"},"metadata":{}}]},{"cell_type":"markdown","source":"# Cheking the minimum difference between age and experience\n\nSo at age 23, people have no experience. So after 23, they can have n year experience.","metadata":{}},{"cell_type":"code","source":"n = 0\nwhile True:\n m = (train['Age'] - train['Experience'] <= n).sum()\n if m > 0:\n break\n n += 1\nprint(n)","metadata":{"id":"TSlPZHuz9jw0","outputId":"afbe85b6-044e-4595-926a-1eebe583c03e","execution":{"iopub.status.busy":"2024-05-22T12:18:09.472918Z","iopub.execute_input":"2024-05-22T12:18:09.473295Z","iopub.status.idle":"2024-05-22T12:18:09.490668Z","shell.execute_reply.started":"2024-05-22T12:18:09.473265Z","shell.execute_reply":"2024-05-22T12:18:09.489273Z"},"trusted":true},"execution_count":10,"outputs":[{"name":"stdout","text":"24\n","output_type":"stream"}]},{"cell_type":"code","source":"train.loc[train['Experience'] < 0, 'Experience'] = train.loc[train['Experience'] < 0, 'Age'] - 23","metadata":{"id":"QFNXs72J9jw1","execution":{"iopub.status.busy":"2024-05-22T12:18:09.546599Z","iopub.execute_input":"2024-05-22T12:18:09.546988Z","iopub.status.idle":"2024-05-22T12:18:09.562806Z","shell.execute_reply.started":"2024-05-22T12:18:09.546952Z","shell.execute_reply":"2024-05-22T12:18:09.561531Z"},"trusted":true},"execution_count":13,"outputs":[]},{"cell_type":"code","source":"train.describe() # checkong the minimum and maximum Experience value","metadata":{"id":"qpwCaO-H9jw1","outputId":"8cb33f4e-f982-43e7-c7ea-5a99b5233e79","execution":{"iopub.status.busy":"2024-05-22T12:18:09.564615Z","iopub.execute_input":"2024-05-22T12:18:09.565081Z","iopub.status.idle":"2024-05-22T12:18:09.601911Z","shell.execute_reply.started":"2024-05-22T12:18:09.565043Z","shell.execute_reply":"2024-05-22T12:18:09.600681Z"},"trusted":true},"execution_count":14,"outputs":[{"execution_count":14,"output_type":"execute_result","data":{"text/plain":" ID Age Experience Income Family \\\ncount 5000.000000 5000.000000 5000.000000 5000.000000 5000.000000 \nmean 2500.500000 45.338400 20.135400 73.774200 2.396400 \nstd 1443.520003 11.463166 11.414672 46.033729 1.147663 \nmin 1.000000 23.000000 0.000000 8.000000 1.000000 \n25% 1250.750000 35.000000 10.000000 39.000000 1.000000 \n50% 2500.500000 45.000000 20.000000 64.000000 2.000000 \n75% 3750.250000 55.000000 30.000000 98.000000 3.000000 \nmax 5000.000000 67.000000 43.000000 224.000000 4.000000 \n\n CCAvg Mortgage \ncount 5000.000000 5000.000000 \nmean 1.937938 56.498800 \nstd 1.747659 101.713802 \nmin 0.000000 0.000000 \n25% 0.700000 0.000000 \n50% 1.500000 0.000000 \n75% 2.500000 101.000000 \nmax 10.000000 635.000000 ","text/html":"
\n\n
\n \n
\n
\n
ID
\n
Age
\n
Experience
\n
Income
\n
Family
\n
CCAvg
\n
Mortgage
\n
\n \n \n
\n
count
\n
5000.000000
\n
5000.000000
\n
5000.000000
\n
5000.000000
\n
5000.000000
\n
5000.000000
\n
5000.000000
\n
\n
\n
mean
\n
2500.500000
\n
45.338400
\n
20.135400
\n
73.774200
\n
2.396400
\n
1.937938
\n
56.498800
\n
\n
\n
std
\n
1443.520003
\n
11.463166
\n
11.414672
\n
46.033729
\n
1.147663
\n
1.747659
\n
101.713802
\n
\n
\n
min
\n
1.000000
\n
23.000000
\n
0.000000
\n
8.000000
\n
1.000000
\n
0.000000
\n
0.000000
\n
\n
\n
25%
\n
1250.750000
\n
35.000000
\n
10.000000
\n
39.000000
\n
1.000000
\n
0.700000
\n
0.000000
\n
\n
\n
50%
\n
2500.500000
\n
45.000000
\n
20.000000
\n
64.000000
\n
2.000000
\n
1.500000
\n
0.000000
\n
\n
\n
75%
\n
3750.250000
\n
55.000000
\n
30.000000
\n
98.000000
\n
3.000000
\n
2.500000
\n
101.000000
\n
\n
\n
max
\n
5000.000000
\n
67.000000
\n
43.000000
\n
224.000000
\n
4.000000
\n
10.000000
\n
635.000000
\n
\n \n
\n
"},"metadata":{}}]},{"cell_type":"markdown","source":"# Data-preprocessing\n\nThis code performs data preprocessing tasks, particularly encoding categorical variables and frequency encoding one of the features.\n\n#### Frequency Encoding for 'ZIP Code':\n\n- Calculates the frequency of each unique value in the 'ZIP Code' column by dividing the count of each value by the total number of samples in the DataFrame.\n- Maps these frequencies to the corresponding 'ZIP Code' values in the DataFrame, effectively encoding the 'ZIP Code' column with its frequency values.\n- Saves the frequency encoding dictionary (zip_code_freq) using the joblib.dump() function to a file named 'zip_code_freq_encoder.pkl'.\n\n#### Label Encoding for Categorical Columns:\n\n- Specifies a list of columns (columns_to_encode) that need to be label encoded: 'Education', 'Personal Loan', 'CD Account', 'Online', 'CreditCard', and 'Securities Account'.\n- Iterates over each column in columns_to_encode and applies label encoding using LabelEncoder() from scikit-learn.\n- Saves the trained label encoders for each column in a dictionary (label_encoders) where the column name is the key and the corresponding label encoder is the value.\n- Updates the DataFrame train by replacing the original categorical values with their encoded counterparts.\n\n#### Saving Label Encoders:\n\n- Saves the dictionary of label encoders (label_encoders) to a file named 'label_encoders.pkl' using the joblib.dump() function.","metadata":{}},{"cell_type":"code","source":"from sklearn.preprocessing import LabelEncoder\nimport joblib\n\n# Displaying the DataFrame structure\nprint(\"Original DataFrame:\")\nprint(train.info())\n\n# Frequency encoding for 'ZIP Code'\nzip_code_freq = train['ZIP Code'].value_counts() / len(train)\ntrain['ZIP Code'] = train['ZIP Code'].map(zip_code_freq)\n\n# Saving the frequency encoding\njoblib.dump(zip_code_freq, 'zip_code_freq_encoder.pkl')\n\n# Columns to encode using LabelEncoder\ncolumns_to_encode = ['Education', 'Personal Loan', 'CD Account', 'Online', 'CreditCard', 'Securities Account']\n\n# Initialize a single label encoder dictionary to store the label encoders\nlabel_encoders = {}\n\n# Encoding the columns using a single LabelEncoder\nfor col in columns_to_encode:\n le = LabelEncoder()\n train[col] = le.fit_transform(train[col])\n label_encoders[col] = le\n\n# Saving the single label encoder dictionary\njoblib.dump(label_encoders, 'label_encoders.pkl')\n\n# Displaying info of the updated DataFrame\nprint(\"\\nUpdated DataFrame Info:\")\nprint(train.info())","metadata":{"id":"6Ly_zuCb9jw1","outputId":"92a96947-ac03-462f-a302-fcf4711f47b4","execution":{"iopub.status.busy":"2024-05-22T12:18:09.603244Z","iopub.execute_input":"2024-05-22T12:18:09.603574Z","iopub.status.idle":"2024-05-22T12:18:10.178636Z","shell.execute_reply.started":"2024-05-22T12:18:09.603546Z","shell.execute_reply":"2024-05-22T12:18:10.177235Z"},"trusted":true},"execution_count":15,"outputs":[{"name":"stdout","text":"Original DataFrame:\n\nRangeIndex: 5000 entries, 0 to 4999\nData columns (total 14 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 ID 5000 non-null int64 \n 1 Age 5000 non-null int64 \n 2 Experience 5000 non-null int64 \n 3 Income 5000 non-null int64 \n 4 ZIP Code 5000 non-null object \n 5 Family 5000 non-null int64 \n 6 CCAvg 5000 non-null float64\n 7 Education 5000 non-null object \n 8 Mortgage 5000 non-null int64 \n 9 Personal Loan 5000 non-null bool \n 10 Securities Account 5000 non-null bool \n 11 CD Account 5000 non-null bool \n 12 Online 5000 non-null bool \n 13 CreditCard 5000 non-null bool \ndtypes: bool(5), float64(1), int64(6), object(2)\nmemory usage: 376.1+ KB\nNone\n\nUpdated DataFrame Info:\n\nRangeIndex: 5000 entries, 0 to 4999\nData columns (total 14 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 ID 5000 non-null int64 \n 1 Age 5000 non-null int64 \n 2 Experience 5000 non-null int64 \n 3 Income 5000 non-null int64 \n 4 ZIP Code 5000 non-null float64\n 5 Family 5000 non-null int64 \n 6 CCAvg 5000 non-null float64\n 7 Education 5000 non-null int64 \n 8 Mortgage 5000 non-null int64 \n 9 Personal Loan 5000 non-null int64 \n 10 Securities Account 5000 non-null int64 \n 11 CD Account 5000 non-null int64 \n 12 Online 5000 non-null int64 \n 13 CreditCard 5000 non-null int64 \ndtypes: float64(2), int64(12)\nmemory usage: 547.0 KB\nNone\n","output_type":"stream"}]},{"cell_type":"markdown","source":"# Correlation Matrix","metadata":{}},{"cell_type":"code","source":"import pandas as pd\nimport seaborn as sns\nimport matplotlib.pyplot as plt\n\n\ncorrelation_matrix = train.corr()\n\n# Plotting the correlation matrix using seaborn\nplt.figure(figsize=(10, 8))\nsns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=\".2f\", linewidths=0.5)\nplt.title('Correlation