFjn+kxvLy8lDdvXuXNm1clS5bUK6+8opkzZ6pixYrPrc6nVaVKFS1btkzDhw9X+fLl5evrG+U1AMD/IsaEoGrVqqlatWpP3B4UFKTevXtr9uzZun79uvLkyaNhw4a5v8Hav3+/xo0bpz179ri/MXse38ICQLgMGTIoLCxMhw8fdn8LLz04cf369etPfWHTpw1R4c8pPVhk4b8dOHBASZMmlb+//zM93q5duxQWFhZhNOjAgQMRnu/vFC9eXFmyZNGsWbNUqVIl7d27N8Ko++7du3Xo0CFNnTpVTZo0cbevXLnyHx87UaJEkqTr169HaP/vEapkyZIpICBAoaGh/1OIOHz48CNthw4dUty4cZUsWTJ325tvvqmuXbtq9uzZunv3ruLEiaM33njjXz9veNA+d+6cu+1J/y4yZMjwxP0fvl16sMDGn3/+qZCQEMWJE+dvn79EiRJq06aNatasqQYNGmj+/PlPNYIEANFFjJkO90/at2+v33//Xd9995127dqlBg0aqGrVqu4PsEWLFilz5sxavHixMmXKpIwZM6ply5aMBAF4bqpXry7pwUpeDxs9erQkPfXKWv7+/o8c5D9JqlSpVKBAAU2dOjXCffbs2aMVK1a4a3pa1atX1/nz5zVnzhx32/379/XFF18oXrx47ilr/+Ttt9/W9u3b1a9fP7lcLr311lvubV5eXpIeTFEOZ2b67LPP/vFx48ePr6RJk0ZYplp6cCHRh3l5ealevXr64YcftGfPnkceJ3wq2z/5/fffI5w7dPr0af3000+qXLmy+3VIUtKkSVWtWjXNmDFDM2fOVNWqVZU0adJ/fPwNGzYoJCTkkfbwc7kenub2pH8X1atX16ZNmyIsxR0YGKgJEyYoY8aMypUrlySpXr16unz58mNHqB7eF+EqVqyo7777TsuWLdM777zztyN0ABDdOOJrm1OnTmny5Mk6deqUUqdOLUnq1q2bli1bpsmTJ2vw4ME6duyYTp48qblz52ratGkKDQ1Vly5dVL9+fa1evdrDrwBATJA/f341bdpUEyZM0PXr1/Xyyy9r06ZNmjp1qurUqaNXXnnlqR6ncOHC+uWXXzR69GilTp1amTJlUvHixZ/Yf8SIEapWrZpKliypd999171EdoIECR65bs4/ad26tcaPH69mzZpp69atypgxo+bNm6eNGzdqzJgxCggIeKrHady4sQYMGKCffvpJpUuXjrBMd86cOZUlSxZ169ZNZ86cUfz48fXDDz/o2rVrT/XYLVu21NChQ9WyZUsVKVJE69ev16FDhx7pN3ToUK1Zs0bFixdXq1atlCtXLl29elXbtm3TL7/88lRfguXJk0dVqlSJsES2JPXv3/+Rvk2aNFH9+vUlSQMHDnyq1zJs2DBt3bpVr7/+unt63rZt2zRt2jQlTpw4wjLehQsX1rhx4zRo0CBlzZpVyZMnV4UKFfThhx9q9uzZqlatmjp27KjEiRNr6tSpOn78uH744Qf3iF6TJk00bdo0de3aVZs2bVLZsmUVGBioX375Rf/5z39Uu3btR+qrU6eOJk+erCZNmih+/PgaP378U70uAPA4D65MF2kk2fz58923Fy9ebJLM398/wk/s2LGtYcOGZmbWqlUrk2QHDx5032/r1q0myQ4cOBDVLwHACyZ8eenNmzf/bb+QkBDr37+/ZcqUyeLEiWPp0qWznj172r179yL0y5Ahg9WoUeOxj3HgwAErV66ce+nk8OWyn7REtpnZL7/8YqVLlzY/Pz+LHz++1apVy/bt2/fY1/B3S2SbmV24cMGaN29uSZMmNW9vb8ubN+9jl6T+J0WLFjVJ9tVXXz2ybd++fVaxYkWLFy+eJU2a1Fq1amU7d+58ZPnr/14i2+zB8trvvvuuJUiQwAICAqxhw4Z28eLFR5bIDn8t7dq1s3Tp0lmcOHEsZcqU9uqrr9qECRP+sX5J1q5dO5sxY4Zly5bNfHx8rGDBgrZmzZrH9g8KCrJEiRJZggQJ7O7du//4+GZmGzdutHbt2lmePHksQYIEFidOHEufPr01a9bMjh49GqHv+fPnrUaNGhYQEGCSIuy3o0ePWv369S1hwoTm6+trxYoVs8WLFz/yfHfu3LHevXu7/32mTJnS6tev736uh5fIfthXX31lkqxbt25P9boAwNNcZo8Z437BhV+du06dOpIeLEX69ttva+/evRGmJ0gPlglNmTKl+vXrp8GDB0eYdnD37l3FjRtXK1asUKVKlaLyJQAAYpj79+8rderUqlWrlr799ltPlwMAjuaI6XAFCxZUaGioLl68qLJlyz62T+nSpXX//n0dPXrUfVXs8OkTT3uyMgAAT7JgwQJdunQpwmIPAADPiDEjQbdv39aRI0ckPQg9o0eP1iuvvKLEiRMrffr0aty4sTZu3KhRo0apYMGCunTpklatWqV8+fKpRo0aCgsLU9GiRRUvXjyNGTNGYWFhateuneLHj68VK1Z4+NUBAF5Uf/75p3bt2qWBAwcqadKkT3URVgBA5IoxIWjt2rWPPam4adOmmjJlikJCQjRo0CBNmzZNZ86cUdKkSVWiRAn1799fefPmlSSdPXtWHTp00IoVK+Tv769q1app1KhREa6yDgDAs2jWrJlmzJihAgUKaMqUKcqTJ4+nSwIAx4sxIQgAAAAAnoZjrhMEAAAAANILvjBCWFiYzp49q4CAgGe6gjoAAACAmMXMdOvWLaVOndp9DbQneaFD0NmzZ5UuXTpPlwEAAAAgmjh9+rTSpk37t31e6BAUfmXy06dPK378+B6uBgAAAICn3Lx5U+nSpXNnhL/zQoeg8Clw8ePHJwQBAAAAeKrTZFgYAQAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjxPZ0AQAA4N+rVcvTFcQcixZ5ugIAUYWRIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOQggCAAAA4CiEIAAAAACOEm1C0NChQ+VyudS5c2dPlwIAAAAgBosWIWjz5s0aP3688uXL5+lSAAAAAMRwHg9Bt2/f1ttvv62JEycqUaJEni4HAAAAQAzn8RDUrl071ahRQxUrVvzHvkFBQbp582aEHwAAAAB4FrE9+eTfffedtm3bps2bNz9V/yFDhqh///6RXBUAAACAmMxjI0GnT59Wp06dNHPmTPn6+j7VfXr27KkbN264f06fPh3JVQIAAACIaTw2ErR161ZdvHhRhQoVcreFhoZq/fr1Gjt2rIKCguTl5RXhPj4+PvLx8YnqUgEAAADEIB4LQa+++qp2794doa158+bKmTOnPvjgg0cCEAAAAAA8Dx4LQQEBAcqTJ0+ENn9/fyVJkuSRdgAAAAB4Xjy+OhwAAAAARCWPrg7339auXevpEgAAAADEcIwEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUj4agcePGKV++fIofP77ix4+vkiVLaunSpZ4sCQAAAEAM59EQlDZtWg0dOlRbt27Vli1bVKFCBdWuXVt79+71ZFkAAAAAYrDYnnzyWrVqRbj9ySefaNy4cfrjjz+UO3duD1UFAAAAICbzaAh6WGhoqObOnavAwECVLFnysX2CgoIUFBTkvn3z5s2oKg8AAABADOHxhRF2796tePHiycfHR23atNH8+fOVK1eux/YdMmSIEiRI4P5Jly5dFFcLAAAA4EXn8RCUI0cO7dixQ3/++afatm2rpk2bat++fY/t27NnT924ccP9c/r06SiuFgAAAMCLzuPT4by9vZU1a1ZJUuHChbV582Z99tlnGj9+/CN9fXx85OPjE9UlAgAAAIhBPD4S9N/CwsIinPcDAAAAAM+TR0eCevbsqWrVqil9+vS6deuWZs2apbVr12r58uWeLAsAAABADObREHTx4kU1adJE586dU4IECZQvXz4tX75clSpV8mRZAAAAAGIwj4agb7/91pNPDwAAAMCBot05QQAAAAAQmQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAAByFEAQAAADAUQhBAAAAABzlX4Wg+/fv65dfftH48eN169YtSdLZs2d1+/bt51ocAAAAADxvsZ/1DidPnlTVqlV16tQpBQUFqVKlSgoICNCwYcMUFBSkr7/+OjLqBAAAAIDn4plHgjp16qQiRYro2rVr8vPzc7fXrVtXq1ateq7FAQAAAMDz9swjQRs2bNBvv/0mb2/vCO0ZM2bUmTNnnlthAAAAABAZnnkkKCwsTKGhoY+0//XXXwoICHguRQEAAABAZHnmEFS5cmWNGTPGfdvlcun27dvq16+fqlev/jxrAwAAAIDn7pmnw40aNUpVqlRRrly5dO/ePb311ls6fPiwkiZNqtmzZ0dGjQAAAADw3DxzCEqbNq127typ7777Trt27dLt27f17rvv6u23346wUAIAAAAAREfPHIIkKXbs2GrcuPHzrgUAAAAAIt0zh6Bp06b97fYmTZr862IAAAAAILI9cwjq1KlThNshISG6c+eOvL29FTduXEIQAAAAgGjtmVeHu3btWoSf27dv6+DBgypTpgwLIwAAAACI9p45BD1OtmzZNHTo0EdGiQAAAAAgunkuIUh6sFjC2bNnn9fDAQAAAECkeOZzghYuXBjhtpnp3LlzGjt2rEqXLv3cCgMAAACAyPDMIahOnToRbrtcLiVLlkwVKlTQqFGjnlddAAAAABApnjkEhYWFRUYdAAAAABAlnts5QQAAAADwIniqkaCuXbs+9QOOHj36XxcDAAAAAJHtqULQ9u3bn+rBXC7X/1QMAAAAAES2pwpBa9asiew6AAAAACBKcE4QAAAAAEd55tXhJGnLli36/vvvderUKQUHB0fY9uOPPz6XwgAAAAAgMjzzSNB3332nUqVKaf/+/Zo/f75CQkK0d+9erV69WgkSJIiMGgEAAADguXnmEDR48GB9+umnWrRokby9vfXZZ5/pwIEDatiwodKnTx8ZNQIAAADAc/PMIejo0aOqUaOGJMnb21uBgYFyuVzq0qWLJkyY8NwLBAAAAIDn6ZlDUKJEiXTr1i1JUpo0abRnzx5J0vXr13Xnzp3nWx0AAAAAPGdPHYLCw065cuW0cuVKSVKDBg3UqVMntWrVSo0aNdKrr74aOVUCAAAAwHPy1KvD5cuXT0WLFlWdOnXUoEEDSVLv3r0VJ04c/fbbb6pXr5769OkTaYUCAAAAwPPw1CFo3bp1mjx5soYMGaJPPvlE9erVU8uWLfXhhx9GZn0AAAAA8Fw99XS4smXLatKkSTp37py++OILnThxQi+//LKyZ8+uYcOG6fz585FZJwAAAAA8F8+8MIK/v7+aN2+udevW6dChQ2rQoIG+/PJLpU+fXq+99lpk1AgAAAAAz80zh6CHZc2aVb169VKfPn0UEBCgn3/++XnVBQAAAACR4qnPCfpv69ev16RJk/TDDz8oVqxYatiwod59993nWRsAAAAAPHfPFILOnj2rKVOmaMqUKTpy5IhKlSqlzz//XA0bNpS/v39k1QgAAAAAz81Th6Bq1arpl19+UdKkSdWkSRO1aNFCOXLkiMzaAAAAAOC5e+oQFCdOHM2bN081a9aUl5dXZNYEAAAAAJHmqUPQwoULI7MOAAAAAIgS/9PqcAAAAADwoiEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAARyEEAQAAAHAUQhAAAAAAR/FoCBoyZIiKFi2qgIAAJU+eXHXq1NHBgwc9WRIAAACAGM6jIWjdunVq166d/vjjD61cuVIhISGqXLmyAgMDPVkWAAAAgBgstieffNmyZRFuT5kyRcmTJ9fWrVtVrly5R/oHBQUpKCjIffvmzZuRXiMAAACAmCVanRN048YNSVLixIkfu33IkCFKkCCB+yddunRRWR4AAACAGMBlZubpIiQpLCxMr732mq5fv65ff/31sX0eNxKULl063bhxQ/Hjx4+qUgEAiDZq1fJ0BTHHokWergDA/+LmzZtKkCDBU2UDj06He1i7du20Z8+eJwYgSfLx8ZGPj08UVgUAAAAgpokWIah9+/ZavHix1q9fr7Rp03q6HAAAAAAxmEdDkJmpQ4cOmj9/vtauXatMmTJ5shwAAAAADuDRENSuXTvNmjVLP/30kwICAnT+/HlJUoIECeTn5+fJ0gAAAADEUB5dHW7cuHG6ceOGypcvr1SpUrl/5syZ48myAAAAAMRgHp8OBwAAAABRKVpdJwgAAAAAIhshCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjEIIAAAAAOAohCAAAAICjeDQErV+/XrVq1VLq1Knlcrm0YMECT5YDAAAAwAE8GoICAwOVP39+ffnll54sAwAAAICDxPbkk1erVk3VqlXzZAkAAAAAHMajIehZBQUFKSgoyH375s2bHqwGAAAAwIvohVoYYciQIUqQIIH7J126dJ4uCQAAAMAL5oUKQT179tSNGzfcP6dPn/Z0SQAAAABeMC/UdDgfHx/5+Ph4ugwAAAAAL7AXaiQIAAAAAP5XHh0Jun37to4cOeK+ffz4ce3YsUOJEydW+vTpPVgZAAAAgJjKoyFoy5YteuWVV9y3u3btKklq2rSppkyZ4qGqAAAAAMRkHg1B5cuXl5l5sgQAAAAADsM5QQAAAAAchRAEAAAAwFEIQQAAAAAchRAEAAAAwFEIQQAAAAAchRAEAAAAwFEIQQAAAAAcxaPXCQKAcLVqebqCmGHRIk9XAABA9MdIEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcBRCEAAAAABHIQQBAAAAcJTYni4AABC91arl6QpijkWLPF0BAEBiJAgAAACAwxCCAAAAADgKIQgAAACAoxCCAAAAADgKCyPAMTi5+/nh5G4AAPAiYyQIAAAAgKMQggAAAAA4CiEIAAAAgKMQggAAAAA4CiEIAAAAgKMQggAAAAA4CiEIAAAAgKMQggAAAAA4CiEIAAAAgKMQggAAAAA4CiEIAAAAgKMQggAAAAA4SmxPFxCT1Krl6QpijkWLPF0BAAAAYipGggAAAAA4CiEIAAAAgKMQggAAAAA4CiEIAAAAgKMQggAAAAA4CiEIAAAAgKMQggAAAAA4CiEIAAAAgKMQggAAAAA4CiEIAAAAgKNEixD05ZdfKmPGjPL19VXx4sW1adMmT5cEAAAAIIbyeAiaM2eOunbtqn79+mnbtm3Knz+/qlSpoosXL3q6NAAAAAAxUGxPFzB69Gi1atVKzZs3lyR9/fXX+vnnnzVp0iR9+OGHEfoGBQUpKCjIffvGjRuSpJs3b0ZdwX8jJMTTFcQckbFL2T/PD/sn+mLfRG/sn+gtmhxOAPiXwjOBmf1jX4+GoODgYG3dulU9e/Z0t8WKFUsVK1bU77///kj/IUOGqH///o+0p0uXLlLrRNRLkMDTFeDvsH+iL/ZN9Mb+id7YP0DMcOvWLSX4hze0R0PQ5cuXFRoaqhQpUkRoT5EihQ4cOPBI/549e6pr167u22FhYbp69aqSJEkil8sV6fXGBDdv3lS6dOl0+vRpxY8f39Pl4CHsm+iN/RO9sX+iL/ZN9Mb+ib7YN8/OzHTr1i2lTp36H/t6fDrcs/Dx8ZGPj0+EtoQJE3qmmBdc/PjxeUNFU+yb6I39E72xf6Iv9k30xv6Jvtg3z+afRoDCeXRhhKRJk8rLy0sXLlyI0H7hwgWlTJnSQ1UBAAAAiMk8GoK8vb1VuHBhrVq1yt0WFhamVatWqWTJkh6sDAAAAEBM5fHpcF27dlXTpk1VpEgRFStWTGPGjFFgYKB7tTg8Xz4+PurXr98j0wrheeyb6I39E72xf6Iv9k30xv6Jvtg3kctlT7OGXCQbO3asRowYofPnz6tAgQL6/PPPVbx4cU+XBQAAACAGihYhCAAAAACiikfPCQIAAACAqEYIAgAAAOAohCAAAAAAjkIIAgAAAOAohCAAAAAAjkIIAgA4HgulAoCzEIIQ6S5cuKBff/1VN2/e9HQpeMi1a9d07do1T5eBx7hx44bOnj3r6TJivNOnT2vKlCkKCQmRy+XydDmOFR5Ab9265eFK8CxOnTqlyZMna/Lkyfrtt988XQ7wzAhBiFT79u1TrVq1NGXKFG3bts3T5eD/O3DggOrXr6+PP/5YFy9e9HQ5eMiBAwfUvHlzffrppzpx4oSny4mx9uzZo5o1a+q7777Tjz/+6OlyHM3lcuny5cvKnj27vv32W0+Xg6ewe/dulS5dWpMmTVLv3r3Vr18/7dq1y9Nl4Tm4fv26zpw5E6EtLCzMQ9VELkIQIs2ePXtUpkwZlS5dWu3atVP58uU9XRL04MOrTJkyyps3r1599VUlT57c0yXh/9u9e7fKly+vpEmTqlq1asqYMaOnS4qR9u3bp/Lly6ty5cr65ptv9MYbb0TYztS4qPHwgVXSpElVv359dezYUTNnzvRgVfgnp0+fVs2aNdW4cWOtXr1a8+fP1759+3Tp0qUI/XgfvXj69eunWrVqqUCBAnrttdc0evRohYaGKlasWDEyCLmMf6WIBFeuXFGNGjVUvnx5DR06NMK2kJAQ3b9/X35+fgoLC1OsWGTxqHLmzBm9+uqrql+/vgYNGvTEfmbG9KAodvr0aZUtW1aNGjXSoEGD5OXl5emSYqTbt2+rbt26ypUrlz777LMI227duiVvb295e3vz7z+Shf/tP3r0qA4cOKAaNWpIknr16qWRI0dq8uTJevvttz1cJR5n1qxZ+uKLL7R27Vr5+PhIkurUqaMyZcooTpw4Sps2rerVq+fhKvGsBg8erM8//1zjxo1TggQJNGXKFK1cuVLVq1fX+PHjFTt27Bh3bBDb0wUgZrpw4YICAwP1+uuvu9s2bdqkX3/9VXPmzJG/v78GDRqkUqVKEYSi0I4dO5Q0aVK1b9/e/Xvft2+f9u3bp59++knFixdXpUqVlCNHDk+X6jirV69WlixZ1LdvX3cAOnLkiHbu3Kl169Ypf/78atGiRYz6APKEW7du6dy5c+revbu7be3atVq6dKmmT58uX19ftW7dWi1btlTSpEk9WGnMFf63Z8eOHSpcuLAmTJjg3jZ48GCZmZo3by5JBKFoJPwAOFasWDp79qx+//13lS9fXoMHD9bChQvd0xqPHj2qw4cP68MPP/R0yXgKZqZz585pyZIlGj9+vGrXri1Jyp8/vwoXLqzZs2fr1q1bmjVrlmLHjlmxIWa9GkQbV65c0c2bN3X9+nVJ0sSJEzV58mTFjh1b2bJl07Vr1/Tqq69qy5Ytyp07t2eLdZAjR47o0KFDSpkypSRpxowZmj59uo4ePaq4cePqt99+0/r16/Xll18qWbJkHq7WWW7evKkLFy7oypUrihs3rqZPn645c+Zo9+7dSpo0qcaOHaudO3fq888/93SpLzRvb2/FihVLK1asUKVKlTRmzBhNnTpVadKkUefOnXX+/HkNHTpUBQoUUNWqVT1dbowTHoB27typMmXKqEePHnr33Xcj9BkyZIhcLhdBKBo5ceKE/vrrL5UpU0aZM2dW5syZ1axZM+XPn1+LFi3S/PnzVbt2bd26dUsjR47Ujz/+qKZNmypVqlSeLh3/IDzYXrx4USEhIe72JEmSqEiRIkqRIoV+++03TZ06Ve+++27MGg0y4Dk5efKkrVy50n27bNmyliJFCsuRI4f5+vra4MGDbefOnWZmdurUKUuXLp198cUXnirXMS5fvmznzp0zswe/97Rp01q+fPmsRo0aFjduXPvwww/tt99+MzOz8ePHW/LkyW379u0erNg5Ll686P7/efPmWY4cOaxevXpWq1Ytix8/vnXr1s1+/fVXMzObPXu2eXl52Y4dOzxV7gvr4MGDNm/ePDMzCwoKsgEDBlimTJksZcqU5u/vb59++qnt27fP3T9HjhzWoUMHT5UbY4WGhpqZ2a5du8zPz8/69u0bYfuyZcvsr7/+ct/u2bOnxYkTx2bNmhWldSKiffv2mZeXlxUpUsTdtnXrVluyZImNHj3aqlSpEqH/+PHjLWfOnHb16tWoLhX/0pUrVyx79uzWsmVL9/HCoEGDLFOmTHb48GGrVq2a1atXz8NVPn+MBOG5uHfvngYMGKANGzZo5MiRqlWrltatW6dx48bp/v37qlKlyiNTrJIlS6Z06dJ5qGJnuHHjhgoXLqy6deuqR48eSpcunebMmaNvvvlG9+/f1+rVq5UvXz75+flJkgoWLKhEiRIxPTEKXL9+XVWrVlX+/Pk1adIk1atXT6dOndKuXbt04cIF/fTTTypcuLACAgIkSfHixVOOHDmUOHFiD1f+4pk7d6769u2rGTNm6K233lKnTp1UrVo1HT9+XMWKFVOGDBkkPRiluHHjhtKkSaM8efJ4uOqYJ1asWDp58qRKliyp2rVra8CAAe5tgwcPVv/+/bVjxw6lSZPG3ebl5aW3335bsWPHVoMGDTxVumPt2LFDpUuXVurUqSO0FypUSJIUGBio+/fv69atW+6/VYcPH1aGDBli3NSpmCYwMFB+fn4yMyVOnFiTJ09WlSpVtHbtWvn5+en48eNauHChsmbNqkaNGqlfv366efOm/P39Y8w5q/wLxXPh6+urd955R3fv3tUnn3yisLAw1a5dW//5z38eO3Q6YcIE3bt3T4ULF/ZQxc6QIEECdenSRQMGDFDcuHHVqVMnlSpVSqVKlVJISIjixIkTof+8efOUKFEi90EIItcbb7yhb775Ru3bt9fYsWPVpUsX9wo8/x1EN27cqBQpUihevHieKPWF9sEHHygoKEhNmjRRaGio3nnnHRUpUkRFihSJ0C9WrFgaM2aMTp48qUqVKnmo2pgtLCxMiRIlUlBQkDZs2KCyZctqxIgRGjNmjBYuXKiXXnopwmfGwIED5eXlRSj1gJ07d6pUqVLq16+fypYtq1q1aun8+fNKnjy5++9TkiRJ9Pvvv2vw4MFKnTq1Tp48qW+//Vbr1q1zhyJEP2PGjNH69et14cIFtWzZUq+//rpKlSqlbdu2afny5YoVK5Zq1qyp9OnTS3qwcE+uXLkUP358D1f+nHl4JAoxzIYNG+yNN96w4sWL2+LFix/ZvnPnTuvcubMlSpSIKVeRLDg42P3/X3/9tQUEBFjv3r3t9OnTZmYWFhbm3n7q1Cnr0aOHJUqUyD1lEZHv6tWr9vnnn1umTJmsffv27vagoCD3/58+fdp69Ohh8ePHt127dnmizBda+BSsoKAg69mzp3l5ednMmTPNLOJ7YNmyZdahQwdLlCiRbdu2zSO1xkThv//g4GC7d++emZnt37/fcufOba+//rq99957ljhxYlu1atUj9920aVOU1or/s337dosbN6716tXLzMzWr19vcePGtRMnTjzSd9y4cZYnTx7LnTu3ValShb9T0VzXrl0tefLkNnToUKtRo4ZlzJjxiX/zQkJC7MyZM5YvXz778MMPo7jSyEcIwr924sQJ27Rpk/ugOtyGDRusfv36VqxYsQhBaPTo0Va4cGErU6YMfyQj0blz5+z69esRDvDMzMaOHWsBAQHWq1cvO3v2bIT2V1991fLmzcv5JpHs+vXrduHChQhtFy5csM8//9wyZMhgHTt2dLeHhYXZxx9/bA0bNrRcuXKxb57B0aNHbcSIEbZ37167du1ahG09evQwLy8vmz59urvt+++/twYNGli1atVsz549UVxtzBUegI4cOWL9+vWzn3/+2W7fvm1mD4JQvnz5zOVy2ahRo9z3Cf+71bt3bytYsKBdunQp6gt3uH379pmfn5/17NnT3Xby5ElLly6d+2A5LCzM7t+/795+/vx5u379ut28eTPK68XT69KliyVOnDjCl9AvvfSSff/993bx4kX338vQ0FC7ceOGLVy40HLmzGk1a9Z09//vY4sXGSEI/8rp06fN5XKZy+WyFClSWLt27Wz06NHuN9Dhw4ftjTfesFKlStnChQvd9/v555/dJ93h+Tt27JjFjh3bUqdObS1btrSxY8fagQMH3NunTZtmcePGtT59+rjD67p162zChAl28uRJT5XtCIcOHbJUqVLZSy+9ZO3atbN58+a5F0YICQmxzz//3LJmzWrt2rVz32fKlCn26aef2vHjxz1U9Ysn/ARfl8tlSZMmtUqVKlnr1q1t+fLldvPmTQsJCbFRo0ZZrFix7LvvvjOzB+F0165dduXKFQ9XH3M8vAhCxowZrV69erZgwYII244cOWJ58uSxmjVr2rp169z37du3r8WJE8c2b94c9YXDZs2aZSNHjozQdv36dUuWLJnNnj3bzCIeCG/fvt2uX78epTXi2U2ePNlcLpft3r3b3Xb37l1LkyaNlSxZ0lKmTGmFChWyLVu2mJnZ7du3bf78+TZ8+HB3//D3bkzBxVLxr9y4cUNVqlTRqVOnVKVKFV29elXHjh3TtWvXlCFDBrVt21bHjh3TiRMndODAAfXu3dt9MTxEnrVr16pRo0a6cOGCunTpojlz5ihevHjy8/NT06ZNVadOHS1atEgDBw5U586d1bx5c6VKlSpmLXkZTY0bN07t2rVTtmzZFBISotSpU2vPnj2qVq2aKlWqpFy5cumPP/7QhAkT9Nprr7kvMnz//n1OMH4GV65c0ahRo/TLL7/I5XKpU6dO+uKLL3Tt2jVdv35dNWrUUIkSJbRy5UotW7ZMEydO1BtvvOHpsmOkw4cPq1SpUmrZsqV69uwZ4XyC8L85e/fuVcOGDZUxY0YNHDhQCxcu1LBhw7Rx40b3yffwrLCwMN27d0/58uVT9+7d9d5777m3ffDBB1q8eLE2bNjAoi3RmJlpzZo1aty4sUqUKKEff/xRklSkSBH5+Pjok08+0b59+zRt2jTduHFDq1atUurUqRUaGupeBCFGXtPRoxEML6TwIfCrV69ayZIlrVatWrZgwQILDg62+fPn2/vvv2958uSxzJkzm7e3t7lcLitdurQFBgbGqGHU6Cg4ONhWrlxpqVOnthYtWtjt27ft999/t5YtW1q5cuXM29vbGjdu7B7FGzp0aIQpDYhcw4YNs5dfftm6d+9uO3bssHnz5lm7du0sWbJkVrhwYUubNq3lyZPHXC6XDR482NPlvrDOnz9vAwcOtAIFCrh/j7du3bLhw4dbmzZtLGHChFagQAFzuVyWOnVqu3XrlocrjlnCp0q1bdvWmjZtGmHbzZs3be/evbZ27Vr36PPu3bstX758liRJEvP393d/E42oc+7cOdu+ffsj52Y9/JldoUIF++CDD9y3P/roI/Pz87M///wzyurEv3f//n3bsGGDpUiRwqpVq2bFihWzGjVqRBgB//TTTy0gIMD27t3rwUqjDiEI/0r4gfOlS5esRIkSVqJECfvll1/cfzD/+usvO3z4sPXr18+aNGnCPPsodP/+fVu6dKkFBATYO++8426/c+eO/f777/bll19alSpVLEOGDLZ//34PVuocDwfNjz76yAoVKmQffvihewrJ5cuXbePGjdalSxerUKGCJU2aNMKUBTy78+fP26BBgyx79uzuk7vDnTx50tauXWvdunXj/MRIVLt2bevevbv79k8//WQtWrQwf39/S5kypaVKlcp9jsnevXutXLly7A8P2Llzp2XKlMmyZctmAQEBVrBgQfvhhx/c5/eE//2qVauWNWrUyMzM+vTpYz4+PgTWF0BoaGiEz6D169dbrly5zNfX1/0F0N27d83swQIx+fLlizCNPiZjOhz+tfBh0suXL6t27dqSpJ49e6p69eruIVMzU1hYWIxZU/5FYWZavny53nrrLVWqVElz5sx5pM/169eVMGHCqC/OQeyhaYYPTyUYOHCgfvjhB1WtWlXt2rWLcL2s4OBgBQUFsbzsc3Dx4kVNnDhRM2fOjDDFEM9f+L/voKAg+fj4SJJq166tv/76S4MGDdLatWv13Xff6ZVXXlH16tWVOnVqDRw4UHHixNGsWbMUP358pn56wMWLF1WmTBk1aNBA77zzjnx8fNShQwedPHlSb731ltq2bev+nOjQoYNu376t7Nmzq3///tq4cSOXuYjGZsyYoR07dmjLli1KmDChmjVrpmLFiil16tTasGGDGjZsqCJFimjRokWSpEuXLqlChQoqXry4vvnmGw9XH0U8GsHwQti/f799+eWXj9328IhQqVKlrHTp0rZ06dIYd/JcdHT8+PG/XUI2LCzMli1bZokSJXJ/e2cWcelsRI4bN248tv3h90X//v2tYMGC9sEHH0RYrQ9P79q1a4+s/vbfLly4YIMGDbKXXnrJ+vTpEzWFOdSpU6esadOmtmbNGjN7sH9y585tWbNmtdSpU9uMGTPs1KlT7v6tW7e2V1991UPVwuzBogYZM2Z8ZOS5Q4cOlj9/fvvss8/cowRjx441l8tlAQEBLFoRzXXr1s3Spk1rrVu3tgYNGljx4sXN5XJZw4YN3ZfBWL9+vaVKlcrq1Klj169ft7x581qVKlXcj+GE0xcIQXiisLAwCw4OthIlSjwyneRh4UHo8uXLVq5cOcuTJ4+tWLEiqsp0pPCVembMmPG3/cKDUPLkySMscYnIs23bNqtSpcoTpxo+HIQGDBhgRYsWtfbt29v58+ejqsQY4fLly5Y5c2b75JNP7OrVq4/tE/4hfuHCBRs8eLClTJnSBgwYEJVlOsqSJUssf/781rBhQ9uwYYO7/dixYxGWTg7fLy1btrTWrVtbcHCwIw64oqNNmzZZmjRp7I8//jCz/5sWZfZg/+TIkcP9t2zOnDmWLFky27dvn0dqxdMZNWqUJU+e/JFr/4wcOdK8vb2tUaNG9tdff5nZg0uapEmTxlwuV4QA5JQvsglB+EclSpRwX8fhvz+owgNQ+H8vXLhglStXZknfSHb9+nVLnz79E7+Ne/gPWEhIiC1cuNAyZcrk/sOHyLFjxw7z9va2Hj16PLFPWFhYhPdRjx497OWXX37k+kH4Z127drVkyZLZ6NGjH1ne+r8/xE+fPm0jR460I0eORGWJjvPTTz/Zyy+/bK+//nqEIPTw/ggMDLRevXpZsmTJOC/RAx4eQQ0JCbFcuXJZrVq13NvDL2prZpYrVy5r0aKF+zbXbYq+wsLC7MaNG1azZk337J2QkJAIfUaNGmUul8vmzZtnZg/elytXrrR+/fq5+zglAJkRgvA3woNNkSJFbOLEiWb25OHRI0eOuK9y76Q3kKecO3fOMmTI8I8nL4Z/mAUHB7svUojIsWPHDvPz83tk1PRJFw98ePSCA4tnE/63xuzBNWUSJkz42CBkZrZ48WL375qVEJ+f8N/l4z4T5s2b5w5Cv/32W4RtI0eOtDZt2liaNGmeeJV6RJ6HR1DDr1O2ceNGS5AggbVu3drdL/zguV27dvb66697pFY8u/Pnz1vixIlt/PjxEdofPi6rUKGCVaxY0b2PH34PO+34LYYt+I3n4fDhw/rtt9/k5eWlwMBAXbp0SX5+fpL02GvJjB8/Xrlz59amTZue2Af/u7Nnz+rIkSOSHlyn6eLFiwoODn5i/5EjR6pMmTK6ffu24sSJI39//6gq1XH27dunsmXLqmvXrvrkk0/c7QMGDFC/fv0UFBQUoX+XLl3Up08fnTlzRpKUNGnSKK33RXXp0iWFhYXJ29vb3TZgwAC1bdtWAwYM0NSpU3X16lX3th9//FFt27bVF198ITOLede48CAvLy/t3r1b1atX16effqqVK1fq3r17kqR69eqpR48eunjxokaOHKmNGzdKkm7evKndu3fr3r17WrVqlQoWLOjJl+BISZIkUZ06dTRmzBjNmDFD165dU6lSpTRmzBh99913at68uSS5FzO6cuWK4sWLp7CwME+Wjad07949xYkTRyEhIZIeXGdOkmLFiuXeh7ly5dKNGzfcfR7mtL+RLMOCCMLCwvT555/ryy+/1Lp161S2bFmFhYW5Q9DjvP3221q9erWSJ08uiRAUGW7evKm2bdvq7t27Gj9+vJIlSyZvb2/3fnl4VaXwP3SJEiVSnDhxdPXqVcWLF89jtcd09+/fV4cOHeTl5aXXXnvN3T5s2DCNHDlSc+bMca+WFS59+vTq37+/+vXrF9XlvrCOHj2qvHnzKmvWrHrllVdUrlw5FSlSRBkyZNDgwYMVEBCgfv36yeVyqXHjxkqaNKlq166tP/74Q40bN+bv0nNkD2aRqG3btvrtt9906tQpHTx4UOXKlVOiRInUoUMHlStXTrFixdLnn3+uL774Ql5eXipRooQmTpyo4OBgvpTxgODgYHl7e2vUqFHy9/fXgAEDJEmtWrVS48aNFTduXP3nP/9RoUKFlC1bNsWOHVuLFi3SH3/84biD4xfJl19+qcyZM6tatWrKkCGDypQpoyFDhqhmzZrKkCGDeyXf8BUc48ePr1KlSikoKEh+fn6O/tvIEtl4xLlz5/TRRx9p5syZWrhwoYYPH65y5cqpVq1aunz5sry9veXv7687d+7o1KlTKl68uDJnzuzoN1JU+PrrrzV37lwlTpxYdevW1VdffaWJEycqXbp07tEeX19f3b17V9euXVO6dOkUEhLCUstRYN++fXr77beVKlUqjRw5UosWLdLw4cM1e/ZsVa5cOUJf+//LZl+7dk2JEiXyUMUvngULFuiNN95QSEiI3nvvPc2aNUvp0qVTqlSp1LRpU9WsWVMjR47U1KlT1bNnT9WpU0epU6f2dNkxUvi/4cuXL6tcuXKKHz++2rVrpzt37uj777/XuXPndP78eTVr1kybNm3SzZs3lSRJEo0ePZrRHw+4dOmSkiRJ8kiQ6dWrl7766it99NFHatWqlQICAnTp0iUNGDBAN27ckJ+fnzp27KjcuXN7qHL8k06dOmnChAnau3evMmfOLEmaM2eO3n//feXKlUsTJkxQxowZ3f0vX76sIkWK6NSpUypQoIB7GXTHfinhwal4iEYOHjxoI0eOdN8+f/68NWvWzFwul7lcLsuYMaMlT57c/Pz8LCAgwFKkSGEJEiSwJEmScKJxJDp9+rQtWbLEfXvy5MlWpUoVy5cvn7lcLkubNq0FBARYggQJ3D8BAQGWOnVqO3funAcrj/muXLliu3fvtoMHD5rZg/dQ7ty5LUuWLJYgQQJbuXKlmUU8D2Xs2LH21VdfmZnz5l7/W+Hz1W/dumXff/+9BQQEWJ8+fezSpUv2888/W+3ata1QoUIWEBBgLVu2NJfLZb6+vvb111/b/fv3WXUskp07d85Spkxp1apVs8OHD5uZ2dmzZ23q1KnWtm1by507t7lcLkuUKFGE5bERNY4cOWJ+fn6WN29e69ixo82bN89OnDjh3j548GCLFy+ejR49+pEVKjmHLnrr3LmzJU6c2Hbs2PHItoEDB1ratGktc+bMNn36dFu0aJH9+OOPlidPHqtevbotWLDAli9f7vhVSQlBsLCwMPv666/N5XLZJ5984m4/e/asde/e3Vwul02ePNlu375tp0+ftjNnztjp06ft7NmznNAdie7evWsNGza0EiVK2MKFC93tkydPtlKlSlnu3Lnt008/tU2bNtnGjRtt7dq1tnz5ctu4caMdO3bMg5XHfPv27bPy5ctbhQoV7I033nCfqH/48GErVKiQFS5c+JETwvv27WuxYsWyvXv3eqLkF9Lx48ft5Zdfdl936c6dOzZt2jTz8vKynj17uvvdvHnTfvrpJxs6dKgVKlTIUqRI4Q6neD7mzp1rS5cutYULF9rSpUvtl19+ca9Oef78eUudOrWVKlXK9u/fHyF43rt3z5YtW0YA8pD58+ebt7e3uVwua9OmjcWPH99y585tFStWtOnTp9u1a9esd+/eljZtWvvyyy8jfHnGFwjRV48ePSxhwoQRPk/u379vAwYMsMDAQDP7vy9N48WLZ76+vla2bFlr27atp0qOlghBMLMHBxGff/65xYoVywYOHOhuP3PmjLVo0cL8/f3dF8Az41vsqLJ27VqrWbOmValSxRYsWOBunzRpkr366qvWsGHDCCvEsV8i3+7duy1RokTWq1cvO3z48CPLxB8+fNjy5MljVapUsbVr15rZgwuj+vn52ZYtWzxW94to3759liZNGitcuLDdunXLzB4cVE+bNs28vb2tc+fOj9wnODjYLl++HNWlxmjhF8nMkiWLZc2a1QoUKGDFixe3rVu3uvucP3/e0qRJY2XLln3kwpuIev/LCCqfI9HbpEmTzOVy2bfffutuCw4Otvz581u5cuUirAQbGhpqu3fvtj179kS4KDf7+AFCkIP995vg+vXrNmbMGHO5XBGC0IULF6xZs2YWEBBgv/zyS1SX6UgP75uNGzda1apVHwlCkydPtpdfftkaNmzIQUcUuXjxohUvXtw6deoUoT38gCM8CB06dMjy5s1rderUsbfeest8fHwIQP9CWFiY7dmzx/Lly2f58uVzLzd+7949mz59unl7e9v777/v7v/f18TA8zFo0CB744037PLly+5/49evXzezB/so/PceHoReeeUV91XpEfUYQY3ZDh48aDlz5rTatWvb1q1bLSwszIoUKWLVqlVz7/O/m8rICN//IQQ51JEjR2zo0KG2atUq99Cp2YODi/CLaX388cfu9gsXLli9evUsVapUdufOHU+U7AjHjx+3bdu22enTpyO0r1+/3qpWrWqVKlWy+fPnu9unTZtmBQoUsCZNmlhwcHAUV+s8mzdvtuzZs9uff/752A+Shy+EeuDAAUufPr35+vra9u3bo7jSF1dgYKDdv3/f/WEe/k3mk4JQvHjx7L333vNkyTHekCFDrE6dOmb2f0Hzvw+ywtsvXLhgvr6+Vr169QjXc0LUYQQ1Zrpz5477WmgHDhxwzzjImTOnVa1a1X1sFv4ZdOPGDZs1a5bH6n0REIIc6OrVq5YzZ073ogdVqlSxmjVr2vLly+3IkSMWGhpq48ePNx8fHxs0aJD7fhcvXowwnIrn66+//nLvkxw5cliLFi1s/Pjx7hMXDx8+7N5X4Vd7NjObNWtWhBNdEXnGjRtn/v7+7tuPC0KBgYHuKYonTpzg/KxnsG/fPqtVq5aVKVPGqlatart27XJve1IQ+uabbyxFihR24cIFT5Ud4w0YMMCqVav2j/3Cg9DFixft0KFDkV0WnoAR1Jhn7Nix1rhxYytQoID7vK2DBw9awYIFLWHChBEWUDJ7cJyXLVs2a9WqlSfKfWGwRLYDhYSEaNCgQVq1apUCAgJUuXJl/f7779qzZ49OnjypN998U4kSJVJYWJjGjBmjESNG6P333/d02Y5QsmRJ/fnnn+rSpYt27NihGzdu6OjRoypevLjeeustXbp0SRs2bFBYWJhatGihOnXqeLrkGM/+/3LAkrRs2TLVrVtXixYtUsWKFR/bf8iQIfrjjz/0/fffP3J9IDzZzp07Va5cOb3zzjtKmDChtm/fLpfLpblz58rPz09hYWHav3+/3nzzTcWKFUu//vqrAgICFBwcrHv37il+/Piefgkx1hdffKHNmzdr2rRpEd4PjxN+TRJErTt37sjHx0eBgYGKHz++wsLC3Ev3S3K/X4KCgjR37ly1bdtWb7/9tr7++msPV45/8sEHH2j+/Pnq27evUqZMqUqVKrnfZ8eOHVOdOnWUNm1ade/eXa+88opu376tEiVKKHXq1FqxYoUk/eP71rE8GsEQ5cLPNQkKCrJ+/frZq6++al27djUzs9u3b9usWbOsQ4cOliVLFsuSJYt7ZOLq1avMI41ED08tKVasmBUtWtQ2bNhg9+7ds1mzZlmvXr0sXbp0VqxYMfc+qVq1aoQTIPH8nTx50j755BP3N6m7du2yePHiWfPmzR+7ilJoaKh17tzZBgwY4JF6X1S7d++2uHHjWr9+/dxtn332mdWpU8euXr0aYXro3r17rWDBgpYuXTr3VB9Ervnz57sX+UD0wwhqzPXZZ59ZihQp7Pfff39k23+fg1qrVi1btGiR5cqVyypXruzuxyIIT0YIcqDwc0eCgoJs4MCBVqRIEevcubN7Dn74tnXr1tkXX3zBSfeRLPwP1MPn9BQsWNCyZs1qf/75p7vtzJkzduDAAevbt681atSIpZajQP/+/S179uzWt29f9/tj7Nix5uXlZZ07d7ajR4+6+967d8969eplmTJlYirQMzh//rwFBARY5cqVI3zR0r17d0uSJIlly5bNAgICrHfv3nbt2jUzM9u+fbuVLl06wu8fkY+Dqehnx44dFj9+fGvXrp317t3bqlevbjVq1HCfHxIaGmp79uyxPHnyRAhCQUFBET7zEb2EhYXZrVu3rFKlSjZ06NAn9gsPQgcPHrS8efOay+WyWrVqubfznv17hCAHOHDggC1evDjCUsrhwoNQiRIlrH379nyzGoVOnTr1yPkid+/edf9/kSJFLGvWrLZx48ZH5mxzwnHUCA4Otp49e1rx4sWtZ8+e7gOIjz/+2FwulxUtWtR69Ohh3bt3t/r161vSpElt27ZtHq76xVO3bl3Lnz+/TZ8+3czMRo4cafHixbOpU6faqlWrbPDgwRYrVqwIJ/nyHoDTMYIas506dcr8/f1t6dKlZvbkVd0eXizho48+crcTgP4ZISiGu379unuVmGrVqlmPHj3sxIkTEd5MQUFBNmDAACtRooR17tyZP5BRIHwRhMSJE9uwYcNs7ty5j+1XuHBhy549u/3222/8QfOQ4OBg6969uxUrVsx69+7tnoK4YMECq1SpkmXKlMmKFi1qHTp0eOwXDXi848eP29ixY92jZg0aNLD8+fNbw4YNLXHixBGmXwUFBVmuXLmsefPmTMsFjBFUJ7h48aLFjx/fvv766yf22bNnjxUsWPCRRas4Xng6sTx9ThIiV4IECZQ/f34lS5ZM/fv319q1a9WmTRu9+eabOnbsmG7evClvb2/16NFDr732mn7++WcNGjRIxnoZkSphwoSqU6eOGjRooCtXrqhXr16qU6eO5s2bpxs3brj7bdmyRQkSJFCtWrW0ZcsWD1bsDPv27dOIESO0evVq3bp1S5IUJ04cDRw4UK+++qqWLl2qwYMH68aNG6pdu7Z++uknHThwQJs2bdKYMWOUI0cOD7+CF8Pu3btVpUoVrVq1Svv27ZMkff/998qdO7fmzp2rli1bqkyZMu7+oaGhSpIkibJnz87JvYCkFClSqGLFirpw4YJmzpwpSRo1apTGjRun0aNH6+uvv1bPnj01ZMgQLV26VJJUoEABrV69WpkzZ/Zk6fgb69atc3/2mJlSpUqlRYsW6a+//nL3efj47Pz588qcObPixo0b4XFixeLw/ql4OIQhEoV/E7Bp0yarWbOmnT9/3q5evWpr1qyxJk2aWLx48ezNN9+0H374wd3/iy++YEnfSBYWFmZ37961Nm3aWN++fc3swbfirVu3ttdff93y5s1rCxYsiDCtqmLFinb48GFPlewIN2/etDhx4pjL5bKsWbNamjRprE2bNjZx4kT3hSH79OljFSpUsB49erhHTMPfZ4xQPJ39+/dbokSJ7MMPP7QzZ848sv3tt9+2nDlz2tSpU93XMOvbt6+lTZuW9wAcjxHUmGv16tWWPXt2+/DDD91Tr2fMmGEul8u6du36yN/LM2fOWMmSJa1bt26eKDdGIAQ5wOnTp61o0aI2cuRId1urVq0sZcqU1qJFC/P29rbixYvb1KlTPVil82zbts0SJUpkCxcudLdVqFDBvL29rWjRopY3b15r3bq1Xb161YNVOss333xjLpfL2rRpYz179rQ2bdpYQECA5cyZ06pXr25jxoyxKlWqWMmSJa179+4RLjSMf3b37l1r0KCBtWvXLkJ7cHCwHT9+3L3iXuvWrS179uw2b948+/DDD83Hx8e2bt3qiZKBaGPXrl2WPXt2q1u3ri1YsMDd/tZbb5nL5bIePXpEWGn0zp07VrZsWRsyZIgnysUzCg4Otm7dulmpUqWsZ8+e7oUrPvroI3O5XFa/fn2bOXOm7d271yZPnmy5c+eOsAgCQffZEYJisNDQUPebYurUqZYtWza7fPmyNW/e3FKlSuVeRvPPP/+05s2b8y1rFAr/oOrcubP7RMZmzZpZ6tSp7ejRo7Z9+3b74osvLEOGDFwINQo8/OHx5ZdfmpeXl40ZM8aCg4Pt9OnTtmbNGmvQoIFVr17dvUR55syZ7dKlSx6s+sUTEhJiZcuWtS+++MLdtmzZMuvcubPFjx/f0qZNa6+//rqZmbVs2dJcLpfFixePAATHYwQ1ZgufURASEmI9evR45BzUSZMmWdq0ac3X19e9KE/Hjh0fuT+eDRdLjUFOnDihJUuW6MaNG6pevbry58+v+/fvy8vLS2fOnFHHjh21Z88e3b9/X999952KFSumsLAwxYoVS/fv31fs2LE9/RJipPPnz2vXrl0KCAhQpkyZlDJlSve2adOmqV+/fsqRI4f27t2rH3/8UUWLFnVvDw4Olre3tyfKdpyHL/L4+eefq3Pnzvr444/VrVs393zru3fvavv27frjjz9Uq1YtZcuWzZMlv3Bu3ryp4sWLq2zZsnr//ff1448/aurUqcqTJ4/KlSunePHiacCAAWrRooU++ugjtW/fXm3atFGePHk8XTrgMffu3VOTJk2UPHlyjR071t0eEhKiM2fOyNfXVylTptR7772ntWvXavDgwdqyZYs+/fRT/fbbbypUqJAHq8ff+fPPP5U1a1YlTJjQ/fkTHBysvn37atWqVapatap69Oih+PHj69SpUwoODtb169eVPn16JU+eXJLcx3H4FzydwvB87Nixw9KnT28lSpSwl156yRImTGg7duyI0KdXr17mcrls+/btninSgXbu3GnZs2e3l156yZInT25t27Z95OJ0NWrUsMSJE9vmzZsfuT/D25Hn4MGD9s0331hwcLB7CfKHl13+4osvzOVy2aBBg9xLkIZjv/x7q1atstixY1uGDBksICDAvv76a/c31cHBwVa5cmV76623PFwlEH0wghoz9e3b11wulxUoUMBKlixp06ZNszVr1ri39+/f30qUKGE9evR44jWd+Cz63/DVfwywc+dOlShRQl26dFGvXr107tw5vf3229q9e7fy58/v7tejRw+tWLFCq1atUoECBTxXsEPs3LlTpUqVUrt27dS5c2f9+OOPGjRokDp16hThG5yaNWvq8uXLSpYsmbst/FsdVsKKHLdv31bJkiV17do1rV69WmnTplX79u2VLl06d5/27dvLzNSpUyd5eXmpTZs2SpgwoST2y/+iQoUKOnbsmC5evKgMGTIoadKk7m1eXl5KkCCBMmfO7F4Bid81nO7OnTu6dOmSdu3apYMHD0YYQR04cKB7BHXAgAGaOHGifHx8GEF9AWTIkEGSFD9+fCVKlEgTJkzQli1bVKpUKRUuXFh169bVsWPHtHv3bo0cOVI9evRQvHjxIjwGfx//N0yHe8EdPnxYRYoUUfPmzTVmzBh3+yuvvKIMGTLo8uXLqlChgqpWraqcOXOqTZs2OnTokJYuXSo/Pz/PFR7D7dmzRyVLllSXLl00YMAAd3uJEiXUqFEjSQ+WK3355Zd1/fp15c+fX7Vq1Yow1QGRa+DAgQoNDVWaNGm0du1aLV++XG3btlWxYsVUq1Ytd7/wqXEjRoxQ165d+dCJJMHBwRo4cKAmTZqktWvXMtUQeMjq1atVpUoVpUmTRlevXtWIESP06quvKmvWrAoJCVHNmjWVNGlS93LZeDF8++23at26tT777DO99tprunjxopYtW6Yff/xRLpdLJ06c0LVr1yRJP/74o+rUqePZgmMYRoJecD/88IO8vLyUMmVKXbt2TYkSJdKQIUP022+/KWPGjIofP766deum7du3a/r06XrnnXdUv3593bx5kxAUScLCwjR8+HAFBgaqRYsW7vaBAwdq06ZN8vHx0aVLl3TgwAFNnjxZTZs2VevWrfX999/r5s2bCggI4EA7CiRPnlwzZ87U8uXL1apVK/3www/aunWr6tatq//85z8qWrSo3nnnHXXs2FHx48dXsWLF2C+RZMaMGdq8ebPmzJmjpUuXEoCA/8II6ovPzORyuRQWFibpwbV83n33Xd2+fVsdO3bU1atX1adPHxUpUkR9+vTR1q1bdfDgQc2ZM0fp06cnAEUGT87Fw/PRo0cPK1SokI0aNcr69OljyZIls2XLlrnnio4fP95cLpdt2rTJzMx99WhEnitXrljZsmXdK/INGzbMvRx2cHCwnTx50urVq2fp0qWzq1ev2q5du+zUqVOeLtsRws//MTMrU6aMvffee+7bdevWtdSpU1u1atWsYMGClixZsghL0eL5O3DggJUvX97q1q1r+/bt83Q5wAslKCjI+vTpY6lTp3ZfOwjR03+fpx0cHOz+/4fPQb18+XKEfuErxJmxCtzzRgh6Af311182f/58mzRpkrutW7duljVrVvPz87O5c+ea2f8d7K1evdoyZ87sXhIbkePgwYM2c+ZM9+1r165ZiRIlzM/PzxImTGi//PJLhP4DBgywl156yX1RNESe48ePW79+/dy37927Z2Zm06dPtzfeeMPMzJo0aWIpUqSwo0eP2t27d2337t3WtGlT279/vydKdpQLFy64L0gL4OlMnz7dOnbsaClSpIhwcW1EP/369TOXy2XNmjWzGTNmPPbyCuFBaPDgwY/9sppFEJ4/1tR7wezZs0fVq1fXrFmztHjxYt25c0eSNGLECDVq1EiZMmXSwYMHdeXKFfeS18uXL1eCBAmUKlUqT5Ye482fP1+NGzfW1KlTJUkJEybUkiVLVKlSJcWJE0cZM2aM0P/y5cvKmDEj0xYiWVhYmH766SeNHz9eH374oSTJx8dHklSuXDmtX79e6dOn19q1a7VkyRJlzpxZvr6+ypMnj6ZMmaKcOXN6snxHSJ48uRIkSODpMoAXxsGDB/Xtt9/q9OnTWrNmjQoWLOjpkvA3kiZNqmrVqil27NhavHixChQooKlTp2rz5s3uPu3bt9eYMWPUu3dvDR06VHfv3o3wGBwrRAJPpzA8vX379lmiRImsV69eEUYPHp7e0717dytUqJB9/PHHFhQUZJ988onFjRv3kWFYRI6PPvrIvLy8IozSXbt2zUqVKmXZsmVzT/f56KOPLF68eLZ7925PleooFy5csGHDhlmuXLmsW7duEbZNmDDB0qRJY4sXL/ZQdQDw7BhBfXGsWbPGateubQcOHDAzs4EDB9o777xjOXPmtAEDBkS4RMbw4cOtcePGnirVUVgd7gVx+/ZtNW7cWClSpNC4cePcSyjb/z/R7uELPfbo0UMbNmzQ/fv3tWfPHv36668qXLiwJ8uPsc6ePasdO3bo9OnTatmypby8vPTxxx9r0KBBmjhxopo3by5Jun79umrUqKGbN2+qVKlSmjFjhtavX89+iQLh75HLly/rm2++0fTp01W9enWNGDFCkvTbb7+pdevW6t+/v+rVqxfhvQQAwL/18IXoa9euLUn66aefJElr1qzRq6++qpQpUypz5szy9/dX9+7dVbFiRff9wz+/EDmYDveCCAkJ0e7du1W2bNkIVwYOf3M8/CYZPny4ihQpomvXrunPP//kQDuS7NmzR7Vr19a0adN0+PBh3bt3T5L08ccfq0+fPmrVqpUmT54s6f+mxvn5+WnixIkE0ygU/t5ImjSpWrZsqXfeeUdLlixRt27dJEmlSpVS6dKl1aFDBwUGBhKAAAD/k9WrV0uSYseOraCgIElS3759devWLZ05c0YnT57UG2+8oXbt2mnTpk3q0qWLrl69qjlz5rgfgwAU+RgJekFs2rRJJUqU0IEDB5Q9e/bHflsdEhKi2bNnq0mTJpIenHPy8DKaeH7279+vUqVK6T//+Y86dOiglClTPtLncSNC165dU2BgoNKmTRvVJTvG1atXlThx4iduf3hEqEqVKho9erQ2b96sNm3aaNGiRUqdOnUUVgsAiEl+//13vf7663rrrbc0atQod/uVK1dUu3ZtZc2aVcuXL1flypX11Vdfyd/f34PVOhshKBo7f/68YsWKpeTJk+vSpUvKmzevmjRpok8++URx4sR55FuCRYsWqX///lq6dKmSJUvmwcpjttu3b6tBgwZKmzatJk6c6G5/3Lc2/fr104gRIzRq1Ci1bds2qkt1nBs3bihbtmxq2bKlBg8e/MR+4UFo9uzZKl++vD777DNduXJFSZIkicJqAQAxzcWLFzVx4kR9//33qly5snvqtfRgoaoaNWqoTp06mjdvnrs9LCzskdMcEPmYDhdNbd++XenTp9euXbskPZhOVahQIX3//fdasWKFQkNDH3mT/Pnnn8qVK5cCAgI8UbJjBAYG6sSJE6patWqE9vD9EX4hNEnq37+/2rRpo48++kg3btyI0jqdKEGCBOrZs6c+/fRTDRo06In9kiZNqlatWqlu3br69ddfdfnyZQIQAOB/YmZKnjy53nvvPTVq1EhLlixR9+7d3dtfeuklVaxY0b2aX2hoqCQ99jQHRAFPrMaAv7djxw4LCAiw7t27m9n/XRzrzJkzli5dOsuZM6fNmjXL7t+/b2Zm58+ft/fff99Spkxpe/fu9VjdTrFp0ybz8vKyP/7444l9goKC7PPPP3fvo8ddEwDPz8GDB23x4sUWFhZmQUFBNm7cOPPy8rKBAwe6+zx8jYV79+65V+O5cuVKlNcLAIjZLl26ZEOGDHlkVdIBAwZYkiRJ7Pz58x6sDmZcJyja2b17t0qVKqUuXbpo+PDhkh58Q3DixAmlTp1ay5cvV1hYmNq2batChQqpYsWKatiwoebNm6clS5YoV65cHn4FMVP4ogeS5Ovrq1ixYmnr1q2SIo78hFuxYoU2bNjgPiGSc7Miz86dO5UzZ04dO3ZMLpdL3t7eevfddzV27Fj3eVnS/327FhwcrM6dO6tYsWK6cuXK354/BADAv/Hfi/F07dpVktSrVy95eXlFmA4HzyAERSNXrlzRm2++qaxZs6p///7u9iFDhqhhw4a6du2aXnrpJW3btk19+/ZVoUKFlDx5cjVs2FBr167lYmmR5Pjx42rVqpXWrVsnScqbN69q1KihgQMH6tChQ4oVK5bu378v6cFQuCStX79eAQEBEYa48fzt2LFDpUqVUs+ePdWhQwd3e5w4cdS8efNHglBwcLC6du2qmTNnavPmzUyBAwD8a0OGDFGvXr2euP3hILRy5Ur16NFDXl5emjJlitq1axeFleJxYnu6APyf+/fvq3r16lq+fLkGDBigjz76SKNGjdKIESP03XffKVGiRAoNDZW/v7/ef/99T5frGIGBgVq+fLnu3LkjLy8vlSlTRt27d1fTpk1VoUIFLViwQPnz55ckXbhwQZ9//rmmTZumtWvXytfX18PVx1y7d+9WmTJl1LVrVw0cONDdPmfOHFWsWFFJkiRRixYtJD24EndYWJgCAwM1adIk/frrrypUqJCnSgcAxAA+Pj7q3bu34sWL99gwZGbuIORyuTR48GCVLFlSdevWlRRxQQREPVaHi2bOnDnjXlUkefLk2rt3r+bOnavy5ctH6GcPrR5irCQSaYKDg+Xt7a3t27erUaNGyp49uz766CMVKVJES5YsUZ8+fbR3716VLl1a0oOTHE+cOKEFCxYwMheJzpw5o3Tp0qlRo0aaOXOmu33YsGHq2bOnNm/e7L4OU3BwsKZOnar33ntPkrR161b2DQDgX9u7d6+yZ88uSZo8ebL+85//uK8RKD16XBYcHKw4ceJo6dKlql69ukdqxqMIQdFI+DcCp0+f1rfffquJEyeqfPny7oM8vjGIOseOHdOcOXO0bds2jRw5UhkyZNCuXbvUsGFDZcuWTf3791ehQoXcS2EeOHBAd+/eVfny5VWjRg1lypTJ0y8hxsufP7/u37+vCRMmqHTp0ho+fLhGjBihWbNmqVKlShE+hO7fv685c+aoSJEiypEjh4crBwC8qNq0aaO9e/dqyZIlCggIUHBwsCZNmqT27dtHCELh9u3bpzJlymjWrFnuVWU5noseCEEedOrUKc2bN08rVqxQYGCg0qdPr/79+ytr1qy6cOGCxo0bpzlz5uiNN97Qxx9/LEmPvUgqnq/du3erXr167ilVH3zwgfz9/eVyubRz50698cYbyp49u3r16qUSJUpIYr94SrFixRQYGKiXX35Z33//vb7//ntVqFAhQh+WjgcAPA9du3bVlClTtGrVqggzCoKCgjR58mS1b99e/fr1U9++fSU9CEB16tRRhgwZtHLlSk+VjScgBHnInj179OabbypTpkxKmDChgoOD9ccff+jmzZuaPHmy6tSpo7Nnz2rChAmaM2eO3nrrLfebCpHnyJEjKlWqlJo3b65BgwYpTpw4kv5vBbhYsWK5g1COHDn0wQcfqFSpUp4s2TFOnz6tFStWKCwsTFmzZtUrr7wiSSpXrpx+/fVXjR49Wp07d45wn549e+qnn37SunXruIAwAOBf69q1qyZPnqy1a9e6zwMOCwvTjRs3lChRoggjQgMHDlTTpk1VpkwZ5cyZU0uWLHH3ZwQoGvHEutxOt2PHDosXL5716NHDLly4EKG9Zs2aliBBAlu/fr2ZmZ06dcoGDBhgKVKksKFDh3qqZEcIDQ219u3bW8OGDe3evXtP7GP2YF/lzp3bypcvb5s2bYrKMh1p586dliFDBitWrJglSZLEsmTJYrNmzXJvL1OmjGXLls3Wr1/v3kd9+/Y1X19f9g8A4H/SrVs3ixs3rm3bts3ddv/+fcuUKZP16tXL3RYUFGRff/21eXt7m8vlsho1ari3hX82Ifogjkax/fv3q2jRourdu7eGDRum5MmTu7flz59fY8aMUb58+dSsWTNdv35d6dKlU/PmzdWlSxfVr1/fg5XHfLFixdKmTZuUOXNm+fj4uJe7Dmdm7uWw8+fPr0mTJikwMFCpUqXyUMXOsGvXLpUsWVKNGjXSmjVr9N133+nevXuaOXOmbty4IUnasGGDEiZMqObNm2vnzp366KOPNHz4cP36668qWrSoh18BAOBFtn79esWNGzfCdQFLliypnDlzqkePHu42b29vNW/eXCNHjtR7772nxYsXS2IEKLpiOlwUMjP17t1bQ4cO1fbt25U/f/5HziUJDQ3V7Nmz1aZNG61YscI91YpzTiLPvXv35Ovrq3v37ilbtmxq0aJFhOs0PSw0NFTNmzfXwIEDlSFDBgUFBcnHxyeKK3aO06dPq1ChQnrllVf0/fffu9uLFSumGzduaNOmTfL391fs2A9W+w+fGhcvXjytXbuWZbABAM9FyZIlde3aNU2YMEHvv/++kiVLptmzZytBggTuhXiCg4N1//59xY0b130/AlD0xV6JIidOnNDNmzfVp08fvfXWWypdurQ2btwoLy8v94hDWFiYvLy8VKdOHd25c0dnzpxx358AFDnOnDmjJk2aaNWqVfL19VXWrFm1cuVKnTp1yt3n4e8JTpw4obNnz+ru3buSHnzrg8gTGhqqTJkyKSgoSBs3bpT04OJ0W7ZsUcKECfXOO++odevW+vTTT3Xnzh2tWbNGzZo107p16whAAIB/bf/+/Tpw4ID27dsnSfr9998VP358lS9fXt7e3po1a5YSJEig0NBQuVwuXb16VbVq1XpkAQQCUPTFnokCISEhat68uXLlyqXg4GB9++23eu2111SlShX99ttvcrlc7m8KwsLCtGHDBr300ksqVqyYp0uP8YKCgvTXX39p9OjR2r9/v/r06aM//vhD48aN06VLlyRJLpfLHYSmTp2qsLAw9zRGrs8UuTJmzKiZM2cqODhYw4cPV6tWrfTpp5/q+++/19y5c9WiRQtlyZJFw4YNU6ZMmdSkSRN9++23XAcIAPCvffzxx2rUqJFKlSqld955R9OnT5ckbdq0SRUqVNDZs2e1f/9+hYSEyMvLS1evXlXZsmV19+5d1a5d28PV42kxHS6K7NmzR82bN9e9e/e0fv16+fn5qUWLFlq4cKGWL1+u0qVLu4NQ165ddeTIEU2bNk0JEyb0dOkx3uHDh9W+fXtJ0sCBA/Xrr7+qe/fueu+99/TWW2+pTJky2r59u2bMmKFJkyZpw4YNypMnj4erdpZDhw6pffv22rBhgwYOHKhu3bpF2H7lyhWtWbNG+fPnV7Zs2TxUJQDgRdelSxdNnz5d06ZN06VLl/TVV1/p2rVrWrhwoXLmzClJKl68uK5cuaI5c+YoQ4YMKl++vNKmTatly5ZJYgrci4IQFMnC54mGhYXp0KFDatGihUJCQrRy5Ur5+vqqRYsW+umnn7RixQqVLl1affv21ddff61169YpV65cni7fMQ4fPqwOHTrI5XKpY8eOOn/+vNq0aSOXyyU/Pz8lT55c/v7+mjRpkgoUKODpch3p6NGj+s9//iMvLy/16tVLZcqUkfRgpDV8KXMAAP6tAQMGaMCAATp27JjSp08vSerTp4+GDx+uLVu2KF++fO6+JUuW1NmzZxUWFqY8efJo6dKlkghALxJCUCQJP9leiniQ1q1bN40ePVoFChTQqlWrFDduXDVv3lzLli1TlSpVtHDhQm3YsIHzGTzg0KFD6ty5s8LCwvTZZ5/J19dXW7Zs0bFjx1SyZElly5ZNKVKk8HSZjnb48GF17NhRZqa+ffuqdOnSni4JABADXL9+XRUrVlScOHE0duxYFS5cWKGhoSpevLh27typrl27KkeOHEqePLlq1qwp6cFiPL6+vlqxYoUkAtCLhhAUCc6cOaMuXbqobdu27gs6StLw4cM1fPhwDRs2TOPGjVNQUJDWr18vf39/vfPOO1q4cKE2btxIAPKgQ4cOqUOHDpKkQYMGsbxyNHT48GF17dpVly9f1qeffqoSJUp4uiQAQAxw6NAhde3aVS6XS926ddMHH3wgb29vNWrUSHfv3tXatWu1fv165c2bV5kzZ9aECRPcK8QSgF48hKBIcOzYMTVu3FiJEiVSr169VLp0aQ0dOlQjRozQnDlzVLFiRe3fv19vv/22zEyrVq2Sj4+Pbt++zUhDNHD48GF16dJFV65c4SA7mjpw4ID69u2rUaNGuacsAADwvwqfcfDnn38qc+bM2rJli3vb/fv3deLECU2cOFFBQUEaM2aMpP879QEvFkJQJAl/E/n4+Ch58uRasGCBZsyYocqVK7v7HDhwQNWqVVPq1Km1YcMGvkGIRjjIjv6Cg4NZohwA8NwdOXJEbdq0kfRgwaSSJUtKehCCYseO7f6vRAB6kRGCIlH4ila//vqrBg4cqPfff19SxCHTQ4cOKU6cOMqUKZMnS8VjcJANAIAzPekcVEJPzEEIimRPWtGKuaMAAADR1+HDh90LJnXv3l0VKlTwdEl4jjgKj2RZsmTR2LFjZWYaNGiQ+6r3BCAAAIDoK1u2bBozZoyuXLmirVu3erocPGeMBEURVrQCAAB48Zw/f14pU6b0dBl4zhiOiCLZsmXTiBEjlDZtWqVOndrT5QAAAOAphAcgxg1iFkaCohgn2wMAAACeRQgCAAAA4ChMhwMAAADgKIQgAAAAAI5CCAIAAADgKIQgAAAAAI5CCAIAAADgKIQgAAAAAI5CCAIAOM6UKVOUMGFCT5cBAPAQQhAAwKMuXbqktm3bKn369PLx8VHKlClVpUoVbdy4UZLkcrm0YMECzxYJAIhRYnu6AACAs9WrV0/BwcGaOnWqMmfOrAsXLmjVqlW6cuWKp0sDAMRQjAQBADzm+vXr2rBhg4YNG6ZXXnlFGTJkULFixdSzZ0+99tprypgxoySpbt26crlc7tuSNG7cOGXJkkXe3t7KkSOHpk+f/shjv/fee0qRIoV8fX2VJ08eLV68+LF1XLp0SUWKFFHdunUVFBQUWS8XABBNMBIEAPCYePHiKV68eFqwYIFKlCghHx+fCNs3b96s5MmTa/Lkyapataq8vLwkSfPnz1enTp00ZswYVaxYUYsXL1bz5s2VNm1avfLKKwoLC1O1atV069YtzZgxQ1myZNG+ffvc93/Y6dOnValSJZUoUULffvvtY/sAAGIWl5mZp4sAADjXDz/8oFatWunu3bsqVKiQXn75Zb355pvKly+fpAfnBM2fP1916tRx36d06dLKnTu3JkyY4G5r2LChAgMD9fPPP2vFihWqVq2a9u/fr+zZsz/ynFOmTFHnzp31559/qlKlSqpbt67GjBkjl8sV6a8XAOB5TIcDAHhUvXr1dPbsWS1cuFBVq1bV2rVrVahQIU2ZMuWJ99m/f79Kly4doa106dLav3+/JGnHjh1KmzbtYwNQuLt376ps2bJ6/fXX9dlnnxGAAMBBCEEAAI/z9fVVpUqV1LdvX/32229q1qyZ+vXr968fz8/P7x/7+Pj4uKfSnTlz5l8/FwDgxUMIAgBEO7ly5VJgYKAkKU6cOAoNDY2w/aWXXnIvoR1u48aNypUrlyQpX758+uuvv3To0KEnPkesWLE0ffp0FS5cWK+88orOnj37nF8FACC6IgQBADzmypUrqlChgmbMmKFdu3bp+PHjmjt3roYPH67atWtLkjJmzKhVq1bp/PnzunbtmiSpe/fumjJlisaNG6fDhw9r9OjR+vHHH9WtWzdJ0ssvv6xy5cqpXr16WrlypY4fP66lS5dq2bJlEZ7fy8tLM2fOVP78+VWhQgWdP38+an8BAACPIAQBADwmXrx4Kl68uD799FOVK1dOefLkUd++fdWqVSuNHTtWkjRq1CitXLlS6dKlU8GCBSVJderU0WeffaaRI0cqd+7cGj9+vCZPnqzy5cu7H/uHH35Q0aJF1ahRI+XKlUs9evR4ZERJkmLHjq3Zs2crd+7cqlChgi5evBglrx0A4DmsDgcAAADAURgJAgAAAOAohCAAAAAAjkIIAgAAAOAohCAAAAAAjkIIAgAAAOAohCAAAAAAjkIIAgAAAOAohCAAAAAAjkIIAgAAAOAohCAAAAAAjkIIAgAAAOAo/w/YvfMM3idJ1QAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAJmCAYAAACqr5rCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRZElEQVR4nOzdd3gU1f/28XsTSCGkUBNCb9I70gSkSWihKoJ0KYqAIgoK0kEQRKQpCCoiRVEEBRQUQUAB6T2CqDSBhBKSUJNAzvMHT+bHGkDyNcMm4f26rlyQM2d3P5PJbvbec+aMwxhjBAAAAABIUW6uLgAAAAAA0iPCFgAAAADYgLAFAAAAADYgbAEAAACADQhbAAAAAGADwhYAAAAA2ICwBQAAAAA2IGwBAAAAgA0IWwAAAABgA8IWACCJkSNHyuFw/Kfbnj9/PoWrun/r16+Xw+HQ+vXrH5oaEhISVLp0ab355pu2Pk6dOnVUp06dFL3PsLAwZciQQQcOHLiv/qnhd8wVunbtqsyZM7u6DADJQNgCkOq9//77cjgcqlq16l37XL58WSNGjFDp0qXl4+OjbNmyqXz58nrppZd0+vRpSZIxRrVq1VKOHDl04cKFJPfx/PPPK2PGjNqzZ48k6eTJkxo1apSqVKmiLFmyKHv27KpTp45+/PHHO9YQFRWlXr16KUeOHPLx8VHdunW1a9euO/Zdvny5KlasKC8vL+XLl08jRozQjRs37vlz2LZtmxwOh959990k21q0aCGHw6G5c+cm2Va7dm3lzp37nvftKuPGjdPXX3/tssf/5JNP5HA4rC8vLy8FBwcrJCRE06ZN06VLl1L08RYtWqQpU6ak6H0m+uyzz3Ty5En17dvXlvtPCXfb/5IlS6pp06YaPnz4gy/qHhISEvTpp5+qatWqypo1q3x9ffXII4+oc+fO+vXXX61+YWFhGjlypI4dO+a6YgGkSoQtAKnewoULVaBAAW3btk1//PFHku3x8fGqXbu23n77bdWqVUuTJ0/WkCFDVLFiRS1atEi///67JMnhcOiDDz5QdHS0Xn31Vaf72LJli2bPnq2XXnpJ5cuXlyR98803mjBhgooUKaKxY8dq2LBhunTpkp544okkoSYhIUFNmzbVokWL1LdvX02cOFFnz55VnTp1dOTIEae+q1atUsuWLRUQEKDp06erZcuWGjt2rPr163fPn0PFihWVKVMm/fLLL0m2bd68WRkyZNCmTZuc2uPi4rR9+3Y99thj97zvfxo6dKiuXbuWrNv8L1wdthKNHj1a8+fP18yZM63j0L9/f5UpU0b79u1LscexM2y9/fbbateunfz9/W25/0Q//PCDfvjhh//ptvfa/+eff17Lli3Tn3/++R+qS1kvvviiunTpoly5cmnkyJGaMGGCGjdurF9//VWrV6+2+oWFhWnUqFGELQBJGQBIxf766y8jySxdutTkyJHDjBw5MkmfL774wkgyCxcuTLLt2rVrJjo62qltyJAhRpJZv369McaYuLg4U7p0aZMvXz5z+fJlq9+BAwfMuXPnnG57/fp1U7x4cZMnTx6n9sWLFxtJ5ssvv7Tazp49awICAkz79u2d+pYsWdKUK1fOxMfHW21vvPGGcTgc5rfffrvnz6Nu3bomMDDQqe3QoUNGknnmmWdMsWLFnLZt3rzZSDJTp0695/2mpBEjRhhJSX52d+Lj42O6dOmS4jX89NNPRpL56aef7tlv7ty5RpLZvn17km1r16413t7eJn/+/Obq1aspUkPTpk1N/vz5k31f/2bXrl1Gkvnxxx9T/L5T0r32Py4uzmTJksUMGzbsX+8nOb9j/6vw8HDjcDhMz549k2xLSEgwERER1vdffvnlff2+/VddunQxPj4+tj4GgJTFyBaAVG3hwoXKkiWLmjZtqieffFILFy5M0ifxk/A7jd54eXnJz8/PqW3YsGEqXLiwnnvuOcXFxemdd97RgQMHNGPGDPn4+Fj9SpUqpezZszvd1tPTU02aNNHff//tNMVsyZIlCgwMVOvWra22HDlyqG3btvrmm28UGxsr6dYn4GFhYerVq5cyZMhg9X3hhRdkjNGSJUvu+fOoWbOmIiIinEb4Nm3aJD8/P/Xq1UuHDx92Oo8lcaSrZs2aVtuqVatUq1Yt+fj4yNfXV02bNtXBgwedHudO52xdu3ZNL774orJnzy5fX181b95cp06dksPh0MiRI5PUGhUVpa5duyogIED+/v7q1q2brl69am13OBy6cuWK5s2bZ03j69q1q7X91KlTevbZZxUYGChPT0+VKlVKH3/8cZLH+fvvv9WyZUv5+PgoZ86cevnll62f939Rr149DRs2TMePH9eCBQucth06dEhPPvmksmbNKi8vL1WuXFnLly+/5/3VqVNH3377rY4fP27tb4ECBSTdGoEcPny4KlWqJH9/f/n4+KhWrVr66aef7qvWr7/+Wh4eHqpdu7ZTe+JxPHTokNq2bSs/Pz9ly5ZNL730kq5fv+7U98aNGxozZowKFy4sT09PFShQQEOGDEnys/znOVuJ56Z98cUXevPNN5UnTx55eXmpfv36Tr+n99p/ScqYMaPq1Kmjb7755r72WZLOnz9/z/16/PHHVa5cuTvetlixYgoJCbnrfR89elTGmDu+rjgcDuXMmVPSramoTz31lCSpbt261r7dfq7e+++/r1KlSsnT01PBwcHq06ePoqKiktzv1q1b1aRJE2XJkkU+Pj4qW7aspk6des+fwZ49e5QjRw7VqVNHly9fvmdfAA8eYQtAqrZw4UK1bt1aHh4eat++vY4cOaLt27c79cmfP78k6dNPP5Ux5l/v08vLS++//74OHz6sF154QaNHj1arVq0UGhp6XzWFh4crU6ZMypQpk9W2e/duVaxYUW5uzi+rVapU0dWrV62pjLt375YkVa5c2alfcHCw8uTJY22/m8TQdPtUwk2bNqlatWqqWrWqMmbMqM2bNztt8/X1td5wzp8/X02bNlXmzJk1YcIEDRs2TGFhYapZs+a/ToHq2rWrpk+friZNmmjChAny9vZW06ZN79q/bdu2unTpksaPH6+2bdvqk08+0ahRo6zt8+fPl6enp2rVqqX58+dr/vz5eu655yRJERERqlatmn788Uf17dtXU6dOVZEiRdS9e3enaWjXrl1T/fr19f3336tv375644039PPPP2vQoEH33Jf71alTJ0lymjZ38OBBVatWTb/99ptef/11vfPOO/Lx8VHLli21bNmyu97XG2+8ofLlyyt79uzW/ibuS0xMjD788EPVqVNHEyZM0MiRI3Xu3DmFhIRY5xDey+bNm1W6dGllzJjxjtvbtm2r69eva/z48WrSpImmTZumXr16OfXp0aOHhg8frooVK+rdd9/V448/rvHjx6tdu3b/+viS9NZbb2nZsmV69dVXNXjwYP3666/q0KHDfe1/okqVKunAgQOKiYm5r8f8t/3q1KmT9u3bl2Thje3bt+v3339Xx44d73rfia8rX375pdOHBP9Uu3Ztvfjii5KkIUOGWPtWokQJSbcCb58+fRQcHKx33nlHbdq00QcffKCGDRsqPj7eup81a9aodu3aCgsL00svvaR33nlHdevW1cqVK+/62Nu3b1e9evVUoUIFrVq1isUzgNTIxSNrAHBXO3bsMJLMmjVrjDG3pu7kyZPHvPTSS079rl69aooVK2Ykmfz585uuXbuajz76yGmaz520b9/eSDK+vr7m5MmT91XTkSNHjJeXl+nUqZNTu4+Pj3n22WeT9P/222+NJLN69WpjjDFvv/22kWROnDiRpO+jjz5qqlWrds/Hj4mJMe7u7qZ79+5WW7FixcyoUaOMMcZUqVLFDBw40NqWI0cO88QTTxhjjLl06ZIJCAhIMi0qPDzc+Pv7O7UnTtNKtHPnTiPJ9O/f3+m2Xbt2NZLMiBEjktz2nz+PVq1amWzZsjm13W0aYffu3U2uXLnM+fPnndrbtWtn/P39rWl9U6ZMMZLMF198YfW5cuWKKVKkyH+eRpjI39/fVKhQwfq+fv36pkyZMub69etWW0JCgqlRo4YpWrSo1ZacaYQ3btwwsbGxTm0XL140gYGBd/y9+qc8efKYNm3aJGlPPBbNmzd3an/hhReMJLN3715jjDF79uwxkkyPHj2c+r366qtGklm3bp3V9vjjj5vHH388yX6WKFHCaR+mTp1qJJn9+/f/6/4nWrRokZFktm7des/9vd/9ioqKMl5eXua1115z6vfiiy8aHx8fp2nDd9K5c2cjyWTJksW0atXKTJo06Y5Tfe82jfDs2bPGw8PDNGzY0Ny8edNqnzFjhpFkPv74Y2PMreNfsGBBkz9/fnPx4kWn+0hISLD+f/s0wl9++cX4+fmZpk2bOv0uAkhdGNkCkGotXLhQgYGBqlu3rqRbU3eefvppff7557p586bVz9vbW1u3btXAgQMl3ZrW0717d+XKlUv9+vW765SyxCmCJUuWVJ48ef61nqtXr+qpp56St7e33nrrLadt165dk6enZ5LbeHl5Wdtv//duff9tUQpfX1+VLVvWGtk6f/68Dh8+rBo1aki6NZUycerg77//rnPnzlmjYWvWrFFUVJTat2+v8+fPW1/u7u6qWrXqPaesJS4G8MILLzi132tRj+eff97p+1q1aunChQv/OmphjNFXX32l0NBQGWOcag0JCVF0dLS1yuN3332nXLly6cknn7RunylTpiSjNv9F5syZrSmjkZGRWrdunTVql1jXhQsXFBISoiNHjujUqVPJfgx3d3d5eHhIurXYSmRkpG7cuKHKlSvfdUXL2124cEFZsmS56/Y+ffo4fZ943L777junfwcMGODU75VXXpEkffvtt/9aQ7du3ax9kG4db0n666+//vW2iRL34X6XdP+3/fL391eLFi302WefWaPeN2/e1OLFi62pp/cyd+5czZgxQwULFrRG7UqUKKH69evf13H+8ccfFRcXp/79+zuNevfs2VN+fn7Wz3X37t06evSo+vfvr4CAAKf7uNMlGH766SeFhISofv36Wrp06R1fTwCkDoQtAKnSzZs39fnnn6tu3bo6evSo/vjjD/3xxx+qWrWqIiIitHbtWqf+/v7+mjhxoo4dO6Zjx47po48+UrFixTRjxgyNGTMmyf3v2LFD7733nkqXLq2tW7cmOSfnTvW0a9dOYWFhWrJkiYKDg522e3t73zHUJZ4/4u3t7fTv3fombr+XmjVrWudmbd68We7u7qpWrZokqUaNGtq5c6diY2OTnK+VuCpivXr1lCNHDqevH374QWfPnr3rYx4/flxubm4qWLCgU3uRIkXuept8+fI5fZ/4RvrixYv33L9z584pKipKs2fPTlJnt27dJMmq9fjx4ypSpEiSN6TFihW752Mkx+XLl+Xr6ytJ+uOPP2SM0bBhw5LUNmLECKfakmvevHkqW7asvLy8lC1bNuXIkUPffvutoqOj7+v25h5TaIsWLer0feHCheXm5mZNHU08vv88nkFBQQoICNDx48f/9fH/1+N9u8R9uN9rvP3bfklS586ddeLECf3888+SbgWgiIgIa4rovbi5ualPnz7auXOnzp8/r2+++UaNGzfWunXr7mt6ZeLP7Z+/jx4eHipUqJC1PfG809KlS//rfV6/fl1NmzZVhQoV9MUXXzgFXACpT4Z/7wIAD966det05swZff755/r888+TbF+4cKEaNmx4x9vmz59fzz77rFq1aqVChQpp4cKFGjt2rLX95s2b6tWrl4KDg7Vp0yY1bNhQr7zyipo1a5bkU+VEPXv21MqVK7Vw4ULVq1cvyfZcuXLpzJkzSdoT2xLDWa5cuaz2vHnzJulbpUqVOz7+7WrWrKnp06dr06ZN2rx5s8qUKWOdq1GjRg3FxsZq+/bt+uWXX5QhQwYriCUkJEi6da5UUFBQkvu9fcGOlODu7n7H9nuFAun/6uzYsaO6dOlyxz5ly5b9b8Xdp7///lvR0dFWCEms7dVXX73r4gr3CqB3s2DBAnXt2lUtW7bUwIEDlTNnTrm7u2v8+PH3tRR6tmzZkhVq7hZm/tcLWUv/+/G+XeI+/HNhmvt1p/pDQkIUGBioBQsWqHbt2lqwYIGCgoLUoEGDZN13tmzZ1Lx5czVv3lx16tTRhg0bdPz4cevcrgclcZGeb775RqtXr1azZs0e6OMDSB7CFoBUaeHChcqZM6fee++9JNuWLl2qZcuWadasWfccCcqSJYsKFy6c5OT4adOmaffu3Vq2bJn8/Pw0a9YsVa5cWa+//rpmzZqV5H4GDhyouXPnasqUKWrfvv0dH6t8+fL6+eeflZCQ4DRdaOvWrcqUKZMeeeQRq590a2Tt9mB1+vRp/f333/c1/e32RTK2bNnitFpacHCw8ufPr02bNmnTpk2qUKGCtZBH4cKFJUk5c+ZM9hvN/PnzKyEhQUePHnUaTbjTdc+S405vjnPkyCFfX1/dvHnzX+vMnz+/Dhw4IGOM030dPnz4P9WVaP78+ZJkBatChQpJurVyXnJ/htLdw8ySJUtUqFAhLV261KlP4mjZvylevLiOHj161+1HjhxxGpX8448/lJCQYK0GmHh8jxw5Yi3sIN1aqCQqKirFAsW/hbmjR4/Kzc3Ner78m3/bL+lWCHzmmWf0ySefaMKECfr666/Vs2fPu4bD+1G5cmVt2LBBZ86cUf78+e+6X4k/t8OHD1u/O9Kt1SePHj1q/Q4lPjcPHDjwr79XDodDCxcuVIsWLfTUU09p1apVTqtDAkhdmEYIINW5du2ali5dqmbNmunJJ59M8tW3b19dunTJWmp77969dzzH4/jx4woLC3OawnPy5EkNHz5czZs3V8uWLSXdCkAvvvii5syZo61btzrdx9tvv61JkyZpyJAheumll+5a85NPPqmIiAgtXbrUajt//ry+/PJLhYaGWudUlCpVSsWLF9fs2bOdzjubOXOmHA6H07lHdxMcHKyCBQtq7dq12rFjh3W+VqIaNWro66+/1uHDh52WfA8JCZGfn5/GjRvntApaonPnzt31MRPDxvvvv+/UPn369H+t9158fHySLIHt7u6uNm3a6KuvvkoSlP9ZZ5MmTXT69GmnJfOvXr2q2bNn/6e6pFujq2PGjFHBggWtVfVy5sypOnXq6IMPPrjjSOa9fobSrf2907TAxDf+t48Cbd26VVu2bLmvWqtXr64DBw7c9fzEf35okXjcGjduLOnWz1FSktUBJ0+eLEn3XHUyOe62/4l27typUqVK3feFmf9tvxJ16tRJFy9e1HPPPafLly/fcxXCROHh4QoLC0vSHhcXp7Vr1zpNu0w89+ufv8sNGjSQh4eHpk2b5nRsP/roI0VHR1s/14oVK6pgwYKaMmVKkvu408igh4eHli5dqkcffVShoaHatm3bv+4PANdgZAtAqrN8+XJdunRJzZs3v+P2atWqKUeOHFq4cKGefvpprVmzRiNGjFDz5s1VrVo1Zc6cWX/99Zc+/vhjxcbGOl0Dql+/fjLGJAkJo0aN0hdffKHnn39eO3bskLu7u5YtW6ZBgwapaNGiKlGiRJLzup544gkFBgZKuhW2qlWrpm7duiksLEzZs2fX+++/r5s3bzotdy7dCnDNmzdXw4YN1a5dO+saXz169HAaVbiXmjVrWqMu/7wOUI0aNfTZZ59Z/RL5+flp5syZ6tSpkypWrKh27dopR44cOnHihL799ls99thjmjFjxh0fr1KlSmrTpo2mTJmiCxcuqFq1atqwYYO1pP3/Ov2sUqVK+vHHHzV58mQrRFatWlVvvfWWfvrpJ1WtWlU9e/ZUyZIlFRkZqV27dunHH39UZGSkpFvTO2fMmKHOnTtr586dypUrl+bPn++0LP/9WLVqlQ4dOqQbN24oIiJC69at05o1a5Q/f34tX77cWuhEuvUGv2bNmipTpox69uypQoUKKSIiQlu2bNHff/+tvXv33nN/Fy9erAEDBujRRx9V5syZFRoaqmbNmmnp0qVq1aqVmjZtqqNHj2rWrFkqWbLkfV07qUWLFhozZow2bNhwx+m1R48eVfPmzdWoUSNt2bJFCxYs0DPPPGNdEqBcuXLq0qWLZs+eraioKD3++OPatm2b5s2bp5YtW1qL1PxXd9t/SYqPj9eGDRuSLMJyL/+2X4kqVKig0qVL68svv1SJEiVUsWLFf73vv//+W1WqVFG9evVUv359BQUF6ezZs/rss8+0d+9e9e/f35ruWL58ebm7u2vChAmKjo6Wp6en6tWrp5w5c2rw4MEaNWqUGjVqpObNm+vw4cN6//339eijj1qhz83NTTNnzlRoaKjKly+vbt26KVeuXDp06JAOHjyo77//Pkl93t7eWrlyperVq6fGjRtrw4YN93XOF4AHzCVrIALAPYSGhhovLy9z5cqVu/bp2rWryZgxozl//rz566+/zPDhw021atVMzpw5TYYMGUyOHDlM06ZNnZasXrZsmZFkJk2adMf7XLJkiZFkJk+ebIz5v+Wl7/b1z2WeIyMjTffu3U22bNlMpkyZzOOPP37XJcWXLVtmypcvbzw9PU2ePHnM0KFDTVxc3H3/jD744AMjyeTOnTvJtl27dlk13mn5+59++smEhIQYf39/4+XlZQoXLmy6du1qduzYYfX559LvxtxaUr1Pnz4ma9asJnPmzKZly5bm8OHDRpJ56623ktz23LlzTrdPXGb96NGjVtuhQ4dM7dq1jbe3t5HktAx8RESE6dOnj8mbN6/JmDGjCQoKMvXr1zezZ892ut/jx4+b5s2bm0yZMpns2bObl156yaxevTpZS78nfnl4eJigoCDzxBNPmKlTp5qYmJg73u7PP/80nTt3NkFBQSZjxowmd+7cplmzZmbJkiVOP+d/1nD58mXzzDPPmICAAOtSBcbcWt573LhxJn/+/MbT09NUqFDBrFy50nTp0uWeS6XfrmzZsk6XBDDm/45FWFiYefLJJ42vr6/JkiWL6du3r7l27ZpT3/j4eDNq1ChTsGBBkzFjRpM3b14zePDgJMuK323p9y+//NKp39GjR40kM3fu3H/df2OMWbVqlZFkjhw58q/7mpz9SjRx4kQjyYwbN+5f79+YW5dZmDp1qgkJCTF58uQxGTNmNL6+vqZ69epmzpw5TkuyG2PMnDlzTKFChYy7u3uS4z5jxgxTvHhxkzFjRhMYGGh69+6dZIl3Y24t5/7EE08YX19f4+PjY8qWLWumT59ubb996fdE58+fNyVLljRBQUH39bMD8GA5jEnGmasAANxmz549qlChghYsWOB0AVs8ePPnz1efPn104sQJa6GXkSNHatSoUTp37tz/vOjEg9KyZUs5HI57Xhj6v5g6dapefvllHTt2LMnKiQBgF87ZAgDclztdA2zKlClyc3NT7dq1XVARbtehQwfly5fvjovKpHa//fabVq5cecfLNKQEY4w++ugjPf744wQtAA8U52wBAO7LxIkTtXPnTtWtW1cZMmTQqlWrtGrVKvXq1SvJMvZ48Nzc3O64oEhaUKJECd24cSPF7/fKlStavny5fvrpJ+3fv1/ffPNNij8GANwLYQsAcF9q1KihNWvWaMyYMbp8+bLy5cunkSNH6o033nB1acAdnTt3Ts8884wCAgI0ZMiQuy66AwB24ZwtAAAAALAB52wBAAAAgA2YRngfEhISdPr0afn6+v7P15IBAAAAkPYZY3Tp0iUFBwfLze3eY1eErftw+vRpTv4GAAAAYDl58qTy5Mlzzz6Erfvg6+sr6dYP1M/Pz8XVAAAAAHCVmJgY5c2b18oI90LYug+JUwf9/PwIWwAAAADu6/QiFsgAAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAaELQAAAACwAWELAAAAAGxA2AIAAAAAGxC2AAAAAMAGhC0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAYZXF0AAABI/UI/C3V1CenGivYrXF0CgAeEkS0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAaELQAAAACwAWELAAAAAGxA2AIAAAAAGxC2AAAAAMAGhC0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAaELQAAAACwgUvD1saNGxUaGqrg4GA5HA59/fXX1rb4+Hi99tprKlOmjHx8fBQcHKzOnTvr9OnTTvcRGRmpDh06yM/PTwEBAerevbsuX77s1Gffvn2qVauWvLy8lDdvXk2cOPFB7B4AAACAh5hLw9aVK1dUrlw5vffee0m2Xb16Vbt27dKwYcO0a9cuLV26VIcPH1bz5s2d+nXo0EEHDx7UmjVrtHLlSm3cuFG9evWytsfExKhhw4bKnz+/du7cqbffflsjR47U7Nmzbd8/AAAAAA8vhzHGuLoISXI4HFq2bJlatmx51z7bt29XlSpVdPz4ceXLl0+//fabSpYsqe3bt6ty5cqSpNWrV6tJkyb6+++/FRwcrJkzZ+qNN95QeHi4PDw8JEmvv/66vv76ax06dOiOjxMbG6vY2Fjr+5iYGOXNm1fR0dHy8/NLuZ0GACCNCP0s1NUlpBsr2q9wdQkA/oOYmBj5+/vfVzZIU+dsRUdHy+FwKCAgQJK0ZcsWBQQEWEFLkho0aCA3Nzdt3brV6lO7dm0raElSSEiIDh8+rIsXL97xccaPHy9/f3/rK2/evPbtFAAAAIB0Kc2ErevXr+u1115T+/btrQQZHh6unDlzOvXLkCGDsmbNqvDwcKtPYGCgU5/E7xP7/NPgwYMVHR1tfZ08eTKldwcAAABAOpfB1QXcj/j4eLVt21bGGM2cOdP2x/P09JSnp6ftjwMAAAAg/Ur1YSsxaB0/flzr1q1zmhcZFBSks2fPOvW/ceOGIiMjFRQUZPWJiIhw6pP4fWIfAAAAAEhpqXoaYWLQOnLkiH788Udly5bNaXv16tUVFRWlnTt3Wm3r1q1TQkKCqlatavXZuHGj4uPjrT5r1qxRsWLFlCVLlgezIwAAAAAeOi4NW5cvX9aePXu0Z88eSdLRo0e1Z88enThxQvHx8XryySe1Y8cOLVy4UDdv3lR4eLjCw8MVFxcnSSpRooQaNWqknj17atu2bdq0aZP69u2rdu3aKTg4WJL0zDPPyMPDQ927d9fBgwe1ePFiTZ06VQMGDHDVbgMAAAB4CLh06ff169erbt26Sdq7dOmikSNHqmDBgne83U8//aQ6depIunVR4759+2rFihVyc3NTmzZtNG3aNGXOnNnqv2/fPvXp00fbt29X9uzZ1a9fP7322mv3XWdylncEACA9Yun3lMPS70DalpxskGqus5WaEbYAAA87wlbKIWwBaVu6vc4WAAAAAKQVhC0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAaELQAAAACwAWELAAAAAGxA2AIAAAAAGxC2AAAAAMAGhC0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAaELQAAAACwAWELAAAAAGxA2AIAAAAAGxC2AAAAAMAGhC0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAaELQAAAACwAWELAAAAAGxA2AIAAAAAGxC2AAAAAMAGhC0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAaELQAAAACwAWELAAAAAGxA2AIAAAAAGxC2AAAAAMAGhC0AAAAAsAFhCwAAAABs4NKwtXHjRoWGhio4OFgOh0Nff/2103ZjjIYPH65cuXLJ29tbDRo00JEjR5z6REZGqkOHDvLz81NAQIC6d++uy5cvO/XZt2+fatWqJS8vL+XNm1cTJ060e9cAAAAAPORcGrauXLmicuXK6b333rvj9okTJ2ratGmaNWuWtm7dKh8fH4WEhOj69etWnw4dOujgwYNas2aNVq5cqY0bN6pXr17W9piYGDVs2FD58+fXzp079fbbb2vkyJGaPXu27fsHAAAA4OGVwZUP3rhxYzVu3PiO24wxmjJlioYOHaoWLVpIkj799FMFBgbq66+/Vrt27fTbb79p9erV2r59uypXrixJmj59upo0aaJJkyYpODhYCxcuVFxcnD7++GN5eHioVKlS2rNnjyZPnuwUygAAAAAgJaXac7aOHj2q8PBwNWjQwGrz9/dX1apVtWXLFknSli1bFBAQYAUtSWrQoIHc3Ny0detWq0/t2rXl4eFh9QkJCdHhw4d18eLFOz52bGysYmJinL4AAAAAIDlSbdgKDw+XJAUGBjq1BwYGWtvCw8OVM2dOp+0ZMmRQ1qxZnfrc6T5uf4x/Gj9+vPz9/a2vvHnz/vcdAgAAAPBQSbVhy5UGDx6s6Oho6+vkyZOuLgkAAABAGpNqw1ZQUJAkKSIiwqk9IiLC2hYUFKSzZ886bb9x44YiIyOd+tzpPm5/jH/y9PSUn5+f0xcAAAAAJEeqDVsFCxZUUFCQ1q5da7XFxMRo69atql69uiSpevXqioqK0s6dO60+69atU0JCgqpWrWr12bhxo+Lj460+a9asUbFixZQlS5YHtDcAAAAAHjYuDVuXL1/Wnj17tGfPHkm3FsXYs2ePTpw4IYfDof79+2vs2LFavny59u/fr86dOys4OFgtW7aUJJUoUUKNGjVSz549tW3bNm3atEl9+/ZVu3btFBwcLEl65pln5OHhoe7du+vgwYNavHixpk6dqgEDBrhorwEAAAA8DFy69PuOHTtUt25d6/vEANSlSxd98sknGjRokK5cuaJevXopKipKNWvW1OrVq+Xl5WXdZuHCherbt6/q168vNzc3tWnTRtOmTbO2+/v764cfflCfPn1UqVIlZc+eXcOHD2fZdwAAAAC2chhjjKuLSO1iYmLk7++v6Ohozt8CADyUQj8LdXUJ6caK9itcXQKA/yA52SDVnrMFAAAAAGkZYQsAAAAAbEDYAgAAAAAbELYAAAAAwAaELQAAAACwAWELAAAAAGxA2AIAAAAAGxC2AAAAAMAGhC0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAaELQAAAACwAWELAAAAAGxA2AIAAAAAGxC2AAAAAMAGhC0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAaELQAAAACwAWELAAAAAGxA2AIAAAAAGxC2AAAAAMAGhC0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAaELQAAAACwAWELAAAAAGxA2AIAAAAAGxC2AAAAAMAGhC0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAapOmzdvHlTw4YNU8GCBeXt7a3ChQtrzJgxMsZYfYwxGj58uHLlyiVvb281aNBAR44ccbqfyMhIdejQQX5+fgoICFD37t11+fLlB707AAAAAB4iqTpsTZgwQTNnztSMGTP022+/acKECZo4caKmT59u9Zk4caKmTZumWbNmaevWrfLx8VFISIiuX79u9enQoYMOHjyoNWvWaOXKldq4caN69erlil0CAAAA8JBwmNuHiVKZZs2aKTAwUB999JHV1qZNG3l7e2vBggUyxig4OFivvPKKXn31VUlSdHS0AgMD9cknn6hdu3b67bffVLJkSW3fvl2VK1eWJK1evVpNmjTR33//reDg4CSPGxsbq9jYWOv7mJgY5c2bV9HR0fLz87N5rwEASH1CPwt1dQnpxor2K1xdAoD/ICYmRv7+/veVDVL1yFaNGjW0du1a/f7775KkvXv36pdfflHjxo0lSUePHlV4eLgaNGhg3cbf319Vq1bVli1bJElbtmxRQECAFbQkqUGDBnJzc9PWrVvv+Ljjx4+Xv7+/9ZU3b167dhEAAABAOpXB1QXcy+uvv66YmBgVL15c7u7uunnzpt5880116NBBkhQeHi5JCgwMdLpdYGCgtS08PFw5c+Z02p4hQwZlzZrV6vNPgwcP1oABA6zvE0e2AAAAAOB+peqw9cUXX2jhwoVatGiRSpUqpT179qh///4KDg5Wly5dbHtcT09PeXp62nb/AAAAANK/VB22Bg4cqNdff13t2rWTJJUpU0bHjx/X+PHj1aVLFwUFBUmSIiIilCtXLut2ERERKl++vCQpKChIZ8+edbrfGzduKDIy0ro9AAAAAKS0VH3O1tWrV+Xm5lyiu7u7EhISJEkFCxZUUFCQ1q5da22PiYnR1q1bVb16dUlS9erVFRUVpZ07d1p91q1bp4SEBFWtWvUB7AUAAACAh1GqHtkKDQ3Vm2++qXz58qlUqVLavXu3Jk+erGeffVaS5HA41L9/f40dO1ZFixZVwYIFNWzYMAUHB6tly5aSpBIlSqhRo0bq2bOnZs2apfj4ePXt21ft2rW740qEAAAAAJASUnXYmj59uoYNG6YXXnhBZ8+eVXBwsJ577jkNHz7c6jNo0CBduXJFvXr1UlRUlGrWrKnVq1fLy8vL6rNw4UL17dtX9evXl5ubm9q0aaNp06a5YpcAAAAAPCRS9XW2UovkrKUPAEB6xHW2Ug7X2QLStnRznS0AAAAASKsIWwAAAABgA8IWAAAAANiAsAUAAAAANiBsAQAAAIANCFsAAAAAYAPCFgAAAADYgLAFAAAAADbIkJzOv/32mz7//HP9/PPPOn78uK5evaocOXKoQoUKCgkJUZs2beTp6WlXrQAAAACQZtzXyNauXbvUoEEDVahQQb/88ouqVq2q/v37a8yYMerYsaOMMXrjjTcUHBysCRMmKDY21u66AQAAACBVu6+RrTZt2mjgwIFasmSJAgIC7tpvy5Ytmjp1qt555x0NGTIkpWoEAAAAgDTnvsLW77//rowZM/5rv+rVq6t69eqKj4//z4UBAAAAQFp2X9MI/y1oRUVFJas/AAAAAKR3yV6NcMKECVq8eLH1fdu2bZUtWzblzp1be/fuTdHiAAAAACCtSnbYmjVrlvLmzStJWrNmjdasWaNVq1apcePGGjhwYIoXCAAAAABpUbKWfpek8PBwK2ytXLlSbdu2VcOGDVWgQAFVrVo1xQsEAAAAgLQo2SNbWbJk0cmTJyVJq1evVoMGDSRJxhjdvHkzZasDAAAAgDQq2SNbrVu31jPPPKOiRYvqwoULaty4sSRp9+7dKlKkSIoXCAAAAABpUbLD1rvvvqsCBQro5MmTmjhxojJnzixJOnPmjF544YUULxAAAAAA0qJkh60tW7aof//+ypDB+ab9+vXT5s2bU6wwAAAAAEjLkn3OVt26dRUZGZmkPTo6WnXr1k2RogAAAAAgrUt22DLGyOFwJGm/cOGCfHx8UqQoAAAAAEjr7nsaYevWrSVJDodDXbt2laenp7Xt5s2b2rdvn2rUqJHyFQIAAABAGnTfYcvf31/SrZEtX19feXt7W9s8PDxUrVo19ezZM+UrBAAAAIA06L7D1ty5cyVJBQoU0KuvvsqUQQAAAAC4h2SvRjhixAg76gAAAACAdCXZC2RERESoU6dOCg4OVoYMGeTu7u70BQAAAAD4H0a2unbtqhMnTmjYsGHKlSvXHVcmBAAAAICHXbLD1i+//KKff/5Z5cuXt6EcAAAAAEgfkj2NMG/evDLG2FELAAAAAKQbyQ5bU6ZM0euvv65jx47ZUA4AAAAApA/Jnkb49NNP6+rVqypcuLAyZcqkjBkzOm2PjIxMseIAAAAAIK1KdtiaMmWKDWUAAAAAQPqS7LDVpUsXO+oAAAAAgHTlvsJWTEyM/Pz8rP/fS2I/AAAAAHiY3VfYypIli86cOaOcOXMqICDgjtfWMsbI4XDo5s2bKV4kAAAAAKQ19xW21q1bp6xZs0qSfvrpJ1sLAgAAAID04L7C1uOPP37H/wMAAAAA7izZC2RIUlRUlD766CP99ttvkqRSpUrp2Weflb+/f4oWBwAAAABpVbIvarxjxw4VLlxY7777riIjIxUZGanJkyercOHC2rVrlx01AgAAAECak+yRrZdfflnNmzfXnDlzlCHDrZvfuHFDPXr0UP/+/bVx48YULxIAAAAA0ppkh60dO3Y4BS1JypAhgwYNGqTKlSunaHEAAAAAkFYlexqhn5+fTpw4kaT95MmT8vX1TZGiAAAAACCtS3bYevrpp9W9e3ctXrxYJ0+e1MmTJ/X555+rR48eat++vR01AgAAAECak+xphJMmTZLD4VDnzp1148YNSVLGjBnVu3dvvfXWWyleIAAAAACkRckOWx4eHpo6darGjx+vP//8U5JUuHBhZcqUKcWLAwAAAIC06n+6zpYkZcqUSQEBAdb/AQAAAAD/J9nnbN24cUPDhg2Tv7+/ChQooAIFCsjf319Dhw5VfHy8HTUCAAAAQJqT7JGtfv36aenSpZo4caKqV68uSdqyZYtGjhypCxcuaObMmSleJAAAAACkNckOW4sWLdLnn3+uxo0bW21ly5ZV3rx51b59e8IWAAAAAOh/mEbo6empAgUKJGkvWLCgPDw8UqImAAAAAEjzkh22+vbtqzFjxig2NtZqi42N1Ztvvqm+ffumaHGSdOrUKXXs2FHZsmWTt7e3ypQpox07dljbjTEaPny4cuXKJW9vbzVo0EBHjhxxuo/IyEh16NBBfn5+CggIUPfu3XX58uUUrxUAAAAAEiV7GuHu3bu1du1a5cmTR+XKlZMk7d27V3Fxcapfv75at25t9V26dOl/Ku7ixYt67LHHVLduXa1atUo5cuTQkSNHlCVLFqvPxIkTNW3aNM2bN08FCxbUsGHDFBISorCwMHl5eUmSOnTooDNnzmjNmjWKj49Xt27d1KtXLy1atOg/1QcAAAAAd5PssBUQEKA2bdo4teXNmzfFCrrdhAkTlDdvXs2dO9dqK1iwoPV/Y4ymTJmioUOHqkWLFpKkTz/9VIGBgfr666/Vrl07/fbbb1q9erW2b9+uypUrS5KmT5+uJk2aaNKkSQoODraldgAAAAAPt2SHrduDj92WL1+ukJAQPfXUU9qwYYNy586tF154QT179pQkHT16VOHh4WrQoIF1G39/f1WtWlVbtmxRu3bttGXLFgUEBFhBS5IaNGggNzc3bd26Va1atUryuLGxsU7TJGNiYmzcSwAAAADpUbLP2XqQ/vrrL82cOVNFixbV999/r969e+vFF1/UvHnzJEnh4eGSpMDAQKfbBQYGWtvCw8OVM2dOp+0ZMmRQ1qxZrT7/NH78ePn7+1tfdo3cAQAAAEi/7itsNWrUSL/++uu/9rt06ZImTJig99577z8XJkkJCQmqWLGixo0bpwoVKqhXr17q2bOnZs2alSL3fzeDBw9WdHS09XXy5ElbHw8AAABA+nNf0wifeuoptWnTRv7+/goNDVXlypUVHBwsLy8vXbx4UWFhYfrll1/03XffqWnTpnr77bdTpLhcuXKpZMmSTm0lSpTQV199JUkKCgqSJEVERChXrlxWn4iICJUvX97qc/bsWaf7uHHjhiIjI63b/5Onp6c8PT1TZB8AAAAAPJzuK2x1795dHTt21JdffqnFixdr9uzZio6OliQ5HA6VLFlSISEh2r59u0qUKJFixT322GM6fPiwU9vvv/+u/PnzS7q1WEZQUJDWrl1rhauYmBht3bpVvXv3liRVr15dUVFR2rlzpypVqiRJWrdunRISElS1atUUqxUAAAAAbnffC2R4enqqY8eO6tixoyQpOjpa165dU7Zs2ZQxY0Zbinv55ZdVo0YNjRs3Tm3bttW2bds0e/ZszZ49W9KtoNe/f3+NHTtWRYsWtZZ+Dw4OVsuWLSXdGglr1KiRNf0wPj5effv2Vbt27ViJEAAAAIBtkr0aYaLExSPs9Oijj2rZsmUaPHiwRo8erYIFC2rKlCnq0KGD1WfQoEG6cuWKevXqpaioKNWsWVOrV6+2rrElSQsXLlTfvn1Vv359ubm5qU2bNpo2bZqttQMAAAB4uDmMMcbVRaR2MTEx8vf3V3R0tPz8/FxdDgAAD1zoZ6GuLiHdWNF+hatLAPAfJCcbpOql3wEAAAAgrSJsAQAAAIANCFsAAAAAYAPCFgAAAADYINmrEd68eVPvvvuuvvjiC504cUJxcXFO2yMjI1OsOAAAAABIq5I9sjVq1ChNnjxZTz/9tKKjozVgwAC1bt1abm5uGjlypA0lAgAAAEDak+ywtXDhQs2ZM0evvPKKMmTIoPbt2+vDDz/U8OHD9euvv9pRIwAAAACkOckOW+Hh4SpTpowkKXPmzIqOjpYkNWvWTN9++23KVgcAAAAAaVSyw1aePHl05swZSVLhwoX1ww8/SJK2b98uT0/PlK0OAAAAANKoZIetVq1aae3atZKkfv36adiwYSpatKg6d+6sZ599NsULBAAAAIC0KNmrEb711lvW/59++mnlz59fmzdvVtGiRRUaGpqixQEAAABAWpXssLVx40bVqFFDGTLcumm1atVUrVo13bhxQxs3blTt2rVTvEgAAAAASGuSPY2wbt26d7yWVnR0tOrWrZsiRQEAAABAWpfssGWMkcPhSNJ+4cIF+fj4pEhRAAAAAJDW3fc0wtatW0uSHA6Hunbt6rTy4M2bN7Vv3z7VqFEj5SsEAAAAgDTovsOWv7+/pFsjW76+vvL29ra2eXh4qFq1aurZs2fKVwgAAAAAadB9h625c+dKkgoUKKBXX32VKYMAAAAAcA/JXo1wxIgRdtQBAAAAAOnKfYWtChUq3HFRjDvZtWvXfyoIAAAAANKD+wpbLVu2tLkMAAAAAEhf7itsMXUQAAAAAJIn2dfZkqSoqCh9+OGHGjx4sHWB4127dunUqVMpWhwAAAAApFXJXiBj3759atCggfz9/XXs2DH17NlTWbNm1dKlS3XixAl9+umndtQJAAAAAGlKske2BgwYoK5du+rIkSPy8vKy2ps0aaKNGzemaHEAAAAAkFYlO2xt375dzz33XJL23LlzKzw8PEWKAgAAAIC0Ltlhy9PTUzExMUnaf//9d+XIkSNFigIAAACAtC7ZYat58+YaPXq04uPjJUkOh0MnTpzQa6+9pjZt2qR4gQAAAACQFiU7bL3zzju6fPmycubMqWvXrunxxx9XkSJF5OvrqzfffNOOGgEAAAAgzUn2aoT+/v5as2aNfvnlF+3bt0+XL19WxYoV1aBBAzvqAwAAAIA0KdlhK1HNmjVVs2bNlKwFAAAAANKNZIWthIQEffLJJ1q6dKmOHTsmh8OhggUL6sknn1SnTp3kcDjsqhMAAAAA0pT7PmfLGKPmzZurR48eOnXqlMqUKaNSpUrp+PHj6tq1q1q1amVnnQAAAACQptz3yNYnn3yijRs3au3atapbt67TtnXr1qlly5b69NNP1blz5xQvEgAAAADSmvse2frss880ZMiQJEFLkurVq6fXX39dCxcuTNHiAAAAACCtuu+wtW/fPjVq1Oiu2xs3bqy9e/emSFEAAAAAkNbdd9iKjIxUYGDgXbcHBgbq4sWLKVIUAAAAAKR19x22bt68qQwZ7n6Kl7u7u27cuJEiRQEAAABAWnffC2QYY9S1a1d5enrecXtsbGyKFQUAAAAAad19h60uXbr8ax9WIgQAAACAW+47bM2dO9fOOgAAAAAgXbnvc7YAAAAAAPePsAUAAAAANiBsAQAAAIANCFsAAAAAYAPCFgAAAADYgLAFAAAAADYgbAEAAACADQhbAAAAAGADwhYAAAAA2ICwBQAAAAA2IGwBAAAAgA0IWwAAAABggzQVtt566y05HA7179/fart+/br69OmjbNmyKXPmzGrTpo0iIiKcbnfixAk1bdpUmTJlUs6cOTVw4EDduHHjAVcPAAAA4GGSZsLW9u3b9cEHH6hs2bJO7S+//LJWrFihL7/8Uhs2bNDp06fVunVra/vNmzfVtGlTxcXFafPmzZo3b54++eQTDR8+/EHvAgAAAICHSJoIW5cvX1aHDh00Z84cZcmSxWqPjo7WRx99pMmTJ6tevXqqVKmS5s6dq82bN+vXX3+VJP3www8KCwvTggULVL58eTVu3FhjxozRe++9p7i4uDs+XmxsrGJiYpy+AAAAACA50kTY6tOnj5o2baoGDRo4te/cuVPx8fFO7cWLF1e+fPm0ZcsWSdKWLVtUpkwZBQYGWn1CQkIUExOjgwcP3vHxxo8fL39/f+srb968NuwVAAAAgPQs1Yetzz//XLt27dL48eOTbAsPD5eHh4cCAgKc2gMDAxUeHm71uT1oJW5P3HYngwcPVnR0tPV18uTJFNgTAAAAAA+TDK4u4F5Onjypl156SWvWrJGXl9cDe1xPT095eno+sMcDAAAAkP6k6pGtnTt36uzZs6pYsaIyZMigDBkyaMOGDZo2bZoyZMigwMBAxcXFKSoqyul2ERERCgoKkiQFBQUlWZ0w8fvEPgAAAACQ0lJ12Kpfv77279+vPXv2WF+VK1dWhw4drP9nzJhRa9eutW5z+PBhnThxQtWrV5ckVa9eXfv379fZs2etPmvWrJGfn59Kliz5wPcJAAAAwMMhVU8j9PX1VenSpZ3afHx8lC1bNqu9e/fuGjBggLJmzSo/Pz/169dP1atXV7Vq1SRJDRs2VMmSJdWpUydNnDhR4eHhGjp0qPr06cNUQQAAAAC2SdVh6368++67cnNzU5s2bRQbG6uQkBC9//771nZ3d3etXLlSvXv3VvXq1eXj46MuXbpo9OjRLqwaAAAAQHrnMMYYVxeR2sXExMjf31/R0dHy8/NzdTkAADxwoZ+FurqEdGNF+xWuLgHAf5CcbJCqz9kCAAAAgLSKsAUAAAAANiBsAQAAAIANCFsAAAAAYAPCFgAAAADYgLAFAAAAADYgbAEAAACADQhbAAAAAGADwhYAAAAA2ICwBQAAAAA2IGwBAAAAgA0IWwAAAABgA8IWAAAAANiAsAUAAAAANiBsAQAAAIANCFsAAAAAYAPCFgAAAADYgLAFAAAAADYgbAEAAACADQhbAAAAAGADwhYAAAAA2ICwBQAAAAA2IGwBAAAAgA0IWwAAAABgA8IWAAAAANiAsAUAAAAANiBsAQAAAIANCFsAAAAAYAPCFgAAAADYgLAFAAAAADYgbAEAAACADQhbAAAAAGADwhYAAAAA2ICwBQAAAAA2IGwBAAAAgA0IWwAAAABgA8IWAAAAANiAsAUAAAAANiBsAQAAAIANCFsAAAAAYAPCFgAAAADYgLAFAAAAADYgbAEAAACADQhbAAAAAGADwhYAAAAA2ICwBQAAAAA2yODqAgDgQQr9LNTVJaQbK9qvcHUJAACkaoxsAQAAAIANCFsAAAAAYAPCFgAAAADYgLAFAAAAADZI1WFr/PjxevTRR+Xr66ucOXOqZcuWOnz4sFOf69evq0+fPsqWLZsyZ86sNm3aKCIiwqnPiRMn1LRpU2XKlEk5c+bUwIEDdePGjQe5KwAAAAAeMqk6bG3YsEF9+vTRr7/+qjVr1ig+Pl4NGzbUlStXrD4vv/yyVqxYoS+//FIbNmzQ6dOn1bp1a2v7zZs31bRpU8XFxWnz5s2aN2+ePvnkEw0fPtwVuwQAAADgIZGql35fvXq10/effPKJcubMqZ07d6p27dqKjo7WRx99pEWLFqlevXqSpLlz56pEiRL69ddfVa1aNf3www8KCwvTjz/+qMDAQJUvX15jxozRa6+9ppEjR8rDw8MVuwYAAAAgnUvVI1v/FB0dLUnKmjWrJGnnzp2Kj49XgwYNrD7FixdXvnz5tGXLFknSli1bVKZMGQUGBlp9QkJCFBMTo4MHD97xcWJjYxUTE+P0BQAAAADJkWbCVkJCgvr376/HHntMpUuXliSFh4fLw8NDAQEBTn0DAwMVHh5u9bk9aCVuT9x2J+PHj5e/v7/1lTdv3hTeGwAAAADpXZoJW3369NGBAwf0+eef2/5YgwcPVnR0tPV18uRJ2x8TAAAAQPqSqs/ZStS3b1+tXLlSGzduVJ48eaz2oKAgxcXFKSoqyml0KyIiQkFBQVafbdu2Od1f4mqFiX3+ydPTU56enim8FwAAAAAeJql6ZMsYo759+2rZsmVat26dChYs6LS9UqVKypgxo9auXWu1HT58WCdOnFD16tUlSdWrV9f+/ft19uxZq8+aNWvk5+enkiVLPpgdAQAAAPDQSdUjW3369NGiRYv0zTffyNfX1zrHyt/fX97e3vL391f37t01YMAAZc2aVX5+furXr5+qV6+uatWqSZIaNmyokiVLqlOnTpo4caLCw8M1dOhQ9enTh9ErAAAAALZJ1WFr5syZkqQ6deo4tc+dO1ddu3aVJL377rtyc3NTmzZtFBsbq5CQEL3//vtWX3d3d61cuVK9e/dW9erV5ePjoy5dumj06NEPajcAAAAAPIRSddgyxvxrHy8vL7333nt677337tonf/78+u6771KyNAAAAAC4p1R9zhYAAAAApFWELQAAAACwAWELAAAAAGyQqs/ZAgA8PEI/C3V1CenGivYrXF0CAECMbAEAAACALQhbAAAAAGADwhYAAAAA2ICwBQAAAAA2IGwBAAAAgA0IWwAAAABgA8IWAAAAANiAsAUAAAAANuCixkAK48KsKYcLswIAgLSMkS0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAaELQAAAACwAWELAAAAAGxA2AIAAAAAGxC2AAAAAMAGhC0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAAADABoQtAAAAALABYQsAAAAAbEDYAgAAAAAbELYAAAAAwAaELQAAAACwAWELAAAAAGxA2AIAAAAAGxC2AAAAAMAGhC0AAAAAsAFhCwAAAABsQNgCAAAAABtkcHUB+N+Efhbq6hLSjRXtV7i6BAAAAKRDjGwBAAAAgA0IWwAAAABgA8IWAAAAANiAsAUAAAAANiBsAQAAAIANCFsAAAAAYAPCFgAAAADYgLAFAAAAADYgbAEAAACADQhbAAAAAGADwhYAAAAA2OChClvvvfeeChQoIC8vL1WtWlXbtm1zdUkAAAAA0qmHJmwtXrxYAwYM0IgRI7Rr1y6VK1dOISEhOnv2rKtLAwAAAJAOPTRha/LkyerZs6e6deumkiVLatasWcqUKZM+/vjjJH1jY2MVExPj9AUAAAAAyeEwxhhXF2G3uLg4ZcqUSUuWLFHLli2t9i5duigqKkrffPONU/+RI0dq1KhRSe4nOjpafn5+dpcLAACQLKGfhbq6hHRjRfsVKXp/HJuUk9LH5n8VExMjf3//+8oGD8XI1vnz53Xz5k0FBgY6tQcGBio8PDxJ/8GDBys6Otr6Onny5IMqFQAAAEA6kcHVBaRGnp6e8vT0dHUZAAAAANKwh2JkK3v27HJ3d1dERIRTe0REhIKCglxUFQAAAID07KEIWx4eHqpUqZLWrl1rtSUkJGjt2rWqXr26CysDAAAAkF49NNMIBwwYoC5duqhy5cqqUqWKpkyZoitXrqhbt26uLg0AAABAOvTQhK2nn35a586d0/DhwxUeHq7y5ctr9erVSRbNAAAAAICU8NCELUnq27ev+vbt6+oyAAAAADwEHopztgAAAADgQSNsAQAAAIANCFsAAAAAYAPCFgAAAADYgLAFAAAAADYgbAEAAACADQhbAAAAAGADwhYAAAAA2ICwBQAAAAA2yODqAgAAAPDfrGi/wtUlALgDRrYAAAAAwAaELQAAAACwAdMIAQAAAJswxfPhxsgWAAAAANiAsAUAAAAANiBsAQAAAIANCFsAAAAAYAPCFgAAAADYgLAFAAAAADYgbAEAAACADQhbAAAAAGADwhYAAAAA2ICwBQAAAAA2IGwBAAAAgA0IWwAAAABgA8IWAAAAANiAsAUAAAAANiBsAQAAAIANCFsAAAAAYAPCFgAAAADYgLAFAAAAADYgbAEAAACADTK4uoC0wBgjSYqJiXFxJQAAAABcKTETJGaEeyFs3YdLly5JkvLmzeviSgAAAACkBpcuXZK/v/89+zjM/USyh1xCQoJOnz4tX19fORwOV5eTJsTExChv3rw6efKk/Pz8XF0O/oHjk3pxbFI3jk/qxvFJvTg2qRvHJ3mMMbp06ZKCg4Pl5nbvs7IY2boPbm5uypMnj6vLSJP8/Px40qZiHJ/Ui2OTunF8UjeOT+rFsUndOD73799GtBKxQAYAAAAA2ICwBQAAAAA2IGzBFp6enhoxYoQ8PT1dXQrugOOTenFsUjeOT+rG8Um9ODapG8fHPiyQAQAAAAA2YGQLAAAAAGxA2AIAAAAAGxC2AAAAAMAGhC0AAAAAsAFhCwAAAABsQNgCAAAAABsQtgAAeIC44goAPDwIW0hXIiIi9MsvvygmJsbVpeD/u3jxoi5evOjqMnAH0dHROn36tKvLeCicPHlSn3zyieLj4+VwOFxdzkMpMeReunTJxZUguU6cOKG5c+dq7ty52rx5s6vLAZKFsIV0IywsTKGhofrkk0+0a9cuV5cDSYcOHdKTTz6pkSNH6uzZs64uB7c5dOiQunXrpnfffVfHjh1zdTnp2oEDB9SsWTN9/vnnWrp0qavLeWg5HA6dP39ejzzyiD766CNXl4P7tH//fj322GP6+OOP9cYbb2jEiBHat2+fq8vCfxQVFaVTp045tSUkJLioGnsRtpAuHDhwQDVr1tRjjz2mPn36qE6dOq4u6aG3f/9+1axZU2XKlFH9+vWVM2dOV5eE/2///v2qU6eOsmfPrsaNG6tAgQKuLindCgsLU506ddSwYUN9+OGHevrpp522M6XQfre/gcuePbuefPJJvfjii1q4cKELq8L9OHnypJo1a6aOHTtq3bp1WrZsmcLCwnTu3DmnfjyP0pYRI0YoNDRU5cuXV/PmzTV58mTdvHlTbm5u6TJwOQy/oUjjLly4oKZNm6pOnTp66623nLbFx8frxo0b8vb2VkJCgtzc+HzhQTh16pTq16+vJ598UmPHjr1rP2MMU6oesJMnT6pWrVpq3769xo4dK3d3d1eXlG5dvnxZrVq1UsmSJTV16lSnbZcuXZKHh4c8PDx4Dtgo8XX/zz//1KFDh9S0aVNJ0pAhQzRp0iTNnTtXHTp0cHGVuJtFixZp+vTpWr9+vTw9PSVJLVu2VM2aNZUxY0blyZNHbdq0cXGVSI5x48Zp2rRpmjlzpvz9/fXJJ59ozZo1atKkiT744ANlyJAh3b03yODqAoD/KiIiQleuXFHr1q2ttm3btumXX37R4sWL5ePjo7Fjx6pGjRoErgdkz549yp49u/r27Wv9zMPCwhQWFqZvvvlGVatW1RNPPKFixYq5utSHzrp161S4cGENGzbMClp//PGH9u7dqw0bNqhcuXJ69tln09UfOle5dOmSzpw5o4EDB1pt69ev16pVqzR//nx5eXmpV69e6tGjh7Jnz+7CStOnxNeePXv2qFKlSpo9e7a1bdy4cTLGqFu3bpJE4EplEt9su7m56fTp09qyZYvq1KmjcePGafny5daU0D///FNHjhzR66+/7uqS8S+MMTpz5oy+++47ffDBB2rRooUkqVy5cqpUqZI+++wzXbp0SYsWLVKGDOkrnqSvvcFD6cKFC4qJiVFUVJQkac6cOZo7d64yZMigokWL6uLFi6pfv7527NihUqVKubbYh8Qff/yh33//XUFBQZKkBQsWaP78+frzzz+VKVMmbd68WRs3btR7772nHDlyuLjah0tMTIwiIiJ04cIFZcqUSfPnz9fixYu1f/9+Zc+eXTNmzNDevXs1bdo0V5ea5nl4eMjNzU0//PCDnnjiCU2ZMkXz5s1T7ty51b9/f4WHh+utt95S+fLl1ahRI1eXm64kBq29e/eqZs2aGjRokLp37+7UZ/z48XI4HASuVObYsWP6+++/VbNmTRUqVEiFChVS165dVa5cOa1YsULLli1TixYtdOnSJU2aNElLly5Vly5dlCtXLleXjntIDM9nz55VfHy81Z4tWzZVrlxZgYGB2rx5s+bNm6fu3bunr9EtA6RBx48fN2vWrLG+r1WrlgkMDDTFihUzXl5eZty4cWbv3r3GGGNOnDhh8ubNa6ZPn+6qch8K58+fN2fOnDHG3PqZ58mTx5QtW9Y0bdrUZMqUybz++utm8+bNxhhjPvjgA5MzZ06ze/duF1b88Dh79qz1/yVLlphixYqZNm3amNDQUOPn52deffVV88svvxhjjPnss8+Mu7u72bNnj6vKTdMOHz5slixZYowxJjY21owePdoULFjQBAUFGR8fH/Puu++asLAwq3+xYsVMv379XFVuunTz5k1jjDH79u0z3t7eZtiwYU7bV69ebf7++2/r+8GDB5uMGTOaRYsWPdA6kVRYWJhxd3c3lStXttp27txpvvvuOzN58mQTEhLi1P+DDz4wxYsXN5GRkQ+6VPwPLly4YB555BHTo0cP6/3C2LFjTcGCBc2RI0dM48aNTZs2bVxcZcpjZAtpzvXr1zV69Gj9/PPPmjRpkkJDQ7VhwwbNnDlTN27cUEhISJLpaTly5FDevHldVHH6Fx0drUqVKqlVq1YaNGiQ8ubNq8WLF+vDDz/UjRs3tG7dOpUtW1be3t6SpAoVKihLlixM6XwAoqKi1KhRI5UrV04ff/yx2rRpoxMnTmjfvn2KiIjQN998o0qVKsnX11eSlDlzZhUrVkxZs2Z1ceVp05dffqlhw4ZpwYIFeuaZZ/TSSy+pcePGOnr0qKpUqaL8+fNLujXyEh0drdy5c6t06dIurjp9cXNz0/Hjx1W9enW1aNFCo0ePtraNGzdOo0aN0p49e5Q7d26rzd3dXR06dFCGDBn01FNPuar0h9qePXv02GOPKTg42Km9YsWKkqQrV67oxo0bunTpkvV6deTIEeXPnz/dTTtLT65cuSJvb28ZY5Q1a1bNnTtXISEhWr9+vby9vXX06FEtX75cRYoUUfv27TVixAjFxMTIx8cn3ZxTzG8n0hwvLy916tRJ165d05tvvqmEhAS1aNFCL7zwwh2HnWfPnq3r16+rUqVKLqo4/fP399fLL7+s0aNHK1OmTHrppZdUo0YN1ahRQ/Hx8cqYMaNT/yVLlihLlizWmx3Y6+mnn9aHH36ovn37asaMGXr55ZetFZ/+GXg3bdqkwMBAZc6c2RWlpnmvvfaaYmNj1blzZ928eVOdOnVS5cqVVblyZad+bm5umjJlio4fP64nnnjCRdWmXwkJCcqSJYtiY2P1888/q1atWnr77bc1ZcoULV++XCVKlHD6ezFmzBi5u7sTfF1k7969qlGjhkaMGKFatWopNDRU4eHhypkzp/UalS1bNm3ZskXjxo1TcHCwjh8/ro8++kgbNmywwhdSlylTpmjjxo2KiIhQjx491Lp1a9WoUUO7du3S999/Lzc3NzVr1kz58uWTdGsBp5IlS8rPz8/FlacwF4+sAf+zn3/+2Tz99NOmatWqZuXKlUm279271/Tv399kyZKF6Wo2iouLs/4/a9Ys4+vra9544w1z8uRJY4wxCQkJ1vYTJ06YQYMGmSxZsljTPGG/yMhIM23aNFOwYEHTt29fqz02Ntb6/8mTJ82gQYOMn5+f2bdvnyvKTPMSp6/FxsaawYMHG3d3d7Nw4UJjjPPzYPXq1aZfv34mS5YsZteuXS6pNb1J/NnHxcWZ69evG2OM+e2330ypUqVM69atzXPPPWeyZs1q1q5dm+S227Zte6C1wtnu3btNpkyZzJAhQ4wxxmzcuNFkypTJHDt2LEnfmTNnmtKlS5tSpUqZkJAQXqtSsQEDBpicOXOat956yzRt2tQUKFDgrq938fHx5tSpU6Zs2bLm9ddff8CV2o+whTTh2LFjZtu2bdYb+EQ///yzefLJJ02VKlWcAtfkyZNNpUqVTM2aNXkxtsmZM2dMVFSU05tIY4yZMWOG8fX1NUOGDDGnT592aq9fv74pU6YM5wPZLCoqykRERDi1RUREmGnTppn8+fObF1980WpPSEgwI0eONG3btjUlS5bk2CTTn3/+ad5++21z8OBBc/HiRadtgwYNMu7u7mb+/PlW2xdffGGeeuop07hxY3PgwIEHXG36lBi0/vjjDzNixAjz7bffmsuXLxtjbgWusmXLGofDYd555x3rNomvW2+88YapUKGCOXfu3IMvHCYsLMx4e3ubwYMHW23Hjx83efPmtd6YJyQkmBs3bljbw8PDTVRUlImJiXng9eL+vPzyyyZr1qxOH3SXKFHCfPHFF+bs2bPWa+XNmzdNdHS0Wb58uSlevLhp1qyZ1f+f7y3SMsIWUr2TJ08ah8NhHA6HCQwMNH369DGTJ0+2nqxHjhwxTz/9tKlRo4ZZvny5dbtvv/3WOgETKeuvv/4yGTJkMMHBwaZHjx5mxowZ5tChQ9b2Tz/91GTKlMkMHTrUCsgbNmwws2fPNsePH3dV2Q+F33//3eTKlcuUKFHC9OnTxyxZssRaICM+Pt5MmzbNFClSxPTp08e6zSeffGLeffddc/ToURdVnTYlnuztcDhM9uzZzRNPPGF69eplvv/+exMTE2Pi4+PNO++8Y9zc3Mznn39ujLkVhPft22cuXLjg4urTh9sXwyhQoIBp06aN+frrr522/fHHH6Z06dKmWbNmZsOGDdZthw0bZjJmzGi2b9/+4AuHMcaYRYsWmUmTJjm1RUVFmRw5cpjPPvvMGOP8pnv37t0mKirqgdaI5Jk7d65xOBxm//79Vtu1a9dM7ty5TfXq1U1QUJCpWLGi2bFjhzHGmMuXL5tly5aZiRMnWv0Tn7vpBRc1RqoXHR2tkJAQnThxQiEhIYqMjNRff/2lixcvKn/+/Ordu7f++usvHTt2TIcOHdIbb7xhXbgS9li/fr3at2+viIgIvfzyy1q8eLEyZ84sb29vdenSRS1bttSKFSs0ZswY9e/fX926dVOuXLnS11KuqdTMmTPVp08fFS1aVPHx8QoODtaBAwfUuHFjPfHEEypZsqR+/fVXzZ49W82bN7cuBH7jxg1OMk+mCxcu6J133tGPP/4oh8Ohl156SdOnT9fFixcVFRWlpk2bqlq1alqzZo1Wr16tOXPm6Omnn3Z12enOkSNHVKNGDfXo0UODBw92Ot8j8TXn4MGDatu2rQoUKKAxY8Zo+fLlmjBhgjZt2mQtwADXS0hI0PXr11W2bFkNHDhQzz33nLXttdde08qVK/Xzzz+zgE8qZYzRTz/9pI4dO6patWpaunSpJKly5cry9PTUm2++qbCwMH366aeKjo7W2rVrFRwcrJs3b1qLYaTL66G6NOoB/yJx6kBkZKSpXr26CQ0NNV9//bWJi4szy5YtM6+88oopXbq0KVSokPHw8DAOh8M89thj5sqVK+lqCDq1iYuLM2vWrDHBwcHm2WefNZcvXzZbtmwxPXr0MLVr1zYeHh6mY8eO1ojkW2+95TQNBPaaMGGCefzxx83AgQPNnj17zJIlS0yfPn1Mjhw5TKVKlUyePHlM6dKljcPhMOPGjXN1uWlaeHi4GTNmjClfvrz1s7x06ZKZOHGief75501AQIApX768cTgcJjg42Fy6dMnFFacfidPLevfubbp06eK0LSYmxhw8eNCsX7/eGk3fv3+/KVu2rMmWLZvx8fGxPlnHg3XmzBmze/fuJOfP3f43u169eua1116zvh8+fLjx9vY2W7dufWB14n9z48YN8/PPP5vAwEDTuHFjU6VKFdO0aVOn0fx3333X+Pr6moMHD7qw0geHsIVUL/FN+rlz50y1atVMtWrVzI8//mi9MP/999/myJEjZsSIEaZz586cB/GA3Lhxw6xatcr4+vqaTp06We1Xr141W7ZsMe+9954JCQkx+fPnN7/99psLK3143B5ohw8fbipWrGhef/11a9rN+fPnzaZNm8zLL79s6tWrZ7Jnz+401QP/m/DwcDN27FjzyCOPWCf5Jzp+/LhZv369efXVVzl/1CYtWrQwAwcOtL7/5ptvzLPPPmt8fHxMUFCQyZUrl3X+z8GDB03t2rU5Fi6yd+9eU7BgQVO0aFHj6+trKlSoYL766ivr/KvE17DQ0FDTvn17Y4wxQ4cONZ6enoTjVO7mzZtOf4M2btxoSpYsaby8vKwPma5du2aMubVIUNmyZZ1OP0jPmEaINCFxiPn8+fNq0aKFJGnw4MFq0qSJNdxsjFFCQkK6uS5DWmCM0ffff69nnnlGTzzxhBYvXpykT1RUlAICAh58cQ8Rc9v0zNunYIwZM0ZfffWVGjVqpD59+jhday4uLk6xsbEsmZxCzp49qzlz5mjhwoVO0zORshJ/v2NjY+Xp6SlJatGihf7++2+NHTtW69ev1+eff666deuqSZMmCg4O1pgxY5QxY0YtWrRIfn5+TJl1kbNnz6pmzZp66qmn1KlTJ3l6eqpfv346fvy4nnnmGfXu3dv6W9GvXz9dvnxZjzzyiEaNGqVNmzZx+ZZUasGCBdqzZ4927NihgIAAde3aVVWqVFFwcLB+/vlntW3bVpUrV9aKFSskSefOnVO9evVUtWpVffjhhy6u/gFxadQD/uG3334z77333h233T7CVaNGDfPYY4+ZVatWpbsTKVObo0eP3nNp5ISEBLN69WqTJUsW65NIY5yXhIc9oqOj79h++3Ni1KhRpkKFCua1115zWh0SyXPx4sUkqw3+U0REhBk7dqwpUaKEGTp06IMp7CF04sQJ06VLF/PTTz8ZY24dm1KlSpkiRYqY4OBgs2DBAnPixAmrf69evUz9+vVdVC0S7d692xQoUCDJaHq/fv1MuXLlzNSpU62RjxkzZhiHw2F8fX1ZwCQVe/XVV02ePHlMr169zFNPPWWqVq1qHA6Hadu2rXV5l40bN5pcuXKZli1bmqioKFOmTBkTEhJi3cfDcMoHYQupQkJCgomLizPVqlVLMg3ndomB6/z586Z27dqmdOnS5ocffnhQZT50EleFWrBgwT37JQaunDlzOi3dCvvs2rXLhISE3HWK5u2Ba/To0ebRRx81ffv2NeHh4Q+qxHTj/PnzplChQubNN980kZGRd+yT+IYhIiLCjBs3zgQFBZnRo0c/yDIfGt99950pV66cadu2rfn555+t9r/++stpOfDEY9KjRw/Tq1cvExcX91C8sUuttm3bZnLnzm1+/fVXY8z/TSkz5tYxKlasmPV6tnjxYpMjRw4TFhbmklrx79555x2TM2fOJNfOmjRpkvHw8DDt27c3f//9tzHm1mV6cufObRwOh1PQelg+LCdsIVWpVq2adS2Uf/5RTAxaif9GRESYhg0bsly1jaKioky+fPnu+sni7S+U8fHxZvny5aZgwYLWCyzssWfPHuPh4WEGDRp01z4JCQlOz6FBgwaZxx9/PMn1t3B/BgwYYHLkyGEmT56cZNn2f75hOHnypJk0aZL5448/HmSJD5VvvvnGPP7446Z169ZOgev2Y3HlyhUzZMgQkyNHDs4bdZHbR4Tj4+NNyZIlTWhoqLU98QLUxhhTsmRJ8+yzz1rfc+2z1CkhIcFER0ebZs2aWTOR4uPjnfq88847xuFwmCVLlhhjbj0v16xZY0aMGGH1eViCljGELaQSiQGqcuXKZs6cOcaYuw8t//HHHyY2NtYY83A9WV3hzJkzJn/+/P96EmviH8y4uDjrYqKwx549e4y3t3eSEeC7XeDz9pEY3rwkX+JrjTG3rssUEBBwx8BljDErV660ft6svpkyEn+Od/p7sGTJEitwbd682WnbpEmTzPPPP29y586d5JN3PBi3jwgnXutv06ZNxt/f3/Tq1cvql/hGvU+fPqZ169YuqRXJEx4ebrJmzWo++OADp/bb35PVq1fPNGjQwDq+tz+HH7b3bulsIXukNUeOHNHmzZvl7u6uK1eu6Ny5c/L29pakO16P6YMPPlCpUqW0bdu2u/bBf3P69Gn98ccfkm5d4+zs2bOKi4u7a/9JkyapZs2aunz5sjJmzCgfH58HVepDJywsTLVq1dKAAQP05ptvWu2jR4/WiBEjFBsb69T/5Zdf1tChQ3Xq1ClJUvbs2R9ovWnZuXPnlJCQIA8PD6tt9OjR6t27t0aPHq158+YpMjLS2rZ06VL17t1b06dPlzEm/V0nxkXc3d21f/9+NWnSRO+++67WrFmj69evS5LatGmjQYMG6ezZs5o0aZI2bdokSYqJidH+/ft1/fp1rV27VhUqVHDlLjy0smXLppYtW2rKlClasGCBLl68qBo1amjKlCn6/PPP1a1bN0myFrW6cOGCMmfOrISEBFeWjftw/fp1ZcyYUfHx8ZJuXadRktzc3KzjV7JkSUVHR1t9bvewvT6yHA9cJiEhQdOmTdN7772nDRs2qFatWkpISLDC1p106NBB69atU86cOSURtlJaTEyMevfurWvXrumDDz5Qjhw55OHhYR2T21fxSnxBzZIlizJmzKjIyEhlzpzZZbWndzdu3FC/fv3k7u6u5s2bW+0TJkzQpEmTtHjxYmt1tkT58uXTqFGjNGLEiAddbpr2559/qkyZMipSpIjq1q2r2rVrq3LlysqfP7/GjRsnX19fjRgxQg6HQx07dlT27NnVokUL/frrr+rYsSOvSynE3Jp9o969e2vz5s06ceKEDh8+rNq1aytLlizq16+fateuLTc3N02bNk3Tp0+Xu7u7qlWrpjlz5iguLo4Pf1wkLi5OHh4eeuedd+Tj46PRo0dLknr27KmOHTsqU6ZMeuGFF1SxYkUVLVpUGTJk0IoVK/Trr78+dG/E04r33ntPhQoVUuPGjZU/f37VrFlT48ePV7NmzZQ/f35r1ejEFUP9/PxUo0YNxcbGytvb+6F+XWTpd7jUmTNnNHz4cC1cuFDLly/XxIkTVbt2bYWGhur8+fPy8PCQj4+Prl69qhMnTqhq1aoqVKjQQ/2ktdusWbP05ZdfKmvWrGrVqpXef/99zZkzR3nz5rVGr7y8vHTt2jVdvHhRefPmVXx8PEuIPwBhYWHq0KGDcuXKpUmTJmnFihWaOHGiPvvsMzVs2NCpr/n/y8FfvHhRWbJkcVHFadPXX3+tp59+WvHx8Xruuee0aNEi5c2bV7ly5VKXLl3UrFkzTZo0SfPmzdPgwYPVsmVLBQcHu7rsdCfxd/j8+fOqXbu2/Pz81KdPH129elVffPGFzpw5o/DwcHXt2lXbtm1TTEyMsmXLpsmTJzOa5SLnzp1TtmzZkgSmIUOG6P3339fw4cPVs2dP+fr66ty5cxo9erSio6Pl7e2tF198UaVKlXJR5biXl156SbNnz9bBgwdVqFAhSdLixYv1yiuvqGTJkpo9e7YKFChg9T9//rwqV66sEydOqHz58tbS/g/thx8unMKIh9Thw4fNpEmTrO/Dw8NN165djcPhMA6HwxQoUMDkzJnTeHt7G19fXxMYGGj8/f1NtmzZOOHcJidPnjTfffed9f3cuXNNSEiIKVu2rHE4HCZPnjzG19fX+Pv7W1++vr4mODjYnDlzxoWVp38XLlww+/fvN4cPHzbG3Hr+lCpVyhQuXNj4+/ubNWvWGGOczxGaMWOGef/9940xD9/c+P8i8ZyCS5cumS+++ML4+vqaoUOHmnPnzplvv/3WtGjRwlSsWNH4+vqaHj16GIfDYby8vMysWbPMjRs3WOnORmfOnDFBQUGmcePG5siRI8YYY06fPm3mzZtnevfubUqVKmUcDofJkiWL07LveHD++OMP4+3tbcqUKWNefPFFs2TJEnPs2DFr+7hx40zmzJnN5MmTk6yKyjmOqVf//v1N1qxZzZ49e5JsGzNmjMmTJ48pVKiQmT9/vlmxYoVZunSpKV26tGnSpIn5+uuvzffff//Qr4JL2MIDlZCQYGbNmmUcDod58803rfbTp0+bgQMHGofDYebOnWsuX75sTp48aU6dOmVOnjxpTp8+zcn9Nrl27Zpp27atqVatmlm+fLnVPnfuXFOjRg1TqlQp8+6775pt27aZTZs2mfXr15vvv//ebNq0yfz1118urDz9CwsLM3Xq1DH16tUzTz/9tLVYw5EjR0zFihVNpUqVkiwMMGzYMOPm5mYOHjzoipLTrKNHj5rHH3/cunbZ1atXzaeffmrc3d3N4MGDrX4xMTHmm2++MW+99ZapWLGiCQwMtIIw/rsvv/zSrFq1yixfvtysWrXK/Pjjj9ZqqOHh4SY4ONjUqFHD/Pbbb07h9vr162b16tUELRdatmyZ8fDwMA6Hwzz//PPGz8/PlCpVyjRo0MDMnz/fXLx40bzxxhsmT5485r333nP6oI4PKlKnQYMGmYCAAKe/Jzdu3DCjR482V65cMcb834ezmTNnNl5eXqZWrVqmd+/erio5VSJs4YGLiYkx06ZNM25ubmbMmDFW+6lTp8yzzz5rfHx8rItVGsMn8w/C+vXrTbNmzUxISIj5+uuvrfaPP/7Y1K9f37Rt29ZpRUKOif32799vsmTJYoYMGWKOHDmS5NIHR44cMaVLlzYhISFm/fr1xphbFzD29vY2O3bscFndaVVYWJjJnTu3qVSpkrl06ZIx5tYb+E8//dR4eHiY/v37J7lNXFycOX/+/IMuNd1KvJBt4cKFTZEiRUz58uVN1apVzc6dO60+4eHhJnfu3KZWrVpJLo4L1/gvI8L8LUm9Pv74Y+NwOMxHH31ktcXFxZly5cqZ2rVrO608fPPmTbN//35z4MABc/r0aad2ELbwgPzzCRcVFWWmTJliHA6HU+CKiIgwXbt2Nb6+vubHH3980GU+dG4/Lps2bTKNGjVKErjmzp1rHn/8cdO2bVve3DwgZ8+eNVWrVjUvvfSSU3vim5rEwPX777+bMmXKmJYtW5pnnnnGeHp6ErT+RwkJCebAgQOmbNmypmzZstZS+tevXzfz5883Hh4e5pVXXrH6//O6Mvjvxo4da55++mlz/vx563c8KirKGHPr+CT+zBMDV926dc3evXtdVi8YEU7PDh8+bIoXL25atGhhdu7caRISEkzlypVN48aNreN9r+mfjFb+H8IWbPfHH3+Yt956y6xdu9Yadjbm1puYxAvfjRw50mqPiIgwbdq0Mbly5TJXr151Rcnp3tGjR82uXbvMyZMnndo3btxoGjVqZJ544gmzbNkyq/3TTz815cuXN507dzZxcXEPuNqHz/bt280jjzxitm7desc/WLdfsPjQoUMmX758xsvLy+zevfsBV5q2Xblyxdy4ccN645D46ezdAlfmzJnNc88958qS07Xx48ebli1bGmP+L8z+881cYntERITx8vIyTZo0cboWGh4sRoTTn6tXr1rXETx06JA1g6J48eKmUaNG1vuyxL9B0dHRZtGiRS6rNy0gbMFWkZGRpnjx4tbiFyEhIaZZs2bm+++/N3/88Ye5efOm+eCDD4ynp6cZO3asdbuzZ886DUUj5fz999/W8ShWrJh59tlnzQcffGCdwHrkyBHrOCVe/d0YYxYtWuR0sjPsM3PmTOPj42N9f6fAdeXKFWtq57Fjxzh/LpnCwsJMaGioqVmzpmnUqJHZt2+fte1ugevDDz80gYGBJiIiwlVlp2ujR482jRs3/td+iYHr7Nmz5vfff7e7LNwDI8Lpy4wZM0zHjh1N+fLlrXPqDh8+bCpUqGACAgKcFtIy5tZ7vKJFi5qePXu6otw0g6XfYav4+HiNHTtWa9eula+vrxo2bKgtW7bowIEDOn78uNq1a6csWbIoISFBU6ZM0dtvv61XXnnF1WWne9WrV9fWrVv18ssva8+ePYqOjtaff/6pqlWr6plnntG5c+f0888/KyEhQc8++6xatmzp6pLTPfP/l7mWpNWrV6tVq1ZasWKFGjRocMf+48eP16+//qovvvgiyfW1cG979+5V7dq11alTJwUEBGj37t1yOBz68ssv5e3trYSEBP32229q166d3Nzc9Msvv8jX11dxcXG6fv26/Pz8XL0L6dL06dO1fft2ffrpp07PhztJvKYPHryrV6/K09NTV65ckZ+fnxISEqzLUkiyni+xsbH68ssv1bt3b3Xo0EGzZs1yceW4l9dee03Lli3TsGHDFBQUpCeeeMJ6nv31119q2bKl8uTJo4EDB6pu3bq6fPmyqlWrpuDgYP3www+S9K/P24eWS6Me0rXE84FiY2PNiBEjTP369c2AAQOMMcZcvnzZLFq0yPTr188ULlzYFC5c2BptiYyMZK6vTW6fklOlShXz6KOPmp9//tlcv37dLFq0yAwZMsTkzZvXVKlSxToejRo1cjoRFinv+PHj5s0337Q+Fd63b5/JnDmz6dat2x1X7Lp586bp37+/GT16tEvqTcv2799vMmXKZEaMGGG1TZ061bRs2dJERkY6Ta09ePCgqVChgsmbN681RQr2WbZsmbXYC1InRoTTp6lTp5rAwECzZcuWJNv+eY5waGioWbFihSlZsqRp2LCh1Y/FMO6OsAVbJZ7fExsba8aMGWMqV65s+vfvb50jkbhtw4YNZvr06SzAYKPEF8Lbz7mqUKGCKVKkiNm6davVdurUKXPo0CEzbNgw0759e5YQfwBGjRplHnnkETNs2DDruTFjxgzj7u5u+vfvb/7880+r7/Xr182QIUNMwYIFmUKVTOHh4cbX19c0bNjQ6QOdgQMHmmzZspmiRYsaX19f88Ybb5iLFy8aY4zZvXu3eeyxx5yOAezFm7bUac+ePcbPz8/06dPHvPHGG6ZJkyamadOm1jk8N2/eNAcOHDClS5d2ClyxsbFOf/OReiQkJJhLly6ZJ554wrz11lt37ZcYuA4fPmzKlCljHA6HCQ0NtbbznL03whZS1KFDh8zKlSudlglPlBi4qlWrZvr27csnxQ/IiRMnkpzPc+3aNev/lStXNkWKFDGbNm1KMp+eE88fjLi4ODN48GBTtWpVM3jwYOtNysiRI43D4TCPPvqoGTRokBk4cKB58sknTfbs2c2uXbtcXHXa1KpVK1OuXDkzf/58Y4wxkyZNMpkzZzbz5s0za9euNePGjTNubm5OJ3zzPMDDjhHh9OvEiRPGx8fHrFq1yhhz91UEb180Y/jw4VY7QevfEbaQYqKioqxViRo3bmwGDRpkjh075vTEjY2NNaNHjzbVqlUz/fv354XYZomLYWTNmtVMmDDBfPnll3fsV6lSJfPII4+YzZs388LpInFxcWbgwIGmSpUq5o033rCmbn799dfmiSeeMAULFjSPPvqo6dev3x0/zMDdHT161MyYMcMaCXzqqadMuXLlTNu2bU3WrFmdpq7FxsaakiVLmm7dujGdGTCMCKd3Z8+eNX5+fmbWrFl37XPgwAFToUKFJAuX8X7h/ri5+pwxpB/+/v4qV66ccuTIoVGjRmn9+vV6/vnn1a5dO/3111+KiYmRh4eHBg0apObNm+vbb7/V2LFjZVijxTYBAQFq2bKlnnrqKV24cEFDhgxRy5YttWTJEkVHR1v9duzYIX9/f4WGhmrHjh0urPjhEBYWprffflvr1q3TpUuXJEkZM2bUmDFjVL9+fa1atUrjxo1TdHS0WrRooW+++UaHDh3Stm3bNGXKFBUrVszFe5B27N+/XyEhIVq7dq3CwsIkSV988YVKlSqlL7/8Uj169FDNmjWt/jdv3lS2bNn0yCOPcKI3ICkwMFANGjRQRESEFi5cKEl65513NHPmTE2ePFmzZs3S4MGDNX78eK1atUqSVL58ea1bt06FChVyZem4iw0bNlh/e4wxypUrl1asWKG///7b6nP7e7Pw8HAVKlRImTJlcrofNzdixH1xcdhDOpH46ca2bdtMs2bNTHh4uImMjDQ//fST6dy5s8mcObNp166d+eqrr6z+06dPZ7lqGyUkJJhr166Z559/3gwbNswYc+sT/l69epnWrVubMmXKmK+//tppOlqDBg3MkSNHXFXyQyEmJsZkzJjROBwOU6RIEZM7d27z/PPPmzlz5lgXcB06dKipV6+eGTRokDX6m/gcY7Tl/v32228mS5Ys5vXXXzenTp1Ksr1Dhw6mePHiZt68edY1AIcNG2by5MnD8wAPPUaE06d169aZRx55xLz++uvWlPUFCxYYh8NhBgwYkOS18tSpU6Z69erm1VdfdUW56QJhCynq5MmT5tFHHzWTJk2y2nr27GmCgoLMs88+azw8PEzVqlXNvHnzXFjlw2XXrl0mS5YsZvny5VZbvXr1jIeHh3n00UdNmTJlTK9evUxkZKQLq3y4fPjhh8bhcJjnn3/eDB482Dz//PPG19fXFC9e3DRp0sRMmTLFhISEmOrVq5uBAwc6XQwc9+fatWvmqaeeMn369HFqj4uLM0ePHrVWeezVq5d55JFHzJIlS8zrr79uPD09zc6dO11RMpBq7Nu3zzzyyCOmVatW5uuvv7ban3nmGeNwOMygQYOcVre9evWqqVWrlhk/frwrykUyxMXFmVdffdXUqFHDDB482Fq8ZPjw4cbhcJgnn3zSLFy40Bw8eNDMnTvXlCpVymkxDMJ08hG2kCJu3rxpPQHnzZtnihYtas6fP2+6detmcuXKZS0Pu3XrVtOtWzc+NX5AEv8Y9u/f3zqhtWvXriY4ONj8+eefZvfu3Wb69Okmf/78XLD4Abj9j9R7771n3N3dzZQpU0xcXJw5efKk+emnn8xTTz1lmjRpYi29X6hQIXPu3DkXVp02xcfHm1q1apnp06dbbatXrzb9+/c3fn5+Jk+ePKZ169bGGGN69OhhHA6HyZw5M0ELDz1GhNOvxBkS8fHxZtCgQUnOEf74449Nnjx5jJeXl7U404svvpjk9kgeLmqM/8mxY8f03XffKTo6Wk2aNFG5cuV048YNubu769SpU3rxxRd14MAB3bhxQ59//rmqVKmihIQEubm56caNG8qQIYOrdyHdCQ8P1759++Tr66uCBQsqKCjI2vbpp59qxIgRKlasmA4ePKilS5fq0UcftbbHxcXJw8PDFWU/dG6/GOu0adPUv39/jRw5Uq+++qo1H/7atWvavXu3fv31V4WGhqpo0aKuLDlNiomJUdWqVVWrVi298sorWrp0qebNm6fSpUurdu3aypw5s0aPHq1nn31Ww4cPV9++ffX888+rdOnSri4dcJnr16+rc+fOypkzp2bMmGG1x8fH69SpU/Ly8lJQUJCee+45rV+/XuPGjdOOHTv07rvvavPmzapYsaILq8fdbN26VUWKFFFAQID19ycuLk7Dhg3T2rVr1ahRIw0aNEh+fn46ceKE4uLiFBUVpXz58ilnzpySZL2Hw//A1WkPac+ePXtMvnz5TLVq1UyJEiVMQECA2bNnj1OfIUOGGIfDYXbv3u2aIh8ye/fuNY888ogpUaKEyZkzp+ndu3eSC0g2bdrUZM2a1Wzfvj3J7ZkWYJ/Dhw+bDz/80MTFxVlL69++lPj06dONw+EwY8eOtZbWTcRx+W/Wrl1rMmTIYPLnz298fX3NrFmzrE/e4+LiTMOGDc0zzzzj4iqB1IMR4fRn2LBhxuFwmPLly5vq1aubTz/91Pz000/W9lGjRplq1aqZQYMG3fV6aPwt+m8YXkCy7N27V9WqVdPLL7+sIUOG6MyZM+rQoYP279+vcuXKWf0GDRqkH374QWvXrlX58uVdV/BDYO/evapRo4b69Omj/v37a+nSpRo7dqxeeuklp0+kmjVrpvPnzytHjhxWW+KnVKy6Zo/Lly+revXqunjxotatW6c8efKob9++yps3r9Wnb9++MsbopZdekru7u55//nkFBARI4rj8V/Xq1dNff/2ls2fPKn/+/MqePbu1zd3dXf7+/ipUqJC16hY/bzzsrl69qnPnzmnfvn06fPiw04jwmDFjrBHh0aNHa86cOfL09GREOJXLnz+/JMnPz09ZsmTR7NmztWPHDtWoUUOVKlVSq1at9Ndff2n//v2aNGmSBg0apMyZMzvdB6+N/w3TCHHfjhw5osqVK6tbt26aMmWK1V63bl3lz59f58+fV7169dSoUSMVL15czz//vH7//XetWrVK3t7eris8HTtw4ICqV6+ul19+WaNHj7baq1Wrpvbt20u6tQTv448/rqioKJUrV06hoaFO00NgrzFjxujmzZvKnTu31q9fr++//169e/dWlSpVFBoaavVLnFL49ttva8CAAfxxs1FcXJzGjBmjjz/+WOvXr2eaJnCbdevWKSQkRLlz51ZkZKTefvtt1a9fX0WKFFF8fLyaNWum7NmzW8vAI/X76KOP1KtXL02dOlXNmzfX2bNntXr1ai1dulQOh0PHjh3TxYsXJUlLly5Vy5YtXVtwOsPIFu7bV199JXd3dwUFBenixYvKkiWLxo8fr82bN6tAgQLy8/PTq6++qt27d2v+/Pnq1KmTnnzyScXExBC2bJCQkKCJEyfqypUrevbZZ632MWPGaNu2bfL09NS5c+d06NAhzZ07V126dFGvXr30xRdfKCYmRr6+vryhfwBy5syphQsX6vvvv1fPnj311VdfaefOnWrVqpVeeOEFPfroo+rUqZNefPFF+fn5qUqVKhwXGy1YsEDbt2/X4sWLtWrVKoIW8A+MCKdtxhg5HA4lJCRIunUtrO7du+vy5ct68cUXFRkZqaFDh6py5coaOnSodu7cqcOHD2vx4sXKly8fQcsOrpzDiLRn0KBBpmLFiuadd94xQ4cONTly5DCrV6+25vN+8MEHxuFwmG3bthljjHU1edjjwoULplatWtbqjxMmTLCWeY+LizPHjx83bdq0MXnz5jWRkZFm37595sSJE64u+6GQeH6WMcbUrFnTPPfcc9b3rVq1MsHBwaZx48amQoUKJkeOHE7LK8Mehw4dMnXq1DGtWrUyYWFhri4HSFNiY2PN0KFDTXBwsHXtLaQ+/zyHPi4uzvr/7ecInz9/3qlf4oqExrDqYEpjZAv3dOrUKW3fvl0XL15Ut27dNGHCBA0cOFAzZ87UqVOn9OmnnyokJMRaYbBo0aIqWLCgvLy8JMk69wQp5/fff9eOHTv0zDPPKGvWrFq+fLkaN26svHnzytPTU0uWLFH9+vUlSfny5VO5cuUUFhamDBkyqEyZMi6uPn07duyYPvnkE40cOVIZMmRQbGysPD099dxzz2nlypWSpC5dumjz5s3avHmzgoOD9ccff2jSpEkqVqyYi6tP/4oVK6bFixfL09NT/v7+ri4HSDMYEU4bRo4cqdGjR6tLly5q0KCBQkJCnEYm+/btK0l68cUX5ebmpt69e1vv03x8fCTdGhlj1cGUxU8Td3XgwAE1adJEixYt0sqVK3X16lVJ0ttvv6327durYMGCOnz4sC5cuGAt5f7999/L399fuXLlcmXp6dqyZcvUsWNHzZs3T9KtQPvdd9/piSeeUMaMGVWgQAGn/ufPn1eBAgWY6mGzhIQEffPNN/rggw/0+uuvS5I8PT0lSbVr19bGjRuVL18+rV+/Xt99950KFSokLy8vlS5dWp988omKFy/uyvIfGjlz5iRoAclw+PBhffTRRzp58qR++uknVahQwdUl4S6yZ8+uxo0bK0OGDFq5cqXKly+vefPmafv27Vafvn37asqUKXrjjTf01ltv6dq1a073wXsFG7h6aA2pU1hYmMmSJYsZMmSIiYmJsdpvnxo1cOBAU7FiRTNy5EgTGxtr3nzzTZMpU6YkQ9hIecOHDzfu7u7m448/ttouXrxoatSoYYoWLWpNkRo+fLjJnDmz2b9/v6tKfahERESYCRMmmJIlS5pXX33Vadvs2bNN7ty5zcqVK11UHQD8byIiIkxUVJSry8C/+Omnn0yLFi3MoUOHjDHGjBkzxnTq1MkUL17cjB492unSLxMnTjQdO3Z0VakPFVYjRBKXL19Wx44dFRgYqJkzZ1rDyeb/n3R5+0VZBw0apJ9//lk3btzQgQMH9Msvv6hSpUquLD9dOn36tPbs2aOTJ0+qR48ecnd318iRIzV27FjNmTNH3bp1kyRFRUWpadOmiomJUY0aNbRgwQJt3LiRY/IAJD4/zp8/rw8//FDz589XkyZN9Pbbb0uSNm/erF69emnUqFFq06aN0/MIAID/VeKpHJLUokULSdI333wjSfrpp59Uv359BQUFqVChQvLx8dHAgQPVoEED6/aJf79gD6YRIon4+Hjt379ftWrVcpq3m/hEvP0JOXHiRFWuXFkXL17U1q1beVNvgwMHDqhFixb69NNPdeTIEV2/fl3SrbnZQ4cOVc+ePTV37lxJ/zel0NvbW3PmzCH8PkCJz4vs2bOrR48e6tSpk7777ju9+uqrkqQaNWroscceU79+/XTlyhWCFgDgP1m3bp0kWecIS9KwYcN06dIlnTp1SsePH9fTTz+tPn36aNu2bXr55ZcVGRmpxYsXW/dB0LIfI1tIYtu2bapWrZoOHTqkRx555I6fwMfHx+uzzz5T586dJd06L+j2kzCRMn777TfVqFFDL7zwgvr166egoKAkfe40wnXx4kVduXJFefLkedAlPzQiIyOVNWvWu26/fYQrJCREkydP1vbt2/X8889rxYoVCg4OfoDVAgDSky1btqh169Z65pln9M4771jtFy5cUIsWLVSkSBF9//33atiwod5//31rAQw8eIQtSJLCw8Pl5uamnDlz6ty5cypTpow6d+6sN998UxkzZkzyyceKFSs0atQorVq1Sjly5HBh5enX5cuX9dRTTylPnjyaM2eO1X6nT6FGjBiht99+W++884569+79oEt96ERHR6to0aLq0aOHxo0bd9d+iYHrs88+U506dTR16lRduHBB2bJle4DVAgDSm7Nnz2rOnDn64osv1LBhQ2vKunRrsbKmTZuqZcuWWrJkidWekJCQ5NQQ2I9phNDu3buVL18+7du3T9KtqWgVK1bUF198oR9++EE3b95M8oTcunWrSpYsKV9fX1eU/FC4cuWKjh07pkaNGjm1Jx6LxAsWStKoUaP+X3v3HhTVef9x/L0gF4VUnLSYOiqi4gWNpERRXKLIYI0xTbR2iNiaCB0LJpgColYUo+I0ghewdWpqquAFDZg0xDFeYBiRS5p4R6M4YNHRwGgNUdMissKe3x8O2/Az/vob67oKn9c/Ts45y35PdhjOZ5/n+T7ExsayZMkSbt68+Ujr7Ii6du3KwoULycjIYMWKFfe97oc//CGzZs1iypQplJWV8fXXXytoiYjIf8UwDLy9vYmJiSEyMpK9e/cyb9482/nBgwcTHh5u6xzZ0tIC8L1LQ8T+FLY6uIqKCsaOHUt8fDzh4eFYrVZcXFz4y1/+gtVqJSkpiby8PNsv6tWrV0lKSmLTpk387ne/s+2nJQ/fpUuXqK6uvu9UQCcnJywWC3/84x9paWlh7dq1VFZWqq21HVVVVfHpp59iGAZvvfUWGRkZtmmcrb47WaCpqYkLFy6wdOlSCgsLNdVWRET+a/dbI9wauHr37o3ZbCYjI4OrV69qjbCDKWx1YKdPn2b06NEkJCSQnp4O3H2Av3jxIj169ODAgQNYrVZmz55NYGAg4eHhRERE8OGHH7J37178/f0dfAftT2vzCwB3d3ecnJw4duwY0HYkq1VBQQGlpaW2hbF6mLefiooKBg0aRE1NDSaTCVdXV37961+zfv36NoGr9Y+gxWIhPj6eoKAg6uvr/8/1XSIiIg/ifweuxMREAJKTk3F2dm4zjVAcQ2Grg6qvr2fatGn079+fZcuW2Y6/++67REREcP36dQYPHszx48dJSUkhMDAQb29vIiIiKC4u1qaGdnDhwgVmzZrFoUOHAHj22WeZNGkSqampVFVV4eTkRHNzM/Dv0ZOSkhKeeuop7fZuZydPnmT06NEsXLiQOXPm2I67uLgQFRV1T+CyWCwkJiaSk5PDkSNHNHVQREQe2LvvvktycvJ9z383cBUWFjJ//nycnZ3Jzs7mrbfeeoSVyvfp5OgCxDGam5t56aWXOHDgAMuXL2fJkiWsWbOGVatW8cEHH9CtWzdaWlrw8PBg7ty5ji63Q2hoaODAgQPcunULZ2dnQkJCmDdvHm+88QZhYWHk5+cTEBAA3J3O+Yc//IGtW7dSXFys6Zx2dPr0aUJCQkhMTCQ1NdV2PDc3l/DwcJ5++mmio6MBiIuLw2q10tDQwObNmykrKyMwMNBRpYuISDvg5ubGokWL8PT0/N7QZRiGLXCZTCZ+//vfExwczJQpU4C2jTHk0VM3wg6strbW1snG29ubM2fOsGvXLkJDQ9tc992ONepeYx8WiwVXV1dOnDhBZGQkAwYMYMmSJQwfPpy9e/eyePFizpw5g9lsBu4udr148SL5+fkaZbSj2tpaevXqRWRkJDk5ObbjaWlpLFy4kCNHjtj2MbNYLGzZsoWYmBgAjh07ps9GREQe2JkzZxgwYAAAWVlZvPnmm7Y9NuHeZzKLxYKLiwv79u3jpZdeckjNci+FrQ6q9VuOy5cvs2nTJt5//31CQ0NtD5T6FuTRqKmpITc3l+PHj7N69Wp8fHw4deoUERER+Pn5sWzZMgIDA20tXs+dO0djYyOhoaFMmjQJX19fR99CuxcQEEBzczMbN27EbDaTnp7OqlWr2LFjB+PHj2/zx665uZnc3FyGDx/OwIEDHVy5iIg8qWJjYzlz5gx79+7lqaeewmKxsHnzZuLi4toErlZnz54lJCSEHTt22LoY61nu8aCw1UFcunSJDz/8kIKCAhoaGujduzfLli2jf//+XL16lQ0bNpCbm8trr73G0qVLAb53M2N5eE6fPs3UqVNtU9EWLFiAh4cHJpOJiooKXnvtNQYMGEBycjKjRo0C9Jk4SlBQEA0NDYwdO5a8vDzy8vIICwtrc422QxARkYchMTGR7OxsioqK2syQaGpqIisri7i4ON555x1SUlKAu0Fr8uTJ+Pj4UFhY6Kiy5T4UtjqAL7/8kmnTpuHr64uXlxcWi4XPP/+cb7/9lqysLCZPnkxdXR0bN24kNzeX6dOn236BxT7Onz/P6NGjiYqKYsWKFbi4uAD/7jjo5ORkC1wDBw5kwYIFjB492pEldxiXL1+moKAAq9VK//79GTduHABjxoyhrKyMtWvXEh8f3+Y1Cxcu5JNPPuHQoUPa5FtERB5YYmIiWVlZFBcX29ZpW61Wbt68Sbdu3dqMcKWmpvLGG28QEhLCoEGD2Lt3r+16jWg9Rgxp106ePGl4enoa8+fPN65evdrm+Msvv2x07drVKCkpMQzDMC5dumQsX77c6N69u7Fy5UpHldzutbS0GHFxcUZERIRx+/bt+15jGHc/pyFDhhihoaHG4cOHH2WZHVJFRYXh4+NjBAUFGU8//bTRr18/Y8eOHbbzISEhhp+fn1FSUmL7jFJSUgx3d3d9PiIi8l9JSkoyunTpYhw/ftx2rLm52fD19TWSk5Ntx5qamoz33nvPcHV1NUwmkzFp0iTbuda/TfL4UOxtxyorKxkxYgSLFi0iLS0Nb29v27mAgAAyMzMZNmwYM2fO5MaNG/Tq1YuoqCgSEhL4xS9+4cDK2zcnJycOHz5M3759cXNza7MJLtxd8Nra5j0gIIDNmzfT0NDAj3/8YwdV3DGcOnWK4OBgIiMjOXjwIB988AG3b98mJyeHmzdvAlBaWoqXlxdRUVFUVFSwZMkS0tPTKSsrY8SIEQ6+AxEReZKVlJTQpUuXNvtqBgcHM2jQIObPn2875urqSlRUFKtXryYmJoY9e/YAGtF6XGkaYTtlGAaLFi1i5cqVnDhxgoCAgHvW+7S0tLBz505iY2MpKCiwTVPTuiD7uH37Nu7u7ty+fRs/Pz+io6Pb7HH2XS0tLURFRZGamoqPjw9NTU24ubk94oo7jsuXLxMYGMi4cePIy8uzHQ8KCuLmzZscPnwYDw8POnW6u1tG65RCT09PiouL1d5dREQeiuDgYK5fv87GjRuZO3cuP/rRj9i5cyddu3a1NWSyWCw0NzfTpUsX2+sUtB5f+lTaoYsXL/Ltt9+yePFipk+fjtlspry8HGdnZ9soitVqxdnZmcmTJ3Pr1i1qa2ttr1fQevhqa2t5/fXXKSoqwt3dnf79+1NYWMilS5ds13z3e4+LFy9SV1dHY2MjcPdbLLGflpYWfH19aWpqory8HLi7ieTRo0fx8vJixowZ/OY3vyEjI4Nbt25x8OBBZs6cyaFDhxS0RETkgVVWVnLu3DnOnj0LwN/+9jd+8IMfEBoaiqurKzt27KBr1660tLRgMpn45ptv+NnPfnZPIwwFrceXPpl25s6dO0RFReHv74/FYmHTpk288sorTJgwgc8++wyTyWT79sNqtVJaWsrgwYMJCgpydOntWlNTE1999RVr166lsrKSxYsX8/nnn7NhwwauXbsGgMlksgWuLVu2YLVabVM/tbeZffXp04ecnBwsFgvp6enMmjWLjIwM8vLy2LVrF9HR0fTr14+0tDR8fX15/fXX2bRpk/bREhGRB7Z06VIiIyMZPXo0M2bMYNu2bQAcPnyYsLAw6urqqKys5M6dOzg7O/PNN9/wwgsv0NjYyKuvvurg6uX/S9MI26Evv/ySqKgobt++TUlJCZ07dyY6Oprdu3dz4MABzGazLXAlJiZy/vx5tm7dipeXl6NLb9eqq6uJi4sDIDU1lbKyMubNm0dMTAzTp08nJCSEEydOsH37djZv3kxpaSlDhw51cNUdS1VVFXFxcZSWlpKamkpSUlKb8/X19Rw8eJCAgAD8/PwcVKWIiDzpEhIS2LZtG1u3buXatWv86U9/4vr16+zevZtBgwYBMHLkSOrr68nNzcXHx4fQ0FB69uzJ/v37AU0dfFIobLUjrXN5rVYrVVVVREdHc+fOHQoLC3F3dyc6OppPPvmEgoICzGYzKSkpvPfeexw6dAh/f39Hl98hVFdXM2fOHEwmE2+//TZXrlwhNjYWk8lE586d8fb2xsPDg82bN/Pcc885utwO6e9//ztvvvkmzs7OJCcnExISAtwdNW5t0S8iIvKgli9fzvLly6mpqaF3794ALF68mPT0dI4ePcqwYcNs1wYHB1NXV4fVamXo0KHs27cPUNB6kihstQOtjReg7QNhUlISa9eu5bnnnqOoqIguXboQFRXF/v37mTBhArt376a0tFRrTh6xqqoq4uPjsVqtrFu3Dnd3d44ePUpNTQ3BwcH4+fnRvXt3R5fZoVVXV/P2229jGAYpKSmYzWZHlyQiIu3AjRs3CA8Px8XFhfXr1/P888/T0tLCyJEjqaioIDExkYEDB+Lt7c3LL78M3G3K5O7uTkFBAaCg9aRR2HrC1dbWkpCQwOzZs22brwKkp6eTnp5OWloaGzZsoKmpiZKSEjw8PJgxYwa7d++mvLxcQctBqqqqmDNnDgArVqxQ2/DHUHV1NYmJiXz99ddkZGQwatQoR5ckIiLtQFVVFYmJiZhMJpKSkliwYAGurq5ERkbS2NhIcXExJSUlPPvss/Tt25eNGzfaOhIraD15FLaecDU1NfzqV7+iW7duJCcnYzabWblyJatWrSI3N5fw8HAqKyv55S9/iWEYFBUV4ebmxr/+9S+NnjhYdXU1CQkJ1NfX62H+MXXu3DlSUlJYs2aNbaqHiIjIf6t1BsUXX3xB3759OXr0qO1cc3MzFy9e5P3336epqYnMzEzg38tF5MmisNUOtP7Curm54e3tTX5+Ptu3b+enP/2p7Zpz584xceJEevToQWlpqb4VeUzoYf7xZ7FY1HpfREQeuvPnzxMbGwvcbZwVHBwM3A1bnTp1sv0LClpPMoWtdqK1i1pZWRmpqanMnTsXaDvcXFVVhYuLC76+vo4sVf4XPcyLiIh0TPdbI6xw1X4obLUj9+uipvm9IiIiIo+n6upqW+OsefPmERYW5uiS5CHSE3g70q9fP9avX49hGKxYsYLy8nJAu4qLiIiIPK78/PzIzMykvr6eY8eOObocecg0stUOqYuaiIiIyJPlypUrPPPMM44uQx4yDXm0Q35+fqxatYqePXvSo0cPR5cjIiIiIv9Ba9DSOEj7opGtdkyNF0REREREHEdhS0RERERExA40jVBERERERMQOFLZERERERETsQGFLRERERETEDhS2RERERERE7EBhS0RERERExA4UtkREREREROxAYUtERMSOsrOz8fLycnQZIiLiAApbIiLSYVy7do3Zs2fTu3dv3NzceOaZZ5gwYQLl5eUAmEwm8vPzHVukiIi0G50cXYCIiMijMnXqVCwWC1u2bKFv375cvXqVoqIi6uvrHV2aiIi0QxrZEhGRDuHGjRuUlpaSlpbGuHHj8PHxISgoiIULF/LKK6/Qp08fAKZMmYLJZLL9N8CGDRvo168frq6uDBw4kG3btt3zs2NiYujevTvu7u4MHTqUPXv2fG8d165dY/jw4UyZMoWmpiZ73a6IiDwGNLIlIiIdgqenJ56enuTn5zNq1Cjc3NzanD9y5Aje3t5kZWXx4osv4uzsDMDHH3/Mb3/7WzIzMwkPD2fPnj1ERUXRs2dPxo0bh9VqZeLEifzzn/9k+/bt9OvXj7Nnz9pe/12XL19m/PjxjBo1ik2bNn3vNSIi0n6YDMMwHF2EiIjIo/DRRx8xa9YsGhsbCQwMZOzYsUybNo1hw4YBd9dsffzxx0yePNn2GrPZzJAhQ9i4caPtWEREBA0NDXz66acUFBQwceJEKisrGTBgwD3vmZ2dTXx8PF988QXjx49nypQpZGZmYjKZ7H6/IiLiWJpGKCIiHcbUqVOpq6tj9+7dvPjiixQXFxMYGEh2dvZ9X1NZWYnZbG5zzGw2U1lZCcDJkyfp2bPn9watVo2Njbzwwgv8/Oc/Z926dQpaIiIdhMKWiIh0KO7u7owfP56UlBQ+++wzZs6cyTvvvPPAP69z587/8Ro3NzfbFMTa2toHfi8REXmyKGyJiEiH5u/vT0NDAwAuLi60tLS0OT948GBba/hW5eXl+Pv7AzBs2DC++uorqqqq7vseTk5ObNu2jeeff55x48ZRV1f3kO9CREQeRwpbIiLSIdTX1xMWFsb27ds5deoUFy5cYNeuXaSnp/Pqq68C0KdPH4qKirhy5QrXr18HYN68eWRnZ7Nhwwaqq6tZu3Ytf/3rX0lKSgJg7NixjBkzhqlTp1JYWMiFCxfYt28f+/fvb/P+zs7O5OTkEBAQQFhYGFeuXHm0/wNEROSRU9gSEZEOwdPTk5EjR5KRkcGYMWMYOnQoKSkpzJo1i/Xr1wOwZs0aCgsL6dWrFz/5yU8AmDx5MuvWrWP16tUMGTKEP//5z2RlZREaGmr72R999BEjRowgMjISf39/5s+ff88IGUCnTp3YuXMnQ4YMISwsjH/84x+P5N5FRMQx1I1QRERERETEDjSyJSIiIiIiYgcKWyIiIiIiInagsCUiIiIiImIHClsiIiIiIiJ2oLAlIiIiIiJiBwpbIiIiIiIidqCwJSIiIiIiYgcKWyIiIiIiInagsCUiIiIiImIHClsiIiIiIiJ2oLAlIiIiIiJiB/8DqGrXn8psHXEAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAJmCAYAAAAzV0N3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYSElEQVR4nOzdeXyMV///8fckkUVksyVSmlKtfd9CUVvFFtLSoqq2Uq21WnvtSi1tbS3V3kWV1nKjltIqRYva96C0dk1QkliTSM7vD99cP9Og3A0Xyev5eMyDuc6Zaz4zk0nmPedc53IYY4wAAAAAAA+ci90FAAAAAEBGRSADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMA3BeDBw+Ww+H4V7c9d+5cGld199asWSOHw6E1a9ZkmBqSk5NVtGhRvffeew/k/m4WGRkpNzc37d279676Pww/I3Zo3bq1smTJYncZANIQgQxAhvDJJ5/I4XCoQoUKt+1z6dIlDRo0SEWLFpW3t7eyZcumkiVLqlu3bjp9+rQkyRijKlWqKEeOHPrrr79S7aNjx47KlCmTdu7cKUk6ceKEhgwZovLlyysgIEDZs2dXtWrV9OOPP96yhpiYGHXo0EE5cuSQt7e3qlevru3bt9+y7+LFi1W6dGl5enrq8ccf16BBg3T9+vU7Pg+bN2+Ww+HQRx99lKqtUaNGcjgcmjZtWqq2qlWr6rHHHrvjvu0yYsQILVq0yLb7nz59uhwOh3Xx9PRUcHCwwsLCNGHCBF28eDFN72/27NkaN25cmu4zxddff60TJ06oc+fO1raU90WdOnWUNWtWORwOTZ8+/Za3X7RokQoWLCg/Pz+Fh4db75ubNWzYUB06dEi1vXDhwqpfv74GDhyYZo8nLSQnJ+vLL79UhQoVlDVrVvn4+Ojpp5/Wq6++ql9//dXqFxkZqcGDB+vo0aP2FQvgkUQgA5AhzJo1S0888YQ2b96sw4cPp2pPTExU1apVNWbMGFWpUkUffvih+vXrp9KlS2v27Nn67bffJEkOh0OffvqpYmNj9c477zjtY+PGjZo6daq6deumkiVLSpK+/fZbjRo1Svnz59fw4cM1YMAAXbx4Uc8991yq4JOcnKz69etr9uzZ6ty5s0aPHq0zZ86oWrVqOnTokFPf5cuXKyIiQv7+/po4caIiIiI0fPhwdenS5Y7PQ+nSpZU5c2b98ssvqdo2bNggNzc3rV+/3ml7QkKCtmzZomeeeeaO+/67d999V1evXr2n2/wv7A5kKYYOHaqZM2dq8uTJ1uvQvXt3FStWTLt3706z+7mfgWzMmDFq1qyZ/Pz8rG3nzp3T0KFDtX//fpUoUeK2t/3jjz/UtGlTlS9fXu+//75+++03tWnTxqnP999/r3Xr1t12BK5jx45auHChfv/997R5QGmga9euatWqlXLlyqXBgwdr1KhRqlu3rn799VetWLHC6hcZGakhQ4YQyADcOwMA6dwff/xhJJkFCxaYHDlymMGDB6fqM3fuXCPJzJo1K1Xb1atXTWxsrNO2fv36GUlmzZo1xhhjEhISTNGiRc3jjz9uLl26ZPXbu3evOXv2rNNtr127ZgoWLGhy587ttH3OnDlGkpk3b5617cyZM8bf3980b97cqW/hwoVNiRIlTGJiorWtf//+xuFwmP3799/x+ahevboJDAx02nbgwAEjybz88sumQIECTm0bNmwwksz48ePvuN+0NGjQICMp1XN3K97e3qZVq1ZpXsNPP/1kJJmffvrpjv2mTZtmJJktW7akalu1apXx8vIyISEh5sqVK2lSQ/369U1ISMg97+ufbN++3UgyP/74o9P2a9eumT///NMYY8yWLVuMJDNt2rRUt588ebLJly+fSU5Otmp3OBzm6tWrxhhjEhMTTaFChcwHH3xw2xoSEhJMQECAGTBgwD/Wey8/I/+rqKgo43A4TPv27VO1JScnm+joaOv6vHnz7urn5d9q1aqV8fb2vq/3AeDBYoQMQLo3a9YsBQQEqH79+mrSpIlmzZqVqk/KN/K3GgXy9PSUr6+v07YBAwboySef1Ouvv66EhAR98MEH2rt3ryZNmiRvb2+rX5EiRZQ9e3an23p4eKhevXo6efKk03S2+fPnKzAwUC+88IK1LUeOHHrppZf07bffKj4+XtKNb+IjIyPVoUMHubm5WX3ffPNNGWM0f/78Oz4flStXVnR0tNNI4fr16+Xr66sOHTro4MGDTsflpIyYVa5c2dq2fPlyValSRd7e3vLx8VH9+vW1b98+p/u51TFkV69eVdeuXZU9e3b5+PioYcOGOnXqlBwOhwYPHpyq1piYGLVu3Vr+/v7y8/NTmzZtdOXKFavd4XDo8uXLmjFjhjVlsHXr1lb7qVOn1LZtWwUGBsrDw0NFihTRF198kep+Tp48qYiICHl7eytnzpx66623rOf736hRo4YGDBigY8eO6auvvnJqO3DggJo0aaKsWbPK09NTZcuW1eLFi++4v2rVqmnZsmU6duyY9XifeOIJSTdGMgcOHKgyZcrIz89P3t7eqlKlin766ae7qnXRokVyd3dX1apVnbZ7eHgoKCjoH29/9epV+fv7W6951qxZZYyxRkknTZqkpKSkO47iZsqUSdWqVdO33357VzVLN0bwXnrpJfn6+ipbtmzq1q2brl27ZrU/++yztx3ZK1CggMLCwm677yNHjsgYc8vfCw6HQzlz5pR0Y9rqiy++KEmqXr269drcfOzfJ598oiJFisjDw0PBwcHq1KmTYmJiUu1306ZNqlevngICAuTt7a3ixYtr/Pjxd3wOdu7cqRw5cqhatWq6dOnSHfsCePgQyACke7NmzdILL7wgd3d3NW/eXIcOHdKWLVuc+oSEhEiSvvzySxlj/nGfnp6e+uSTT3Tw4EG9+eabGjp0qJ5//nmFh4ffVU1RUVHKnDmzMmfObG3bsWOHSpcuLRcX51/N5cuX15UrV6xpkzt27JAklS1b1qlfcHCwcufObbXfTkqwunna4vr16xUaGqoKFSooU6ZM2rBhg1Obj4+P9aF25syZql+/vrJkyaJRo0ZpwIABioyMVOXKlf9xulbr1q01ceJE1atXT6NGjZKXl5fq169/2/4vvfSSLl68qJEjR+qll17S9OnTNWTIEKt95syZ8vDwUJUqVTRz5kzNnDlTr7/+uiQpOjpaoaGh+vHHH9W5c2eNHz9e+fPnV7t27Zym/F29elU1a9bU999/r86dO6t///76+eef1atXrzs+lrvVsmVLSdIPP/xgbdu3b59CQ0O1f/9+9enTRx988IG8vb0VERGhhQsX3nZf/fv3V8mSJZU9e3br8aY8lri4OH3++eeqVq2aRo0apcGDB+vs2bMKCwuzjmm8kw0bNqho0aLKlCnT//Q4y5Urpx07dujrr7/WkSNH9N577yl//vwKCAjQ2bNnNWTIEH344Yf/uP8yZcpo7969iouLu6v7femll3Tt2jWNHDlS9erV04QJE5yOUWvZsqV2796darGQLVu26LffftMrr7xy232n/F6YN2+e0xcBf1e1alV17dpVktSvXz/rtSlUqJCkG19OdOrUScHBwfrggw/UuHFjffrpp6pdu7YSExOt/axcuVJVq1ZVZGSkunXrpg8++EDVq1fX0qVLb3vfW7ZsUY0aNVSqVCktX76cBT+AR5G9A3QAcH9t3brVSDIrV640xtyYZpQ7d27TrVs3p35XrlwxBQoUMJJMSEiIad26tfnPf/7jNCXpVpo3b24kGR8fH3PixIm7qunQoUPG09PTtGzZ0mm7t7e3adu2bar+y5YtM5LMihUrjDHGjBkzxkgyx48fT9W3XLlyJjQ09I73HxcXZ1xdXU27du2sbQUKFDBDhgwxxhhTvnx507NnT6stR44c5rnnnjPGGHPx4kXj7++fagpXVFSU8fPzc9qeMqUsxbZt24wk0717d6fbtm7d2kgygwYNSnXbvz8fzz//vMmWLZvTtttNWWzXrp3JlSuXOXfunNP2Zs2aGT8/P2sK4bhx44wkM3fuXKvP5cuXTf78+f/1lMUUfn5+plSpUtb1mjVrmmLFiplr165Z25KTk02lSpXMU089ZW27lymL169fN/Hx8U7bLly4YAIDA2/5c/V3uXPnNo0bN75jnztNWTTGmK5duxpJRpLJmjWrWb16tTHGmPbt25s6der8Yw3GGDN79mwjyWzatOmO/VJ+Rho2bOi0/c033zSSzK5du4wxxsTExBhPT0/Tu3fvVLV6e3s7TTG+lVdffdVIMgEBAeb55583Y8eOveW04NtNWTxz5oxxd3c3tWvXNklJSdb2SZMmGUnmiy++MMbceP3y5s1rQkJCzIULF5z2kTIN1BjnKYu//PKL8fX1NfXr13f6WQLwaGGEDEC6NmvWLAUGBqp69eqSbkwzatq0qb755hslJSVZ/by8vLRp0yb17NlT0o0pSO3atVOuXLnUpUuX205fS5mOWLhwYeXOnfsf67ly5YpefPFFeXl56f3333dqu3r1qjw8PFLdxtPT02q/+d/b9f2nhTR8fHxUvHhxa4Ts3LlzOnjwoCpVqiTpxrTNlGmKv/32m86ePWuNqq1cuVIxMTFq3ry5zp07Z11cXV1VoUKFO06PS1kA4c0333TafqcpbB07dnS6XqVKFf3111//OHpijNF///tfhYeHyxjjVGtYWJhiY2Ot1Su/++475cqVS02aNLFunzlz5luuBPi/ypIlizU99fz581q9erU1+pdS119//aWwsDAdOnRIp06duuf7cHV1lbu7u6QbC8ScP39e169fV9myZW+7UufN/vrrLwUEBNzz/d5s/PjxOnbsmDZt2qRjx46pevXq2rlzp7788kt99NFHio2N1SuvvKLHHntM1apV0/79+1PtI6WGu13OvlOnTk7XU36evvvuO0mSn5+fGjVqpK+//toa/U5KStKcOXOsaap3Mm3aNE2aNEl58+bVwoUL9c4776hQoUKqWbPmXb1OP/74oxISEtS9e3en0e/27dvL19dXy5Ytk3Rj5PvIkSPq3r27/P39nfZxq9NH/PTTTwoLC1PNmjW1YMGCW/4+APBoIJABSLeSkpL0zTffqHr16jpy5IgOHz6sw4cPq0KFCoqOjtaqVauc+vv5+Wn06NE6evSojh49qv/85z8qUKCAJk2apGHDhqXa/9atW/Xxxx+raNGi2rRpU6pjhG5VT7NmzRQZGan58+crODjYqd3Ly+uWwS/leBgvLy+nf2/XN6X9TipXrmwdK7Zhwwa5uroqNDRUklSpUiVt27ZN8fHxqY4fS1ntsUaNGsqRI4fT5YcfftCZM2due5/Hjh2Ti4uL8ubN67Q9f/78t73N448/7nQ95cP6hQsX7vj4zp49q5iYGE2dOjVVnSkr/6XUeuzYMeXPnz/Vh94CBQrc8T7uxaVLl+Tj4yNJOnz4sIwxGjBgQKraBg0a5FTbvZoxY4aKFy8uT09PZcuWTTly5NCyZcsUGxt7V7c3dzFd9588/vjjKl++vDV1rmvXrurYsaMKFiyoTp066cSJE/r2229VrFgxhYeHpzpVQ0oNd3sOu6eeesrp+pNPPikXFxen6bOvvvqqjh8/rp9//lnSjZAUHR1tTSe9ExcXF3Xq1Enbtm3TuXPn9O2336pu3bpavXq1mjVr9o+3P3bsmKTUP0/u7u7Kly+f1Z5yHGvRokX/cZ/Xrl1T/fr1VapUKc2dO9cK4gAeTW7/3AUAHk2rV6/Wn3/+qW+++UbffPNNqvZZs2apdu3at7xtSEiI2rZtq+eff1758uXTrFmzNHz4cKs9KSlJHTp0UHBwsNavX6/atWvr7bffVoMGDVJ9u52iffv2Wrp0qWbNmqUaNWqkas+VK5f+/PPPVNtTtqUEuFy5clnb8+TJk6pv+fLlb3n/N6tcubImTpyo9evXa8OGDSpWrJj1AbpSpUqKj4/Xli1b9Msvv8jNzc0Ka8nJyZJuHLt1q4Uebl5kJC24urrecvs/BYeUOl955RW1atXqln2KFy/+74q7SydPnlRsbKwVPFNqe+edd267oMSdQurtfPXVV2rdurUiIiLUs2dP5cyZU66urho5cuRdLSOfLVu2fwy692rOnDnav3+/Fi9erKSkJM2dO1c//PCDypYtqyJFiuizzz7Tr7/+6rRgTEoNf18M527dKsiFhYUpMDBQX331lapWraqvvvpKQUFBqlWr1j3tO1u2bGrYsKEaNmyoatWqae3atTp27Jh1rNmDkrIw0LfffqsVK1aoQYMGD/T+AaQtAhmAdGvWrFnKmTOnPv7441RtCxYs0MKFCzVlypQ7jigFBAToySefTLUgwIQJE7Rjxw4tXLhQvr6+mjJlisqWLas+ffpoypQpqfbTs2dPTZs2TePGjVPz5s1veV8lS5bUzz//rOTkZKepTZs2bVLmzJn19NNPW/2kGyN0N4ev06dP6+TJk3c11e7mhT02btzotIpccHCwQkJCtH79eq1fv16lSpWyFh958sknJUk5c+a85w+zISEhSk5O1pEjR5xGNW51Xrh7casP4Dly5JCPj4+SkpL+sc6QkBDt3btXxhinfR08ePBf1ZVi5syZkmSFr3z58km6saLgvT6H0u1HjubPn698+fJpwYIFTn1SRt3+ScGCBXXkyJF7rud2rly5op49e2rYsGHy9/dXdHS0EhMTrS8WvLy8FBAQkGra35EjR+Ti4mL9vP+TQ4cOOY26Hj58WMnJydbqk9KNYP/yyy9r+vTpGjVqlBYtWqT27dvfNvDfjbJly2rt2rX6888/FRISctvXJSWsHTx40HrtpRurYh45csT6GUh5b+3du/cffy4cDodmzZqlRo0a6cUXX9Ty5ctVrVq1//mxALAXUxYBpEtXr17VggUL1KBBAzVp0iTVpXPnzrp48aK1zPiuXbtueczKsWPHFBkZ6TTd6MSJExo4cKAaNmyoiIgISTdCUteuXfXZZ59p06ZNTvsYM2aMxo4dq379+qlbt263rblJkyaKjo7WggULrG3nzp3TvHnzFB4ebh0jUqRIERUsWFBTp051Og5u8uTJcjgcTsdC3U5wcLDy5s2rVatWaevWrdbxYykqVaqkRYsW6eDBg06jF2FhYfL19dWIESOcVodLcfbs2dveZ0og+eSTT5y2T5w48R/rvRNvb+9Uy4e7urqqcePG+u9//5sqTP+9znr16un06dNOpwu4cuWKpk6d+q/qkm6M0g4bNkx58+ZVixYtJN0Is9WqVdOnn356yxHROz2H0o3He6spiCnh4ubRw02bNmnjxo13VWvFihW1d+/eNFnuX5JGjRqlgIAAtW/fXtKN0SU3NzcdOHBA0o2f7bNnz6Yaad22bZuKFCnidHLqO/n7Fy4pP09169Z12t6yZUtduHBBr7/+ui5dunTH1RVTREVFKTIyMtX2hIQErVq1Si4uLtZoZsqxaH//WaxVq5bc3d01YcIEp9fmP//5j2JjY61VRkuXLq28efNq3LhxqfZxqxFhd3d3LViwQOXKlVN4eLg2b978j48HwMOJETIA6dLixYt18eJFNWzY8JbtoaGhypEjh2bNmqWmTZtq5cqVGjRokBo2bKjQ0FBlyZJFf/zxh7744gvFx8c7nSOrS5cuMsakChJDhgzR3Llz1bFjR23dulWurq5auHChevXqpaeeekqFChVKdZzZc889p8DAQEk3AlloaKjatGmjyMhIZc+eXZ988omSkpKclnqXboS8hg0bqnbt2mrWrJl1DrTXXnvNWmr7n1SuXNkavfn7eZYqVaqkr7/+2uqXwtfXV5MnT1bLli1VunRpNWvWTDly5NDx48e1bNkyPfPMM5o0adIt769MmTJq3Lixxo0bp7/++kuhoaFau3attZz/3R4zdKv9/vjjj/rwww+toFmhQgW9//77+umnn1ShQgW1b99ehQsX1vnz57V9+3b9+OOPOn/+vKQbU0knTZqkV199Vdu2bVOuXLk0c+ZMp1MS3I3ly5frwIEDun79uqKjo7V69WqtXLlSISEhWrx4sbU4i3QjRFSuXFnFihVT+/btlS9fPkVHR2vjxo06efKkdu3adcfHO2fOHPXo0UPlypVTlixZFB4ergYNGmjBggV6/vnnVb9+fR05ckRTpkxR4cKF7+rcVI0aNdKwYcO0du3aVFN5J02apJiYGJ0+fVqStGTJEp08eVLSjffD38PT8ePHNWbMGC1btswKim5ubmrUqJG6d++u48ePa+HChQoODlbFihWt2yUmJmrt2rWpFn65kyNHjqhhw4aqU6eONm7cqK+++kovv/xyqnOPlSpVSkWLFtW8efNUqFAhlS5d+h/3ffLkSZUvX141atRQzZo1FRQUpDNnzujrr7/Wrl271L17d2tqZcmSJeXq6qpRo0YpNjZWHh4eqlGjhnLmzKm+fftqyJAhqlOnjho2bKiDBw/qk08+Ubly5axg6OLiosmTJys8PFwlS5ZUmzZtlCtXLh04cED79u3T999/n6o+Ly8vLV26VDVq1FDdunW1du3auzoGDcBDxp7FHQHg/goPDzeenp7m8uXLt+3TunVrkylTJnPu3Dnzxx9/mIEDB5rQ0FCTM2dO4+bmZnLkyGHq169vLd1tjDELFy40kszYsWNvuc/58+cbSebDDz80xvz/pblvd/n7Etnnz5837dq1M9myZTOZM2c2zz777G2XU1+4cKEpWbKk8fDwMLlz5zbvvvuuSUhIuOvn6NNPPzWSzGOPPZaqbfv27VaNt1r6/6effjJhYWHGz8/PeHp6mieffNK0bt3abN261erz92XvjbmxnHynTp1M1qxZTZYsWUxERIQ5ePCgkWTef//9VLc9e/as0+1Tlpg/cuSIte3AgQOmatWqxsvLy0hyWgI/OjradOrUyeTJk8dkypTJBAUFmZo1a5qpU6c67ffYsWOmYcOGJnPmzCZ79uymW7duZsWKFfe07H3Kxd3d3QQFBZnnnnvOjB8/3sTFxd3ydr///rt59dVXTVBQkMmUKZN57LHHTIMGDcz8+fOdnue/13Dp0iXz8ssvG39/f+s0DcbcWBp9xIgRJiQkxHh4eJhSpUqZpUuXmlatWt1ymfxbKV68uNPpEFKEhITc9mf45tcixYsvvmheeOGFVNujo6NNeHi48fHxMaVLl3b6eTHGmOXLlxtJ5tChQ/9Ya8rPSGRkpGnSpInx8fExAQEBpnPnzubq1au3vM3o0aONJDNixIh/3L8xN04RMX78eBMWFmZy585tMmXKZHx8fEzFihXNZ5995rQcvTHGfPbZZyZfvnzG1dU11es2adIkU7BgQZMpUyYTGBho3njjjVTL2xtzYyn75557zvj4+Bhvb29TvHhxM3HiRKv95mXvU5w7d84ULlzYBAUF3dVzB+Dh4jAmDZZUAgDgf7Rz506VKlVKX331lTWtD/aYOXOmOnXqpOPHj992cZr7KSIiQg6H444nx/43xo8fr7feektHjx5NtYInANiFQAYAeGCuXr2aahGV1q1ba+bMmTp69GiqVSPxYCUnJ6t48eJq3ry5+vfv/0Dve//+/SpWrJh27tx5X6bdGWNUokQJZcuW7Y7nywOAB41jyAAAD8zo0aO1bds2Va9eXW5ublq+fLmWL1+uDh06EMYeAi4uLrdcBOVBKFSoUKpzkqWFy5cva/Hixfrpp5+0Z88effvtt2l+HwDwbzBCBgB4YFauXKkhQ4YoMjJSly5d0uOPP66WLVuqf//+aX4OM0CSjh49qrx588rf319vvvmm3nvvPbtLAgAnBDIAAAAAsAnnIQMAAAAAmzA/JI0kJyfr9OnT8vHx+Z/PpQMAAADg0WeM0cWLFxUcHCwXlzuPgRHI0sjp06c5IB0AAACA5cSJE8qdO/cd+xDI0oiPj4+kG0+6r6+vzdUAAAAAsEtcXJzy5MljZYQ7IZClkZRpir6+vgQyAAAAAHd1KBOLegAAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEze7CwAAAOnEmnC7K0g/qi2xuwIADwgjZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADaxNZCtW7dO4eHhCg4OlsPh0KJFi27bt2PHjnI4HBo3bpzT9vPnz6tFixby9fWVv7+/2rVrp0uXLjn12b17t6pUqSJPT0/lyZNHo0ePTrX/efPmqWDBgvL09FSxYsX03XffpcVDBAAAAIDbsjWQXb58WSVKlNDHH398x34LFy7Ur7/+quDg4FRtLVq00L59+7Ry5UotXbpU69atU4cOHaz2uLg41a5dWyEhIdq2bZvGjBmjwYMHa+rUqVafDRs2qHnz5mrXrp127NihiIgIRUREaO/evWn3YAEAAADgbxzGGGN3EZLkcDi0cOFCRUREOG0/deqUKlSooO+//17169dX9+7d1b17d0nS/v37VbhwYW3ZskVly5aVJK1YsUL16tXTyZMnFRwcrMmTJ6t///6KioqSu7u7JKlPnz5atGiRDhw4IElq2rSpLl++rKVLl1r3GxoaqpIlS2rKlCl3VX9cXJz8/PwUGxsrX1/ff/lsAADwCFoTbncF6Ue1JXZXAOBfuJds8FAfQ5acnKyWLVuqZ8+eKlKkSKr2jRs3yt/f3wpjklSrVi25uLho06ZNVp+qVataYUySwsLCdPDgQV24cMHqU6tWLad9h4WFaePGjbetLT4+XnFxcU4XAAAAALgXD3UgGzVqlNzc3NS1a9dbtkdFRSlnzpxO29zc3JQ1a1ZFRUVZfQIDA536pFz/pz4p7bcycuRI+fn5WZc8efLc24MDAAAAkOE9tIFs27ZtGj9+vKZPny6Hw2F3Oan07dtXsbGx1uXEiRN2lwQAAADgEfPQBrKff/5ZZ86c0eOPPy43Nze5ubnp2LFjevvtt/XEE09IkoKCgnTmzBmn212/fl3nz59XUFCQ1Sc6OtqpT8r1f+qT0n4rHh4e8vX1dboAAAAAwL14aANZy5YttXv3bu3cudO6BAcHq2fPnvr+++8lSRUrVlRMTIy2bdtm3W716tVKTk5WhQoVrD7r1q1TYmKi1WflypUqUKCAAgICrD6rVq1yuv+VK1eqYsWK9/thAgAAAMjA3Oy880uXLunw4cPW9SNHjmjnzp3KmjWrHn/8cWXLls2pf6ZMmRQUFKQCBQpIkgoVKqQ6deqoffv2mjJlihITE9W5c2c1a9bMWiL/5Zdf1pAhQ9SuXTv17t1be/fu1fjx4/XRRx9Z++3WrZueffZZffDBB6pfv76++eYbbd261WlpfAAAAABIa7aOkG3dulWlSpVSqVKlJEk9evRQqVKlNHDgwLvex6xZs1SwYEHVrFlT9erVU+XKlZ2ClJ+fn3744QcdOXJEZcqU0dtvv62BAwc6nausUqVKmj17tqZOnaoSJUpo/vz5WrRokYoWLZp2DxYAAAAA/uahOQ/Zo47zkAEAMjzOQ5Z2OA8Z8EhLN+chAwAAAID0jEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE1sDWTr1q1TeHi4goOD5XA4tGjRIqstMTFRvXv3VrFixeTt7a3g4GC9+uqrOn36tNM+zp8/rxYtWsjX11f+/v5q166dLl265NRn9+7dqlKlijw9PZUnTx6NHj06VS3z5s1TwYIF5enpqWLFium77767L48ZAAAAAFLYGsguX76sEiVK6OOPP07VduXKFW3fvl0DBgzQ9u3btWDBAh08eFANGzZ06teiRQvt27dPK1eu1NKlS7Vu3Tp16NDBao+Li1Pt2rUVEhKibdu2acyYMRo8eLCmTp1q9dmwYYOaN2+udu3aaceOHYqIiFBERIT27t17/x48AAAAgAzPYYwxdhchSQ6HQwsXLlRERMRt+2zZskXly5fXsWPH9Pjjj2v//v0qXLiwtmzZorJly0qSVqxYoXr16unkyZMKDg7W5MmT1b9/f0VFRcnd3V2S1KdPHy1atEgHDhyQJDVt2lSXL1/W0qVLrfsKDQ1VyZIlNWXKlLuqPy4uTn5+foqNjZWvr+//+CwAAPAIWxNudwXpR7UldlcA4F+4l2zwSB1DFhsbK4fDIX9/f0nSxo0b5e/vb4UxSapVq5ZcXFy0adMmq0/VqlWtMCZJYWFhOnjwoC5cuGD1qVWrltN9hYWFaePGjbetJT4+XnFxcU4XAAAAALgXj0wgu3btmnr37q3mzZtbKTMqKko5c+Z06ufm5qasWbMqKirK6hMYGOjUJ+X6P/VJab+VkSNHys/Pz7rkyZPn3z1AAAAAABnOIxHIEhMT9dJLL8kYo8mTJ9tdjiSpb9++io2NtS4nTpywuyQAAAAAjxg3uwv4Jylh7NixY1q9erXTHMygoCCdOXPGqf/169d1/vx5BQUFWX2io6Od+qRc/6c+Ke234uHhIQ8Pj//9gQEAAADI8B7qEbKUMHbo0CH9+OOPypYtm1N7xYoVFRMTo23btlnbVq9ereTkZFWoUMHqs27dOiUmJlp9Vq5cqQIFCiggIMDqs2rVKqd9r1y5UhUrVrxfDw0AAAAA7A1kly5d0s6dO7Vz505J0pEjR7Rz504dP35ciYmJatKkibZu3apZs2YpKSlJUVFRioqKUkJCgiSpUKFCqlOnjtq3b6/Nmzdr/fr16ty5s5o1a6bg4GBJ0ssvvyx3d3e1a9dO+/bt05w5czR+/Hj16NHDqqNbt25asWKFPvjgAx04cECDBw/W1q1b1blz5wf+nAAAAADIOGxd9n7NmjWqXr16qu2tWrXS4MGDlTdv3lve7qefflK1atUk3TgxdOfOnbVkyRK5uLiocePGmjBhgrJkyWL13717tzp16qQtW7Yoe/bs6tKli3r37u20z3nz5undd9/V0aNH9dRTT2n06NGqV6/eXT8Wlr0HAGR4LHufdlj2Hnik3Us2eGjOQ/aoI5ABADI8AlnaIZABj7R0ex4yAAAAAEhPCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2MTWQLZu3TqFh4crODhYDodDixYtcmo3xmjgwIHKlSuXvLy8VKtWLR06dMipz/nz59WiRQv5+vrK399f7dq106VLl5z67N69W1WqVJGnp6fy5Mmj0aNHp6pl3rx5KliwoDw9PVWsWDF99913af54AQAAAOBmtgayy5cvq0SJEvr4449v2T569GhNmDBBU6ZM0aZNm+Tt7a2wsDBdu3bN6tOiRQvt27dPK1eu1NKlS7Vu3Tp16NDBao+Li1Pt2rUVEhKibdu2acyYMRo8eLCmTp1q9dmwYYOaN2+udu3aaceOHYqIiFBERIT27t17/x48AAAAgAzPYYwxdhchSQ6HQwsXLlRERISkG6NjwcHBevvtt/XOO+9IkmJjYxUYGKjp06erWbNm2r9/vwoXLqwtW7aobNmykqQVK1aoXr16OnnypIKDgzV58mT1799fUVFRcnd3lyT16dNHixYt0oEDByRJTZs21eXLl7V06VKrntDQUJUsWVJTpky5Zb3x8fGKj4+3rsfFxSlPnjyKjY2Vr69vmj8/AAA89NaE211B+lFtid0VAPgX4uLi5Ofnd1fZ4KE9huzIkSOKiopSrVq1rG1+fn6qUKGCNm7cKEnauHGj/P39rTAmSbVq1ZKLi4s2bdpk9alataoVxiQpLCxMBw8e1IULF6w+N99PSp+U+7mVkSNHys/Pz7rkyZPn3z9oAAAAABnKQxvIoqKiJEmBgYFO2wMDA622qKgo5cyZ06ndzc1NWbNmdepzq33cfB+365PSfit9+/ZVbGysdTlx4sS9PkQAAAAAGZyb3QU8qjw8POTh4WF3GQAAAAAeYQ/tCFlQUJAkKTo62ml7dHS01RYUFKQzZ844tV+/fl3nz5936nOrfdx8H7frk9IOAAAAAPfDQxvI8ubNq6CgIK1atcraFhcXp02bNqlixYqSpIoVKyomJkbbtm2z+qxevVrJycmqUKGC1WfdunVKTEy0+qxcuVIFChRQQECA1efm+0npk3I/AAAAAHA/2BrILl26pJ07d2rnzp2SbizksXPnTh0/flwOh0Pdu3fX8OHDtXjxYu3Zs0evvvqqgoODrZUYCxUqpDp16qh9+/bavHmz1q9fr86dO6tZs2YKDg6WJL388styd3dXu3bttG/fPs2ZM0fjx49Xjx49rDq6deumFStW6IMPPtCBAwc0ePBgbd26VZ07d37QTwkAAACADMTWZe/XrFmj6tWrp9reqlUrTZ8+XcYYDRo0SFOnTlVMTIwqV66sTz75RE8//bTV9/z58+rcubOWLFkiFxcXNW7cWBMmTFCWLFmsPrt371anTp20ZcsWZc+eXV26dFHv3r2d7nPevHl69913dfToUT311FMaPXq06tWrd9eP5V6WtgQAIF1i2fu0w7L3wCPtXrLBQ3MeskcdgQwAkOERyNIOgQx4pKWL85ABAAAAQHpHIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGzi9r/c6Pjx4zp27JiuXLmiHDlyqEiRIvLw8Ejr2gAAAAAgXbvrQHb06FFNnjxZ33zzjU6ePCljjNXm7u6uKlWqqEOHDmrcuLFcXBh4AwAAAIB/clfJqWvXripRooSOHDmi4cOHKzIyUrGxsUpISFBUVJS+++47Va5cWQMHDlTx4sW1ZcuW+103AAAAADzy7mqEzNvbW3/88YeyZcuWqi1nzpyqUaOGatSooUGDBmnFihU6ceKEypUrl+bFAgAAAEB6cleBbOTIkXe9wzp16vzPxQAAAABARvI/LeqR4ty5c9q0aZOSkpJUrlw55cqVK63qAgAAAIB0739efeO///2v8ufPryFDhmjQoEF68sknNW3atLSsTUlJSRowYIDy5s0rLy8vPfnkkxo2bJjTgiLGGA0cOFC5cuWSl5eXatWqpUOHDjnt5/z582rRooV8fX3l7++vdu3a6dKlS059du/erSpVqsjT01N58uTR6NGj0/SxAAAAAMDf3XUg+3uAGTJkiDZv3qzNmzdrx44dmjdvnvr375+mxY0aNUqTJ0/WpEmTtH//fo0aNUqjR4/WxIkTrT6jR4/WhAkTNGXKFG3atEne3t4KCwvTtWvXrD4tWrTQvn37tHLlSi1dulTr1q1Thw4drPa4uDjVrl1bISEh2rZtm8aMGaPBgwdr6tSpafp4AAAAAOBmdx3IypQpo2+//da67ubmpjNnzljXo6Oj5e7unqbFbdiwQY0aNVL9+vX1xBNPqEmTJqpdu7Y2b94s6cbo2Lhx4/Tuu++qUaNGKl68uL788kudPn1aixYtkiTt379fK1as0Oeff64KFSqocuXKmjhxor755hudPn1akjRr1iwlJCToiy++UJEiRdSsWTN17dpVH3744W1ri4+PV1xcnNMFAAAAAO7FXQey77//XlOnTtXzzz+v06dPa/z48WratKmCgoKUPXt29enTR5988kmaFlepUiWtWrVKv/32myRp165d+uWXX1S3bl1J0pEjRxQVFaVatWpZt/Hz81OFChW0ceNGSdLGjRvl7++vsmXLWn1q1aolFxcXbdq0yepTtWpVp0AZFhamgwcP6sKFC7esbeTIkfLz87MuefLkSdPHDgAAACD9u+tFPZ544gktW7ZMX3/9tZ599ll17dpVhw8f1uHDh5WUlKSCBQvK09MzTYvr06eP4uLiVLBgQbm6uiopKUnvvfeeWrRoIUmKioqSJAUGBjrdLjAw0GqLiopSzpw5ndrd3NyUNWtWpz558+ZNtY+UtoCAgFS19e3bVz169LCux8XFEcoAAAAA3JN7XtSjefPm2rJli3bt2qVq1aopOTlZJUuWTPMwJklz587VrFmzNHv2bG3fvl0zZszQ2LFjNWPGjDS/r3vl4eEhX19fpwsAAAAA3It7Wvb+u+++0/79+1WiRAl9/vnnWrt2rVq0aKG6detq6NCh8vLyStPievbsqT59+qhZs2aSpGLFiunYsWMaOXKkWrVqpaCgIEk3jl+7ecn96OholSxZUpIUFBTkdKybJF2/fl3nz5+3bh8UFKTo6GinPinXU/oAAAAAQFq76xGyt99+W23atNGWLVv0+uuva9iwYXr22We1fft2eXp6qlSpUlq+fHmaFnflyhW5uDiX6OrqquTkZElS3rx5FRQUpFWrVlntcXFx2rRpkypWrChJqlixomJiYrRt2zarz+rVq5WcnKwKFSpYfdatW6fExESrz8qVK1WgQIFbTlcEAAAAgLTgMDef1OsOsmXLph9++EFlypTR+fPnFRoaai22IUmRkZF6/fXX9fPPP6dZca1bt9aPP/6oTz/9VEWKFNGOHTvUoUMHtW3bVqNGjZJ0Y2n8999/XzNmzFDevHk1YMAA7d69W5GRkdY0yrp16yo6OlpTpkxRYmKi2rRpo7Jly2r27NmSpNjYWBUoUEC1a9dW7969tXfvXrVt21YfffSR0/L4dxIXFyc/Pz/FxsYyfREAkDGtCbe7gvSj2hK7KwDwL9xLNrjrKYve3t46cuSIypQpoxMnTqQ6Zqxw4cJpGsYkaeLEiRowYIDefPNNnTlzRsHBwXr99dc1cOBAq0+vXr10+fJldejQQTExMapcubJWrFjhVN+sWbPUuXNn1axZUy4uLmrcuLEmTJhgtfv5+emHH35Qp06dVKZMGWXPnl0DBw686zAGAAAAAP+Lux4hmzVrltq3by9/f39duXJFM2bMUKNGje53fY8MRsgAABkeI2RphxEy4JF2X0bIWrRooTp16uiPP/7QU089JX9//39bJwAAAABkaPe0ymK2bNmULVu2+1ULAAAAAGQo93westv5/fffVaNGjbTaHQAAAACke2kWyC5duqS1a9em1e4AAAAAIN276ymLN69KeCunTp3618UAAAAAQEZy14Gse/fuypUrl9zd3W/ZnpCQkGZFAQAAAEBGcNeBLCQkRKNGjdJLL710y/adO3eqTJkyaVYYAAAAAKR3d30MWZkyZbRt27bbtjscDt3lKc0AAAAAALqHEbKhQ4fqypUrt20vXLiwjhw5kiZFAQAAAEBGcNeBrHDhwndsz5Qpk0JCQv51QQAAAACQUaTZsvcAAAAAgHtzV4GsTp06+vXXX/+x38WLFzVq1Ch9/PHH/7owAAAAAEjv7mrK4osvvqjGjRvLz89P4eHhKlu2rIKDg+Xp6akLFy4oMjJSv/zyi7777jvVr19fY8aMud91AwAAAMAj764CWbt27fTKK69o3rx5mjNnjqZOnarY2FhJN1ZXLFy4sMLCwrRlyxYVKlTovhYMAAAAAOnFXS/q4eHhoVdeeUWvvPKKJCk2NlZXr15VtmzZlClTpvtWIAAAAACkV3cdyP7Oz89Pfn5+aVkLAAAAAGQorLIIAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2uedVFpOSkvTRRx9p7ty5On78uBISEpzaz58/n2bFAQAAAEB6ds8jZEOGDNGHH36opk2bKjY2Vj169NALL7wgFxcXDR48+D6UCAAAAADp0z0HslmzZumzzz7T22+/LTc3NzVv3lyff/65Bg4cqF9//fV+1AgAAAAA6dI9B7KoqCgVK1ZMkpQlSxbFxsZKkho0aKBly5albXUAAAAAkI7dcyDLnTu3/vzzT0nSk08+qR9++EGStGXLFnl4eKRtdQAAAACQjt1zIHv++ee1atUqSVKXLl00YMAAPfXUU3r11VfVtm3bNC8QAAAAANKre15l8f3337f+37RpU4WEhGjDhg166qmnFB4enqbFAQAAAEB6ds+BbN26dapUqZLc3G7cNDQ0VKGhobp+/brWrVunqlWrpnmRAAAAAJAe3fOUxerVq9/yXGOxsbGqXr16mhQFAAAAABnBPQcyY4wcDkeq7X/99Ze8vb3TpCgAAAAAyAjuesriCy+8IElyOBxq3bq104qKSUlJ2r17typVqpT2FQIAAABAOnXXgczPz0/SjREyHx8feXl5WW3u7u4KDQ1V+/bt075CAAAAAEin7jqQTZs2TZL0xBNP6J133mF6IgAAAAD8S/e8yuKgQYPuRx0AAAAAkOHcVSArVarULRfyuJXt27f/q4IAAAAAIKO4q0AWERFxn8sAAAAAgIznrgIZ0xQBAAAAIO3d83nIJCkmJkaff/65+vbta50kevv27Tp16lSaFgcAAAAA6dk9L+qxe/du1apVS35+fjp69Kjat2+vrFmzasGCBTp+/Li+/PLL+1EnAAAAAKQ79zxC1qNHD7Vu3VqHDh2Sp6entb1evXpat25dmhYHAAAAAOnZPQeyLVu26PXXX0+1/bHHHlNUVFSaFAUAAAAAGcE9BzIPDw/FxcWl2v7bb78pR44caVLUzU6dOqVXXnlF2bJlk5eXl4oVK6atW7da7cYYDRw4ULly5ZKXl5dq1aqlQ4cOOe3j/PnzatGihXx9feXv76927drp0qVLTn12796tKlWqyNPTU3ny5NHo0aPT/LEAAAAAwM3uOZA1bNhQQ4cOVWJioiTJ4XDo+PHj6t27txo3bpymxV24cEHPPPOMMmXKpOXLlysyMlIffPCBAgICrD6jR4/WhAkTNGXKFG3atEne3t4KCwvTtWvXrD4tWrTQvn37tHLlSi1dulTr1q1Thw4drPa4uDjVrl1bISEh2rZtm8aMGaPBgwdr6tSpafp4AAAAAOBmDmOMuZcbxMbGqkmTJtq6dasuXryo4OBgRUVFqWLFivruu+/k7e2dZsX16dNH69ev188//3zLdmOMgoOD9fbbb+udd96x6gsMDNT06dPVrFkz7d+/X4ULF9aWLVtUtmxZSdKKFStUr149nTx5UsHBwZo8ebL69++vqKgoubu7W/e9aNEiHThw4K5qjYuLk5+fn2JjY+Xr65sGjx4AgEfMmnC7K0g/qi2xuwIA/8K9ZIN7HiHz8/PTypUrtWTJEk2YMEGdO3fWd999p7Vr16ZpGJOkxYsXq2zZsnrxxReVM2dOlSpVSp999pnVfuTIEUVFRalWrVpO9VWoUEEbN26UJG3cuFH+/v5WGJOkWrVqycXFRZs2bbL6VK1a1QpjkhQWFqaDBw/qwoULt6wtPj5ecXFxThcAAAAAuBf3vOx9isqVK6ty5cppWUsqf/zxhyZPnqwePXqoX79+2rJli7p27Sp3d3e1atXKWkQkMDDQ6XaBgYFWW1RUlHLmzOnU7ubmpqxZszr1yZs3b6p9pLTdPEUyxciRIzVkyJC0eaAAAAAAMqR7GiFLTk7WF198oQYNGqho0aIqVqyYGjZsqC+//FL3OPPxru+vdOnSGjFihEqVKqUOHTqoffv2mjJlSprf173q27evYmNjrcuJEyfsLgkAAADAI+auA5kxRg0bNtRrr72mU6dOqVixYipSpIiOHTum1q1b6/nnn0/z4nLlyqXChQs7bStUqJCOHz8uSQoKCpIkRUdHO/WJjo622oKCgnTmzBmn9uvXr+v8+fNOfW61j5vv4+88PDzk6+vrdAEAAACAe3HXgWz69Olat26dVq1apR07dujrr7/WN998o127dunHH3/U6tWr9eWXX6Zpcc8884wOHjzotO23335TSEiIJClv3rwKCgrSqlWrrPa4uDht2rRJFStWlCRVrFhRMTEx2rZtm9Vn9erVSk5OVoUKFaw+69ats1aOlKSVK1eqQIECt5yuCAAAAABp4a4D2ddff61+/fqpevXqqdpq1KihPn36aNasWWla3FtvvaVff/1VI0aM0OHDhzV79mxNnTpVnTp1knRjyf3u3btr+PDhWrx4sfbs2aNXX31VwcHBioiIkHRjRK1OnTpq3769Nm/erPXr16tz585q1qyZgoODJUkvv/yy3N3d1a5dO+3bt09z5szR+PHj1aNHjzR9PAAAAABws7sOZLt371adOnVu2163bl3t2rUrTYpKUa5cOS1cuFBff/21ihYtqmHDhmncuHFq0aKF1adXr17q0qWLOnTooHLlyunSpUtasWKFPD09rT6zZs1SwYIFVbNmTdWrV0+VK1d2OseYn5+ffvjhBx05ckRlypTR22+/rYEDBzqdqwwAAAAA0tpdn4fM3d1dx44dU65cuW7Zfvr0aeXNm1fx8fFpWuCjgvOQAQAyPM5DlnY4DxnwSLsv5yFLSkqSm9vtV8l3dXXV9evX775KAAAAAMjg7vo8ZMYYtW7dWh4eHrdsz6gjYwAAAADwv7rrQNaqVat/7PPqq6/+q2IAAAAAICO560A2bdq0+1kHAAAAAGQ4d30MGQAAAAAgbRHIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsMkjFcjef/99ORwOde/e3dp27do1derUSdmyZVOWLFnUuHFjRUdHO93u+PHjql+/vjJnzqycOXOqZ8+eun79ulOfNWvWqHTp0vLw8FD+/Pk1ffr0B/CIAAAAAGRkj0wg27Jliz799FMVL17caftbb72lJUuWaN68eVq7dq1Onz6tF154wWpPSkpS/fr1lZCQoA0bNmjGjBmaPn26Bg4caPU5cuSI6tevr+rVq2vnzp3q3r27XnvtNX3//fcP7PEBAAAAyHgcxhhjdxH/5NKlSypdurQ++eQTDR8+XCVLltS4ceMUGxurHDlyaPbs2WrSpIkk6cCBAypUqJA2btyo0NBQLV++XA0aNNDp06cVGBgoSZoyZYp69+6ts2fPyt3dXb1799ayZcu0d+9e6z6bNWummJgYrVix4q5qjIuLk5+fn2JjY+Xr65v2TwIAAA+7NeF2V5B+VFtidwUA/oV7yQaPxAhZp06dVL9+fdWqVctp+7Zt25SYmOi0vWDBgnr88ce1ceNGSdLGjRtVrFgxK4xJUlhYmOLi4rRv3z6rz9/3HRYWZu3jVuLj4xUXF+d0AQAAAIB74WZ3Af/km2++0fbt27Vly5ZUbVFRUXJ3d5e/v7/T9sDAQEVFRVl9bg5jKe0pbXfqExcXp6tXr8rLyyvVfY8cOVJDhgz5nx8XAAAAADzUI2QnTpxQt27dNGvWLHl6etpdjpO+ffsqNjbWupw4ccLukgAAAAA8Yh7qQLZt2zadOXNGpUuXlpubm9zc3LR27VpNmDBBbm5uCgwMVEJCgmJiYpxuFx0draCgIElSUFBQqlUXU67/Ux9fX99bjo5JkoeHh3x9fZ0uAAAAAHAvHupAVrNmTe3Zs0c7d+60LmXLllWLFi2s/2fKlEmrVq2ybnPw4EEdP35cFStWlCRVrFhRe/bs0ZkzZ6w+K1eulK+vrwoXLmz1uXkfKX1S9gEAAAAA98NDfQyZj4+PihYt6rTN29tb2bJls7a3a9dOPXr0UNasWeXr66suXbqoYsWKCg0NlSTVrl1bhQsXVsuWLTV69GhFRUXp3XffVadOneTh4SFJ6tixoyZNmqRevXqpbdu2Wr16tebOnatly5Y92AcMAAAAIEN5qAPZ3fjoo4/k4uKixo0bKz4+XmFhYfrkk0+sdldXVy1dulRvvPGGKlasKG9vb7Vq1UpDhw61+uTNm1fLli3TW2+9pfHjxyt37tz6/PPPFRYWZsdDAgAAAJBBPBLnIXsUcB4yAECGx3nI0g7nIQMeaenuPGQAAAAAkB4RyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbuNldAAA8dNaE211B+lBtid0VAADw0GOEDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABs8lAHspEjR6pcuXLy8fFRzpw5FRERoYMHDzr1uXbtmjp16qRs2bIpS5Ysaty4saKjo536HD9+XPXr11fmzJmVM2dO9ezZU9evX3fqs2bNGpUuXVoeHh7Knz+/pk+ffr8fHgAAAIAM7qEOZGvXrlWnTp3066+/auXKlUpMTFTt2rV1+fJlq89bb72lJUuWaN68eVq7dq1Onz6tF154wWpPSkpS/fr1lZCQoA0bNmjGjBmaPn26Bg4caPU5cuSI6tevr+rVq2vnzp3q3r27XnvtNX3//fcP9PECAAAAyFgcxhhjdxF36+zZs8qZM6fWrl2rqlWrKjY2Vjly5NDs2bPVpEkTSdKBAwdUqFAhbdy4UaGhoVq+fLkaNGig06dPKzAwUJI0ZcoU9e7dW2fPnpW7u7t69+6tZcuWae/evdZ9NWvWTDExMVqxYsUta4mPj1d8fLx1PS4uTnny5FFsbKx8fX3v47MA4L5bE253BelDtSV2V4AHjfdO2uH9AzzS4uLi5Ofnd1fZ4KEeIfu72NhYSVLWrFklSdu2bVNiYqJq1apl9SlYsKAef/xxbdy4UZK0ceNGFStWzApjkhQWFqa4uDjt27fP6nPzPlL6pOzjVkaOHCk/Pz/rkidPnrR5kAAAAAAyjEcmkCUnJ6t79+565plnVLRoUUlSVFSU3N3d5e/v79Q3MDBQUVFRVp+bw1hKe0rbnfrExcXp6tWrt6ynb9++io2NtS4nTpz4148RAAAAQMbiZncBd6tTp07au3evfvnlF7tLkSR5eHjIw8PD7jIAIGNhSlzaYUocADwUHokRss6dO2vp0qX66aeflDt3bmt7UFCQEhISFBMT49Q/OjpaQUFBVp+/r7qYcv2f+vj6+srLyyutHw4AAAAASHrIA5kxRp07d9bChQu1evVq5c2b16m9TJkyypQpk1atWmVtO3jwoI4fP66KFStKkipWrKg9e/bozJkzVp+VK1fK19dXhQsXtvrcvI+UPin7AAAAAID74aGestipUyfNnj1b3377rXx8fKxjvvz8/OTl5SU/Pz+1a9dOPXr0UNasWeXr66suXbqoYsWKCg0NlSTVrl1bhQsXVsuWLTV69GhFRUXp3XffVadOnawphx07dtSkSZPUq1cvtW3bVqtXr9bcuXO1bNky2x47AAAAgPTvoR4hmzx5smJjY1WtWjXlypXLusyZM8fq89FHH6lBgwZq3LixqlatqqCgIC1YsMBqd3V11dKlS+Xq6qqKFSvqlVde0auvvqqhQ4daffLmzatly5Zp5cqVKlGihD744AN9/vnnCgsLe6CPFwAAAEDG8kidh+xhdi/nGgDwkGPhiLRxPxaN4LVJO7w+DzcWXQEeaen2PGQAAAAAkJ4QyAAAAADAJgQyAAAAALDJQ73KIpBucZxF2uE4CwAA8AhjhAwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCZudheA+2RNuN0VpB/VlthdAQAAANIpRsgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIg+5uPP/5YTzzxhDw9PVWhQgVt3rzZ7pIAAAAApFMEspvMmTNHPXr00KBBg7R9+3aVKFFCYWFhOnPmjN2lAQAAAEiHCGQ3+fDDD9W+fXu1adNGhQsX1pQpU5Q5c2Z98cUXqfrGx8crLi7O6QIAAAAA98JhjDF2F/EwSEhIUObMmTV//nxFRERY21u1aqWYmBh9++23Tv0HDx6sIUOGpNpPbGysfH1973e5AAAAd29NuN0VpB/VlqT9Pnl90s79eH3+B3FxcfLz87urbMAI2f85d+6ckpKSFBgY6LQ9MDBQUVFRqfr37dtXsbGx1uXEiRMPqlQAAAAA6YSb3QU8qjw8POTh4WF3GQAAAAAeYYyQ/Z/s2bPL1dVV0dHRTtujo6MVFBRkU1UAAAAA0jMC2f9xd3dXmTJltGrVKmtbcnKyVq1apYoVK9pYGQAAAID0iimLN+nRo4datWqlsmXLqnz58ho3bpwuX76sNm3a2F0aAAAAgHSIQHaTpk2b6uzZsxo4cKCioqJUsmRJrVixItVCHwAAAACQFghkf9O5c2d17tzZ7jIAAAAAZAAcQwYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2cbO7AAAAANxn1ZbYXQGA22CEDAAAAABsQiADAAAAAJswZREAAACwE1NKMzRGyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGziZncB6YUxRpIUFxdncyUAAAAA7JSSCVIywp0QyNLIxYsXJUl58uSxuRIAAAAAD4OLFy/Kz8/vjn0c5m5iG/5RcnKyTp8+LR8fHzkcDrvLeSTExcUpT548OnHihHx9fe0uBzfhtXm48fo83Hh9Hl68Ng83Xp+HF6/NvTPG6OLFiwoODpaLy52PEmOELI24uLgod+7cdpfxSPL19eXN/ZDitXm48fo83Hh9Hl68Ng83Xp+HF6/NvfmnkbEULOoBAAAAADYhkAEAAACATQhksI2Hh4cGDRokDw8Pu0vB3/DaPNx4fR5uvD4PL16bhxuvz8OL1+b+YlEPAAAAALAJI2QAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgDAQ4Sz0QBAxkIgQ4YSHR2tX375RXFxcXaXgptcuHBBFy5csLsM3EJsbKxOnz5tdxnp3okTJzR9+nQlJibK4XDYXU6GlRKGL168aHMluBfHjx/XtGnTNG3aNG3YsMHucoB7RiBDhhEZGanw8HBNnz5d27dvt7sc/J8DBw6oSZMmGjx4sM6cOWN3ObjJgQMH1KZNG3300Uc6evSo3eWkW3v37lWDBg30zTffaMGCBXaXk6E5HA6dO3dOTz/9tP7zn//YXQ7uwp49e/TMM8/oiy++UP/+/TVo0CDt3r3b7rKQBmJiYnTq1CmnbcnJyTZVc38RyJAh7N27V5UrV9YzzzyjTp06qVq1anaXBN34Q1q5cmUVK1ZMNWvWVM6cOe0uCf9nz549qlatmrJnz666devqiSeesLukdCkyMlLVqlVT7dq19fnnn6tp06ZO7UxffDBu/pCXPXt2NWnSRF27dtWsWbNsrAr/5MSJE2rQoIFeeeUVrV69WgsXLlRkZKTOnj3r1I/30aNn0KBBCg8PV8mSJdWwYUN9+OGHSkpKkouLS7oMZQ7DTynSub/++kv169dXtWrV9P777zu1JSYm6vr16/Ly8lJycrJcXPiO4kE5deqUatasqSZNmmj48OG37WeMYQrXA3bixAlVqVJFzZs31/Dhw+Xq6mp3SenSpUuX9Pzzz6tw4cIaP368U9vFixfl7u4ud3d3fv7vs5Tf/b///rsOHDig+vXrS5L69eunsWPHatq0aWrRooXNVeJWZs+erYkTJ2rNmjXy8PCQJEVERKhy5crKlCmTcufOrcaNG9tcJe7ViBEjNGHCBE2ePFl+fn6aPn26Vq5cqXr16unTTz+Vm5tbuvts4GZ3AcD9Fh0drcuXL+uFF16wtm3evFm//PKL5syZI29vbw0fPlyVKlUilD1AO3fuVPbs2dW5c2freY+MjFRkZKS+/fZbVahQQc8995wKFChgd6kZzurVq/Xkk09qwIABVhg7fPiwdu3apbVr16pEiRJq27ZtuvpjaIeLFy/qzz//VM+ePa1ta9as0fLlyzVz5kx5enqqQ4cOeu2115Q9e3YbK02/Un737Ny5U2XKlNHUqVOtthEjRsgYozZt2kgSoewhkvJh3MXFRadPn9bGjRtVrVo1jRgxQosXL7amnv7+++86dOiQ+vTpY3fJuAvGGP3555/67rvv9Omnn6pRo0aSpBIlSqhMmTL6+uuvdfHiRc2ePVtubukrwqSvRwPcwl9//aW4uDjFxMRIkj777DNNmzZNbm5ueuqpp3ThwgXVrFlTW7duVZEiRewtNgM5fPiwfvvtNwUFBUmSvvrqK82cOVO///67MmfOrA0bNmjdunX6+OOPlSNHDpurzVji4uIUHR2tv/76S5kzZ9bMmTM1Z84c7dmzR9mzZ9ekSZO0a9cuTZgwwe5SH2nu7u5ycXHRDz/8oOeee07jxo3TjBkz9Nhjj6l79+6KiorS+++/r5IlS6pOnTp2l5vupISxXbt2qXLlyurVq5fatWvn1GfkyJFyOByEsofI0aNHdfLkSVWuXFn58uVTvnz51Lp1a5UoUUJLlizRwoUL1ahRI128eFFjx47VggUL1KpVK+XKlcvu0vEPUkL2mTNnlJiYaG3Pli2bypYtq8DAQG3YsEEzZsxQu3bt0tcomQHSoWPHjpmVK1da16tUqWICAwNNgQIFjKenpxkxYoTZtWuXMcaY48ePmzx58piJEyfaVW6Gce7cOfPnn38aY24877lz5zbFixc39evXN5kzZzZ9+vQxGzZsMMYY8+mnn5qcOXOaHTt22FhxxnHmzBnr//PnzzcFChQwjRs3NuHh4cbX19e888475pdffjHGGPP1118bV1dXs3PnTrvKfWQdPHjQzJ8/3xhjTHx8vBk6dKjJmzevCQoKMt7e3uajjz4ykZGRVv8CBQqYLl262FVuupWUlGSMMWb37t3Gy8vLDBgwwKl9xYoV5uTJk9b1vn37mkyZMpnZs2c/0DrhLDIy0ri6upqyZcta27Zt22a+++478+GHH5qwsDCn/p9++qkpWLCgOX/+/IMuFf+jv/76yzz99NPmtddesz4vDB8+3OTNm9ccOnTI1K1b1zRu3NjmKtMeI2RId65du6ahQ4fq559/1tixYxUeHq61a9dq8uTJun79usLCwlJNg8uRI4fy5MljU8UZQ2xsrMqUKaPnn39evXr1Up48eTRnzhx9/vnnun79ulavXq3ixYvLy8tLklSqVCkFBAQwhfQBiImJUZ06dVSiRAl98cUXaty4sY4fP67du3crOjpa3377rcqUKSMfHx9JUpYsWVSgQAFlzZrV5sofPfPmzdOAAQP01Vdf6eWXX1a3bt1Ut25dHTlyROXLl1dISIikG6M3sbGxeuyxx1S0aFGbq05/XFxcdOzYMVWsWFGNGjXS0KFDrbYRI0ZoyJAh2rlzpx577DFrm6urq1q0aCE3Nze9+OKLdpWeYe3cuVPPPPOMgoODnbaXLl1aknT58mVdv35dFy9etH5XHTp0SCEhIeluelt6c/nyZXl5eckYo6xZs2ratGkKCwvTmjVr5OXlpSNHjmjx4sXKnz+/mjdvrkGDBikuLk7e3t7p5hhnfkKR7nh6eqply5a6evWq3nvvPSUnJ6tRo0Z68803bzm8PXXqVF27dk1lypSxqeKMwc/PT2+99ZaGDh2qzJkzq1u3bqpUqZIqVaqkxMREZcqUyan//PnzFRAQYH0gwv3VtGlTff755+rcubMmTZqkt956y1rJ6u+heP369QoMDFSWLFnsKPWR1rt3b8XHx+vVV19VUlKSWrZsqbJly6ps2bJO/VxcXDRu3DgdO3ZMzz33nE3Vpm/JyckKCAhQfHy8fv75Z1WpUkVjxozRuHHjtHjxYhUqVMjpb8awYcPk6upKQLbBrl27VKlSJQ0aNEhVqlRReHi4oqKilDNnTuv3U7Zs2bRx40aNGDFCwcHBOnbsmP7zn/9o7dq1VkDDw2fcuHFat26doqOj9dprr+mFF15QpUqVtH37dn3//fdycXFRgwYN9Pjjj0u6sehU4cKF5evra3PlaczmETrgvvn5559N06ZNTYUKFczSpUtTte/atct0797dBAQEMC3uPktISLD+P2XKFOPj42P69+9vTpw4YYwxJjk52Wo/fvy46dWrlwkICLCmleL+O3/+vJkwYYLJmzev6dy5s7U9Pj7e+v+JEydMr169jK+vr9m9e7cdZT7SUqbJxcfHm759+xpXV1cza9YsY4zze2DFihWmS5cuJiAgwGzfvt2WWtOjlOc/ISHBXLt2zRhjzP79+02RIkXMCy+8YF5//XWTNWtWs2rVqlS33bx58wOtFf/fjh07TObMmU2/fv2MMcasW7fOZM6c2Rw9ejRV38mTJ5uiRYuaIkWKmLCwMH5PPeR69OhhcubMad5//31Tv35988QTT9z2d15iYqI5deqUKV68uOnTp88DrvT+I5AhXTh69KjZvHmz9QE/xc8//2yaNGliypcv7xTKPvzwQ1OmTBlTuXJlfmHfR3/++aeJiYlx+rBpjDGTJk0yPj4+pl+/fub06dNO22vWrGmKFSvG8Un3WUxMjImOjnbaFh0dbSZMmGBCQkJM165dre3Jyclm8ODB5qWXXjKFCxfmtbkHv//+uxkzZozZt2+fuXDhglNbr169jKurq5k5c6a1be7cuebFF180devWNXv37n3A1aZfKWHs8OHDZtCgQWbZsmXm0qVLxpgboax48eLG4XCYDz74wLpNyu+t/v37m1KlSpmzZ88++MIzuMjISOPl5WX69u1rbTt27JjJkyeP9cE9OTnZXL9+3WqPiooyMTExJi4u7oHXi7v31ltvmaxZszp9IV6oUCEzd+5cc+bMGev3ZVJSkomNjTWLFy82BQsWNA0aNLD6//2zxaOMQIZH3okTJ4zD4TAOh8MEBgaaTp06mQ8//NB6Mx86dMg0bdrUVKpUySxevNi63bJly6wDRpH2/vjjD+Pm5maCg4PNa6+9ZiZNmmQOHDhgtX/55Zcmc+bM5t1337WC9Nq1a83UqVPNsWPH7Co7Q/jtt99Mrly5TKFChUynTp3M/PnzrUU9EhMTzYQJE0z+/PlNp06drNtMnz7dfPTRR+bIkSM2Vf3oSTk43eFwmOzZs5vnnnvOdOjQwXz//fcmLi7OJCYmmg8++MC4uLiYb775xhhzIyjv3r3b/PXXXzZXn37cvIDHE088YRo3bmwWLVrk1Hb48GFTtGhR06BBA7N27VrrtgMGDDCZMmUyW7ZsefCFw8yePduMHTvWaVtMTIzJkSOH+frrr40xzh/Kd+zYYWJiYh5ojbh306ZNMw6Hw+zZs8fadvXqVfPYY4+ZihUrmqCgIFO6dGmzdetWY4wxly5dMgsXLjSjR4+2+qe8d9MLTgyNR15sbKzCwsJ0/PhxhYWF6fz58/rjjz904cIFhYSE6I033tAff/yho0eP6sCBA+rfv7914k/cP2vWrFHz5s0VHR2tt956S3PmzFGWLFnk5eWlVq1aKSIiQkuWLNGwYcPUvXt3tWnTRrly5Upfy9g+pCZPnqxOnTrpqaeeUmJiooKDg7V3717VrVtXzz33nAoXLqxff/1VU6dOVcOGDa0Tql+/fp2D4+/BX3/9pQ8++EA//vijHA6HunXrpokTJ+rChQuKiYlR/fr1FRoaqpUrV2rFihX67LPP1LRpU7vLTpcOHTqkSpUq6bXXXlPfvn2djj9J+Z2zb98+vfTSS3riiSc0bNgwLV68WKNGjdL69euthSNgr+TkZF27dk3FixdXz5499frrr1ttvXv31tKlS/Xzzz+z4NBDzBijn376Sa+88opCQ0O1YMECSVLZsmXl4eGh9957T5GRkfryyy8VGxurVatWKTg4WElJSdYCHunynLG2xkHgX0qZpnD+/HlTsWJFEx4ebhYtWmQSEhLMwoULzdtvv22KFi1q8uXLZ9zd3Y3D4TDPPPOMuXz5croa6n4YJSQkmJUrV5rg4GDTtm1bc+nSJbNx40bz2muvmapVqxp3d3fzyiuvWKOb77//vtO0E9xfo0aNMs8++6zp2bOn2blzp5k/f77p1KmTyZEjhylTpozJnTu3KVq0qHE4HGbEiBF2l/vIioqKMsOGDTMlS5a0nseLFy+a0aNHm44dOxp/f39TsmRJ43A4THBwsLl48aLNFacvKdPZ3njjDdOqVSuntri4OLNv3z6zZs0aa1R+z549pnjx4iZbtmzG29vb+oYeD86ff/5pduzYkepYvpv/ZteoUcP07t3buj5w4EDj5eVlNm3a9MDqxP/u+vXr5ueffzaBgYGmbt26pnz58qZ+/fpOMwM++ugj4+PjY/bt22djpQ8OgQyPvJQP8WfPnjWhoaEmNDTU/Pjjj9Yv75MnT5pDhw6ZQYMGmVdffZXjMh6g69evm+XLlxsfHx/TsmVLa/uVK1fMxo0bzccff2zCwsJMSEiI2b9/v42VZhw3h96BAwea0qVLmz59+ljTfM6dO2fWr19v3nrrLVOjRg2TPXt2p2kluHdRUVFm+PDh5umnn7YWJkhx7Ngxs2bNGvPOO+9wPOt91KhRI9OzZ0/r+rfffmvatm1rvL29TVBQkMmVK5d1TNK+fftM1apVeT1ssGvXLpM3b17z1FNPGR8fH1OqVCnz3//+1zoeLOX3V3h4uGnevLkxxph3333XeHh4EJ4fAUlJSU5/g9atW2cKFy5sPD09rS+jrl69aoy5sbhR8eLFnQ51SM+Ysoh0IWUo+9y5c2rUqJEkqW/fvqpXr541rG2MUXJycro5Z8Wjwhij77//Xi+//LKee+45zZkzJ1WfmJgY+fv7P/jiMhBz01TQm6d7DBs2TP/9739Vp04dderUyel8fAkJCYqPj2fJ6DRw5swZffbZZ5o1a5bTNFCkvZSf7/j4eHl4eEiSGjVqpJMnT2r48OFas2aNvvnmG1WvXl316tVTcHCwhg0bpkyZMmn27Nny9fVleq4Nzpw5o8qVK+vFF19Uy5Yt5eHhoS5duujYsWN6+eWX9cYbb1h/J7p06aJLly7p6aef1pAhQ7R+/XpOXfMQ++qrr7Rz505t3bpV/v7+at26tcqXL6/g4GD9/PPPeumll1S2bFktWbJEknT27FnVqFFDFSpU0Oeff25z9Q+IrXEQuEf79+83H3/88S3bbh4pq1SpknnmmWfM8uXL092Bnw+jI0eO3HFZ6OTkZLNixQoTEBBgfatpjPNy+Lg/YmNjb7n95vfFkCFDTKlSpUzv3r2dVr3E3btw4UKqVRT/Ljo62gwfPtwUKlTIvPvuuw+msAzq+PHjplWrVuann34yxtx4fYoUKWLy589vgoODzVdffWWOHz9u9e/QoYOpWbOmTdXCmBsLcjzxxBOpRuS7dOliSpQoYcaPH2+NnkyaNMk4HA7j4+PDgisPuXfeecfkzp3bdOjQwbz44oumQoUKxuFwmJdeesk6tc26detMrly5TEREhImJiTHFihUzYWFh1j4ywiEm6eyIOKRXxhglJiaqTZs2OnXq1C37uLq6KikpSdmzZ9fixYvl6uqqnj17atWqVQ+42owlNjZW5cuX12+//XbbPg6HQ7Vr19bXX3+tVatWKTw8XJJSnQwaaWvHjh166aWXdODAgVRtLi4u1omfBw4cqOeff16rV6/WiBEjFB0d/aBLfaT99ddfKlOmjD755BNduHDhln2MMcqZM6fat2+vli1b6vPPP9ewYcMecKUZx969e7Vz505NnjxZv/zyi/z9/bV371798MMPOnDggFq0aKE8efLI/N8koeTkZD355JNKTEy0tuHBSkxMVGJioi5fvixJunbtmiRpwoQJKleunD755BMdPXpUkpQjRw5lz55dmzZtSnVSdTw8PvzwQ3355ZdavHixPv30U82dO1e//vqrxowZo0WLFun999/XqVOnVKVKFc2dO1dbtmxRQECAgoODtWLFCkk33psZYqEve/MgcG9CQ0Ot88T8/RuTlBGylH+jo6NN7dq1Wab7PouJiTGPP/74bb+lvHkkJjEx0SxevNjkzZvXnDx58kGVmCHt3LnTuLu7m169et22T3JystP7qFevXubZZ59NdX4y/LMePXqYHDlymA8//DDVkvV/H6U/ceKEGTt2rDl8+PCDLDHD+fbbb82zzz5rXnjhBfPzzz9b229+PS5fvmz69etncuTIwXGsNrh5ZDkxMdEULlzYhIeHW+0pJ/A2xpjChQubtm3bWtc5L9zDKzk52cTGxpoGDRpYs5oSExOd+nzwwQfG4XCY+fPnG2NuvC9XrlxpBg0aZPXJSDOcCGR4JKSErLJly5rPPvvMGHP7IezDhw+b+Ph4Y0zGejPb5c8//zQhISH/eOBtyh/WhIQE64SsuD927txpvLy8Ui0gcbsTpZ4/f976Px9y7k3K7xpjbpyzyt/f/5ahzBhjli5daj3XrCiadlKey1v9TZg/f74VyjZs2ODUNnbsWNOxY0fz2GOPWQt64ME5d+6cyZcvn3nvvfes8yCuX7/e+Pn5mQ4dOlj9Uj7Id+rUybzwwgu21Ip7FxUVZbJmzWo+/fRTp+03fy6rUaOGqVWrlvUa3/wezmif35iyiIfaoUOHtGHDBrm6uury5cs6e/asvLy8JOmWQ9iffvqpihQpos2bN9+2D/6906dP6/Dhw5JuTFk8c+aMEhISbtt/7Nixqly5si5duqRMmTLJ29v7QZWa4URGRqpKlSrq0aOH3nvvPWv70KFDNWjQIMXHxzv1f+utt/Tuu+9aU4GzZ8/+QOt9VJ09e1bJyclyd3e3tg0dOlRvvPGGhg4dqhkzZuj8+fNW24IFC/TGG29o4sSJMsakv3Po2MjV1VV79uxRvXr19NFHH2nlypXWdLfGjRurV69eOnPmjMaOHav169dLkuLi4rRnzx5du3ZNq1atUqlSpex8CBlStmzZFBERoXHjxumrr77ShQsXVKlSJY0bN07ffPON2rRpI0nWQlx//fWXsmTJYk21xsPt2rVrypQpkxITEyXdOI+l5DxdvnDhwoqNjbX63Cyj/Y5kCSE8tJKTkzVhwgR9/PHHWrt2rapUqaLk5GQrkN1KixYttHr1auXMmVMSgex+iIuL0xtvvKGrV6/q008/VY4cOeTu7m69LjevTpbySzcgIECZMmXS+fPnlSVLFttqT++uX7+uLl26yNXVVQ0bNrS2jxo1SmPHjtWcOXOsVedSPP744xoyZIgGDRr0oMt9ZP3+++8qVqyY8ufPr+rVq6tq1aoqW7asQkJCNGLECPn4+GjQoEFyOBx65ZVXlD17djVq1Ei//vqrXnnlFX4vpSFzY6aP3njjDW3YsEHHjx/XwYMHVbVqVQUEBKhLly6qWrWqXFxcNGHCBE2cOFGurq4KDQ3VZ599poSEBL4gskFCQoLc3d31wQcfyNvbW0OHDpUktW/fXq+88ooyZ86sN998U6VLl9ZTTz0lNzc3LVmyRL/++muG+6D+KPn444+VL18+1a1bVyEhIapcubJGjhypBg0aKCQkxFoRO2UlVF9fX1WqVEnx8fHy8vLK0L8bWfYeD7U///xTAwcO1KxZs7R48WKNHj1aVatWVXh4uM6dOyd3d3d5e3vrypUrOn78uCpUqKB8+fJl6Df1gzBlyhTNmzdPWbNm1fPPP69PPvlEn332mfLkyWONgnl6eurq1au6cOGC8uTJo8TERJZPfwAiIyPVokUL5cqVS2PHjtWSJUs0evRoff3116pdu7ZTX/N/S+FfuHBBAQEBNlX86Fm0aJGaNm2qxMREvf7665o9e7by5MmjXLlyqVWrVmrQoIHGjh2rGTNmqG/fvoqIiFBwcLDdZadLKT/D586dU9WqVeXr66tOnTrpypUrmjt3rv78809FRUWpdevW2rx5s+Li4pQtWzZ9+OGHjIrZ4OzZs8qWLVuqUNWvXz998sknGjhwoNq3by8fHx+dPXtWQ4cOVWxsrLy8vNS1a1cVKVLEpsrxT7p166apU6dq3759ypcvnyRpzpw5evvtt1W4cGFNnTpVTzzxhNX/3LlzKlu2rI4fP66SJUtapzbIsF+Q2DhdErilgwcPmrFjx1rXo6KiTOvWrY3D4TAOh8M88cQTJmfOnMbLy8v4+PiYwMBA4+fnZ7Jly8ZB8vfRiRMnzHfffWddnzZtmgkLCzPFixc3DofD5M6d2/j4+Bg/Pz/r4uPjY4KDg82ff/5pY+Xp319//WX27NljDh48aIy58R4qUqSIefLJJ42fn59ZuXKlMcb5uKVJkyaZTz75xBiT8ebq/69Sjm+4ePGimTt3rvHx8THvvvuuOXv2rFm2bJlp1KiRKV26tPHx8TGvvfaacTgcxtPT00yZMsVcv349QyzdbKc///zTBAUFmbp165pDhw4ZY4w5ffq0mTFjhnnjjTdMkSJFjMPhMAEBAU5L3uPBOHz4sPHy8jLFihUzXbt2NfPnzzdHjx612keMGGGyZMliPvzwQxMVFeV0W465fLh1797dZM2a1ezcuTNV27Bhw0zu3LlNvnz5zMyZM82SJUvMggULTNGiRU29evXMokWLzPfff5/qNc9oCGR4qCQnJ5spU6YYh8Nh3nvvPWv76dOnTc+ePY3D4TDTpk0zly5dMidOnDCnTp0yJ06cMKdPn2Yxgvvo6tWr5qWXXjKhoaFm8eLF1vZp06aZSpUqmSJFipiPPvrIbN682axfv96sWbPGfP/992b9+vXmjz/+sLHy9C8yMtJUq1bN1KhRwzRt2tRaZOLQoUOmdOnSpkyZMqkWMxgwYIBxcXEx+/bts6PkR9KRI0fMs88+a53X7cqVK+bLL780rq6upm/fvla/uLg48+2335r333/flC5d2gQGBlpBGWlj3rx5Zvny5Wbx4sVm+fLl5scff7RWeY2KijLBwcGmUqVKZv/+/U4h+Nq1a2bFihWEMZssXLjQuLu7G4fDYTp27Gh8fX1NkSJFTK1atczMmTPNhQsXTP/+/U3u3LnNxx9/7PRFHl9mPLx69epl/P39nf6eXL9+3QwdOtRcvnzZGPP/v8DNkiWL8fT0NFWqVDFvvPGGXSU/lAhkeOjExcWZCRMmGBcXFzNs2DBr+6lTp0zbtm2Nt7e3dbJPY/h2/0FZs2aNadCggQkLCzOLFi2ytn/xxRemZs2a5qWXXnJaaZHX5f7bs2ePCQgIMP369TOHDh1KdeqHQ4cOmaJFi5qwsDCzZs0aY8yNk0B7eXmZrVu32lb3oygyMtI89thjpkyZMubixYvGmBsf8L/88kvj7u5uunfvnuo2CQkJ5ty5cw+61HQt5YTATz75pMmfP78pWbKkqVChgtm2bZvVJyoqyjz22GOmSpUqqU4yjAfv34ws83fk4fbFF18Yh8Nh/vOf/1jbEhISTIkSJUzVqlWdVlROSkoye/bsMXv37jWnT5922g4CGR4Sf39DxsTEmHHjxhmHw+EUyqKjo03r1q2Nj4+P+fHHHx90mRnSza/N+vXrTZ06dVKFsmnTpplnn33WvPTSS3wAekDOnDljKlSoYLp16+a0PeXDT0oo++2330yxYsVMRESEefnll42Hhwdh7H+QnJxs9u7da4oXL26KFy9unULg2rVrZubMmcbd3d28/fbbVv+/n3MHaWP48OGmadOm5ty5c9bPeExMjDHmxmuU8rynhLLq1aubXbt22VZvRsfIcvp28OBBU7BgQdOoUSOzbds2k5ycbMqWLWvq1q1rveZ3mm7KyOf/RyCD7Q4fPmzef/99s2rVKmt425gbH3RSThw4ePBga3t0dLRp3LixyZUrl7ly5YodJWcIR44cMdu3bzcnTpxw2r5u3TpTp04d89xzz5mFCxda27/88ktTsmRJ8+qrr5qEhIQHXG3Gs2XLFvP000+bTZs23fKP2s0nfT5w4IB5/PHHjaenp9mxY8cDrvTRdfnyZXP9+nXrg0XKN7y3C2VZsmQxr7/+up0lp3sjR440ERERxpj/H3r//oEvZXt0dLTx9PQ09erVczpfHB4cRpbTpytXrljnWjxw4IA1E6NgwYKmTp061mezlL9BsbGxZvbs2bbV+yggkMFW58+fNwULFrQW7AgLCzMNGjQw33//vTl8+LBJSkoyn376qfHw8DDDhw+3bnfmzBmnIW+krZMnT1qvSYECBUzbtm3Np59+ah10e+jQIeu1mj9/vnW72bNnOx2kjftn8uTJxtvb27p+q1B2+fJlaxrp0aNHOZ7vHkRGRprw8HBTuXJlU6dOHbN7926r7Xah7PPPPzeBgYEmOjrarrLTvaFDh5q6dev+Y7+UUHbmzBnz22+/3e+ycBuMLKc/kyZNMq+88oopWbKkdZzfwYMHTalSpYy/v7/T4l/G3Pic99RTT5n27dvbUe4jg2XvYavExEQNHz5cq1atko+Pj2rXrq2NGzdq7969OnbsmJo1a6aAgAAlJydr3LhxGjNmjN5++227y84QKlasqE2bNumtt97Szp07FRsbq99//10VKlTQyy+/rLNnz+rnn39WcnKy2rZtq4iICLtLTvfM/y3xLUkrVqzQ888/ryVLlqhWrVq37D9y5Ej9+uuvmjt3bqrzj+H2du3apapVq6ply5by9/fXjh075HA4NG/ePHl5eSk5OVn79+9Xs2bN5OLiol9++UU+Pj5KSEjQtWvX5Ovra/dDSLcmTpyoLVu26Msvv3R6P9xKyjmP8GBduXJFHh4eunz5snx9fZWcnGydjkOS9X6Jj4/XvHnz9MYbb6hFixaaMmWKzZXjn/Tu3VsLFy7UgAEDFBQUpOeee856n/3xxx+KiIhQ7ty51bNnT1WvXl2XLl1SaGiogoOD9cMPP0jSP75vMyxb4yAytJRjk+Lj482gQYNMzZo1TY8ePYwxxly6dMnMnj3bdOnSxTz55JPmySeftEZszp8/z7zj++jm6T/ly5c35cqVMz///LO5du2amT17tunXr5/JkyePKV++vPWa1KlTx+ngXaS9Y8eOmffee8/6hnn37t0mS5Yspk2bNrdcjSwpKcl0797dDB061JZ6H1V79uwxmTNnNoMGDbK2jR8/3kRERJjz5887TeHdt2+fKVWqlMmTJ481HQv318KFC60FavDwYWQ5/Ro/frwJDAw0GzduTNX292OWw8PDzZIlS0zhwoVN7dq1rX4s4HF7BDLYKuVYo/j4eDNs2DBTtmxZ0717d+uYjZS2tWvXmokTJ7JgxH2W8svy5mPASpUqZfLnz282bdpkbTt16pQ5cOCAGTBggGnevDnLpz8AQ4YMMU8//bQZMGCA9f6YNGmScXV1Nd27dze///671ffatWumX79+Jm/evEzXugdRUVHGx8fH1K5d2+lLn549e5ps2bKZp556yvj4+Jj+/fubCxcuGGOM2bFjh3nmmWecnn/cf3ywe/js3LnT+Pr6mk6dOpn+/fubevXqmfr161vHEyUlJZm9e/eaokWLOoWy+Ph4p7/5eLgkJyebixcvmueee868//77t+2XEsoOHjxoihUrZhwOhwkPD7faec/eGYEMD9SBAwfM0qVLnZZHT5ESykJDQ03nzp35xvkBOn78eKrji65evWr9v2zZsiZ//vxm/fr1qeb4c7D8g5GQkGD69u1rKlSoYPr27Wt9mBk8eLBxOBymXLlyplevXqZnz56mSZMmJnv27Gb79u02V/3oef75502JEiXMzJkzjTHGjB071mTJksXMmDHDrFq1yowYMcK4uLg4HaDOewAZHSPL6dvx48eNt7e3Wb58uTHm9qsj3rzQx8CBA63thLF/RiDDAxMTE2OttlS3bl3Tq1cvc/ToUac3dnx8vBk6dKgJDQ013bt355f1A5CygEfWrFnNqFGjzLx5827Zr0yZMubpp582GzZs4JerTRISEkzPnj1N+fLlTf/+/a1poosWLTLPPfecyZs3rylXrpzp0qXLLb/0wK0dOXLETJo0yRpNfPHFF02JEiXMSy+9ZLJmzeo0RS4+Pt4ULlzYtGnThqnTgGFkOSM4c+aM8fX1NVOmTLltn71795pSpUqlWnCNzwt3x8XuY9iQcfj5+alEiRLKkSOHhgwZojVr1qhjx45q1qyZ/vjjD8XFxcnd3V29evVSw4YNtWzZMg0fPlyGdWfuK39/f0VEROjFF1/UX3/9pX79+ikiIkLz589XbGys1W/r1q3y8/NTeHi4tm7damPFGUNkZKTGjBmj1atX6+LFi5KkTJkyadiwYapZs6aWL1+uESNGKDY2Vo0aNdK3336rAwcOaPPmzRo3bpwKFChg8yN4NOzZs0dhYWFatWqVIiMjJUlz585VkSJFNG/ePL322muqXLmy1T8pKUnZsmXT008/zYHpgKTAwEDVqlVL0dHRmjVrliTpgw8+0OTJk/Xhhx9qypQp6tu3r0aOHKnly5dLkkqWLKnVq1crX758dpaOO1i7dq31t8cYo1y5cmnJkiU6efKk1efmz2dRUVHKly+fMmfO7LQfFxeixl2xORAig0j5hmTz5s2mQYMGJioqypw/f9789NNP5tVXXzVZsmQxzZo1M//973+t/hMnTmSZ7vssOTnZXL161XTs2NEMGDDAGHNjtKBDhw7mhRdeMMWKFTOLFi1ymvpWq1Ytc+jQIbtKzhDi4uJMpkyZjMPhMPnz5zePPfaY6dixo/nss8+sk+C+++67pkaNGqZXr17WSHLK+4yRm7uzf/9+ExAQYPr06WNOnTqVqr1FixamYMGCZsaMGdY5EgcMGGBy587NewAZHiPL6dfq1avN008/bfr06WNNj//qq6+Mw+EwPXr0SPX78tSpU6ZixYrmnXfesaPcdIFAhgfqxIkTply5cmbs2LHWtvbt25ugoCDTtm1b4+7ubipUqGBmzJhhY5UZz/bt201AQIBZvHixta1GjRrG3d3dlCtXzhQrVsx06NDBnD9/3sYqM5bPP//cOBwO07FjR9O3b1/TsWNH4+PjYwoWLGjq1atnxo0bZ8LCwkzFihVNz549nU6qjn929epV8+KLL5pOnTo5bU9ISDBHjhyxVq7s0KGDefrpp838+fNNnz59jIeHh9m2bZsdJQMPjd27d5unn37aPP/882bRokXW9pdfftk4HA7Tq1cvpxV7r1y5YqpUqWJGjhxpR7m4RwkJCeadd94xlSpVMn379rUWXRk4cKBxOBymSZMmZtasWWbfvn1m2rRppkiRIk4LeBC67x2BDA9EUlKS9QadMWOGeeqpp8y5c+dMmzZtTK5cuaylcTdt2mTatGnDt88PUMofze7du1sH4bZu3doEBweb33//3ezYscNMnDjRhISEcNLnB+DmP2Qff/yxcXV1NePGjTMJCQnmxIkT5qeffjIvvviiqVevnnXagXz58pmzZ8/aWPWjJzEx0VSpUsVMnDjR2rZixQrTvXt34+vra3Lnzm1eeOEFY4wxr732mnE4HCZLliyEMWR4jCynbykzLRITE02vXr1SHbP8xRdfmNy5cxtPT09rQamuXbumuj3uDSeGxn1x9OhRfffdd4qNjVW9evVUokQJXb9+Xa6urjp16pS6du2qvXv36vr16/rmm29Uvnx5JScny8XFRdevX5ebm5vdDyFdioqK0u7du+Xj46O8efMqKCjIavvyyy81aNAgFShQQPv27dOCBQtUrlw5qz0hIUHu7u52lJ3h3HxC2wkTJqh79+4aPHiw3nnnHWt+/tWrV7Vjxw79+uuvCg8P11NPPWVnyY+cuLg4VahQQVWqVNHbb7+tBQsWaMaMGSpatKiqVq2qLFmyaOjQoWrbtq0GDhyozp07q2PHjipatKjdpQO2uXbtml599VXlzJlTkyZNsrYnJibq1KlT8vT0VFBQkF5//XWtWbNGI0aM0NatW/XRRx9pw4YNKl26tI3V4042bdqk/Pnzy9/f3/r7k5CQoAEDBmjVqlWqU6eOevXqJV9fXx0/flwJCQmKiYnR448/rpw5c0qS9TkO/wO7EyHSn507d5rHH3/chIaGmkKFChl/f3+zc+dOpz79+vUzDofD7Nixw54iM6Bdu3aZp59+2hQqVMjkzJnTvPHGG6lOxFm/fn2TNWtWs2XLllS3ZwrC/XPw4EHz+eefm4SEBOu0AjcvpT5x4kTjcDjM8OHDrWWFU/C6/O9WrVpl3NzcTEhIiPHx8TFTpkyxvsFPSEgwtWvXNi+//LLNVQIPD0aW06cBAwYYh8NhSpYsaSpWrGi+/PJL89NPP1ntQ4YMMaGhoaZXr163PWccf4v+HYYhkKZ27dql0NBQvfXWW+rXr5/+/PNPtWjRQnv27FGJEiWsfr169dIPP/ygVatWqWTJkvYVnEHs2rVLlSpVUqdOndS9e3ctWLBAw4cPV7du3Zy+2WrQoIHOnTunHDlyWNtSvu1iRbn749KlS6pYsaIuXLig1atXK3fu3OrcubPy5Mlj9encubOMMerWrZtcXV3VsWNH+fv7S+J1+Tdq1KihP/74Q2fOnFFISIiyZ89utbm6usrPz0/58uWzVhLjuUZGd+XKFZ09e1a7d+/WwYMHnUaWhw0bZo0sDx06VJ999pk8PDwYWX4EhISESJJ8fX0VEBCgqVOnauvWrapUqZLKlCmj559/Xn/88Yf27NmjsWPHqlevXsqSJYvTPvj9+O8wZRFp5tChQypbtqzatGmjcePGWdurV6+ukJAQnTt3TjVq1FCdOnVUsGBBdezYUb/99puWL18uLy8v+wpP5/bu3auKFSvqrbfe0tChQ63toaGhat68uaQbSxA/++yziomJUYkSJRQeHu40HQX317Bhw5SUlKTHHntMa9as0ffff6833nhD5cuXV3h4uNUvZfrimDFj1KNHD/4A3icJCQkaNmyYvvjiC61Zs4bpoMBNVq9erbCwMD322GM6f/68xowZo5o1ayp//vxKTExUgwYNlD17dmsJfDwa/vOf/6hDhw4aP368GjZsqDNnzmjFihVasGCBHA6Hjh49qgsXLkiSFixYoIiICHsLTmcYIUOa+e9//ytXV1cFBQXpwoULCggI0MiRI7VhwwY98cQT8vX11TvvvKMdO3Zo5syZatmypZo0aaK4uDgC2X2SnJys0aNH6/Lly2rbtq21fdiwYdq8ebM8PDx09uzZ/9fevUfXdKd/HH+fRC5uRVuhhhDEJS5pU5QkCI0qOiU1o41xabTq0jCkiRaJhmgrcZ+xmpaSuDepTlENYhmRoHWru6SJQWksSgQVkSM5+/dHJmdkML+ZVhySz+sfsvc+J8/JXnud/ezv832+ZGRkEBcXx9ChQ3nrrbdITEzk2rVrVK9eXTf9D4CLiwsrV65k8+bNDB8+nC+//JL9+/cTEBDA6NGjad++PYMHD2bs2LE89thjdOjQQeeljKxYsYK9e/eSkJDAxo0blYyJ/BuNLD/6DMPAZDJhsViA4rXC3njjDa5fv87YsWO5fPky4eHhtGvXjvDwcPbv388PP/xAQkICrq6uSsbKgi3rJaX8mTBhguHl5WXMnj3bCA8PN2rXrm1s2rTJWlv86aefGiaTydizZ49hGIaRm5trw2grhpycHKNz587WzpbR0dHWFvdms9n48ccfjf79+xsNGjQwLl++bBw+fNg4c+aMrcOuEErmixmGYfj6+hojRoyw/hwQEGDUq1fP6NWrl/HMM88YtWvXLtVeWu6/jIwMw8/PzwgICDCOHz9u63BEHikFBQVGeHi4Ua9ePevaZPJw+vd5/Waz2fr/2+csX7p0qdRxJZ0WDUPdFO83jZDJb5Kdnc3evXvJzc0lKCiI6OhowsLCiI2NJTs7m2XLltGzZ09r50R3d3fc3NxwdnYGsM6DkfsrMzOTffv2MXDgQB5//HHWr19Pr169aNCgAU5OTqxZs4bnn38eAFdXVzw9PTl+/DiVKlWiTZs2No6+fDt9+jTx8fFERkZSqVIlCgoKcHJyYsSIEWzYsAGAoUOHsmvXLnbt2kW9evU4ceIEs2bNonnz5jaOvnxr3rw5CQkJODk5UaNGDVuHI/LI0MjyoyMyMpJp06YxdOhQ/P396dmzZ6lRzuDgYADGjh2LnZ0do0aNst6rVa1aFSgeYVM3xftLf0351Y4ePUrv3r1ZtWoVGzZs4MaNGwDMnDmTwMBA3Nzc+OGHH8jJybG2sd+8eTM1atTgqaeesmXo5d5XX33FoEGDWLp0KVCc+CYlJdGjRw8cHBxo1KhRqeMvXbpEo0aNVFpSxiwWC+vWrePTTz/lvffeA8DJyQmALl26kJqaiqurKykpKSQlJdG4cWOcnZ1p3bo18fHxtGjRwpbhVwguLi5KxkT+Bz/88AOLFy/m7NmzbNu2jWeeecbWIcl/8OSTT9KrVy8qVarEhg0bePrpp1m6dCl79+61HhMcHMy8efOYPHkyM2bMID8/v9R76F6hDNh6iE4eTcePHzdq1aplTJo0ybh27Zp1++0lWGFhYYaXl5cRGRlpFBQUGB988IFRpUqVO4bKpWxMmTLFsLe3N5YsWWLdlpuba3h7exvu7u7WkqwpU6YY1apVM44cOWKrUCuUCxcuGNHR0YaHh4cRGhpaat/ChQuN3/3ud8aGDRtsFJ2IyP/uwoULxpUrV2wdhvwXtm3bZvTt29fIyMgwDMMwoqKijMGDBxstWrQwpk2bVmrZm5iYGGPQoEG2CrVCUZdF+Z9dv36dQYMGUadOHWJjY63D1sY/J4nevqjthAkTSEtLo7CwkKNHj7Jjxw6effZZW4Zfbp07d46DBw9y9uxZ3nzzTezt7YmMjGT69OksWrSIoKAgAK5cuUKfPn24du0a3t7erFixgtTUVJ2XB6DkGrl06RKfffYZy5cvp3fv3sycOROAXbt28dZbbzF16lT69+9f6loSERH5tUqmjgD07dsXgHXr1gGwbds2nn/+eerWrUvjxo2pWrUqYWFh+Pv7W19f8v0lZUMli/I/u3XrFkeOHKFz586laohLLtTbL9iYmBjatWtHbm4uu3fv1k1/GTl69Ch9+/Zl2bJlZGVlcfPmTaC4Vjw8PJzhw4cTFxcH/Kt8sXLlyixatEhJ8gNUcm08+eSTvPnmmwwePJikpCRCQ0MB8Pb2xsfHhzFjxpCXl6dkTEREfpO///3vANY5ywARERH88ssvZGdn8+OPP/Lqq6/y9ttvs2fPHsaPH8/ly5dJSEiwvoeSsbKnETL5n+3Zs4eOHTuSkZFBs2bN7voU/9atW6xevZohQ4YAxXOUbp80KvdPeno63t7ejB49mjFjxlC3bt07jrnbSFlubi55eXnUr1//QYdcYVy+fJnHH3/8nvtvHynr2bMnc+bMYe/evYwcOZKvv/6aevXqPcBoRUSkPPn222955ZVXGDhwILNnz7Zuz8nJoW/fvjRt2pTNmzfzwgsv8PHHH1ubdsiDp4RM/ivnz5/Hzs4OFxcXLl68SJs2bRgyZAgffPABDg4Odzw9+frrr5k6dSobN26kdu3aNoy8fLt+/Tp//OMfqV+/PosWLbJuv9vTrPfff5+ZM2cye/ZsRo0a9aBDrXCuXr2Ku7s7b775Jh9++OE9jytJylavXo2fnx/z588nJyeHJ5544gFGKyIi5c3PP//MokWLSExM5IUXXrCWx0Nxk7U+ffrQr18/1qxZY91usVjumIoiZU8li/L/OnDgAK6urhw+fBgoLnnz8vIiMTGR5ORkioqK7rhgd+/ejYeHB9WrV7dFyBVGXl4ep0+f5sUXXyy1veR8lCz6CDB16lRGjhzJlClTuHr16gONsyKqUaMGEydOZO7cuUyfPv2exz355JMMHz6cgIAAduzYwaVLl5SMiYjIb2IYBi4uLowYMYLAwECSkpIICwuz7m/ZsiX+/v7WrphFRUUAd52KImVPCZn8R4cOHaJr166MGzcOf39/LBYLDg4OfPbZZ1gsFkJDQ0lMTLReyBcuXCA0NJTFixfz3nvvWdcbk7Jx5swZsrKy7ll2aGdnh9ls5q9//StFRUXMmTOH9PR0tfUuQ5mZmXzzzTcYhsHbb7/N3LlzrSWjJW4vTCgoKODUqVNERkayZcsWlfaKiMhvdq85yyVJmaurKz4+PsydO5cLFy5ozrKNKSGTezpy5Aje3t6MHz+emJgYoPgG//Tp09SrV4/NmzdjsVgYNWoUXl5e+Pv7M2DAANasWUNSUhIeHh42/gTlU0nDDgBnZ2fs7OzYv38/UHpErERycjJpaWnWyby64S87hw4dokWLFpw8eRKTyYSjoyNvvPEGCxYsKJWUlXxRms1mxo0bR4cOHcjJyfmP881ERER+jX9PykJCQgCYNGkS9vb2pUoWxTaUkMld5eTk8Nprr9G0aVOmTp1q3f7RRx8xYMAAcnNzadmyJd9//z0RERF4eXnh4uLCgAEDSElJ0cKQZeTUqVMMHz6c7du3A9CmTRv69OlDVFQUmZmZ2NnZUVhYCPxrFCY1NZXq1auXKkOQ++/gwYN4e3szceJExowZY93u4OBAUFDQHUmZ2WwmJCSElStXsnfvXpUpiojIr/bRRx8xadKke+6/PSnbsmULEyZMwN7envj4eN5+++0HGKncTSVbByAPp8LCQnr37s3mzZuZNm0aU6ZMYfbs2cycOZPPP/+cWrVqUVRURNWqVXnnnXdsHW6FkZeXx+bNm7lx4wb29vb4+voSFhbG0KFD6d69O2vXrsXT0xMoLh/9y1/+wrJly0hJSVH5aBk6cuQIvr6+hISEEBUVZd2ekJCAv78/TzzxBMOGDQMgODgYi8VCXl4eS5YsYceOHXh5edkqdBERKQecnJyYPHky1apVu2tiZhiGNSkzmUx8+OGHdOrUiYCAAKB0Mw958NRlUe4pOzvb2p3HxcWFY8eO8cUXX+Dn51fquNu78KgjT9kxm804Ojpy4MABAgMDadasGVOmTKFdu3YkJSURHh7OsWPH8PHxAYon6J4+fZq1a9dqxLIMZWdn06BBAwIDA1m5cqV1e3R0NBMnTmTv3r3Wdd7MZjNLly5lxIgRAOzfv1/nRkREfrVjx47RrFkzAOLi4hg9erR1DVK4877MbDbj4ODAxo0b6d27t01iljspIZO7KnlScvbsWRYvXsyiRYvw8/Oz3nDqScqDc/LkSRISEvj++++ZNWsWDRs25PDhwwwYMAB3d3emTp2Kl5eXtb1tRkYG+fn5+Pn50adPH9zc3Gz9Eco9T09PCgsLWbhwIT4+PsTExDBz5kxWrVpFjx49Sn0hFhYWkpCQQLt27WjevLmNIxcRkUfVyJEjOXbsGElJSVSvXh2z2cySJUsIDg4ulZSVOH78OL6+vqxatcranVn3cw8HJWQCFHfrW7NmDcnJyeTl5eHq6srUqVNp2rQpFy5cIDY2loSEBF599VUiIyMB7rogtNxfR44coX///tayt3fffZeqVatiMpk4dOgQr776Ks2aNWPSpEl07NgR0HmxlQ4dOpCXl0fXrl1JTEwkMTGR7t27lzpGy0GIiMj9EBISQnx8PFu3bi1VaVFQUEBcXBzBwcG8//77REREAMXJWL9+/WjYsCFbtmyxVdhyD0rIhKNHj/Laa6/h5uZGzZo1MZvNfPfdd1y7do24uDj69evHuXPnWLhwIQkJCQwcONB6gUvZOXHiBN7e3gQFBTF9+nQcHByAf3VStLOzsyZlzZs3591338Xb29uWIVcYZ8+eJTk5GYvFQtOmTenWrRsAXbp0YceOHcyZM4dx48aVes3EiRNZt24d27dv12LpIiLyq4WEhBAXF0dKSop13rjFYuHq1avUqlWr1EhZVFQUQ4cOxdfXlxYtWpCUlGQ9XiNjDxFDKrSDBw8a1apVMyZMmGBcuHCh1PaXXnrJqFGjhpGammoYhmGcOXPGmDZtmlGnTh1jxowZtgq5QigqKjKCg4ONAQMGGDdv3rznMYZRfK5atWpl+Pn5GXv27HmQYVZIhw4dMho2bGh06NDBeOKJJ4wmTZoYq1atsu739fU13N3djdTUVOs5ioiIMJydnXV+RETkNwkNDTWqVKlifP/999ZthYWFhpubmzFp0iTrtoKCAuOTTz4xHB0dDZPJZPTp08e6r+S7SR4eSo0rsPT0dNq3b8/kyZOJjo7GxcXFus/T05N58+bRtm1bXn/9da5cuUKDBg0ICgpi/Pjx/OEPf7Bh5OWfnZ0de/bsoXHjxjg5OZVaSBiKJ+mWtLj39PRkyZIl5OXl8dRTT9ko4orh8OHDdOrUicDAQLZt28bnn3/OzZs3WblyJVevXgUgLS2NmjVrEhQUxKFDh5gyZQoxMTHs2LGD9u3b2/gTiIjIoyw1NZUqVaqUWne0U6dOtGjRggkTJli3OTo6EhQUxKxZsxgxYgQbNmwANDL2sFLJYgVlGAaTJ09mxowZHDhwAE9PzzvmHhUVFbF69WpGjhxJcnKytRxOc5TKzs2bN3F2dubmzZu4u7szbNiwUuvA3a6oqIigoCCioqJo2LAhBQUFODk5PeCIK46zZ8/i5eVFt27dSExMtG7v0KEDV69eZc+ePVStWpVKlYpXEykpX6xWrRopKSlqbS8iIvdFp06dyM3NZeHChbzzzjvUrl2b1atXU6NGDWsTKbPZTGFhIVWqVLG+TsnYw0tnpQI6ffo0165dIzw8nIEDB+Lj48POnTuxt7e3jsRYLBbs7e3p168fN27cIDs72/p6JWNlIzs7myFDhrB161acnZ1p2rQpW7Zs4cyZM9Zjbn9+cvr0ac6dO0d+fj5Q/DRMyk5RURFubm4UFBSwc+dOoHghzn379lGzZk0GDx7MW2+9xdy5c7lx4wbbtm3j9ddfZ/v27UrGRETkV0tPTycjI4Pjx48D8O233/LYY4/h5+eHo6Mjq1atokaNGhQVFWEymbh8+TK///3v72jeoWTs4aUzU8HcunWLoKAgPDw8MJvNLF68mJdffpmePXuya9cuTCaT9QmKxWIhLS2Nli1b0qFDB1uHXu4VFBTw008/MWfOHNLT0wkPD+e7774jNjaWixcvAmAymaxJ2dKlS7FYLNZSU63/VrYaNWrEypUrMZvNxMTEMHz4cObOnUtiYiJffPEFw4YNo0mTJkRHR+Pm5saQIUNYvHix1hkTEZFfLTIyksDAQLy9vRk8eDDLly8HYM+ePXTv3p1z586Rnp7OrVu3sLe35/Lly3Tu3Jn8/Hz69u1r4+jlv6WSxQro6NGjBAUFcfPmTVJTU6lcuTLDhg1j/fr1bN68GR8fH2tSFhISwokTJ1i2bBk1a9a0dejlXlZWFsHBwQBERUWxY8cOwsLCGDFiBAMHDsTX15cDBw6wYsUKlixZQlpaGq1bt7Zx1BVLZmYmwcHBpKWlERUVRWhoaKn9OTk5bNu2DU9PT9zd3W0UpYiIPOrGjx/P8uXLWbZsGRcvXuTjjz8mNzeX9evX06JFCwCee+45cnJySEhIoGHDhvj5+VG/fn02bdoEqEzxUaGErAIpqSu2WCxkZmYybNgwbt26xZYtW3B2dmbYsGGsW7eO5ORkfHx8iIiI4JNPPmH79u14eHjYOvwKIysrizFjxmAymRg7diznz59n5MiRmEwmKleujIuLC1WrVmXJkiU8/fTTtg63QvrHP/7B6NGjsbe3Z9KkSfj6+gLFI9AlyxOIiIj8WtOmTWPatGmcPHkSV1dXAMLDw4mJiWHfvn20bdvWemynTp04d+4cFouF1q1bs3HjRkDJ2KNECVkFUNIoAkrfMIaGhjJnzhyefvpptm7dSpUqVQgKCmLTpk307NmT9evXk5aWpvkvNpCZmcm4ceOwWCzMnz8fZ2dn9u3bx8mTJ+nUqRPu7u7UqVPH1mFWaFlZWYwdOxbDMIiIiMDHx8fWIYmISDlw5coV/P39cXBwYMGCBTz77LMUFRXx3HPPcejQIUJCQmjevDkuLi689NJLQHEjKWdnZ5KTkwElY48aJWTlXHZ2NuPHj2fUqFHWxWsBYmJiiImJITo6mtjYWAoKCkhNTaVq1aoMHjyY9evXs3PnTiVjNpSZmcmYMWMAmD59ulqmP4SysrIICQnh0qVLzJ07l44dO9o6JBERKQcyMzMJCQnBZDIRGhrKu+++i6OjI4GBgeTn55OSkkJqaipt2rShcePGLFy40NppWcnYo0cJWTl38uRJBg0aRK1atZg0aRI+Pj7MmDGDmTNnkpCQgL+/P+np6fzpT3/CMAy2bt2Kk5MT169f1wjMQyArK4vx48eTk5OjG/6HVEZGBhEREcyePdtaViIiIvJblVRi7N69m8aNG7Nv3z7rvsLCQk6fPs2iRYsoKChg3rx5wL+mp8ijRQlZBVByQTs5OeHi4sLatWtZsWIFL7zwgvWYjIwMevXqRb169UhLS9OTlYeIbvgffmazWcsOiIjIfXfixAlGjhwJFDf76tSpE1CckFWqVMn6LygZe5QpIasgSjrD7dixg6ioKN555x2g9LB2ZmYmDg4OuLm52TJUuQvd8IuIiFRM95qzrASs/FBCVoHcqzOcao1FREREHl5ZWVnWZl9hYWF0797d1iHJfaS78AqkSZMmLFiwAMMwmD59Ojt37gS0cruIiIjIw8zd3Z158+aRk5PD/v37bR2O3GcaIauA1BlORERE5NFz/vx56tata+sw5D7T0EgF5O7uzsyZM6lfvz716tWzdTgiIiIi8l8oScY0nlK+aISsAlOjCBERERER21JCJiIiIiIiYiMqWRQREREREbERJWQiIiIiIiI2ooRMRERERETERpSQiYiIiIiI2IgSMhERERERERtRQiYiIiIiImIjSshERERsKD4+npo1a9o6DBERsRElZCIiIv908eJFRo0ahaurK05OTtStW5eePXuyc+dOAEwmE2vXrrVtkCIiUq5UsnUAIiIiD4v+/ftjNptZunQpjRs35sKFC2zdupWcnBxbhyYiIuWURshERESAK1eukJaWRnR0NN26daNhw4Z06NCBiRMn8vLLL9OoUSMAAgICMJlM1p8BYmNjadKkCY6OjjRv3pzly5ff8d4jRoygTp06ODs707p1azZs2HDXOC5evEi7du0ICAigoKCgrD6uiIg8JDRCJiIiAlSrVo1q1aqxdu1aOnbsiJOTU6n9e/fuxcXFhbi4OF588UXs7e0B+Oqrr/jzn//MvHnz8Pf3Z8OGDQQFBVG/fn26deuGxWKhV69e/PLLL6xYsYImTZpw/Phx6+tvd/bsWXr06EHHjh1ZvHjxXY8REZHyxWQYhmHrIERERB4GX375JcOHDyc/Px8vLy+6du3Ka6+9Rtu2bYHiOWRfffUV/fr1s77Gx8eHVq1asXDhQuu2AQMGkJeXxzfffENycjK9evUiPT2dZs2a3fE74+PjGTduHLt376ZHjx4EBAQwb948TCZTmX9eERGxPZUsioiI/FP//v05d+4c69ev58UXXyQlJQUvLy/i4+Pv+Zr09HR8fHxKbfPx8SE9PR2AgwcPUr9+/bsmYyXy8/Pp3Lkzr7zyCvPnz1cyJiJSgSghExERuY2zszM9evQgIiKCXbt28frrr/P+++//6verXLny/3uMk5OTtdwxOzv7V/8uERF59CghExER+Q88PDzIy8sDwMHBgaKiolL7W7ZsaW2LX2Lnzp14eHgA0LZtW3766ScyMzPv+Tvs7OxYvnw5zz77LN26dePcuXP3+VOIiMjDSgmZiIgIkJOTQ/fu3VmxYgWHDx/m1KlTfPHFF8TExNC3b18AGjVqxNatWzl//jy5ubkAhIWFER8fT2xsLFlZWcyZM4e//e1vhIaGAtC1a1e6dOlC//792bJlC6dOnWLjxo1s2rSp1O+3t7dn5cqVeHp60r17d86fP/9g/wAiImITSshEREQo7rL43HPPMXfuXLp06ULr1q2JiIhg+PDhLFiwAIDZs2ezZcsWGjRowDPPPANAv379mD9/PrNmzaJVq1Z8+umnxMXF4efnZ33vL7/8kvbt2xMYGIiHhwcTJky4Y6QNoFKlSqxevZpWrVrRvXt3fv755wfy2UVExHbUZVFERERERMRGNEImIiIiIiJiI0rIREREREREbEQJmYiIiIiIiI0oIRMREREREbERJWQiIiIiIiI2ooRMRERERETERpSQiYiIiIiI2IgSMhERERERERtRQiYiIiIiImIjSshERERERERsRAmZiIiIiIiIjfwfKIH6Dts35HQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ] + } + ] +} \ No newline at end of file