Matrix')\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2024-05-22T13:41:20.611238Z","iopub.execute_input":"2024-05-22T13:41:20.611687Z","iopub.status.idle":"2024-05-22T13:41:21.686739Z","shell.execute_reply.started":"2024-05-22T13:41:20.611649Z","shell.execute_reply":"2024-05-22T13:41:21.685169Z"},"trusted":true},"execution_count":39,"outputs":[{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAA28AAAMcCAYAAADHeZ2TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUxfrA8e/2mgYBQu+99y5dugp29FKuevEqoiKK6FXsqKDiRVG8FsBywYINVKSK9Bp66CEE0iF1syW75/fHkt1sSEJIwg378/08zz6aszPnvDvMzp45M2eOSlEUBSGEEEIIIYQQ1zV1ZQcghBBCCCGEEOLKpPMmhBBCCCGEEEFAOm9CCCGEEEIIEQSk8yaEEEIIIYQQQUA6b0IIIYQQQggRBKTzJoQQQgghhBBBQDpvQgghhBBCCBEEpPMmhBBCCCGEEEFAOm9CCCGEEEIIEQSk8yaEECKoLFq0CJVKRWxsbIXtMzY2FpVKxaJFiypsn8Guf//+9O/fv7LDEEIIUYB03oQQQnDy5EkmT55Mo0aNMBqNhIaG0rt3b959911yc3MrO7wK89VXXzFv3rzKDiPAxIkTUalUhIaGFlnWx48fR6VSoVKpmDt37lXv//z587zwwgtER0dXQLRCCCEqk7ayAxBCCFG5Vq5cye23347BYGD8+PG0adMGp9PJpk2bePLJJzl06BAfffRRZYdZIb766isOHjzIY489FrC9fv365ObmotPpKiUurVaLzWbj559/5o477gh478svv8RoNGK328u07/Pnz/Piiy/SoEEDOnToUOp8v//+e5mOJ4QQ4tqRzpsQQvyFnT59mrvuuov69euzbt06atas6Xvv4Ycf5sSJE6xcubLcx1EUBbvdjslkuuw9u92OXq9Hra68ySAqlQqj0VhpxzcYDPTu3Zv//ve/l3XevvrqK0aOHMl33333P4nFZrNhNpvR6/X/k+MJIYQoPZk2KYQQf2Fvvvkm2dnZfPLJJwEdt3xNmjTh0Ucf9f2dl5fHyy+/TOPGjTEYDDRo0IBnnnkGh8MRkK9BgwaMGjWKVatW0aVLF0wmEwsXLmTDhg2oVCqWLl3Kv/71L2rXro3ZbCYzMxOA7du3M2zYMMLCwjCbzfTr14/Nmzdf8XP8+OOPjBw5klq1amEwGGjcuDEvv/wybrfbl6Z///6sXLmSM2fO+KYhNmjQACj+nrd169bRt29fLBYL4eHh3HzzzRw5ciQgzQsvvIBKpeLEiRNMnDiR8PBwwsLCmDRpEjab7Yqx5xs3bhy//vor6enpvm07d+7k+PHjjBs37rL0Fy5cYPr06bRt2xar1UpoaCjDhw9n3759vjQbNmyga9euAEyaNMn3ufM/Z//+/WnTpg27d+/mhhtuwGw288wzz/jeK3jP24QJEzAajZd9/qFDhxIREcH58+dL/VmFEEKUjYy8CSHEX9jPP/9Mo0aN6NWrV6nS33///SxevJjbbruNJ554gu3btzN79myOHDnC999/H5D26NGj3H333UyePJkHHniA5s2b+957+eWX0ev1TJ8+HYfDgV6vZ926dQwfPpzOnTsza9Ys1Go1n332GQMHDuTPP/+kW7duxca1aNEirFYr06ZNw2q1sm7dOp5//nkyMzOZM2cOAM8++ywZGRnEx8fzzjvvAGC1Wovd55o1axg+fDiNGjXihRdeIDc3l/nz59O7d2/27Nnj6/jlu+OOO2jYsCGzZ89mz549fPzxx1SvXp033nijVGU7duxYHnzwQZYvX87f//53wDvq1qJFCzp16nRZ+lOnTvHDDz9w++2307BhQ5KSkli4cCH9+vXj8OHD1KpVi5YtW/LSSy/x/PPP849//IO+ffsCBPx7p6WlMXz4cO666y7uvfdeatSoUWR87777LuvWrWPChAls3boVjUbDwoUL+f333/n888+pVatWqT6nEEKIclCEEEL8JWVkZCiAcvPNN5cqfXR0tAIo999/f8D26dOnK4Cybt0637b69esrgPLbb78FpF2/fr0CKI0aNVJsNptvu8fjUZo2baoMHTpU8Xg8vu02m01p2LChMmTIEN+2zz77TAGU06dPB6QrbPLkyYrZbFbsdrtv28iRI5X69etflvb06dMKoHz22We+bR06dFCqV6+upKWl+bbt27dPUavVyvjx433bZs2apQDK3//+94B9jhkzRqlateplxypswoQJisViURRFUW677TZl0KBBiqIoitvtVqKiopQXX3zRF9+cOXN8+ex2u+J2uy/7HAaDQXnppZd823bu3HnZZ8vXr18/BVA+/PDDIt/r169fwLZVq1YpgPLKK68op06dUqxWq3LLLbdc8TMKIYSoGDJtUggh/qLypyqGhISUKv0vv/wCwLRp0wK2P/HEEwCX3RvXsGFDhg4dWuS+JkyYEHD/W3R0tG96YFpaGqmpqaSmppKTk8OgQYPYuHEjHo+n2NgK7isrK4vU1FT69u2LzWYjJiamVJ+voISEBKKjo5k4cSJVqlTxbW/Xrh1DhgzxlUVBDz74YMDfffv2JS0tzVfOpTFu3Dg2bNhAYmIi69atIzExscgpk+C9Ty7/PkG3201aWhpWq5XmzZuzZ8+eUh/TYDAwadKkUqW98cYbmTx5Mi+99BJjx47FaDSycOHCUh9LCCFE+ci0SSGE+IsKDQ0FvJ2d0jhz5gxqtZomTZoEbI+KiiI8PJwzZ84EbG/YsGGx+yr83vHjxwFvp644GRkZREREFPneoUOH+Ne//sW6desu6yxlZGQUu8/i5H+WglM987Vs2ZJVq1aRk5ODxWLxba9Xr15AuvxYL1686CvrKxkxYgQhISEsW7aM6OhounbtSpMmTYp8pp3H4+Hdd99lwYIFnD59OuD+vqpVq5bqeAC1a9e+qsVJ5s6dy48//kh0dDRfffUV1atXL3VeIYQQ5SOdNyGE+IsKDQ2lVq1aHDx48KryqVSqUqUramXJ4t7LH1WbM2dOscvZF3d/Wnp6Ov369SM0NJSXXnqJxo0bYzQa2bNnDzNmzChxxK4iaTSaIrcrilLqfRgMBsaOHcvixYs5deoUL7zwQrFpX3vtNZ577jn+/ve/8/LLL1OlShXUajWPPfbYVX3mkv6dirJ3716Sk5MBOHDgAHffffdV5RdCCFF20nkTQoi/sFGjRvHRRx+xdetWevbsWWLa+vXr4/F4OH78OC1btvRtT0pKIj09nfr165c5jsaNGwPeDuXgwYOvKu+GDRtIS0tj+fLl3HDDDb7tp0+fvixtaTue+Z/l6NGjl70XExNDZGRkwKhbRRo3bhyffvoparWau+66q9h03377LQMGDOCTTz4J2J6enk5kZKTv79J+5tLIyclh0qRJtGrVil69evHmm28yZswY34qWQgghri25500IIf7CnnrqKSwWC/fffz9JSUmXvX/y5EneffddwDulD2DevHkBad5++20ARo4cWeY4OnfuTOPGjZk7dy7Z2dmXvZ+SklJs3vwRr4IjXE6nkwULFlyW1mKxlGoaZc2aNenQoQOLFy8OWLr/4MGD/P77776yuBYGDBjAyy+/zHvvvUdUVFSx6TQazWWjet988w3nzp0L2JbfySz4OcpqxowZxMXFsXjxYt5++20aNGjAhAkTLntUhBBCiGtDRt6EEOIvrHHjxnz11VfceeedtGzZkvHjx9OmTRucTidbtmzhm2++YeLEiQC0b9+eCRMm8NFHH/mmKu7YsYPFixdzyy23MGDAgDLHoVar+fjjjxk+fDitW7dm0qRJ1K5dm3PnzrF+/XpCQ0P5+eefi8zbq1cvIiIimDBhAlOnTkWlUvH5558XOV2xc+fOLFu2jGnTptG1a1esViujR48ucr9z5sxh+PDh9OzZk/vuu8/3qICwsLASpzOWl1qt5l//+tcV040aNYqXXnqJSZMm0atXLw4cOMCXX35Jo0aNAtI1btyY8PBwPvzwQ0JCQrBYLHTv3r3EexKLsm7dOhYsWMCsWbN8jy747LPP6N+/P8899xxvvvnmVe1PCCFEGVTuYpdCCCGuB8eOHVMeeOABpUGDBoper1dCQkKU3r17K/Pnzw9Yat/lcikvvvii0rBhQ0Wn0yl169ZVZs6cGZBGUbyPChg5cuRlx8l/VMA333xTZBx79+5Vxo4dq1StWlUxGAxK/fr1lTvuuENZu3atL01RjwrYvHmz0qNHD8VkMim1atVSnnrqKd+y9uvXr/ely87OVsaNG6eEh4crgO+xAUU9KkBRFGXNmjVK7969FZPJpISGhiqjR49WDh8+HJAm/1EBKSkpAduLirMoBR8VUJziHhXwxBNPKDVr1lRMJpPSu3dvZevWrUUu8f/jjz8qrVq1UrRabcDn7Nevn9K6desij1lwP5mZmUr9+vWVTp06KS6XKyDd448/rqjVamXr1q0lfgYhhBDlp1KUq7iTWgghhBBCCCFEpZB73oQQQgghhBAiCEjnTQghhBBCCCGCgHTehBBCCCGEECIISOdNCCGEEEIIIa7Cxo0bGT16NLVq1UKlUvHDDz9cMc+GDRvo1KkTBoOBJk2asGjRoqs+rnTehBBCCCGEEOIq5OTk0L59e95///1SpT99+jQjR45kwIABREdH89hjj3H//fezatWqqzqurDYphBBCCCGEEGWkUqn4/vvvueWWW4pNM2PGDFauXMnBgwd92+666y7S09P57bffSn0sGXkTQgghhBBC/OU5HA4yMzMDXg6Ho0L2vXXrVgYPHhywbejQoWzduvWq9qOtkGiEEEIIIYQQopxW6ppX2rF3Pns3L774YsC2WbNm8cILL5R734mJidSoUSNgW40aNcjMzCQ3NxeTyVSq/UjnTVS4yvzSlcVI11Eenpte2WGU2vvTw4Mu3gffuFjZYZTahzMi+Oec9MoO46p88GTwlfHk1y9UdhiltvDpKkz/wFbZYVyVuf80B1U9/uDJ8KCrE8H2nQum3w3w/nZMeTujssMotfemhfHEgpzKDqPU3nrIUtkhXJdmzpzJtGnTArYZDIZKiqZo0nkTQgghhBBCXBdUOlWlHdtgMFyzzlpUVBRJSUkB25KSkggNDS31qBvIPW9CCCGEEEIIcU317NmTtWvXBmxbvXo1PXv2vKr9yMibEEIIIYQQ4rqg1lbeyNvVyM7O5sSJE76/T58+TXR0NFWqVKFevXrMnDmTc+fOsWTJEgAefPBB3nvvPZ566in+/ve/s27dOr7++mtWrlx5VceVkTchhBBCCCGEuAq7du2iY8eOdOzYEYBp06bRsWNHnn/+eQASEhKIi4vzpW/YsCErV65k9erVtG/fnrfeeouPP/6YoUOHXtVxZeRNCCGEEEIIIa5C//79Kelx2YsWLSoyz969e8t1XOm8CSGEEEIIIa4LKp1MDCyJlI4QQgghhBBCBAEZeRNCCCGEEEJcF4JlwZLKIiNvQgghhBBCCBEEpPMmhBBCCCGEEEFApk0KIYQQQgghrgsqnUybLImMvAkhhBBCCCFEEJCRNyGEEEIIIcR1QRYsKZmMvAkhhBBCCCFEEJCRt7+giRMnkp6ezg8//MDEiRNZvHgxAFqtlipVqtCuXTvuvvtuJk6ciFpd8f37Kn260OiJ+wjr1AZjrersuvUhkn5aW3KeG7rRau7TWFs1xX42gROzPyB+yfcBaer/cxyNpt2HIaoamftjOPTYy2TsPFChsY/sbaR3Wz0mg4pT5/NYujqXlHRPiXlu6KBncFcjoRYV51LcfL02lzOJbt/7vdvp6dJST93qGkwGFdPnZ5DrUP6S8Y7uY6RPewMmg4qT5/L47+82ki+WHG+/jgZu7G4g1KImPtnNsjU2YhO88ZqNKkb3MdKygY4qoWqycxWijzn56c9c7M7yxzuqt5E+7fzl+9XvVy7ffh31DLlUvvHJbpYVKt8+7fR0bamnbg1v+U77d8WVLwRfGY/ua6JvgXi/WpVzxXj7dzIwpLuRsEvxLl2dExDvTX1N/nhtHqKPu/jxz1zs5SznXq219O+gJcSsIiHNw/ebXJxNLj7Wdo00DOumIyJERWqGwsptTmLivOnVahjeTUeLehqqhqrIdSocj/fwyzYXmbaKqw8QfPU4mOoEBN93Lth+NwBG9jLQq40ek1HFqXPe+njFmNvrGdTF4Iv5m/X2gJi1Ghjbz0jn5jq0GhVHzuSxbG0uWeX8/vVuo6V/Bx0hZhXn0zx8/6ez5HaisYbh3fS+dmLFVicxcd4489uJlvW1VAlVYXcqHI93s3JrxbcT/0tyz1vJZORNMGzYMBISEoiNjeXXX39lwIABPProo4waNYq8vLwKP57GYiZz/1EOTn2xVOlNDerQ9aeFpG3YzqYuN3N6/mLaLnyFyCF9fGlq3j6clnNmcvyV99nUbQxZ+2PovvIT9NWqVFjcQ7oZ6N/RwNLVNuZ8mYXTBVNus6DVFJ+nU3MdY/ub+GWrndc/zyI+2c2U2yxYzf6GSa9Vcfi0i1Xb7RUWazDGe2N3AwM6G/hqlY03Ps/C6VJ45A5rifF2bqHjtoEmVmy289qiTOKT3Txyh5WQS/GGW1WEWdV8tz6Xlz7NZPHKHFo30jF+hKX88XYzMKCTga9W23jzyywcTph6e8nl27m5jlv7m1i5xc5rS7KIT3Ez9XaLL14AvU7FodMufttWseULwVfGQ7sbGdjZwJercnh9SSYOl8LUO0NKjLdLCz23DTSzclMur36WQXxyHlPvDCkQr/pSvDZe/CSDRb9cind4+eJt31jDTb11rN7lYt63ds6nKTwwyoDVVHT6+jXU3DNEz46YPN75xs7B024mDjMQVcUbp14LtSPVrNnt4p1v7Sxe5aR6uIpJw/XlirOwYKvHwVQnIPi+c8H2uwEwuKuefh0MLF2by9yvsnG6FB4ee4WYm+kY08/Ir9vsvPFFNudSPDw81oLV5I/51v5G2jTS8ckKG/O+zibMouL+0eZyxdqhiYabeuv5fZeLd77J5Xyqh3+MMhbbTjSIUnPvEAPbj+Tx9je5HDydx6Thge1EnWoaVu9y8s43uSz6zUG1cDV/H2EoV5zi+iadN4HBYCAqKoratWvTqVMnnnnmGX788Ud+/fVXFi1aVOHHS1m1kWOz5pH045pSpa//j7vIPR3PkafeIDvmFGcWfEnid6to+OhEX5qGj03i7CdfE794OdlHTnLgoVm4bXbqTry1wuIe0MnAb9vs7D+Zx/lUD4t/ySHMqqZ9E12xeQZ1MbDlgJNtB50kpnlYujoXpwt6tvGfgK3f42D1DofvqupfNd5BXYz8utXOvhMuzqW4+WxFDuFWNR2aFR/v4K5GNu9zsPWAk4Q0D1+tsuFyQa+23njPp3r46IccDpx0kZru4WhcHj9uzKVtYx3qcl7YG9jZwK/b7Ow/kce5FA+LLpVvh6Yll+/m/U62Xirf//5+efmu2+3g9x0OTldw+XqPH1xlPKirkV+22Nl3vHC8xXdgBnczsmmfgy2X4v3yNxtOF/RqZ7gUr5uF32ez/8SleM/k8cMfNto1KV+8/dpr2X44j51H3SRdVPjuDycul0LXFkVPcOnbTsvROA8bovNITldYtdPFuVQPvdt409ud8NEKB/tOuklJV4hL8vD9ny7qVtcQbq24q9LBVo+DqU5A8H3ngu13A2BARwOrtts5cCnmJb/ZCLOqSox5YGc9Ww462XbIReIFD0vX5OLMU3wxG/Xe+Jf/kcuxs27OJnv4YlUujWtraVCzhF7hFdzQXse2w3nsjMnztxN5Ct1aFB1r33Y6jsa52RDtIvmiwm87XJxL8dC7rTe93QkLf7YXaiecFd5OiOuLdN5EkQYOHEj79u1Zvnx5ZYdCeI8OpK7bGrAtZfUmInp0AECl0xHWqTWpa7f4EygKqeu2EN6jY4XEUDXMe2X26Bn/SKTdCbEJbhrWKvrkTKOGujU0xBTIowAxcXk0KiZPRQm2eCMvxXskNjDe0+eLP7ZGDfWiNBwpFO+RWBeNahcfr8ngnVriKceMkvx4YwqV7+krlG+9qCLK98y1L18I3jI+Euvyx+tQvPEWc2xfvAXyKEDMFeNVlytejRpqV1NzLN4/9UkBjp/zUL9G0T+z9WuoOX4u8ET26FkP9WsUf2Jo1INHUSpsulmw1eNgqhOB8QbHdy7YfjcAqoZ5RyFj4grFnOgutpOVH/PRQjEfPZNHw0t56tXQoNWoOFpgv0kXPVzI9PjSXC2NGupUU3M83v+9V4Bj8W7qRxXfThyLL9xOuGlQTLsCFd9OVAa1VlVpr2AgnTdRrBYtWhAbG1vZYWCoEYkjKTVgmyMpFV1YCGqjAX1kBGqtFkdyWqE0aRiiIiskhlCL9wudaQucl55l8/jeK8xqUqFRq8jKKZQnp/g8FSXo4r10hTCz8LFtCqGWopspq9kb79XksZhUjOhlZFO0o3zxWoqJt4Syyi/fwv8mmSX8m1SkoCtjq7rIeDNzPIQVV8bm/DqsFJGn+HhH9jbyZznitRi9x83ODTxulk0h1Fx0rCFm1WX3zmTblICphwVpNTCyp57o424criKTXLVgq8fBVCe88QbZdy7IfjcAQs3qSzEW+u6Vog4XzpNpU3x5Qi1qXHkKuYWK1FvPy3bqnN9OXPa9zy3+ex9iVpFd+LPZFELMRceg1cDIHhXbTojrjyxYIoqlKAoqVfGNr8PhwOEIbNkMhv8f86y7ttRx9xD/3PYFy7MrMZorC7Z4u7XSM26oP973v7328Rr1MOU2KwlpHn7efHX3XXRtqWPcjQXK97vru3wh+Mq4Wys99wzz37Pz3jdZFR3eZYx6eOT2EBJS3fy8KfeaH6+s1Gr4243e6VzfbSz7ihTBVo+DrU4E23cu2H43ALq00HH3YP8NYh/8kFOJ0Vxf1GoYf6MBlQq+/aN8HfnKptIExwhYZZHOmyjWkSNHaNiwYbHvz549mxdfDFx0ZNasWXSt4DgcSakYagSOoBlqROLKyMJjd+BMvYgnLw9D9aqF0lTFkRg4Ylda+0+4iE3wnyjk3/gcalaTmeOfwhBi9q4EVpTsXAW3RyHEogYK5LGoycyp2OkMwRbvvhNOTp/3T0fRXmqJQi2F41UVH6/NG29o4XjNl1+1NujhkTtCsDsVPlyejafkRcguU2z5Fo7XcuXy9V4p9qfx/htV/PSWYCvjfSecnP60YLz+K+AF4w21qDl7hXhDCl1xD7WoySgi3qmX4v2gDPEWlGP3HrfgYgdwqZyKWfEtq4hRNmsRo3FqNfxtiJ4Iq5oPf7KX62p6sNXjYKsTwfadC7bfDYADJ13EFloR0hujKuB4panDhb9/oQX2kZnjQadVYTIQMPrmLZuyfQnz24nLvvemy7/3+bJsSsDCL5A/ah/4j53fcYsIUfHBj+VrJ8T1T6ZNiiKtW7eOAwcOcOutxS/4MXPmTDIyMgJeM2fOrPBY0rdFU3Vgj4BtkYN6cXFbNACKy0XGnkNEDuzpT6BSUXVAT9K37S3TMR0uSEn3+F4JaR4ysj00r++/3mHUQ4OamoAf64LcHjib5KZ5PX8eFdC8npZTxeQpq6CL11ko3lRvvC0KxduwVvHHdnsgLtEdkEcFtGig49Q5fx6jHh69IwS3W2HBd9nkleF++WLLt16heK9QvnGJ7oB/ExXQvH7Fly8EYRlfFq/bG28D/438vnjPlRxvywJ5VECL+pfH+9idoeR54P1vs8oUb+Hjnkvx0LSO/ydVBTSpreZMUtFn1GeSPDStHXjvTLM6as4k+YPJ77hVC1ez8Gc7tnJeTA+2ehxsdSLovnNB9ruRH3Nqusf3SiymDjeI0hS7OEpxMTerp/UtsBOX5CbPrQSkqR6hpkqousyL8Lg9EJ8S+L1XAU3raDiTWEI7UadQO1FXQ2yBdiW/4xYZ5r3AU952Qlz/ZORN4HA4SExMxO12k5SUxG+//cbs2bMZNWoU48ePLzafwWAo0zRJjcWMpUk939/mhnUIbd8C54UM7GcTaP7KNIy1a7Bv0gwAzny0lPoP3UOL2U9ydtF3RA7oQc3bh7Pzpsm+fZye9xntP32D9N0Hydi5nwZTJ6C1mDi7uOIWXFm/x8GwHgaSL7pJy/AwqreJjGwP+074L3FNvd3CvhMu/tjrndq0dpeD8cPNxCXlEZvgZmBnAwYdbDvon/oUalYRalFTLdx74lcrUo3DCReyPNjsZb9yGWzxrt1lZ3gvI8kXPaSmu7mpr4n0bA/Rx/zxPnanlejjLjbs8f46rdlpZ+JIC2cS3cQm5DGwixG9DrYc8MZr1MPUO0PQa+HTFTZMBu+VVPBe0VTKcWF43W4HI3oaSLnoJjXDw+g+3vKNPu6P99E7LEQfDyzfCSPMxCVeKt8u3vLdWrB8Ld7yrX6pfGtHqrG74EJm+crXe/zgKuO1O+2M6GUk+YK3jG/2xesvr8fvCmHvMac/3h12Jo6yEJuQR2xCHoO6GNHrYct+hy/eR+8MRa+DT37OqbB4/9iXx10D9cSneIhL8tC3nRa9TsXOGO8J7F0D9WTkKPy63VvWf+7P46GbDfRrr+XwGTcdm2ipU03Nt394P5v3hExPnWpqPvnFgVoFIZdmi9kc3hPBihBs9TiY6gQE33cu2H43ANbvdTCsu5GUix7SMj2M7GUkI1sJiPmR27wxb4z2xrRut5O/DTMRl+QmNtHNgE56DDoV2w5537c7vfV5bD8TOXYbdofC7QNNnDqfV64VMzfuc3HXQANnUzzEJbu5oZ0OvVbFjhhvrHcP8rYTv2zLbydcPHSzkX7ttRw546ZDU2878c0Gb11Rq2HCUAN1qqn5eKUDtUpVoJ1QKqyd+F9Ty7TJEknnTfDbb79Rs2ZNtFotERERtG/fnn//+99MmDDhmjykO6xzG3qu/dz3d6u5zwBwdsly9t83E0PNapjq1vS9nxsbz86bJtPqrZk0eGQ89vhEDkz+F6mrN/nSJHzzK/pqVWg2a6r3Id37jrBj1P04Cy1iUh6rdzjQ61SMu9Hse9jq+9/lBFzxjAzXYDH5N+w56iLEnMuo3iZCzN4Hgb7/bU7AFIk+HQyM7GX0/T3t7hAAPv/V5vsh+SvE+/t2BwadinuGmjEbVZyIz2P+14FXlKtFqAOmpu2O8cY7uo/R9zDb+V9n++KtV0PrW/HslclhAcd79oMM0jLL/sv2e375DjVjvlS+878NLN9q4RqsBcp391EX1kvlm/9w4/mFyrdvewOjevvL94lx3vJd/Ev5yheCr4xXbbej16u4d5jFF++/lwWOikRGqLEWuHl/V4wTq9n70OX8eP+9LMsfb5TWt2rfqw+GBxzvmQ/SScsoW7z7TrqxmlwM7Xrp4bupHj5e4SD70m1TEVZVwEn1mSQPX65xMqy7juHddaRmKCz6zUHiBW+iMIuKNg29cT5xR+BDoD740c7J8xVzVhZs9TiY6gQE33cu2H43ANbsdGLQqbh7iOlSzG4WLC8Uc1hgGe855sJqVjGyl9Ef8/LAmL/bYEdR4P7RZu9DumO9D+kuj+gTbixGJ0O76Qg16zmX6uE/K+y+diLcqkZR/P9+sYkevljjYHg3PSN66ElJV/js16Lbiel3BrYTC37IrbB2QlxfVIpSnms0Qlxupa55ZYdwVUa6jvLw3PTKDqPU3p8eHnTxPvjGxcoOo9Q+nBHBP+ekV3YYV+WDJ4OvjCe/fqGywyi1hU9XYfoHtsoO46rM/ac5qOrxB0+GB12dCLbvXDD9boD3t2PK2xmVHUapvTctjCcWBM8CKm89VP6Hul8rmzt2rrRj9967u9KOXVpyz5sQQgghhBBCBAHpvAkhhBBCCCFEEJB73oQQQgghhBDXBZVGxpZKIqUjhBBCCCGEEEFARt6EEEIIIYQQ1wV5VEDJZORNCCGEEEIIIYKAjLwJIYQQQgghrgsqtYy8lURG3oQQQgghhBAiCEjnTQghhBBCCCGCgEybFEIIIYQQQlwXZMGSksnImxBCCCGEEEIEARl5E0IIIYQQQlwXVDLyViIZeRNCCCGEEEKIICCdNyGEEEIIIYQIAjJtUgghhBBCCHFdUKllbKkkUjpCCCGEEEIIEQRk5E0IIYQQQghxXVCpZcGSkqgURVEqOwghhBBCCCGE2DOoT6Udu9PaTZV27NKSkTdR4R6em17ZIVyV96eHs1LXvLLDKLWRrqP8Ym5R2WGU2ghbDOOfS6jsMEptycs1efCNi5UdxlX5cEYEE19IquwwSm3RCzWY8HxiZYdRaotfiuKZTxyVHcZVee0+A/+ck17ZYZTaB0+GB9Vvx/vTw3lkXmZlh1Fq8x8L5bH52ZUdxlWZ94iVx98LnpjfmWINqjKe94i1skMoljyku2Ryz5sQQgghhBBCBAHpvAkhhBBCCCFEEJBpk0IIIYQQQojrgixYUjIZeRNCCCGEEEKIICAjb0IIIYQQQojrgjyku2RSOkIIIYQQQggRBKTzJoQQQgghhBBBQKZNCiGEEEIIIa4LsmBJyWTkTQghhBBCCCGCgIy8CSGEEEIIIa4Lao2MvJVERt6EEEIIIYQQIgjIyJsQQgghhBDiuiD3vJVMRt6EEEIIIYQQIghI500IIYQQQgghgoBMm/x/ZOvWrfTp04dhw4axcuXKyg7nikb2NtK7rR6TQcWp83ksXZ1LSrqnxDw3dNAzuKuRUIuKcyluvl6by5lEt+/93u30dGmpp251DSaDiunzM8h1KOWKs0qfLjR64j7COrXBWKs6u259iKSf1pac54ZutJr7NNZWTbGfTeDE7A+IX/J9QJr6/xxHo2n3YYiqRub+GA499jIZOw+UK1bfviePo+Fj92GoEUnWgRgOPfEKGbuK3rdKq6Xxk/+g9j23YKxVg5xjp4l5bi6pqzf50misFpo9P5Womwajr1aVzH1HOPzkq2TsPlgh8eYbO9BK/y5mzEY1x+OcLPopg6QL7hLzDOpmZkQfC2FWDWcTXXy+MpNT51wBaZrU1XHb4BAa19Hh8cCZRBdzFl/AlVf+mEf3MdKnvQGTQcXJc3n893cbyRdLrsf9Ohq4sbuBUIua+GQ3y9bYiE3wfk6zUcXoPkZaNtBRJVRNdq5C9DEnP/2Zi91Z/njHDLDQr5PJW8ZnnSxZkXXlMu5qYnhvC2FWNXGJeXzxayanz/kL7+mJEbRooA/Is36XjcUrssof70Ar/TubfHVi8c+ZpaoT+fGeTXLxxcqsgDrx9KQqtGwYGO+6nTYW/5xZrlh7tFTTt60WqwkSLyj8vDWP+NTi2582DdQM6awh3KoiLVPht51ujsUXXXdu7qWle0sNK7blseVQyZ//ao3qbaRPO39b/NXvV26L+3XUM+RSWxyf7GZZoba4Tzs9XVvqqVvD2xZP+3f52+J8wfLbkW9EDwO92uowGVScPu9m2Tr7FePt207HoC4GQs0qzqV6+HZ9LmeS/Hm0Ghhzg5HOzbRoNSqOnMnj6/V2smzli7lPWx0DO+kIMas4n+rhu40O4pKKj7V9Ew0jehioEqIiJd3Dz1ucHDnjL9d2jTX0aqOjbjUNFpOKOf+1cS615M9+NXq31TGwoz/e5RsdxCWXEG9jDcPz483wsKJQvG0baejdRked6hosRhVzlto4X4HxQvCVcWVQqWVsqSRSOv+PfPLJJzzyyCNs3LiR8+fPV3Y4JRrSzUD/jgaWrrYx58ssnC6YcpsFrab4PJ2a6xjb38QvW+28/nkW8cluptxmwWr2z43Wa1UcPu1i1XZ7hcWqsZjJ3H+Ug1NfLFV6U4M6dP1pIWkbtrOpy82cnr+YtgtfIXJIH1+amrcPp+WcmRx/5X02dRtD1v4Yuq/8BH21KuWOt+atw2nx+tOceO19NvcaS+aBo3T78eNi991s1qPUu+9ODj/xChs7jSTuk6V0Xvoeoe1b+tK0XfAykQN7EX3fDP7sehOpazfTbcVnGGpVL3e8+Ub2tTCkh4VFP2Xw4sJUHE6FJydUQVfCJabubYyMGx7KD+uzef6DVOIS83hyQhVCLP6mrUldHdPHV+HgCQcvLExj1sJU1my3oVTAedmN3Q0M6Gzgq1U23vg8C6dL4ZE7rCXW484tdNw20MSKzXZeW5RJfLKbR+6wEnKpHodbVYRZ1Xy3PpeXPs1k8cocWjfSMX6EpdzxjuhtZkh3M4tXZPHSxxdwOBWe+Ft4iWXcrbWBu4aG8MOGbGYtTONskovp90YQYgm8J2HDbhuPzk3xvZatzi5/vH0sDOluZtHPmbz0URoOp8L08RElx9vGyN3DQvhxQzazPkzlbGIe08dHBNQJgA27bEx9M9n3WvZ7+TqabRuqGdFdy9q9ebz/o4uECwqThumwGItOX6+6ijsHaNl1zMN7P7g4fMbDvYO11Ii4/F6PVvXV1K2uIiOnYjoTBd3YzcCATga+Wm3jzS+zcDhh6u0lt8Wdm+u4tb+JlVvsvLYki/gUN1Nvt/jqMIBep+LQaRe/bau4thiC67cDYHAXPf066lm21s5bS3NwuBQeGmMuOd5mWsbcYOTXbQ7e/CqHcyluHhpjwWryxzu2n5E2DbV8ujKXd7/NIcyq4v5RpnLF2rGpllv66vlth5O5S70dgAdvMgUct6AGUWrGDzWy7ZCLuUttHDjl5r6RRqKq+L9req23w/rzFke5YitKhyZabumjZ9VOJ28ts3E+zcPkK8T7t6FGth92MXeZjYOn3Px9RGC8Bp2KUwnXJl4IvjIW1yfpvP0/kZ2dzbJly/jnP//JyJEjWbRoUcD7P/30E02bNsVoNDJgwAAWL16MSqUiPT3dl2bTpk307dsXk8lE3bp1mTp1Kjk5Odck3gGdDPy2zc7+k3mcT/Ww+Jccwqxq2jfRFZtnUBcDWw442XbQSWKah6Wrc3G6oGcb/xX09XscrN7h8I1iVISUVRs5NmseST+uKVX6+v+4i9zT8Rx56g2yY05xZsGXJH63ioaPTvSlafjYJM5+8jXxi5eTfeQkBx6ahdtmp+7EW8sdb8OpEzn72TfEf76c7JiTHHxkFu5cO3XGF73v2uNu5uSchaSs2khubDxx/1lKyqqNNJw6CQC10UDULTcS86+5XNy8C9upOI6/+h62U3HUf+Ducsebb2hPCz/9kc2eGAdnk/JY+F064SEaOrUs5uwXGNbLwoZdNv7cm8v5lDwW/ZyBw6XQr5P/JGbc8FBWb8thxZ85nEvOIzHVzY6DdvIqoIoM6mLk16129p1wcS7FzWcrcgi3qunQrPh6PLirkc37HGw94CQhzcNXq2y4XNCrrbcen0/18NEPORw46SI13cPRuDx+3JhL28Y6ynsP9409zPy0MYe9Rx3EJ+Xxn+8ziQjR0KmFodg8Q3ta+GNPLpui7ZxPcbN4hbeTekPHwBNFp0shI9vje9krYNRiaE8zP2/MZu+lOvHR8gxvnWhRUp0w88fu/DrhZtHPmd54OwXG66jgePu00bDzqIc9xz0kpyv8uDkPZx50blb0WXqv1hqOx3v484CblAyFNXvcnE9T6NEyMH2oGUb31PL1hjw81+Bi+sDOBn7dZmf/iTzOpXhYdKkt7tC05LZ4834nWy+1xf/9/fK2eN1uB7/vcHC6AttiCK7fDoD+HfWs2u7gwClvvJ+vyiXMoqJd4+KvQAzoZGDrQRfbD7tIvOBh2Vo7zjyFnq29n9Goh56tdXy/0c6xeDdnkz18+budRrW0NIgqoVd4pVg76Nh6yMWOI3kkXVT4Zr0DZ55C91ZFx9qvg46YM27W73WRdFHh1+1O4lM89G3n/7fYdTSPVTtdHDtbseVaYrwti473hvY6YuK88SaXEO/v1yjeEmO+Tsu4sqjUqkp7BQPpvP0/8fXXX9OiRQuaN2/Ovffey6effopyaWjh9OnT3Hbbbdxyyy3s27ePyZMn8+yzzwbkP3nyJMOGDePWW29l//79LFu2jE2bNjFlypQKj7VqmJowq5qjZ/zTruxOiE1w07BW0Q2YRg11a2iIKZBHAWLi8mhUTJ7KEt6jA6nrtgZsS1m9iYgeHQBQ6XSEdWpN6tot/gSKQuq6LYT36FiuY6t0OkI7tiZtfeF9byWie4ci86j1etz2wCt27lw7Eb06e/ep1aLWavEUlaZn53LFm69ahIbwEA2HTvqPketQOBXvpEldfZF5NBpoUEvHoVP+PIoCh086fHlCLGqa1NWTme3huQeqMn9GdZ75exWa1Sv+RK+0Ii/V4yOxgfX49Pni66RGDfWiNBwpVI+PxLpoVLv4emwyqLA7FTzl6F/kl/HhU/65l7kOhZPxLhrXKamMtQF5FAUOnXLSuE5gGfZoa2L+U9V45aGq3DbIir6cReyvE4Hxnjrnokndoneu0UCDmrqAPIoCh046aVIo3p7tTLw3ozqvPlyV2weXL16NGmpFqjhx3t+7UoCT5z3Uq170yUC96mpOnA/8Bz0eH5heBdzeT8efB9wkp1f8qFt+HY4p1BafvkJbXC+qiLb4zLVvi4Ptt6NqqIowi5qjZwvFm+imYc2iO1kaNdStHphHAY7G5dHgUp561TVoNaqANEkXPVzI9BS73yvRqKFOdXVAB0ABjp11F9shbBCluazDEBPnpkHNa39qWVy8x+Pd1L+KeI/Guakf9b85FQ62MhbXL/nX/3/ik08+4d577wVg2LBhZGRk8McffwCwcOFCmjdvzpw5c2jevDl33XUXEydODMg/e/Zs7rnnHh577DGaNm1Kr169+Pe//82SJUuw2yt2GknopelWmbbAy8hZNo/vvcKsJhUatYqsnEJ5corPU1kMNSJxJKUGbHMkpaILC0FtNKCPjECt1eJITiuUJg1DVGS5ju3bd1KhfSenYqhR9L5T12yi4SMTMTeuDyoVkQN7EXXzEAxR1QBwZ+dwcdtemjz9EIaa1UGtptZdo4no3sGXprzCrN6mKCM78N83I8dDuLXoZirErEajUZFZOE+2x7e/6hHeH8QxA0PYsMvG3CUXiE1wMWNSVWpUKfsVaoBQ66V6XLhO2hRCLUXHbDV76/HV5LGYVIzoZWRTdPmmxBRXxpk5/vIqLMSsRqNWFZPHX35bD9j5aHkGbyy6yMo/c+jV3sg/xoZdm3iz3SXHq1GRkVO4HrkJC/Hn2bY/l4XfpfP6ZxdY8WcOvdqbmHxreJljNRtBo1aRnRvYwcrOVQgpZjqU1cTl6e1KwNTDG9pp8ChU+D1u+Xxt8VW0q/ltceH2O7OE9ruiBNtvR/53OqvQdNcrfd+95Vt8nhCLCleeQm6hJiHLplw2nbm08o9b+J65LJtCqLnofYaYi0rvKTZ9RfLFmxsc8ULwlbG4fl1fQxaiTI4ePcqOHTv4/nvvghharZY777yTTz75hP79+3P06FG6du0akKdbt24Bf+/bt4/9+/fz5Zdf+rYpioLH4+H06dO0bNmSwhwOBw5H4K+HwXD59KuuLXXcPcTs+3vB8vLfCyMqzuEnX6XN+y/TL/oXFEXBduos8Z8vD5hmue++p2j74WsMOrkRT14emdGHOf/1SsI6ti7TMXu2MzLpJv/J/VtfXCz35yiK6tLv27qd3ml0AGcSsmjVyMANnc18s7r09zl1a6Vn3FB/PX7/22tfj416mHKblYQ0Dz9vvrqLKD3bGpkwOsT39ztfpldwdH5/7M71/X98ch7p2W5mTKhCtYhsUi6WruPRs52RiaNDfX+//eW1qRMAGwrHm+Xh6UlVqB6hIbmU8V5rtaqq6NVaw3s/VsAqNZd0balj3I0F2uLvru+2ONh+O7o013LXIP/03A9/tFViNEIEr2CZvlhZpPP2/8Ann3xCXl4etWrV8m1TFAWDwcB7771Xqn1kZ2czefJkpk6detl79erVKzLP7NmzefHFwEU8Zs2aBdbHArbtP+EiNsF/kpx/o3aoWU1mjv9EKcTsXXmvyPhyFdwe5dKiAwXyWNRkXoOb+MvDkXT5KJehRiSujCw8dgfO1It48vIwVK9aKE1VHImBI3ZXy7fvGoX2Xf3y0cCCefbcOQW1QY+uajiO88k0f/kJbKfP+tLYTp9l+9C/oTGb0IZacSSm0GHJ29hizxa5zyvZG+PgZLw/Hp3W21CHWdUBIy1hFjVnEoteEjLL5sHtVggtNApTcB/pWd7/nk8J3EdCSh5Vw65u5G3fCSenz/v3o73UeoZaCtdjVfH12Oatx6GF67H58tE4gx4euSMEu1Phw+XZV32/096jDk4WWGEx/3tXuIxDLd4VJIuSZfPg9iiXjXSFWtRkZBffyTkZ7z1ujSqaUnfevHXCP2Ks0xRdJ0KtGuISXJfl98XrVggrNKoRZtGQkVV8AebHW71q2TpvNju4PcqlRQf87ZHVdPnIQL7sXC5bpMBq9F9lbxClxmKCp+70T2nVqFWM6Kahd2sNc76++k5dsW1x4TpsuXJbHGoOrMPe9rxi2+Jg++04cCqP2ER/B1N7qQ6HWAJH0kLM3hUvi5LjK9/AulGwjcjKUdBpVZgMBIy+hZhVl43ylVb+cUOKOm4xK1hm2YpKry42fUXyxWsKjngh+MpYXL9k2mSQy8vLY8mSJbz11ltER0f7Xvv27aNWrVr897//pXnz5uzatSsg386dOwP+7tSpE4cPH6ZJkyaXvfT6ou+HmTlzJhkZGQGvmTNnXpbO4YKUdI/vlZDmXSCgeX3/tQOjHhrU1AScHBfk9sDZJDfN6/nzqIDm9bScKiZPZUnfFk3VgT0CtkUO6sXFbdEAKC4XGXsOETmwpz+BSkXVAT1J37a3XMdWXC4y9x6iav/C++7Bxe3RJeb1OJw4ziej0mqJuuVGklauuyyN25aLIzEFbXgo1Qb3IWnF5WlKw+5USL7g9r3OJeeRnuWmVSP/yK3RoKJRHT0nzhZ9kup2Q+x5F60L5FGpoFUjgy9ParqbC5luakYGdtSiIrWkpl/dSbrDWagep3rrcYtC9bhhreLrpNsDcYnugDwqoEUDHacKLL1v1MOjd4Tgdiss+C67TIurFC7j8ylubxkXWCLfaFDRuI6Ok/EllXFeQB5vGet9HZ6i1Ivy3kCWnl36HudldSIlv04Extuoto4TZ4s+ttsNsQmugDz58Z4oId76Nb3/HiV18Eri9sD5VIUmBe5DUQGNa6mJSy76JCsu2UPjWoEnZU1q+9PvPeFm/vcu3vvB/8rIUfjzgJvPVhX/WUpSbFtcr1AdvkJbHJfoDmi/VUDz+hXfFgfbb4fDBakZiu+VeMFDRo6H5nULxRulKXYhF7cHziZ7aFY3MN5mdbW+xVTikt3kuZWANNUj1FQJVZd5gRi3B+KTPTSt428rvcfVEJtY9D5jE900rRvYtjavqyE24dovU58fb7O6gfE2raMJeAREQbGJbprVCYy3WV0NZxL/N8vqB1sZVyZZsKRkMvIW5FasWMHFixe57777CAsLvMfk1ltv5ZNPPuHrr7/m7bffZsaMGdx3331ER0f7VqNUXZpXNmPGDHr06MGUKVO4//77sVgsHD58mNWrVxc7emcwGIqcJgm5RWwLtH6Pg2E9DCRfdJOW4WFUbxMZ2R72nfCflEy93cK+Ey7+2Os9sVy7y8H44WbikvKITXAzsLMBgw62HfSfeIaaVYRa1FQL955E1YpU43DChSwPNnvZrlRpLGYsTfyjj+aGdQht3wLnhQzsZxNo/so0jLVrsG/SDADOfLSU+g/dQ4vZT3J20XdEDuhBzduHs/Omyb59nJ73Ge0/fYP03QfJ2LmfBlMnoLWYOLt4eZliLOj0vxfR7j+vk7HnIOm79tNwygS0ZhPxn3v33e4/r+M4n8zRWW8DENa1HcZaNcjcdwRjrRo0fXYKKrWaU29/7Ntn5OA+oIKcY6exNK5Pi9eeJPvYKeKXlD/efKu25nBzfytJF/JIuejm1kEhpGe52XPEP11wxsQq7D5iZ81273Sk37bk8MDYcE6fc3HqnIsbe5ox6FVs3OOvg79uymbMwBDiEvM4k+Cib0cTNSO1zP9v+aflrd1lZ3gvI8kXPaSmu7mpr4n0bA/Rx/z1+LE7rUQfd7Fhj/cS+ZqddiaOtHAm0U1sQh4DuxjR62DLAW89Nuph6p0h6LXw6QobJoP3Cjt4r8KW5xEHv2+zMfoGC4kX3KRedDN2oIWLWW72xPgv3z81PpzdMQ7W7vCW4aqtOTwwJozT5y+VcQ8zBp2KP/d6/12qRWjo2dbIvuMOcnI91KmhY9xQKzGxTuKTyndyvGqrjZv6WUlKc5Ny0c3YQVZvnYjx14mnJkaw57CDNTvy64TNH2+8i6E9LRj0Kv68VCeqR2jo0c7I/mMOsnMV6tbQMm54CDGxTs6WI95NB93cdoOW+FQ18SkKvdto0GthzzHvSdltN2jJtCn8vsv795ZDbh4YqaNPGw1Hz3po10hN7UgVP2z2xpDr4LLnjHk8kJXr7SBUlHW7HYzoaSDlopvUDA+j+3jb4ujj/jr86B0Woo8HtsUTRpiJS7zUFnfxtsVbC7bFFm9bXP1SW1w7Uo3dBRcyy94WQ3D9dgBs2OtkaDcDyekeb7y9DGTkKOw/6a9rU8aa2X/SxcZ9Lt9nvPdGE3FJbs4kuunfSY9Bp2LbYe/7didsPeRi7A1GbPZc7E6F2/obOXU+r9hOQKlijXYxbrCBs8ke4pLc9OugR69Vsf2wN9Z7hhjIyFZYsdVbbn9Eu3hkrIn+HXUcjs2jU1MddaurWbbO356YDRARovbdX1g9wlu+mTal3M+kKxjvmSQ3/dpfiveIN95xg71lvfJSvBv3uZgyxkT/Dt54Ozbzxvv1+sB4w0PUhOXHe6k+ZFVAvIVjDoYyFtcn6bwFuU8++YTBgwdf1nEDb+ftzTffJCsri2+//ZYnnniCd999l549e/Lss8/yz3/+09f5ateuHX/88QfPPvssffv2RVEUGjduzJ133nlN4l69w4Fep2LcjWbfw43f/y4nYIQhMlyDxeTfsOeoixBzLqN6m3zTTt7/NiegcerTwcDIXv5lxKfd7b3n5/NfbWw7VLZ7R8I6t6Hn2s99f7ea+wwAZ5csZ/99MzHUrIapbk3f+7mx8ey8aTKt3ppJg0fGY49P5MDkfwU89Drhm1/RV6tCs1lTvQ/p3neEHaPux1loEZOySPju0r6fewR9jWpk7T/Cjlse8O3bVLcWBZct1BgMNHv+UcwN6+LOtpG86g/23T+DvIwC05VCrTR/aRrG2lG4LqaT+MNqjr3wDkpexV25XvlnDgadikk3hfkeyDx3SeCDtKtX0RBi9o9ubD9oJ8SSydhBVsIuTaebs+RCwBTEVVtt6LQqxg0PxWpSEZeYx5uL0irk3qbftzsw6FTcM9SM2ajiRHwe878OHCmrFqEOmB63O8Zbj0f3Mfoe0j3/62xfPa5XQ+tbBe+VyYHf62c/yCAts+xXXH/ZbMOgVzFpdAhmo5pjcU7e+iK9UBlrCTH7T4R3HHIQYslizACr7yHdb31x0VfGbrdCq0Z6b6dOryItw82uIw5+2lj+x4z8sikHg17FxJtC/XXi84uB8UZosVoKxHvQTqhZzdiBIZfidTH3c3+8eW6F1o0NDO1pQa9TcSHTzc7Ddn76o3zxHjjtwWLMY3BnLSEmSEhT+GyVi+xL/cxwqyqg4x2XrLBsfR5DOmu4sYuGtEyFL9Z4lw//X/o9vy0easZ8qS2e/21gW1wtXIO1QFu8+6gL66W2OP8h3fMLtcV92xsY1dvfFj8xztsWL/6l7G0xBNdvB8CaXU70WhV3DzJeeqi4mwXf2wrFq8Zi8rdre47lYTXZGdnT4I031cOCH2wB8S7/w46iGLlvlPeZcTFn8li2rnyLi+09nofFpGJ4d/2lh5l7WPhTrm9hnQirGkXxtz+xiR6W/G5nZA8Do3rqSUn38MlKO4kX/GnaNNQyboi/XCcM8/7/b9ud/LajfPdzRp/Iw2pSMaxbgXh/LhBvyOXxfv67nRE9DIy8FO+nvwTG27qhlnGDi4h3h5NV5YwXgq+MK4s8pLtkKkWpiEfVimDz6quv8uGHH3L2bNnuWSrJw3PTK3yf19L708NZqWte2WGU2kjXUX4xt6jsMEpthC2G8c8lVHYYpbbk5Zo8+Ma1WyzjWvhwRgQTX0iq7DBKbdELNZjwfGJlh1Fqi1+K4plPgusBuK/dZ+Cfc9IrO4xS++DJ8KD67Xh/ejiPzMus7DBKbf5joTw2//pe8KWweY9Yefy94In5nSnWoCrjeY9YKzuEYh2/Z0SlHbvpl79U2rFLS0be/iIWLFhA165dqVq1Kps3b2bOnDnX5BluQgghhBBCiGtDOm9/EcePH+eVV17hwoUL1KtXjyeeeKLIxUWEEEIIIYSoLGpNcCwcUlmk8/YX8c477/DOO+9UdhhCCCGEEEKIMpLOmxBCCCGEEOK6ECxL9lcWWc5FCCGEEEIIIYKAdN6EEEIIIYQQIgjItEkhhBBCCCHEdUGe81YyKR0hhBBCCCGECAIy8iaEEEIIIYS4LsiCJSWTkTchhBBCCCGECAIy8iaEEEIIIYS4LsjIW8lk5E0IIYQQQgghgoB03oQQQgghhBAiCMi0SSGEEEIIIcR1QR4VUDIpHSGEEEIIIYQIAjLyJoQQQgghhLguyIIlJZORNyGEEEIIIYQIAipFUZTKDkIIIYQQQgghzj50a6Udu+6C7yrt2KUl0yZFhXt4bnplh3BV3p8ezi/mFpUdRqmNsMWwUte8ssMotZGuo0x8Iamywyi1RS/U4ME3LlZ2GFflwxkRTHg+sbLDKLXFL0UFXbyPv5dd2WFclXemWIOqLX5/enjQxfvIvMzKDqPU5j8WymPzg6sOz3vEGlTfu3emWIOqjOc9Yq3sEIolC5aUTEpHCCGEEEIIIYKAjLwJIYQQQgghrg8qWbCkJDLyJoQQQgghhBBBQEbehBBCCCGEENcFeVRAyWTkTQghhBBCCCGCgHTehBBCCCGEECIIyLRJIYQQQgghxHVBHhVQMikdIYQQQgghhAgCMvImhBBCCCGEuC7IgiUlk5E3IYQQQgghhAgC0nkTQgghhBBCiKv0/vvv06BBA4xGI927d2fHjh0lpp83bx7NmzfHZDJRt25dHn/8cex2+1UdU6ZNCiGEEEIIIa4LwbJgybJly5g2bRoffvgh3bt3Z968eQwdOpSjR49SvXr1y9J/9dVXPP3003z66af06tWLY8eOMXHiRFQqFW+//XapjxscpSOEEEIIIYQQ15DD4SAzMzPg5XA4ikz79ttv88ADDzBp0iRatWrFhx9+iNls5tNPPy0y/ZYtW+jduzfjxo2jQYMG3Hjjjdx9991XHK0rTDpv16mJEydyyy23VHYYQgghhBBC/M+o1KpKe82ePZuwsLCA1+zZsy+L0el0snv3bgYPHuzbplarGTx4MFu3bi3yc/Xq1Yvdu3f7OmunTp3il19+YcSIEVdVPn/paZMTJ05k8eLFl20fOnQov/32WyVE5Pfuu++iKEqlxnCtjextpHdbPSaDilPn81i6OpeUdE+JeW7ooGdwVyOhFhXnUtx8vTaXM4lu3/u92+np0lJP3eoaTAYV0+dnkOsofznWnzyOho/dh6FGJFkHYjj0xCtk7DpQZFqVVkvjJ/9B7XtuwVirBjnHThPz3FxSV2/ypdFYLTR7fipRNw1GX60qmfuOcPjJV8nYfbDcsVbp04VGT9xHWKc2GGtVZ9etD5H009qS89zQjVZzn8baqin2swmcmP0B8Uu+DyyDf46j0bT7MERVI3N/DIcee5mMnUWXQVmNGWChXycTZqOa42edLFmRRdIFd4l5BnU1Mby3hTCrmrjEPL74NZPT5/J87z89MYIWDfQBedbvsrF4RVaFxDy6j5E+7Q2YDCpOnsvjv7/bSL5Ycj3u19HAjd0NhFrUxCe7WbbGRmyC93OajSpG9zHSsoGOKqFqsnMVoo85+enPXOzO8sc7ZqCV/p0vlXGck8U/Z165jLuZfWV8NsnFFyuzOHXO5Xv/6UlVaNkwsIzX7bSx+OfMv1S8vdvqGNhRR4hZxflUD8s3OohLLr4utG+sYXgPA1VCVKRkeFixxcmRM/7P1raRht5tdNSprsFiVDFnqY3zqSXXrbIIprY4GOMd0cNAr7Y6TAYVp8+7WbbOfsV4+7bTMaiLgVCzinOpHr5dn8uZJH8erQbG3GCkczMtWo2KI2fy+Hq9nSxb+WLu01bHwE7+OvzdRgdxSSXU4SYaRuTX4XQPPxeqw+0aa+jVRkfdahosJhVz/mvjXAXW4WD8zgVbGf/VzJw5k2nTpgVsMxgMl6VLTU3F7XZTo0aNgO01atQgJiamyH2PGzeO1NRU+vTpg6Io5OXl8eCDD/LMM89cVYx/+ZG3YcOGkZCQEPD673//W2nxuN1uPB4PYWFhhIeHV1oc19qQbgb6dzSwdLWNOV9m4XTBlNssaDXF5+nUXMfY/iZ+2Wrn9c+ziE92M+U2C1azf0lZvVbF4dMuVm2/ups/S1Lz1uG0eP1pTrz2Ppt7jSXzwFG6/fgx+mpVikzfbNaj1LvvTg4/8QobO40k7pOldF76HqHtW/rStF3wMpEDexF93wz+7HoTqWs3023FZxhqXT5H+mppLGYy9x/l4NQXS5Xe1KAOXX9aSNqG7WzqcjOn5y+m7cJXiBzSx5em5u3DaTlnJsdfeZ9N3caQtT+G7is/KbYMymJEbzNDuptZvCKLlz6+gMOp8MTfwtGVcImpW2sDdw0N4YcN2cxamMbZJBfT740gxBK4zPCG3TYenZviey1bnV0hMd/Y3cCAzga+WmXjjc+zcLoUHrnDWmI97txCx20DTazYbOe1RZnEJ7t55A4rIZfqcbhVRZhVzXfrc3np00wWr8yhdSMd40dYyh3viD4WhnQ3s+jnTF76KA2HU2H6+IiSy7iNkbuHhfDjhmxmfZjK2cQ8po+PIMQS+POxYZeNqW8m+17Lfi9/5ziY4u3QRMstffSs2unkrWU2zqd5mHyTCaup6CWvG0Sp+dtQI9sPu5i7zMbBU27+PsJIVBV/nAadilMJbn7eUvSUnYoQTG1xMMY7uIuefh31LFtr562lOThcCg+NMZccbzMtY24w8us2B29+lcO5FDcPjbEE1KWx/Yy0aajl05W5vPttDmFWFfePMpUr1o5NtdzSV89vO5zMXertADx4hTo8fqiRbYdczF1q48ApN/eNDKzDeq23w3ot6nAwfueCrYz/igwGA6GhoQGvojpvZbFhwwZee+01FixYwJ49e1i+fDkrV67k5Zdfvqr9/OU7bwaDgaioqIBXREQEGzZsQK/X8+eff/rSvvnmm1SvXp2kpCQA+vfvz5QpU5gyZQphYWFERkby3HPPBYyYORwOpk+fTu3atbFYLHTv3p0NGzb43l+0aBHh4eH89NNPtGrVCoPBQFxc3GXTJj0eD7Nnz6Zhw4aYTCbat2/Pt99+63t/w4YNqFQq1q5dS5cuXTCbzfTq1YujR48GfN6ff/6Zrl27YjQaiYyMZMyYMaWOtSIN6GTgt2129p/M43yqh8W/5BBmVdO+ia7YPIO6GNhywMm2g04S0zwsXZ2L0wU92/ivoK/f42D1DodvFKMiNJw6kbOffUP858vJjjnJwUdm4c61U2f8rUWmrz3uZk7OWUjKqo3kxsYT95+lpKzaSMOpkwBQGw1E3XIjMf+ay8XNu7CdiuP4q+9hOxVH/QfuLne8Kas2cmzWPJJ+XFOq9PX/cRe5p+M58tQbZMec4syCL0n8bhUNH53oL4PHJnH2k6+JX7yc7CMnOfDQLNw2O3UnFl0GZXFjDzM/bcxh71EH8Ul5/Of7TCJCNHRqUXyjObSnhT/25LIp2s75FDeLV3g7UDd0DDyJcboUMrI9vpe9gq6oD+pi5NetdvadcHEuxc1nK3IIt6rp0Kz4ejy4q5HN+xxsPeAkIc3DV6tsuFzQq623Hp9P9fDRDzkcOOkiNd3D0bg8ftyYS9vGOsr76JuhPc38vDGbvTEOzibl8dHyDMJDNHRqYSw2z7BeZv7YbePPvbmcT3Gz6OdMbxl3CixjxzUo42CKt38HHVsPudhxJI+kiwrfrHfgzFPo3rLonuYN7XXExLlZv9dF8kWFX7c7iU/x0Ledv+7sOprH7ztdHDtbce1ZYcHUFgdjvP076lm13cGBU954P1+VS5hFRbvGxV+BGNDJwNaDLrYfdpF4wcOytXaceQo9W3s/o1EPPVvr+H6jnWPxbs4me/jydzuNamlpEFVCr/BKsRZXh1sVHWu/DjpiznjrcFIJdXjVNarDwfidC7YyriyVOW2ytCIjI9FoNL4+Qb6kpCSioqKKzPPcc8/xt7/9jfvvv5+2bdsyZswYXnvtNWbPno3HU/rR0r985604/fv357HHHuNvf/sbGRkZ7N27l+eee46PP/44YIh08eLFaLVaduzYwbvvvsvbb7/Nxx9/7Ht/ypQpbN26laVLl7J//35uv/12hg0bxvHjx31pbDYbb7zxBh9//DGHDh0qcoWa2bNns2TJEj788EMOHTrE448/zr333ssff/wRkO7ZZ5/lrbfeYteuXWi1Wv7+97/73lu5ciVjxoxhxIgR7N27l7Vr19KtW7erirUiVA1TE2ZVc/SMf2qb3QmxCW4a1iq6AdOooW4NDTEF8ihATFwejYrJUxFUOh2hHVuTtn6Lf6OikLpuKxHdOxSZR63X47YHXgFz59qJ6NXZu0+tFrVWi6eoND07V2j8pRHeowOp6wLnZ6es3kREjw6AtwzCOrUmdW3hMthCeI+OFRJDtQgN4SEaDp/yzwvMdSicjHfRuI6+yDwaDTSopQ3Ioyhw6JSTxnUCT+R6tDUx/6lqvPJQVW4bZEVf/HleqUVeqsdHYgPr8enzxddJjRrqRWk4UqgeH4l10ah28fXYZFBhdyp4ytG/yC/jQycDy/jUORdN6hZdIBoNNKipC8ijKHDopJMmhcq4ZzsT782ozqsPV+X2weUv42CKV6OGOtXVASdPCnA83k39Yk6mG0RpLjvZOhrnpn7U/+5nOZja4qCMN1RFmEXN0bOF4k1007Bm0fVCo4a61QPzKMDRuDwaXMpTr7oGrUYVkCbpoocLmZ5i93slxdXhY2fdxXYIi6rDMXFuGtS89nU4GL9zwVbGomR6vZ7OnTuzdq3/thSPx8PatWvp2bNnkXlsNhvqQitpajTef/uruVXqL33PG8CKFSuwWq0B25555hmeeeYZXnnlFVavXs0//vEPDh48yIQJE7jpppsC0tatW5d33nkHlUpF8+bNOXDgAO+88w4PPPAAcXFxfPbZZ8TFxVGrVi0Apk+fzm+//cZnn33Ga6+9BoDL5WLBggW0b9++yBgdDgevvfYaa9as8VWIRo0asWnTJhYuXEi/fv18aV999VXf308//TQjR47EbrdjNBp59dVXueuuu3jxRf90uvxjljbWihB6aUpbpi3wKkOWzeN7rzCrSYVGrSIrp1CeHA9RVa5dNdZHRqDWanEkpQVsdySnYm3esMg8qWs20fCRiVzY5B1VixzQk6ibh3jPLAF3dg4Xt+2lydMPkX30FI6kVGrdMZKI7h3IORl3zT5LcQw1InEkpQZscySlogsLQW00oIsI85ZBcqEySErD0rxRhcQQZvU2ZhnZgf++mTke33uFhZjVaNSqIvPUjPR3+LYesJOW7iY9y0PdGlpuH2IlKlLDe8syyhVzqFXlO15BWTaFUEvRMVvN3npcVJ6oqkX/eFtMKkb0MrIpunxTYoot42x3yWWsUZFRKN6MHDc1q/nLeNv+XFIz3KRneqgbpeWOISFERWqZvzT9LxGvJb99yg388c2yKVQPLy5W1WX3J2XZPISa/3c/y8HUFkMwxqu+dKzL60VxbUR+Xcq8rG4o1KjibSNCLCpceQq5hZqELJty2ZTx0vLV4aKOG3H91eFg/M4FWxlXqiB5VMC0adOYMGECXbp0oVu3bsybN4+cnBwmTfLOtBo/fjy1a9f2LXgyevRo3n77bTp27Ej37t05ceIEzz33HKNHj/Z14krj//m//pUNGDCADz74IGBblSre+3j0ej1ffvkl7dq1o379+rzzzjuX5e/Rowcqlb+x7NmzJ2+99RZut5sDBw7gdrtp1qxZQB6Hw0HVqlV9f+v1etq1a1dsjCdOnMBmszFkyJCA7U6nk44dA0c+Cu6nZs2aACQnJ1OvXj2io6N54IEHijxGaWMt/F7h5VOLmhfctaWOu4eYfX8vWF4x9xtdrw4/+Spt3n+ZftG/oCgKtlNnif98ecA0y333PUXbD19j0MmNePLyyIw+zPmvVxLWsXUlRv6/07OtkQmjQ3x/v/Nl+jU71h+7c33/H5+cR3q2mxkTqlAtIpuUi6WfZtKtlZ5xQ/31+P1vr309Nuphym1WEtI8/Lz56u7F6dnOyMTRob6/3/7yYkWH57OhcBlneXh6UhWqR2hILmUZB1u8wSjY2uJgi7dLcy13DfJPz/3wR1slRiOEuNbuvPNOUlJSeP7550lMTKRDhw789ttvvhl6cXFxASNt//rXv1CpVPzrX//i3LlzVKtWjdGjR/Pqq69e1XH/8p03i8VCkyZNin1/yxbvVLELFy5w4cIFLJbSLxqQnZ2NRqNh9+7dl/WoC472mUymgA5gUfsB77TH2rVrB7xXuLOk0/nn/uTvM38erclU/M3MpY21oNmzZweM4gHMmjULrI8FbNt/wkVsgn8xgPwbtUPNajJz/CdKIWbvyntFxper4PYolxYdKJDHoiYzpxxzya7AmXoRT14ehhqBHVhD9ctHqwrm2XPnFNQGPbqq4TjOJ9P85SewnT7rS2M7fZbtQ/+GxmxCG2rFkZhChyVvY4s9W+Q+ryVHUiqGGpEB2ww1InFlZOGxO/xlUL1QGdSoiiOx6DK4kr1HHZwssPpffp0Is6oDRlpCLd4VJIuSZfPg9iiXjcKEWtRkZBd/An4y3nvcGlU0V9V523fCyenz/li0Wv/xAuuxqvh6bPPW49DC9dh8+WicQQ+P3BGC3anw4fJsrmI6PAB7YxycjPePluo03vbgsjK2aohLcF2WHy6VsVshrNAoQZhFQ0ZW8QHll3H1qqXvDAVbvAXl5LdPhRYdCDFfPoLij1XxLVLjT68uNn1FCLa2ONjiPXAqj9hEfwdTe6kOh1gC60GI2bviZVHy61LoZXXD30Zk5SjotCpMBgJG30LMqstG+UrLV4eLOu51VIfzBct3rqBgK+PKVNI58fUmf+2LohReN0Kr1TJr1izvuXI5BMe4ZCU5efIkjz/+OP/5z3/o3r07EyZMuOyGwu3btwf8vW3bNpo2bYpGo6Fjx4643W6Sk5Np0qRJwKu4mxmLUnAhk8L7qVu3bqn3065du4C5uQWVJdaZM2eSkZER8Jo5c+Zl6RwuSEn3+F4Jad4FAprX9187MOqhQU1NwMlxQW4PnE1y07yeP48KaF5Py6li8lQExeUic+8hqvYvMH9ZpaLqgB5c3B5dYl6Pw4njfDIqrZaoW24kaeW6y9K4bbk4ElPQhodSbXAfklZcnuZaS98WTdWBPQK2RQ7qxcVt0YC3DDL2HCJyYOEy6En6tr1lOqbdqZB8we17nU9xk57lplWB5duNBhWN6+g4GV/0+vhuN8SezwvIo1JBq0Z638l4UepFeS9wpGdfXW/I4SxUj1O99bhFoXrcsFbxddLtgbhEd0AeFdCigY5TBR5vYNTDo3eE4HYrLPgum7wyDAYVLuNzKXneMm4UWMaNaus4cbbo8nK7ITbBFZAnv4xPlFDG9Wt6P19JHaZgjzfguB6IT/bQrK7/wpcKaFpHE7AcfUGxiW6a1Qm8UNasroYzidduie9ga4uDMd7UDMX3SrzgISPHQ/O6heKN0nC6mIVR3B44m+yhWd3AeJvV1foWU4lLdpPnVgLSVI9QUyVUXex+ryS/DjetE1iHm9XVEFtCHW5aN7AON6+rITbh2i9THyzfuYKCrYzF9esvP/LmcDhITEwM2KbVaomIiODee+9l6NChTJo0iWHDhtG2bVveeustnnzySV/auLg4pk2bxuTJk9mzZw/z58/nrbfeAqBZs2bcc889jB8/nrfeeouOHTuSkpLC2rVradeuHSNHjixVjCEhIUyfPp3HH38cj8dDnz59yMjIYPPmzYSGhjJhwoRS7WfWrFkMGjSIxo0bc9ddd5GXl8cvv/zCjBkzyhSrwWAoZvnU3CK2BVq/x8GwHgaSL7pJy/AwqreJjGwP+074T7Cm3m5h3wkXf+z1nryv3eVg/HAzcUl5xCa4GdjZgEEH2w76T+5DzSpCLWqqXZrzXitSjcMJF7I82Oxlu1J1+t+LaPef18nYc5D0XftpOGUCWrOJ+M+XA9DuP6/jOJ/M0VlvAxDWtR3GWjXI3HcEY60aNH12Ciq1mlNv+xeyiRzcB1SQc+w0lsb1afHak2QfO0X8kuVlirEgjcWMpUk939/mhnUIbd8C54UM7GcTaP7KNIy1a7Bv0gwAzny0lPoP3UOL2U9ydtF3RA7oQc3bh7Pzpsn+Mpj3Ge0/fYP03QfJ2LmfBlMnoLWYOLu4/PHm+32bjdE3WEi84Cb1opuxAy1czHKzJ8Z/afmp8eHsjnGwdoe3jq3amsMDY8I4fd7FqXMubuxhxqBT8ede7xTDahEaerY1su+4g5xcD3Vq6Bg31EpMrJP4pPKfuK3dZWd4LyPJFz2kpru5qa+J9GwP0cf89fixO61EH3exYY/3c6zZaWfiSAtnEt3EJuQxsIsRvQ62HPDWY6Mept4Zgl4Ln66wYTJ4r7CD9ypseR7/uGqrjZv6WUlKc5Ny0c3YQVbSs9zsifFPyXxqYgR7DjtYs8M75eu3LTZ/Gce7GNrTgkGv4s893n+D6hEaerQzsv+Yg+xchbo1tIwbHkJMrJOz5SzjYIp3Q7SLcYMNnE32cCbJTb/2evRaFduPePc5brCBjByFlVu9/84b97mYMsZE/w46Dsfm0bGZjrrV1Xy93l/fzQYID1ETduk+pvx7ebJsSrmf55UvmNriYIx3w14nQ7sZSE73eOPt5a0H+0/669qUsWb2n3SxcZ/L9xnvvdFEXJKbM4lu+nfSY9Cp2HbY+77dCVsPuRh7gxGbPRe7U+G2/kZOnc8rthNQqlgL1OG4JDf9Olyqw4e9sd4zxEBGtsKKS3X4j2gXj4w10b+jtw53auqtw8vWBdbhiBC1757E6pfu7cqsgDocjN+5YCtjcX36y3fefvvtN9+9YfmaN2/OuHHjOHPmDCtWrAC894999NFH3H333dx4442+hT7Gjx9Pbm4u3bp1Q6PR8Oijj/KPf/zDt6/PPvuMV155hSeeeIJz584RGRlJjx49GDVq1FXF+fLLL1OtWjVmz57NqVOnCA8Pp1OnTlf1YL/+/fvzzTff8PLLL/P6668TGhrKDTfcUOGxlsbqHQ70OhXjbjT7Hm78/nc5ASMMkeEaLCb/hj1HXYSYcxnV2+SbdvL+tzkBjVOfDgZG9vIvIz7tbu99VZ//amPbobI94Tjhu1/RV6tCs+ceQV+jGln7j7DjlgdwXlrAw1S3FgWXAdQYDDR7/lHMDevizraRvOoP9t0/g7yMAtN/Qq00f2kaxtpRuC6mk/jDao698A5KXvk7FGGd29Bz7ee+v1vN9daRs0uWs/++mRhqVsNU11/nc2Pj2XnTZFq9NZMGj4zHHp/Igcn/CnioeMI3l8pg1lTvQ7r3HWHHqPt9ZVARftlsw6BXMWl0CGajmmNxTt76Ih1XgSKpXkVLiNl/krbjkIMQSxZjBlh9D+l+64uLvulFbrdCq0Z6b6dOryItw82uIw5+2phTITH/vt2BQafinqFmzEYVJ+LzmP914EhZtQh1wDN8dsd46/HoPkbfQ7rnf53tq8f1amh9q+C9Mjks4HjPfpBBWmbZr7j+sikHg17FxJtCfQ+9nvv5xcAyjtBitRQo44N2Qs1qxg4MuVTGLuZ+7i/jPLdC68YGhva0oNepuJDpZudhOz/9Uf4yDqZ4o0/kYTWpGNZNf+lB0B4W/pxL9qUFFSJC1CiK/98uNtHD57/bGdHDwMieelLSPXz6i53EC/40rRtqGTfY355NGOb9/992OFm1owKe2E5wtcXBGO+aXU70WhV3DzJeeqi4mwXf2wrFq8Zi8k+E2nMsD6vJzsieBm+8qR4W/GALiHf5H3YUxch9o7zPjIs5k8eydeV7Rt3e43lYTCqGdy9Qh38qUIetl9fhJb/bGdnDwKhLdfiTlYF1uE1DLeOGFFGHtzv5rZx1OBi/c8FWxpVFFSQLllQWlXI1a1OKAP3796dDhw7MmzevskO5rjw8N72yQ7gq708P5xdzi8oOo9RG2GJYqWte2WGU2kjXUSa+kHTlhNeJRS/U4ME3rt1iGdfChzMimPB84pUTXicWvxQVdPE+/t71vVhGYe9MsQZVW/z+9PCgi/eReZmVHUapzX8slMfmB1cdnveINai+d+9MsQZVGc97pOj1DK4Hqc/fV2nHjnzpk0o7dmn95UfehBBCCCGEENeHq3lY9l+RjEsKIYQQQgghRBCQkbdyKLwEqBBCCCGEEEJcK9J5E0IIIYQQQlwfZMGSEknpCCGEEEIIIUQQkJE3IYQQQgghxHVBFiwpmYy8CSGEEEIIIUQQkJE3IYQQQgghxHVBpZKxpZJI6QghhBBCCCFEEJDOmxBCCCGEEEIEAZk2KYQQQgghhLg+yIIlJZKRNyGEEEIIIYQIAjLyJoQQQgghhLguqOQh3SWS0hFCCCGEEEKIICCdNyGEEEIIIYQIAjJtUgghhBBCCHFdUMmCJSWSkTchhBBCCCGECAIqRVGUyg5CCCGEEEIIITLmPlppxw6b/m6lHbu0ZNqkqHAPvnGxskO4Kh/OiGD8cwmVHUapLXm5JhNfSKrsMEpt0Qs1WKlrXtlhlNpI11Eenpte2WFclfenhzPorh2VHUaprV3aDft371R2GKVmvPVx+oz+o7LDuCqbfu7HN9s8lR1Gqd3eQ0169IbKDqPUwjv0Z8rbGZUdRqm9Ny2MRRsqO4qrM7E/PP5edmWHUWrvTLEGXZ0QwUk6b0IIIYQQQojrgtzzVjK5500IIYQQQgghgoB03oQQQgghhBAiCMi0SSGEEEIIIcT1QS1jSyWR0hFCCCGEEEKIICAjb0IIIYQQQojrgkolC5aUREbehBBCCCGEECIISOdNCCGEEEIIIYKATJsUQgghhBBCXB9kwZISSekIIYQQQgghRBCQkTchhBBCCCHEdUGllgVLSiIjb0IIIYQQQggRBGTkTQghhBBCCHF9UMnYUkmkdIQQQgghhBAiCMjI2//AxIkTSU9P54cffqjsUK4ro/sY6dPegMmg4uS5PP77u43ki54S8/TraODG7gZCLWrik90sW2MjNsENgNmoYnQfIy0b6KgSqiY7VyH6mJOf/szF7qyYmMcOtNK/ixmzUc3xOCeLfsog6YK7xDyDupkZ0cdCmFXD2UQXn6/M5NQ5V0CaJnV13DY4hMZ1dHg8cCbRxZzFF3DllS/eMQMs9Otk8sZ71smSFVlXjrerieG9LYRZ1cQl5vHFr5mcPucP5OmJEbRooA/Is36XjcUrssocZ5U+XWj0xH2EdWqDsVZ1dt36EEk/rS05zw3daDX3aaytmmI/m8CJ2R8Qv+T7gDT1/zmORtPuwxBVjcz9MRx67GUydh4oc5yFjextpHdbPSaDilPn81i6OpeU9JLr8A0d9AzuaiTUouJcipuv1+ZyJtH/b9K7nZ4uLfXUra7BZFAxfX4GuQ6lwmKeeHttRgyshtWi5eDRLN79JJZziY5i07dtEcKdo6No2tBCZBU9z889xuZd6Zelq1fLyAPj6tKuVQgatYoz53J58e0TJKeV/cu3dOtBFv8ZTWp2Ls2iqvL06N60rVuj2PSZuQ7e+30Haw+fJsNmp2Z4CE+N6kXf5vUB+GDNTj5ctzsgT4PIcH6cdleZYyzsvnsaMPrGKEIsWg4cyWTuguPEJ+QWm7596zDGja1L88ZWIqsamPnqQf7clhaQJiJcxz8nNqJbhwisVi37DmbwzsITJe63NLat+ZJNv35KdkYqUXVbMOreZ6nTuF2RaXdu+JrozT+RFH8cgFoNWnHjbY8HpD+063d2rFvG+dhD5OZk8PBLy6lZv2W5Yizsm1Xr+fLn1aSlZ9C0fh2emHQXrZs0LDLtig1bePmDxQHb9Dotf37xvu9vRVH46Juf+XHtn2Tn5NKueWOeun8c9WoWX8+u1sheBnq10WMyqjh1zs2ytaVoJ9rrGdTF4GsnvllvD2gntBoY289I5+Y6tBoVR87ksWxtLlm28rUVu9d/yfbVn5CdkUL1Oi248a7nqNWw6DqRcv44f/70bxLjDpGRdo5Bt8+k2+CJAWkWPDOQjLRzl+Xt1G8cQ8fNKlesAL3b6hjYUUeIWcX5VA/LNzqISy6+bNs31jC8h4EqISpSMjys2OLkyBl/ubZtpKF3Gx11qmuwGFXMWWrjfGrJ/1ZlEUx1Qlx/ZORNVIobuxsY0NnAV6tsvPF5Fk6XwiN3WNFqis/TuYWO2waaWLHZzmuLMolPdvPIHVZCzN4bW8OtKsKsar5bn8tLn2ayeGUOrRvpGD/CUiExj+xrYUgPC4t+yuDFhak4nApPTqiCroRLIN3bGBk3PJQf1mfz/AepxCXm8eSEKoRY/F+9JnV1TB9fhYMnHLywMI1ZC1NZs92GUs72dkRvM0O6m1m8IouXPr6Aw6nwxN/CS4y3W2sDdw0N4YcN2cxamMbZJBfT740gxBJ48/CG3TYenZviey1bnV2uWDUWM5n7j3Jw6oulSm9qUIeuPy0kbcN2NnW5mdPzF9N24StEDunjS1Pz9uG0nDOT46+8z6ZuY8jaH0P3lZ+gr1alXLHmG9LNQP+OBpautjHnyyycLphym6XEOtypuY6x/U38stXO659nEZ/sZsptFqxmf/nqtSoOn3axaru9QuIs6K6bajJmWA3mfRzLlH8dwu7w8PrM5uh0xd8cbjKqOXnGxr8/O1Nsmpo1DLz7YivOnrfzxEsxPDDjIF8sP4/TVfaTnt/2n2DuL1uYPKgLSx++leY1q/LPz1aSll10h8WV5+bBT1dwPj2LueOG8OO0u5g1ph/VQwO//42rR7B25njfa9Hkm8scY2H33FqX20bVZu6C4/xj+l5y7W7efqkt+hLLV8OJ09m8/eHxYtPMfrYNtWoYefrVQ0x6dDeJKXbmvdIOo6HsP+EHtv/Cr/99gwE3P8xDL35HVN3mLJr7ANmZaUWmPx2zk3Y9RnDf04uY/Nx/CatSk0Vz7yfzQpIvjdORS/1mnRh6xxNljqskq7fs5N0l33LfrSNZ/PqzNKlfh0df+zcXMjKLzWMxGfll4Zu+1w/vzQ54//OfVvH1r+uYcf89fPLq0xiNBh597d84nK5i9nh1BnfV06+DgaVrc5n7VTZOl8LDY6/QTjTTMaafkV+32Xnji2zOpXh4eKwFq8lfj27tb6RNIx2frLAx7+tswiwq7h9tLlesh3f+wtpvZ9Nn5MP8/dnvqVGnBcv+fR85xdQJlzOX8Mg69B/zBJbQakWmmTjzWx55c5PvdddjnwHQovOwcsUK0KGJllv66Fm108lby2ycT/Mw+SZTQDkV1CBKzd+GGtl+2MXcZTYOnnLz9xFGoqr4v0cGnYpTCW5+3lL8Ba3yCqY6UWnUqsp7BQHpvP2P9e/fn6lTp/LUU09RpUoVoqKieOGFFwLSpKenM3nyZGrUqIHRaKRNmzasWLHC9/53331H69atMRgMNGjQgLfeeisgf4MGDXjllVcYP348VquV+vXr89NPP5GSksLNN9+M1WqlXbt27Nq1KyDfpk2b6Nu3LyaTibp16zJ16lRycnKuSTkM6mLk16129p1wcS7FzWcrcgi3qunQTFdsnsFdjWze52DrAScJaR6+WmXD5YJebb2jQOdTPXz0Qw4HTrpITfdwNC6PHzfm0raxrkK+j0N7Wvjpj2z2xDg4m5THwu/SCQ/R0Kmlsdg8w3pZ2LDLxp97czmfkseinzNwuBT6dTL50owbHsrqbTms+DOHc8l5JKa62XHQTl7JA2RXdGMPMz9tzGHvUQfxSXn85/tMIkI0dGphKPEz/rEnl03Rds6nuFm8wtuxvqGjKSCd06WQke3xvezlHBlKWbWRY7PmkfTjmlKlr/+Pu8g9Hc+Rp94gO+YUZxZ8SeJ3q2j46ERfmoaPTeLsJ18Tv3g52UdOcuChWbhtdupOvLVcseYb0MnAb9vs7D+Zx/lUD4t/ySHMqqZ9k+Lr8KAuBrYccLLtoJPENA9LV+fidEHPNv6RzPV7HKze4fCNKFekscNr8MX359myO51Tcbm88f4pIiP09OkSUWyeHdEZfPb1OTbvvFhsmvvurMP26HQ++uosJ2JtJCQ52Lo7nfTMsg8df75pP2O7tuSWzi1oXKMK/7r5Box6LT/sjiky/fe7Y8jIdfDOvUPpWL8mtSNC6dKoFs1rRgak02rURIaYfa8Ii6nI/ZXF7TfVZsnXZ9i0PY2TsTm88k4MVasY6Nsjstg823Zf4D9fxLJxW9EnyHVrmWjTIpS3PjhOzPEszp7LZe6C4xj0agb3q17mWDf/tpgu/W6n8w1jqV67CTdNfAGd3sjujcuLTH/Hg3PoPmgcNeu3pFqtRoy572UUj4eTh7f60nTsfTMDb3mYxq17lTmukvx35RpuHtSH0QN606hOLZ6+/x6Mej0/r99SbB6VSkXV8LACr1Dfe4qisPSXtUwaO4J+XTvQtH4dXnh4EqkX0/ljZ3SFxDygo4FV2+0cuNROLPnNRphVVWI7MbCzni0HnWw75CLxgoela3Jx5im+dsKo97YZy//I5dhZN2eTPXyxKpfGtbU0qFlCD+AKdqz5jPZ97qBd71uJrNWEYfe8iFZvZP+W74pMX6tBOwbeNoNWXUei1emLTGMOqYI1rJrvdWL/esKr1aNes25ljjNf/w46th5yseNIHkkXFb5Z78CZp9C9ZdFXKG9oryMmzs36vS6SLyr8ut1JfIqHvu38/xa7jubx+04Xx85WfPubL5jqhLg+SeetEixevBiLxcL27dt58803eemll1i9ejUAHo+H4cOHs3nzZr744gsOHz7M66+/jkbj/fLt3r2bO+64g7vuuosDBw7wwgsv8Nxzz7Fo0aKAY7zzzjv07t2bvXv3MnLkSP72t78xfvx47r33Xvbs2UPjxo0ZP348yqXhnZMnTzJs2DBuvfVW9u/fz7Jly9i0aRNTpkyp8M8fGaYmzKrmSKz/xM7uhNPn82hUq+hGV6OGelEajpzx51GAI7EuGtUufijJZFBhdyp4yjmKVS1CQ3iIhkMn/Vfjch0Kp+KdNKlb9I+WRgMNauk4dMqfR1Hg8EmHL0+IRU2Tunoysz0890BV5s+ozjN/r0KzesU34lcT7+FT/ilruQ6Fk/EuGtcpKV5tQB5FgUOnnDSuExhPj7Ym5j9VjVceqsptg6zoyxfuVQvv0YHUdVsDtqWs3kREjw4AqHQ6wjq1JnVtgZM6RSF13RbCe3Qs9/GrXqrDR88E1uHYBDcNS6jDdWtoiClUh2Piiq/3FalmdQNVI/TsOeAfpcjJdXPkRDatmlnLvF+VCrp3DCc+wc7rM5vz7cKOvPdKK3p3CS/zPl15bo6cT6FHkzq+bWq1ih6N67A/LqnIPH8ciaVdvRrM/mkTA15dzNh5y/h4wx7cnsDRvzOpGQyevYQRc75k5rI1JKSXfbpvQbVqGImsYmBntL+Tm2Nzc/hYJm1ahJaQs2Q6nfdn2uH0fw5FAafLQ7tWYWXaZ16ek/Oxh2jcuqdvm1qtpnHrnpw9EV2qfbgcdtzuPEzWssVwtVx5ecSciqNbW/80TLVaTde2LThw/FSx+XLtDm5+eCajH3qa6XMWcOrsed9755NTSUvPDNin1WyidZOGJe6ztKqGeWeDxMQVaicS3cWeUOe3E0cLtRNHz+TR8FKeejU0aDUqjhbYb9JFDxcyPb40V8ud5yQx7hANW/o73iq1mgYtenHu1N4y7bOoYxza/hPte92KSlW+K6oaNdSprg7oZCnA8Xg39aOKLoMGUZrLOmVH49zUj/rfnQoHU52oTCqVutJewSA4ovx/pl27dsyaNYumTZsyfvx4unTpwtq13vt71qxZw44dO1i+fDlDhgyhUaNGjBo1iuHDhwPw9ttvM2jQIJ577jmaNWvGxIkTmTJlCnPmzAk4xogRI5g8eTJNmzbl+eefJzMzk65du3L77bfTrFkzZsyYwZEjR0hK8p4IzZ49m3vuuYfHHnuMpk2b0qtXL/7973+zZMkS7PaKnb4VavU22pk5gSdVWTaFUEvRVdJqVqFRq64qj8WkYkQvI5uiyz/9IczqPUZGduDxM3I8hFuLPn6IWY1GoyKzcJ5sj29/1SO8jeqYgSFs2GVj7pILxCa4mDGpKjWqlL3BLS7ezBz/sYuMV60qJo8/lq0H7Hy0PIM3Fl1k5Z859Gpv5B9j/zcncPkMNSJxJKUGbHMkpaILC0FtNKCPjECt1eJITiuUJg1DVPGjIKUVemkaaaatcH30+N4rzGry1uGswnU4p/g8FSki3NvDvpgROB3sYobL915ZhIfqMJs03HVTTXbuS2fGa0fZtOMiL0xrSruWIWXa50WbHbdHoao1cFSsqtVEapatyDzxF7JYc/AUbo/C+xNH8I+BnVny5z7+s36PL03bujV4+bYBLJg4kmdvvoFzF7OY9NGP5DjKf1NslQjvRZGL6YXKN93pe68szsTbSEy28+CEhoRYtGi1Ku65tS41qhmpWsb92rLS8XjcWMOqBmy3hlUlOyO1mFyBVn09l5Dw6jRudW1G2QpLz8zG7fFQJSywTlUJC+VCekaReerXqsG/HhzPnCcf4sUpf0fxeLj/uTdISvN2sNPSM337KO0+r0ao2dvWFr7nqKTvvK+dKJQn06b48oRa1LjyFHIL/bRl2jzF/h5eiS37IorHjTkksE5YQktfJ67kWPQa7LlZtO01ptz7suSXU26hsrUphJqLLtsQ8+XlmmXzFJv+WgimOiGuX7JgSSVo1y7w5t+aNWuSnJwMQHR0NHXq1KFZs2ZF5j1y5Ag33xx4j0bv3r2ZN28ebrfbN0JX8Bg1anhvvG7btu1l25KTk4mKimLfvn3s37+fL7/80pdGURQ8Hg+nT5+mZcvLbzp3OBw4HIEthcFw+ZS8bq30jBvqn3f9/rfluz+qNIx6mHKblYQ0Dz9vvvrOZ892Ribd5O+QvPVF8VPGyiP/4uO6nd6plQBnErJo1cjADZ3NfLO6dKMCPdsamTDaf1LzzpfpFR2qzx+7/fccxSfnkZ7tZsaEKlSLyCbl4rWbalKZurbUcfcQfx1esPza1+HyGtS7Ko8/0MD39zNvHLsmx1FfOi/Ysjud737xXgw6ecZG62ZWRg+uzv4jFTOydSUeRaGKxcTzY25Ao1bTqnY1kjNzWPznPh4c1AWAPs3r+dI3q1mVtnWrM/zNL1l14CRju1zdwhpD+lXnyYf97fRTL1XcQjgFud0Kz752iKenNufXpb3Jcyvsjr7I1l1p5R69KKs/VvyHA9t/5b6nF6PTFz8Nu7K1bdaYts0a+/5u16wxd06bxfdrNvLgnRV3r2O+Li103D3Yf8Hhgx+uzW0HwWrf5u9o3PoGQsIrbjGY653UCXEtSOetEuh0gVe5VSoVnktTe0ymirn/ouAx8n/gi9qWf9zs7GwmT57M1KlTL9tXvXr1LtsG3tG6F18MXGBi1qxZYHo0YNu+E05On/cP5Wsv1bpQi5rMHP/JfohZRXxy0Sf/2TYFtyd/lC0wT+HROIMeHrkjBLtT4cPl2XjKsGbC3hgHJ+P9Vxt1Wm95hVnVASNTYRY1ZxKLvq8ny+bB7VYILTTSVXAf6Vne/55PCdxHQkoeVcNKP/K296iDkwVWsMy/8blwvKEW7wqSxcbrUS4bmQu1qMnILr5TdjLee9waVTT/s86bIykVQ43AETRDjUhcGVl47A6cqRfx5OVhqF61UJqqOBKv/iry/hMuYhP8nZD88g01F67D6uLrcK63DocUrsMWNZk5Fb8a2JbdFzlywt/JzJ9+FxGm40KB0aGIMB0nzxQ9mlUaGZl55OV5OBMfuJBI3Plc2jQv28hbhNmIRq26bHGStOxcIkOKvgG/WogZrUaNRu2vv42qRZCaZcOV50ZXxGoAoSYD9SPDOJtW/IIXxdm0I43Dx/z3DevzyzdcR9pF/0heRLieE6fK19k/ejKbSY/uxmLWoNOqSc908dHcjsScKFvH2BwSjlqtITsjcGQ6OyMNa1jJI9ObfvmUP1f+h0lPfUpUveZlOn5ZhIda0ajVXMgI/MwXMjKpEl66kX+tVkOzBnWJT0wB8N3/diEjk8gI/z4uZGTStEHdq47xwEkXsYVW/4P83yn/dzzEUop2otBoUGiBfWTmeNBpVZgMBIy0eNujsi20YrZGoFJrsGUF1omczCvXidLISDtH7JEtjH1wfrn3BZCTX06FFicJMavILGZ1xSzb5eUaYlYXm74iBHOdqFRBsnBIZZGx1OtMu3btiI+P59ixoq+St2zZks2bNwds27x5M82aNfONupVFp06dOHz4ME2aNLnspdcXPTVn5syZZGRkBLxmzpx5WTqHE1LSPb5XQqp3kYsW9f3XDox6aFhLy6nzRXcs3B6IS3QH5FEBLRroOFVgGXujHh69IwS3W2HBd9llXvTD7lRIvuD2vc4l55Ge5aZVI/9VZqNBRaM6ek6cLXrKldsNseddtC6QR6WCVo0Mvjyp6W4uZLqpGRn4bxcVqSU1vfTBF473fIrbG29D/7+d0aCicR0dJ+NLijcvII83Xr2vg1aUelHeiwLp2WXoJZdR+rZoqg7sEbAtclAvLm6LBkBxucjYc4jIgf57elCpqDqgJ+nbrv7+DYerUB1O89bh5oXqcIOamoALFQW5PXA2yU3zeoF1uHm94ut9eeTaPZxPcvheZ+JzSbvopFMb/xQxs0lNyyZWDh8re+ciz61w9FQOdWsFLtxTJ8pIUmrZpiPqtBpa1qrG9hP+JcY9HoXtJ8/Rrl7RV+071I/ibFoGngI3uJ5JTadaiLnIjhuAzeHi7IXMYjuEJcnNdXMuwe57nY6zkXrBQZf2/sVfzCYNrZqFcjDm6juHRcmxuUnPdFGnponmTUL4c3vRi5xciVarp1aD1pw6vM23zePxcOrwNuo26VBsvj9Xfsz6nz5gwhMfUbthmzIdu6x0Wi0tGtVj54Ejvm0ej4edB2No27RRqfbh9ng4efYckRHe70Ct6pFUDQ9l5wH/IjjZtlwOnThd6n0W5HBBarrH90rMbyfqFWonojTFLkhUXDvRrJ6W05fyxCW5yXMrAWmqR6ipEqr2pblaGq2eqHqtiT3iv5dY8Xg4E7OV2o3Kf5/w/i3LMYdUpUnb/uXeF3jLKT7ZQ7O6/u+2CmhaRxOwfH5BsYlumtUJbAua1dVwJvHa/XYFc50Q1y8ZebvO9OvXjxtuuIFbb72Vt99+myZNmhATE4NKpWLYsGE88cQTdO3alZdffpk777yTrVu38t5777FgwYJyHXfGjBn06NGDKVOmcP/992OxWDh8+DCrV6/mvffeKzKPwWAocpokXPkq/tpddob3MpJ80UNqupub+ppIz/YQfczfSXjsTivRx11s2OO9jLRmp52JIy2cSXQTm5DHwC5G9DrYcsB7gmjUw9Q7Q9Br4dMVNkwG71Uo8F5xK+/S+6u25nBzfytJF/JIuejm1kEhpGe52XPEPy1zxsQq7D5iZ812bxn8tiWHB8aGc/qci1PnXNzY04xBr2LjHv+Iwq+bshkzMIS4xDzOJLjo29FEzUgt8/9bvqmav2+zMfoGC4kX3KRedDN2oIWLWW72xPgvyz01PpzdMQ7W7sj1fcYHxoRx+vyleHuYMehU/LnX+xmrRWjo2dbIvuMOcnI91KmhY9xQKzGxTuKTyt4B0VjMWJr4R3jNDesQ2r4FzgsZ2M8m0PyVaRhr12DfpBkAnPloKfUfuocWs5/k7KLviBzQg5q3D2fnTZN9+zg97zPaf/oG6bsPkrFzPw2mTkBrMXF2cdGr6V2t9XscDOthIPmim7QMD6N6m8jI9rDvhL8OT73dwr4TLv7Y662ja3c5GD/cTFxSHrEJbgZ2NmDQwbaD/k5OqFlFqEVNtXDvtbVakWocTriQ5cFmL18lXv5rEveMqUV8op3EZAeT7qhD6kUnm3b569qcfzVn086L/LjKO5XbaFBTO8rfMYuqbqBxfTNZ2Xm+Z7gt+zmR5x5tzP4jWUQfyqRrhzB6do5g2ktHKKu/9WnHc9+up3WdarSpU50vNu8n1+nilk7e0Z5nv1lH9VALjw7tDsAd3VuzdNtB3lixmbt7tSEuNYOPN+xlXC9/J+OtX7bSr0V9akZYScm08cHanWhUKoa3a1LmOAv65qdzTLizHmfP55KQZOf+exuQdsHBn9v8o73zXmnHxq2pLF/pXTjDZFRTu6Z/xkXNGkaaNLSQlZ1HUor3uzqgdyTpGS6SUhw0amDh0Qea8Of2VHbuLXsb0XvYBL77z0xqNWxDnUZt2bJqCU5HLp37eu9H+nbhDEIjanDjHdMA2LjyP6xdPp87HpxLeGRtstK9o1d6oxmD0fs4Blt2OhlpCWSme+tOauJpAKxhkYSEF72U/NW4e+RgXlqwiJaNG9CqcQOW/rIWu8PJqP7e++5eeO8zqlUJ5+Fx3s/w8bcraNO0EXWjqpGVk8sXP/9OYsoFbhrofaSISqXirhGD+Oz7X6hbszq1qkeycNmPREaE069rh3LHC7B+r4Nh3Y2kXPSQlulhZC8jGdlKQDvxyG3edmJjtPf7tG63k78NMxGX5CY20c2ATnoMOhXbDnnftzth60EnY/uZyLHbsDsUbh9o4tT5vHKtUttt8CRWLJpBVIM21GrQjp1rF+Ny5tKu11gAfv7sKULCa9B/jPdREO48J6kJJ33/n52eRNLZI+gMZqpUr+/br+LxsH/Lctr2vAW1puJOOzdEuxg32MDZZA9nktz0a69Hr1Wx/Yj3t2jcYAMZOQort3rLbeM+F1PGmOjfQcfh2Dw6NtNRt7qar9f7fxPNBggPURN26V6y6uH+e9Qq6nlpwVQnKotKLWNLJZHO23Xou+++Y/r06dx9993k5OTQpEkTXn/9dcA7Qvb111/z/PPP8/LLL1OzZk1eeuklJk6cWK5jtmvXjj/++INnn32Wvn37oigKjRs35s4776yAT3S537c7MOhU3DPUjNmo4kR8HvO/DhwpqxahDniGye4YFyHmXEb3Mfoe0j3/62xfg1qvhta3at8rkwOn0Tz7QQZpmeW7urbyzxwMOhWTbgrzPaR77pLAB2lXr6IhxOxvdLYftBNiyWTsICthVg1xCS7mLLkQMNVz1VYbOq2KccNDsZpUxCXm8eaiNJLLOQXxl802DHoVk0aHYDaqORbn5K0v0gvFqyXE7P/B2HHIQYglizEDrL6HdL/1xUVfvG63QqtGem+nTq8iLcPNriMOftpYvnn8YZ3b0HPt576/W819BoCzS5az/76ZGGpWw1S3pu/93Nh4dt40mVZvzaTBI+OxxydyYPK/SF29yZcm4Ztf0VerQrNZU70P6d53hB2j7seZXLbRisJW73Cg16kYd6PZ96D597/LCajDkeEaLCb/hj1HvXV4VG8TIWbvg1bf/zYn4KSgTwcDI3v5O0vT7vZOPfz8V5vvh7qslv6UgNGgZtoDDbCatRw4msXM14/hcvmPX6uGkbAQ/xTr5o0tvP28/36wh8Z7T8pW/ZHCmx94T84377zIvI9jufvmWkyZWJ+z53N54e3jHDxa9hG9Ye2acDHHzoI1O0nNstG8ZiQLJo2k6qVRssT0rICZNVHhVj6YNJI5K7dw+7+/oXqohXt6t2XSDR18aZIysnl62RrSbXYiLCY61o/i83+OoYq1Yqarf/ndWYxGDU9NaYbVouXA4QyemHUAZ4HyrR1lIjzUX74tmoQwf7Y/xqn3ezuSv6xN5LV5RwGoWsXAlPsaUyVcT9pFJ7+tS2LRsuKfu1cabbuPICfzImuX/5vsjFRq1mvJhOkf+abIpV9ICDiB2rFuKe48F/99L3Ba/IBbHmbQGO+qxDF717P842d87y1b8MRlacpjSK+upGdm89HXP5GWnkmzBnWYN3Oqb/pjUtoF1AUqRVaOjdkffU5aeiYhFjMtGtXjPy8/RaM6tXxp/nbTUHIdTmZ/9AXZNhvtmzfh3ZlTMVTQErprdjox6FTcPcR0qZ1ws2B5oXYiLPC3bs8xF1azipG9jP52YnlgO/HdBjuKAvePNnsfyBzrfSBzebTqOgJb9gX+/Onf5GSmUL1OS+6Y+jGWUG+dyLyQELAaX1Z6Mp++covv7+2rP2X76k+p16wb9zzhb89Px2wh88J52vWumMe05Is+kYfVpGJYN/2lB1d7WPhzLtmXFjGJCFGjKP7f2thED5//bmdEDwMje+pJSffw6S92Ei/407RuqGXcYH/7O2GY9/9/2+Fk1Y7yL2wEwVUnxPVJpSjlHY8QItCDb1ybxT2ulQ9nRDD+uYTKDqPUlrxck4kvFL1c+vVo0Qs1WKn7390bU14jXUd5eG56ZYdxVd6fHs6gu3ZUdhiltnZpN+zfvVPZYZSa8dbH6TP6j8oO46ps+rkf32z7301lLq/be6hJj95Q2WGUWniH/kx5u/wrUv6vvDctjEUbKjuKqzOxPzz+3vW/OFS+d6ZYg65OXK9sn86qtGOb//7ilRNVMhmXFEIIIYQQQoggIJ03IYQQQgghhAgCcs+bEEIIIYQQ4vogC5aUSEpHCCGEEEIIIYKAjLwJIYQQQgghrg8qeUh3SWTkTQghhBBCCCGCgHTehBBCCCGEECIIyLRJIYQQQgghxHVBJQuWlEhKRwghhBBCCCGCgIy8CSGEEEIIIa4PKhlbKomUjhBCCCGEEEIEARl5E0IIIYQQQlwf1PKogJLIyJsQQgghhBBCBAHpvAkhhBBCCCFEEJBpk0IIIYQQQojrgkoWLCmRlI4QQgghhBBCBAEZeRNCCCGEEEJcH2TBkhKpFEVRKjsIIYQQQgghhLAve7PSjm2886lKO3ZpycibqHD/nJNe2SFclQ+eDOfBNy5Wdhil9uGMiKCL9+G56ZUdRqm9Pz2clbrmlR3GVRnpOsr0D2yVHUapzf2nOejq8OPvZVd2GFflnSnWoPvePTIvs7LDKLX5j4UGXbxSh6+t96eHM+XtjMoOo9TemxZW2SGIMpLOmxBCCCGEEOL6IAuWlEhKRwghhBBCCCGCgIy8CSGEEEIIIa4PKlmwpCQy8iaEEEIIIYQQQUA6b0IIIYQQQggRBGTapBBCCCGEEOL6oJaxpZJI6QghhBBCCCFEEJCRNyGEEEIIIcT1QR4VUCIpHSGEEEIIIYQIAjLyJoQQQgghhLg+qOVRASWRkTchhBBCCCGECALSeRNCCCGEEEKIICDTJoUQQgghhBDXB1mwpERSOn9hGzZsQKVSkZ6eXtmhCCGEEEIIIa5ARt7KYMOGDQwYMKDY9/v378/69euJjY2lYcOG7N27lw4dOvj+zlelShU6d+7MG2+8QceOHYvdn9PpZN68eXz55ZccP34cs9lM8+bNuf/++7n33nvR6XQV+vn+V0b1NtKnnR6TQcWp83l89XsuKemeEvP066hnSFcjoRYV8clulq3N5Uyi2/d+n3Z6urbUU7eGBpNBxbR/Z5DrUCos5tF9jPRpb8BkUHHyXB7//d1G8sUrxWzgxu4GQi1qb8xrbMQmeGM2G1WM7mOkZQMdVULVZOcqRB9z8tOfudidf714R/Y20rutv04sXX3lOnFDBz2DL9WJcyluvi5UJ3q309OlpZ661b11Yvr88teJKn260OiJ+wjr1AZjrersuvUhkn5aW3KeG7rRau7TWFs1xX42gROzPyB+yfcBaer/cxyNpt2HIaoamftjOPTYy2TsPFCuWPP1aq2lfwctIWYVCWkevt/k4mxy8WXbrpGGYd10RISoSM1QWLnNSUycN71aDcO76WhRT0PVUBW5ToXj8R5+2eYi01Zx3zcIrjrcu62OgR11hJhVnE/1sHyjg7gSyrh9Yw3DexioEqIiJcPDii1OjpzxxqlWw4juelo20FA1VI3dqXDsrJsVW51k5lRsGQfL9w6gbzsdg7oYCDWrOJfq4dv1uZxJKj7WDk21jOppoEqompR0Dz9ucnA4Ni8gzYgeBnq11WEyqDh93s2ydfYrfv7/r/FWZB0GaNtIQ+82OupU12Axqpiz1Mb51IqJtaBgqsMAI3sZ6NVGj8mo4tQ577nMFeNtr/fWpUvxfrPeHhCvVgNj+xnp3FyHVqPiyJk8lq3NJauC2+T/CZUsWFISGXkrg169epGQkHDZa+HChahUKh566KES869Zs4aEhARWrVpFdnY2w4cPL3b0y+l0MnToUF5//XX+8Y9/sGXLFv6PvfsOj6pKHzj+nTuZnkoqJXQJvXeQjjSxoFiw4eKuIoiunXV3XV0VXbH8bIAKgoqCCqLSiyLSa+gJNZCEJKT36fP7Y2CGCUkISTTM7vt5nnme5M65975z5sy599xz7rk7d+5kypQpvP/++xw+fPh3+IS/vxt66hjcVcdX60r4z8JCLFaYNt5EgLridbrFabhtkIEVW8289nkhKZkOpo03EWT0/si1GhWHT9tYvd1c+zH30jG4m46v1pTwxheFWG0uHrsjsPKYW2u4fYiB5VvMvDa/gJTzDh67I9ATc2igipBAhSW/lPLyvAIWrCimXXMN9482/c/FO7ynjkFddCxaV8KbCwux2mDq7ZWXia5xGsYNMrBym5nXvygk5byDqbebCLy0TASoOHLaxpodtVcm1CYjBQcSOTTtpSqlNzRtRI8f55C9cQebu9/M6fcX0GHOK0QM7+9JU3/8KNq8OZ3jr3zI5p63UngggV4r5qKNrFfjeDu1UHNTPw3rdtt49zsz57Jd/PlGHYGG8tM3iVa4Z7iWnQl23vnWzKHTDiaO1BFTz52v2gBoGKGwfo+Nd74zs2CNlahQFQ+O0tY41kv5Uxnu3DKAW/prWbPLyluLSziX7eThmwwEGso/CWkao3DfCD07jtiYubiEQ6cc/Gm0nph67sOyNgAaRSqs22XjrcUlfLbSTFSowkNj9DWKsyx/+t11bRXArQP0rNpu4T9fFZOa6eDRW00V5nGz+momjjKw7bCNNxYWc+CknT+PNVA/3HvqM6y7loFdtCzeYOatRcVYbC4evdVY6ef/b423tsswgE6j4lSag5+2WmoeYAX8qQwDDOuhZWBnHYs2lDLzqyKsNhdTxl0h3lYabh2oZ9V2M298WURqppMp43zL0m2D9LRvrmHu8hLe/aaIEJOKh8YaazV2cW2Qxls1aLVaYmJifF65ubk8/fTT/O1vf2P8+PGVrh8eHk5MTAzdu3dn5syZZGRksGPHjnLTvvvuu2zatIkNGzYwZcoUOnfuTPPmzZkwYQI7duzguuuuA8BisTBt2jSioqLQ6/X079+fXbt2+Wxr5cqVtGrVCoPBwODBg0lKSrpsf5s3b+b666/HYDAQGxvLtGnTKC4url5GVWJINx2rtps5cMJOaqaT+SuLCQlU6Hxdxb2IQ7vr2HLAyrZDVtKznXy9thSrDfq0954w/rzHwtqdFk6nOSrcTnUN7a5n1TYz+0/YSM108NnyYkIDFTq3qjjmYT30bNlvYdtBK2nZTr5aU4LNBn07uGM+l+Xk42XFHDxpIyvPSeJZOz9sKqVDC02NZ8r1t3gHd9WxeruZAyftnMtysuBCmejUsvIysfWgle0XysSidZeXiV/2Wli30+LpeakNmWs2cezFd8n4YX2V0jf5y12Unk7h6LNvUJRwijMfLSR9yRqaPT7Rk6bZEw+SPPcbUhYspejoSQ4++iKOEjOxE2+rcbwDOwWw44idXYkOMnJdLPnVis3mokfr8gdfXN8xgMSzTjbG2zmf52LNLhupWU76tXenN1vh4+UW9p90kJnn4myGk+9/sxEbpSY0sPaumPpTGR7UWcO2wzZ2HrWTkevi218sWO0uerUpP48HdNKQcNbBL/tsnM91sWqHlZRMJ9d3dH82sxVm/2gm/oSdzDwXZzKcLNlkqfU89qff3eCuOrYdsrHjiI30HCeLN5ix2l30aVd+rIO6aDmaZGfDHisZuU5WbLOQfN7BgE5anzRrdlg4eMr9+b9YU0qISUXHFjUfmORv8dZ2GQbYnWhn7S4bx5Jr/5h8kT+VYYDBXXSs2WHm4IV4P19dQkigqtJ4h3TTsvWQle2H3WVp0fpSd1m6EK9e64596a+lHEt2kHzeyZdrSmnRMICm9WuhZS+uKdJ4qwV5eXncfPPNDBo0iH//+99Xta7B4L70bbWWP15n4cKFDBs2rNxhlRqNBpPJfbX42WefZcmSJSxYsIC9e/fSsmVLRowYQU5ODgDJycmMGzeOsWPHEh8fz0MPPcTzzz/vs72TJ08ycuRIbrvtNg4cOMDixYvZvHkzU6dOvarPdCURIQohgQoJZ7xDQcxWOJ3moFmD8g8SagUax6h91nEBCWfsNK9gndp0MeajSWViPlfx/i/GfLRMzEeTbDRvWHHMBp0Ks9WFswYjHfwt3vAL8SaWKRNJVygTsdHllImzf0yZuBqhvTuT9fM2n2WZ6zYT1rszACqNhpCu7cjasNWbwOUi6+ethPaueEh1VagVaBipcCzFOyTHBRxPddIkuvxDQJNoheOpvicsiclOmkRXfBKg14LT5aq1YUX+VIbVCjSKUnxOUF3A8RQHTWLKz7OmMerLTmgTzzpoElPxYdmgVdVqHvvT706tQGyUQmKy734Tz9orPDltGqMmsUweJ5xx0OxC+vBgFSEm322arZCU7k3zvxTvH1GGa5s/lWF3vO6e/4Szl3+HFZWLi/Emlok38Yzd8703jlYToFaReMl2M3Kd5BQ4a1w26oSi1N3LD/hHlNcwp9PJhAkTCAgIYOHChaiuYpxuXl4e//73vwkMDKRnz57lpjl+/DitW7eudDvFxcXMmjWLN998k1GjRtG2bVs++eQTDAYDc+fOBWDWrFm0aNGCt956i7i4OO655x4mTpzos50ZM2Zwzz338MQTT3DdddfRt29f3nvvPT7//HPM5tobNhBscudRQbHv+O7CYqfnvbICDSrUioqCEt91CkoqXqc2BQdWEHOJi2BT+T+jQOOFmK9iHZNBxei+ejbH12yIid/Fe7FMlJTd95XLROFVlKO6oouOwJKR5bPMkpGFJiQIRa9DGxGGEhCA5Xx2mTTZ6GIiarRvk96dT0Wlvif8hSUugo3l51OQUXXZfRJFJS6fIcqXClDDmD5a4o87sNhqFK6HP5Vh08WyWMM8LixxVpg+QA039tWy75i99vLYj353Js8xoJw8ruC7DTapKCzns10sxxfXKyyu+jb/2+P9Pcvw78GfyjBAsPHCd1g236pw/lN2nYISl2edYJOCze6itEw15j5HklP9/zbX1uVpP/S3v/2Nbdu2sXPnToKCgqq0Tt++fVEUheLiYpo3b87ixYuJjo4uN63LdeUrrCdPnsRms9GvXz/PMo1GQ8+ePTl69CgAR48epVevXj7r9enTx+f//fv3c+DAARYuXOizf6fTyenTp2nTpo1PeovFgsXiW1PodLrL4uvRRsOEG7zjrj9aUnTFz1TXerbVMmGEN+YPv/v9Y9ZrYertgaRlO/lpy9U1lv0t3h5tNNw9/JIysfTaLxOifIoC993gHrqzZFP1Z/zwtzL8R1IUeGCkHhXw7cbqNzLldyf8nb+V4e6tNdw9zHtz8axltX8byn8lmbCkUtJ4q4FFixYxc+ZMVqxY4bn3rCoWL15M27ZtCQ8PJzQ0tNK0rVq1IiEhoYaRVk1RUREPP/ww06ZNu+y9xo0bX7ZsxowZvPSS74QNL774Ipie8Fl24ISNpLRCz/8Xb8oNNikUFHuHXARdmBmu3NhKXTicrgtXrbxpgo1Krc+8BrD/hJXT57zDDwICKojZqKo45pILMZt8Yw4yXt4zoNPCY3cEYba6mL20COdVTsblb/FWWCaMZeO9cpkIKhuv6fcpEzVhychCF+3bg6aLjsCWX4jTbMGalYvTbkcXFV4mTTiWdN8eu6tVbHbnU9lJB4KMl/cKXFRYTi9bYDlX2RUF7huuJSxQYfaP5hr1CPlbGb5U8cWyWMM8DjIql6VXFHhghJ6wIBUfLSutUR778++u2HMMKCePi8v/8gqKXQQZlTLpFU85vrhekMn3ewoyumfz+1+M9/cow7XJ38rwwZM2ksrMCOmOT+Wzr6qc/5TN6+BLtlFQ7EQToMKgw6f3zZ0vtdRVL64Z0pdaTfHx8UyaNInXX3+dESNGXNW6sbGxtGjR4ooNN4AJEyawfv169u3bd9l7NpuN4uJiWrRogVarZcuWLT7v7dq1i7Zt2wLQpk0bdu7c6bP+9u3bff7v2rUrR44coWXLlpe9tNrLZ5GbPn06+fn5Pq/p06dfls5ig8w8p+eVlu0kv8hJXGPvtQO91j3T1qUnb5dyOOFsuoO4Jt51VEBckwBOVbBOTVisZWLOcsfcukmZmBtUvP+LMbcuE3PrphpOpXrX0Wvh8TuCcDhcfLSkCHs1jsF+F29FZaJMvE2vUCaSMxw+5UgFxDX+fcpETeRtjyd8SG+fZRFD+5K7PR4Al81G/t7DRAy5pDdcpSJ8cB/ytl/+278aDiekZjq5rpG3ulcBLRsqFU5ZfibDyXUNfe+TaNVI4UyG98u+2HCLDFWY85OZkhpOJudvZbjsflPOO2kV680zFXBdI7XPVN6XSkp30KpRmTyOVXMm3fudXGy4RYaqmLWslJIadg768+/O4YTk805axfrut1VsQIUTSiSlO3y+E4C4xmrPhFbZBS7yi53ExZb5/DHqGk965Y/x/h5luLb5Wxm22CArz+l5pVdw/tM0Rl1huago3laNAzzf+9kMB3aHyydNVJhCvWDld5nA7XenUuru5Qf8I8prTFZWFrfccguDBg3i3nvvJT093eeVmZlZa/t64okn6NevH0OHDuXDDz9k//79nDp1im+++YbevXtz/PhxTCYTkydP5plnnmH16tUcOXKEP//5z5SUlDBp0iQAHnnkEY4fP84zzzxDYmIiX331FfPnz/fZ13PPPcfWrVuZOnUq8fHxHD9+nB9++KHCCUt0Oh3BwcE+r/KGTZbn5z0WRvfR0bFFAA0iFB4YbSK/yEn8ce8VosfvMDGwi7fRuGG3hf4dtfRupyGmnsLdNxjQaWDbIe9QrWCTikZRaqJC3UW7YYRCoyg1Rn3Nu+A37DYzqq+eji01NIhQmDjGRF6Rk/hj3pifuDOQQV29ebB+l5n+nXT0bq8lJlzh7hFGtBrYetAds14L0+4MQquBz1eVYNCpCDa5XzUdNeBv8f6y18LI3jo6XCgT949yl4n9J7zxTht/eZno11FLr3Yaousp3DXcXSa2X1omjCoaRaqJvFAmGkQoNIqsWZlQm4wEd2pNcCf3/ajGZo0I7tQafWx9AOJeeZJOn73hSX/m40UYm8XSesYzmOKa0+SRCdQfP4rT/zffk+b0u58RO+kOGt53C4Gtm9P+w38RYDKQvGBpteO86Nf9dnq1CaB7nJqoUBXjBmjQalTsSnCfqNw1RMuoXt6Zzn47YCcuVmFgpwAiQ1Xc0F1Do0iFLYfc6RUF7r9BS2yUwsL1FhQVBBncL3UtHlX8qQxvjLfRu62GHq0DiApTcfsgHdoAFTuOuvNswjAdY/p4y+6m/TZaN1YzqLOGqFAVI3q68/O3A+7PpigwcaSe2CiFL9daUBQVQUb3qzbz2J9+d7/stdC3vYaebTREhyncMVSPTqNi+xF3rPfdoGdsP29Z2LjPStsmAQzpqiU6TGFUbx2No9Vs2m/1STOip472zQOoH65w3wgD+cUuDpys+Um8v8Vb22UYwKhzf/cXHx8QFarQIEKp8P7Z6vCnMgzwyz4LI3vp6dDcHe99I43kF7l84n3sdhMDOl86k7aVvh209GrrjvfOYRfK0mF3vGar+1xo3EAD18WqiY1SuHeEgVPn7LU+W6aoezJsshpWrFjBmTNnOHPmDPXr17/s/SZNmpQ7DX916HQ61q1bxzvvvMOcOXN4+umnMRqNtGnThmnTptG+fXsAXn/9dZxOJ/fddx+FhYV0796dNWvWEBYWBriHPS5ZsoS//vWvvP/++/Ts2ZPXXnuNP/3pT559dezYkV9//ZUXXniB66+/HpfLRYsWLbjzzjtr5bNcau1OC1qNigkjjBgvPHz3/e+Kfa6AR4aqCTR4F+xJtBFoLOXGfgbPQ7rf/67YZyjX9Z103NjP+xykpya470NcsLLEU8lVO+YdFnQaFfeMMGLUqziRYuf9b3yv2keGKT7D0/Yk2AgyljK2v97zwOD3vynyxNw4OsAzu9UrD4f47O+FWflkF1T/Cqa/xbvuYpm4weh5IPOHS3zLRESoGtMlZWJvojveG/sZPEOHPixTJvp31jGmr7dMPHm3u0x8sar6ZSKkW3v6bPjC83/bmX8DIPnzpRyYNB1d/UgMsd66oTQphV03PUzbt6bT9LH7Maekc/Dhv5O1brMnTdq3q9BG1qPVi9PcD+nef5SdNz6EtcwkJtWx/6SDQIONET28D9/9dLmFolL3+2GBKi69vfZMhpOF662M7KVhVC8NWfku5q+2kJ7jThRiUtG+mbscPHWH78PiZv1g5uS52rny7k9lOP6EnUCDipE9tRceoutkzk+lnoliwoIUXC7vtpPSnXyx1szo3u4T4sw8J/NWmknPcacJMano0Nwd5zN3+z6r6YPvSzmZWjsnZP70u9t7zE6gwcyYPjr3frOcfLSsxLPfsGAFF948Pp3mYP7qUm7so+PGvjoy85x88lMpadneNOt3W9EGqLh7qP7CA54dfPR9SY17Y/0x3touwwDtmgUwYZi3HDww0v336p1W1uys2TH5In8qwwDrd1nRaVTcPdxwIV4HHy0tE2+Ib72295iNQKOKMX313niX+sa7ZKMZlwseGmt0P6Q7yf2QbvHfR+WqyowYQlyFyW/m1XUIV2XWM6E88kZuXYdRZbOfC/O7eKfMzKvrMKrsw6dDWaGJq+swrsoYWyJPzyqp6zCqbOZko9+V4b9+cG1PjFDWO1MD/e5399i7BXUdRpW9/0Sw38UrZfj39eHToUx9O7+uw6iyD54MuXKiOmJe/Wmd7Vs/8qE623dVybBJIYQQQgghhLhKH374IU2bNkWv19OrV6/L5pcoKy8vjylTplC/fn10Oh2tWrVi5cqVV7VPGTYphBBCCCGEuDb4yaMCFi9ezJNPPsns2bPp1asX7777LiNGjCAxMZGoqKjL0lutVoYPH05UVBTfffcdDRs25MyZM1WawPBS0ngTQgghhBBCiKvw9ttv8+c//5kHH3wQgNmzZ7NixQrmzZvH888/f1n6efPmkZOTw9atW9Fo3JOENW3a9Kr3K8MmhRBCCCGEEP/zLBYLBQUFPi+L5fJn4VitVvbs2cOwYcM8yxRFYdiwYWzbtq3cbf/444/06dOHKVOmEB0dTfv27XnttddwOK5uxiFpvAkhhBBCCCGuDXX4nLcZM2YQEhLi85oxY8ZlIWZlZeFwOIiOjvZZHh0dTXp6erkf69SpU3z33Xc4HA5WrlzJP/7xD9566y1eeeWVq8oeGTYphBBCCCGE+J83ffp0nnzySZ9lVX2G8ZU4nU6ioqL4+OOPUavVdOvWjdTUVN58801efPHFKm9HGm9CCCGEEEKIa0MdTlii0+mq1FiLiIhArVaTkZHhszwjI4OYmJhy16lfvz4ajQa1Wu1Z1qZNG9LT07FarWi12nLXK0uGTQohhBBCCCFEFWm1Wrp168aGDRs8y5xOJxs2bKBPnz7lrtOvXz9OnDiB0+l9kP2xY8eoX79+lRtuII03IYQQQgghxLVCUerudRWefPJJPvnkExYsWMDRo0eZPHkyxcXFntkn77//fqZPn+5JP3nyZHJycnj88cc5duwYK1as4LXXXmPKlClXtV8ZNimEEEIIIYQQV+HOO+8kMzOTf/7zn6Snp9O5c2dWr17tmcTk7NmzKJc0CGNjY1mzZg1//etf6dixIw0bNuTxxx/nueeeu6r9SuNNCCGEEEIIIa7S1KlTmTp1arnvbdy48bJlffr0Yfv27TXapzTehBBCCCGEENcEVx1OWOIP5J43IYQQQgghhPAD0vMmhBBCCCGEuDaopG+pMpI7QgghhBBCCOEHpPEmhBBCCCGEEH5Ahk0KIYQQQgghrg0ybLJSKpfL5arrIIQQQgghhBCidOPXdbZvw6C762zfVSU9b6LWPfJGbl2HcFVmPxfGxH9l1HUYVTb/X9E88M/0ug6jyha8HMPQu3bWdRhVtmFRT56eVVLXYVyVmZONrNDE1XUYVTbGlsjNkxPrOowq+2FWHC99aavrMK7Ki/dq/Kounv1cGC9+7j95/NL9Gp76qLiuw6iytx418dcPiuo6jKvyztRAnnjff2J+9zH/i/daJY8KqJz0SwohhBBCCCGEH5CeNyGEEEIIIcS1Qe55q5TkjhBCCCGEEEL4AWm8CSGEEEIIIYQfkGGTQgghhBBCiGuDTFhSKel5E0IIIYQQQgg/ID1vQgghhBBCiGuDIn1LlZHcEUIIIYQQQgg/II03IYQQQgghhPADMmxSCCGEEEIIcU1wyYQllZKeNyGEEEIIIYTwA9LzJoQQQgghhLg2qKRvqTKSO0IIIYQQQgjhB6Tx9j+kadOmvPvuu57/VSoVy5Ytq7N4hBBCCCGEuJRLpdTZyx/IsMk6NHHiRBYsWHDZ8uPHj9OyZcta39+uXbswmUy1vt3qGttfT/9OOgw6FSdT7Xy9toTzuc5K1xnYRccNvXQEmxRSzjtYvL6EpDQHAEa9irH99bRpqqFesEJRqYv4Y1Z+/K0Us7V2Yr51sImBXQ0Y9QrHk618vryQjBxHpesM7WFgVD8TIYEKZ9PtfLmqgNOpds/7z08Mo3VTrc86v+wuYcHywprHOySQQd0uxHvWyoKfCq4cb0+jJ97kDBtfrijkVKrNG++D9WjTzDfen3eVsOCnghrHO3F8Q0YPiSTQFMChxEL+b24SqemWCtN3aB3EnWNjuK6ZiYh6Wv458xhbduddlq5xAz1/nhBLx7ZBqBUVZ1JLeentE5zPrn7B6NsugEGdAwgyqkjLdvL9ZhvJ5ysuvx2bqxnZU0NYkIqsfBcrtltJOOtOrygwqqeG1o3VhAerKLW6OJ7iZOV2GwUlrmrHeFG9/t1p/tQkQrq2R98git23PUrGjxsqX2dAT9rOfJ7AttdhTk7jxIxZpHz+vU+aJpMn0PzJSehiIik4kMDhJ/5N/q6DNY73UhNuDGd4/1BMBoWEU6XM+iqDtExbhenbtjRw6/B6tGysp15oAK/NTmXH/iKfNL07BzLy+lBaNNYTHKjmiVeTOJ1ScTmrqh6tFPq2VQg0QHqui1W7nJzLrvj7a9tYxeBOakIDIbsA1u9zcOKcb/qIYBjWVU2TKBWKApn5Lr751UFBSY3D9fCnurhnnELfdu48zshxsXKnk9TK8riJiiGd3XmcUwDr9jo4nlomj0NgeFc1TaNVKCp3Hi/+1UF+cc1iBejXPoBBnTUEGVWcy3by/W/WyuuJFmpG9dR66onl26wknHXn68V6ok2TAOoFqzBbXRxPcbBiW+3UEwD9OmgY0uVCvFlOlm6ycLaSeDu1UDOqt456QSoy850s32rl6BnvMaZDczX92mtoFKXGpFfx5qISzmVVXrauRv8OGoZ09ca7ZJOFsxmVxNtSzeiL8eY5+alMvB1bqOnbXkNspBqTQcWbX5eQWovx+mvM4triH03M/2IjR44kLS3N59WsWbPfZV+RkZEYjcbfZdtX64ZeOgZ30/HVmhLe+KIQq83FY3cEEqCueJ1urTXcPsTA8i1mXptfQMp5B4/dEUiQ0T0rUWigipBAhSW/lPLyvAIWrCimXXMN94+unQbr6H5GhvcysmB5IS9/moPF6uKp+0LRVHIJpGc7HXeNCGLZxiJenJNNcoaNp+8NI8jkO5PSxj0lPD4z0/NavK6ogi1eRbz9TQzvZWT+TwW8/HE2FquLp+8Pqzze9nruHhnEDxuLeHF2Fsnpdp6+P4wgk29VsXF3CdP+c97zWry25g3Nu26qz60jo3n30ySm/v0wZouT16fHodFUPOuUQa9w8kwJ7312psI09aN1/N9LbUk+Z+aplxP483OH+HLpOay26h/cOrVQc1M/Det223j3OzPnsl38+UYdgYby0zeJVrhnuJadCXbe+dbModMOJo7UEVPP/dm0AdAwQmH9HhvvfGdmwRorUaEqHhylLX+DV0ltMlJwIJFD016qUnpD00b0+HEO2Rt3sLn7zZx+fwEd5rxCxPD+njT1x4+izZvTOf7Kh2zueSuFBxLotWIu2sh6tRIzwLgb6jFmcBizvsrgmf+cxWxx8q9pjdAEVFwm9DqFpFQLcxZlVJxGq3D0ZCmfL8ustVjbNVFxQzeFXw84mLPSTkYu3DtEjVFXfvpGESpu669m30knc1bYSUxxctdANZEh3jRhgfDgiACy8l0sWGdn9nI7mw46sVd+/eWq+FNd3K6pihHdFTbudzBnuZ30XLhvmBqTvvz0sZEqbr9ezb4TTmYvt5OQ7OSuQWqiQr1pwgJh0kh3Hn+21s5HP9n59UDt5HHnlmpu6qdl7W4b73xbyrksJ3+5UV9hPdE0RuHe4Tp2HLXz9relHDpt58FRvvVEo0g163ZbeefbUuavthAZqvCn0RUUsquON4Bb+mtZs8vKW4tLOJft5OGbDAQayv+9NY1RuG+Enh1HbMxcXMKhUw7+NFpPTD3v8UKnUXEqzcFPW2t+caSsLtcFcMv1WlbvtDJzkbvB8sgV4r1/hJ7th23MXFTCwVMOJo3xjVcboOL0ud8nXn+NWVx7pPFWx3Q6HTExMT6v//u//6NDhw6YTCZiY2N59NFHKSrynszPnz+f0NBQli9fTlxcHEajkdtvv52SkhIWLFhA06ZNCQsLY9q0aTgc3iNQ2WGTlxoyZAhTp071WZaZmYlWq2XDhsqv0FfH0O56Vm0zs/+EjdRMB58tLyY0UKFzK02F6wzroWfLfgvbDlpJy3by1ZoSbDbo28F9gnsuy8nHy4o5eNJGVp6TxLN2fthUSocWGpRamHX2ht5GftxUzL5ECykZdj75voCwIDVdW1d84BzRx8Sve0vZHG/mXKaDBcvdJ0cDuvgeva02F/lFTs/LbKn5VdQRfYz8tKmIfQkWkjPsfLw0n9AgNV1bV3CmA4zsa+TXPSX8tq+Uc5kO5v9U4I63q2+8lt8h3nGjovny+3Ns3ZPHqbOlvPHhKSLCtPTvHlbhOjvj8/nsm1S27MqtMM2kOxuxIz6Pj79K5kRSCWkZFrbtySOvwF7hOlcysFMAO47Y2ZXoICPXxZJfrdhsLnq0Lr9lfH3HABLPOtkYb+d8nos1u2ykZjnp196d3myFj5db2H/SQWaei7MZTr7/zUZslJrQwJoX3sw1mzj24rtk/LC+Sumb/OUuSk+ncPTZNyhKOMWZjxaSvmQNzR6f6EnT7IkHSZ77DSkLllJ09CQHH30RR4mZ2Im31Tjei8YOCePbVdnsPFDEmVQL785Pp15IAL07B1a4zt7DxSz8MYvt+yu+ALJxZwGLV2az/2gtdK1c0LuNwt4TTuJPucjKh+U7HNgc0KVl+YfZXq0VTpxzsfWIk6wC+GW/k7QcFz3jvOmHdFZzPNXF+n1O0nMhtwiOpbgoqcVzNH+qi/u2Udhz3En8SReZ+bB8e+V53LuNO4+3HHaSlQ8/x1+ex0O7qDme4mLdXifpOe48TkxxUWyufpwXDeikYfsRO7sS7N56wu6iZ+vy8/b6jhoSzzrYGG/jfK6L1TttpGY66dfBnd5shTk/mcvUE9ZaqycGddaw7bCNnUfd8X77iwWr3UWvNuXXawM6aUg46+CXfe54V+2wkpLp5PqO3s+3O9HO2l02jiXX4hWHK8Xbtvx4B3bWkHDGHW9GJfGu+Z3i9deY64RKVXcvPyCNt2uQoii89957HD58mAULFvDzzz/z7LPP+qQpKSnhvffeY9GiRaxevZqNGzdy6623snLlSlauXMkXX3zBnDlz+O6776q0z4ceeoivvvoKi8V7VvDll1/SsGFDhgwZUqufLyJEISRQ4WiS9+TZbIXT5+w0b1B+BaZWoHGMmqNnvOu4gKNJNpo3rLgryaBzDy1x1rBtERmmJjRIzZFT3jE/pRYXJ1NstGhUfu+IWg1NGwT4rONyweFTVlo08j149+5g4P1nI3nl0XBuHxqItuLzpquK9/BJ33hPpdpoGVv+xtVqaFpf47OOywWHT1ppWSbePh0NfPBcFK9OCWf8sJrHWz9KR3iYlr0HvUMvi0sdHD1RRNtWFZ+oX4lKBb26hJKSZub16XF8N6cLH7zSln7dQ6u9TbUCDSMVjqV4e+5cwPFUJ02iy69Sm0QrHE/1PbAmJjtpEl1x94ZeC06Xi9JaaBhfrdDencn6eZvPssx1mwnr3RkAlUZDSNd2ZG3Y6k3gcpH181ZCe3eplRiiIzTUCwlgf4J3fGCJ2cmx02bimlXQdVFHFAUa1FNxKs33uzqV5qJRRPknA7GRKk6l+6Y/meaiUaS3DF3XUEVOoYt7hqh5+vYAJo1UE9eo9k4u/KkuVitQP9w3j1248zg2svw8aRR5+Xdy8pyL2At5rAJaNVKRXeDivmFqnhkfwJ9HqWkdW/M8VivQKFLheIr3d+8CjqU4aBJTcT1xLKVsPeGgaQX1CtRePaFWoFGU4tMAcAHHUxw0iSm/nmoao76swZB4tuLPV5sqivdYsoOmVxFvwlkHTev/MafC/hizuDbJt1/Hli9fTmBgoOc1fvx4nnjiCQYPHkzTpk0ZMmQIr7zyCt98843PejabjVmzZtGlSxcGDBjA7bffzubNm5k7dy5t27blxhtvZPDgwfzyyy9VimPcuHEA/PDDD55l8+fPZ+LEiahq+UpE8IUrhAXFvsPWCktcBJvKL5KBRhVqRXVV65gMKkb31bM5vuaXqUMC3fvIL/Ldf0Gx0/NeWUFGBbWiqmAdb0W97aCZj5fm88b8XFb8VkzfTnr+Mi6k7OZqJ94iR+XxqlXkl8nj/GIHIUHedbYfKGXOkjxe/yyH5b8V07eTgYdvC61RvGGh7tZfbr7vvUy5+TbPe9URGqzBaFBz10312bU/j+deS2Tzzlz+9eR1dGwTVK1tmvTuslhU6nuyVFjiIthY/m8lyKiisMw9KUUlLs8ws7IC1DCmj5b44w4sFd/e9bvRRUdgycjyWWbJyEITEoSi16GNCEMJCMByPrtMmmx0MRG1EkNYsPs3UraHNK/Q7nnvWmHUgaKoLuutKTa7KhwiF6h3v3+pIrN7OYBJ7x5y1q+dwslzLr7YYCch2cWdA933v9UGf6qLjTou/O58lxeVujx5dlmsei77nRaZ8XwnF/O4f3uFE6kuvlhv52iyizsHqWkSXbM8vlhPXPa7L634dx9kVFFUcnm9EmQsP18D1DCmd+3UEybDhXhrWK8VljgrTF+bPPGWk1/XYrzgnzHXFZmwpHIyYUkdGzx4MLNmzfL8bzKZWL9+PTNmzCAhIYGCggLsdjtms5mSkhLPPWtGo5EWLVp41ouOjqZp06YEBgb6LDt//nyV4tDr9dx3333MmzePO+64g71793Lo0CF+/PHHCtexWCw+PXXgHgZaVs+2WiaM8N5r9+F3Nb+f60r0Wph6eyBp2U5+2nL141/6dNDzwFjvyf07C/NqMTpfv+7xno2knLeTV+TguQfqERlWRGZu1YZB9OmoZ+LYYM//by+seBhhTW0sG2+hk+cfrEdUmJrzVYx3aL9w/vrnpp7///bGsdoOE3D3iABs3ZPHkpXue6BOnimhXatAxg6L4sDRmt+rV9sUBe67wd2bu2RTLc204wcG9ghi8oQYz////iilDqOpexevmSUmu9ie4G4oZeQ6iY1U0a2VwpnzVz9Eyh/r4t/TxTxOSHGx7ag7j9Mv5HGPVgpnMq7dYWiKAvffoEOlgu9+lXudhPhfIo23OmYymXxmlkxKSuLGG29k8uTJvPrqq9SrV4/NmzczadIkrFarp/Gm0fj2RqhUqnKXOZ1Vn5ThoYceonPnzqSkpPDZZ58xZMgQmjRpUmH6GTNm8NJLvhMgvPjii2B43GfZ/hNWTp/zXj0PuFDqgk0KBcXeg2OQUUVKBSckRSUuHM6LV3Z91yl7BVinhcfuCMJsdTF7aRFXkQUe+xItnLxkhsWLN++HBCo+vVnBJvcMkuUpLHHicLou6+kKNinkF1V8UnAyxb3f6HrqKjfe9iVYOJni7QXRqFXlxxuo5mxa+ZdoC0ucOBwuQspcPQ8xqckvrDgTL8YbFV71xtvWPbkcPeE9cdRo3PsMC9GQk+eNLyxEw8kz1Z9WL7/Ajt3u5EyK7+X6s+dKaR9XvZ63YrO7LJa9wTzIqKpwxrfCcnrZAsu5oqoocN9wLWGBCrN/NNdJrxu4e9l00b49aLroCGz5hTjNFqxZuTjtdnRR4WXShGNJ9+2xq6qdB4pITEry/H9xUpLQ4AByC7zlKjQooFZmhqxNJRZwOl2XTZxh0l/eU3RRkdn9vnvglFug3r384jYdTheZ+b5lJCu/4mGCV+KPdfFFF/OjbE9moEHlybPLYjVz4XdaJo9LfbeZmXd5HjeuYe/mxXrist+94fLf/UWFJS4CjZfXK4Ulvhl3seEWFqRi1g+1U08Ul16It4b1WpBRqbWZLyvjibec/LoW4wX/jFlcm/yjf/B/yJ49e3A6nbz11lv07t2bVq1ace7cuT9k3x06dKB79+588sknfPXVV/zpT3+qNP306dPJz8/3eU2fPv2ydBYrZOY5Pa+0LPckF62beK8d6LXQrEEAp86V3xByOOFsusNnHRXQuqmGU5dMu6/XwuN3BOFwuPhoSVG1ZwwzW12cz3F4XucyHeQVOmh7yRT5ep2KFo00nEwpv3fE4YCkc3afdVQqaNtc62nwlKdxjLsRnldU9TOdsvGmZtrd8Tb3jbd5Qw0nksvft8MBSWk2n3Uuxnuiknib1Hd/J5U18MoqNTs5l2HxvM6klJKda6Vre2/vodGg0KZlIEeOVb93wO5wkXiqmNgGvmfVjWL0ZGRVr1fL4YTUTCfXNfJWnyqgZUOFMxVM93wmw8l1DX2H+rVq5Htl/2LDLTJUYc5P5lqdlOJq5W2PJ3xIb59lEUP7krs9HgCXzUb+3sNEDOnjTaBSET64D3nb91Vrn6UWF+mZNs8rOc1KTr6djnHeniKDXqFVMz2JpytoEdURpxPO5bhoHuN7ktU8RkVKVvknWcmZLpqVTV9fRUqm07vNbBfhwb5p6gWpqj2FvT/WxZfuNy3bRfP63vxQAc1iVCRnlp/HKZnlfCf1VSRfyGOHE1KzXESUyePwYBV5NZzLxuGElEzf370KuK6RmjPpldQTjcrUE7Fqki6pVy423CJC3Bd4aquecDgh5byTVrHlxVv+l5eU7qBVOfFW9Plq08V4L80v1YX9J1US73WxvvHGxapJSvtjptX3x5jrjExYUilpvF1jWrZsic1m4/333+fUqVN88cUXzJ49+w/b/0MPPcTrr7+Oy+Xi1ltvrTStTqcjODjY51XesMnybNhtZlRfPR1bamgQoTBxjIm8Iifxx7yNhCfuDGRQV+/21u8y07+Tjt7ttcSEK9w9wohWA1sPuk/C9VqYdmcQWg18vqoEg05FsMn9qo3f49rtJYwdYKJznI5GUQH85dZgcgsd7E3wHj2fvT+UoT29l4bXbCtmYDcD/TrpqR+h5v4xQeg0Kn7b575UHBmm5qYBJprUDyAiVKFznI6/3BpMQpKVlIzqz4bo3ncJNw0MpMvFeMeFkFfoYG+C9zL1sxPDGNbTe3K8emsJA7sZ6dfZHe8DNwaj06r4ba/7ZDkqTM1NA000rR9ARKiaLnE6/jIuhIQkK8k1jHfpqgzuubUBfbqF0izWwPOPtiAr18rm3d4hoG/+PY6bR0R5/tfrFFo0MdKiifszxETpaNHESFS4twG6+Kd0BvWpx+ghkTSI1nHziCj6dAvjx7UVTyV/Jb/ut9OrTQDd49REhaoYN0CDVqNiV4I7D+4aomVUL29P+G8H7MTFKgzsFEBkqIobumtoFKmw5ZA7vfuETEtslMLC9RYUFQQZ3C91LdTSapOR4E6tCe7UGgBjs0YEd2qNPrY+AHGvPEmnz97wpD/z8SKMzWJpPeMZTHHNafLIBOqPH8Xp/5vvSXP63c+InXQHDe+7hcDWzWn/4b8IMBlIXrC05gFf8NPPudwxOpyeHU00aaDliQdiyMm3sz3e26B/+fFGjB4Y6vlfr1PRrJGOZo3cdUd0uIZmjXREhHkbG4FGhWaNdMTWd6dpGK2lWSMdoTW4l277USddr1Po1FxFRDDc2EtBEwDxJ90nWbf0VTO0s/fL3JHgpGUDFX3aKIQHw8COCg3qqdiZ6D0p23rESfsmKrq2VBEW6H6OXFwjFbuO1d6Jmz/VxVsvzeMQuLG3gjYA9p1w58et/dQM63LJ/blHnbRsqKJvW4WIYBjUSaFBuG8ebznspF1TFd2uU1EvyP0cuVaNVOxKrHkeb9pvo1fbALrHBRAVpuK2gVq0ASp2Jrjz9u6hWkb3vrSesNE6Vs3ATgFEhaq4oceFeuKgO72iwAMjdJfUEyqCDO5XbdQTG+Nt9G6roUdrd7y3D9KhDVCx46i7npowTMeYPt66ddN+G60bqxnUWUNUqIoRPd112G8HvGXHqIMGEYpnavuoUIUGEUqF9/1dbbx92rnjjQ5TMX7whXiPuOO9Z7iOGy+J99d4G20aqxnURUNUmIqRFcTbMEIh+mK8YQoNaylef41ZXHtk2OQ1plOnTrz99tu88cYbTJ8+nQEDBjBjxgzuv//+P2T/d999N0888QR33303en3FU8rX1NodFnQaFfeMMGLUqziRYuf9b3yvzkaGKT5D0/Yk2AgyljK2v97zYNj3vynyDEFpHB3gmSHtlYd9J/x4YVY+2QU1Oxiv3FKCTqviwbFBGPUKx85aeevLPGyXtFmi6gUQZPRWqjsPWwgyFXLr4EDPQ7rf+jLXM7zI4XDRtrmWG3ob0WlVZOc72H3Uwo+baj6F+crNxei0KibeFOx5SPfML3J94w0LINB0SbyHzAQbFcYNCboQr42ZX3jjtTtctGuhY0QfE1qNipwCB7uOmPnx15rHu+jHNPQ6hSf/3JRAYwAHEwuZ/voxbDbvVfUG0XpCgrwnO3EtTLz9zzae/x+93z3Md82vmfxn1mkAtuzK5d1Pk7j75gZMndiE5HOl/Ovt4xxKrH6P3v6TDgINNkb08D5o9dPlFs9wrLBAFa5LOgPOZDhZuN7KyF4aRvXSkJXvYv5qC+k57kQhJhXtm7nL7lN3+I4Lm/WDmZPnalZ2Q7q1p8+GLzz/t535NwCSP1/KgUnT0dWPxHChIQdQmpTCrpsepu1b02n62P2YU9I5+PDfyVq32ZMm7dtVaCPr0erFae6HdO8/ys4bH8JaZhKTmli6Nge9VsWjE2IwGd3PZnvp/RRsdm/mxkRqCb5kAqCWjfW8+mRjz/+Txrsb+xu25fPe5+kA9OwYyOMPeD/vMw81AODr5VksWlG9+A+fcWHUORnUUe15SPfCnx2eSUxCTOByeeuzlCwXSzc7GNxZzZDOCjmFsOhXB5n53m0mJLtYvtNB/3ZqRnZ3P8j7m02OCnuaqsOf6uLDSS5MOidDOl/I4xwXX2yoOI+TM11895uDoZ3VDO2ikF0AizY6OJ/n3WZCsovlOxxc317NqB6QVQCLf3Vw9nzN8zj+hAOT3sqInhqCjVpSs5x8stzsqSdCAxVcLm9eJKU7+XK9hVE9tYzurSUzz8Vnq8qvJ56+07ee+GhZaY3rifgTdgIN7gZCsElFaqaTOT+VeiZ9CQu6PN4v1poZ3dvdqMvMczJvpZn0HG+ads0CmDDMey7xwEj336t3Wlmzs2b39O47bsdkUDGq1yXx/nhJvOXk7+drzYzp7W4gZeY5mbvCN972zQKYMLyceHdYWV3DeP015jrhJxOH1BWVy+WSgbPCIykpiRYtWrBr1y66du1arW088sbvN1nG72H2c2FM/Ff1e2H+aPP/Fc0D/0yv6zCqbMHLMQy9a2ddh1FlGxb15OlZ1b/Pri7MnGxkhSaursOosjG2RG6enFjXYVTZD7PieOnLOroBsZpevFfjV3Xx7OfCePFz/8njl+7X8NRHtfecwN/bW4+a+OsHv/8ENbXpnamBPPG+/8T87mP+F++1qnD36jrbd1D3kXW276qSnjcBuB89kJ2dzd///nd69+5d7YabEEIIIYQQ1eXyk3vP6or0SwoAtmzZQv369dm1a9cfeo+dEEIIIYQQomqk500AMGjQIGQErRBCCCGEENcuabwJIYQQQgghrg0yYUmlJHeEEEIIIYQQwg9Iz5sQQgghhBDimuBCJiypjPS8CSGEEEIIIYQfkMabEEIIIYQQQvgBGTYphBBCCCGEuCa4ZMKSSknuCCGEEEIIIYQfkJ43IYQQQgghxLVBet4qJbkjhBBCCCGEEH5AGm9CCCGEEEII4Qdk2KQQQgghhBDimuBSyXPeKiM9b0IIIYQQQgjhB6TnTQghhBBCCHFNkEcFVE5yRwghhBBCCCH8gMrlcrnqOgghhBBCCCGEyDm4uc72Xa9D/zrbd1XJsElR6x5+PaeuQ7gqc56vxwP/TK/rMKpswcsxfheveck7dR1Glelv+yuPvJFb12FcldnPhXHz5MS6DqPKfpgVxwpNXF2HUWVjbImMmnigrsO4Kqvmd+TtH/zn2uyTN6s4fCKtrsOosnYt6/PXD4rqOowqe2dqIB+uqusors6UUTD17fy6DqPKPngyhCkz8+o6jCr78OnQug5BVJMMmxRCCCGEEEIIPyA9b0IIIYQQQohrgkxYUjnJHSGEEEIIIYTwA9LzJoQQQgghhLgmuJCHdFdGet6EEEIIIYQQwg9I400IIYQQQggh/IAMmxRCCCGEEEJcE2TCkspJ7gghhBBCCCGEH5CeNyGEEEIIIcS1QSUTllRGet6EEEIIIYQQwg9Iz5sQQgghhBDimuCSvqVKSe4IIYQQQgghhB+QxpsQQgghhBBC+AEZNimEEEIIIYS4JrhkwpJKSeOtjqWnp/Pqq6+yYsUKUlNTiYqKonPnzjzxxBMMHToUgH379vHaa6+xadMm8vPziY2NZdCgQTzzzDO0atXKZ3sjRoxg/fr1bN++nR49etTFR6qysdcbuL6TDoNOxclUO1+tKeZ8rrPSdQZ11TG8l54Qk0LKeQeL1hWTlOYAwKhXcdP1Bto01VAvWKGoxEn8cRs//FaK2eKqlZhvHRLIoG4GjHqF42etLPipgIwcR6XrDO1pZFQ/EyGBCskZNr5cUcipVJvn/ecfrEebZlqfdX7eVcKCnwr+p+JdtO0QC36LJ6uolFYx4Tw/th8dYqMrTF9QauGDtTvZcOQ0+SVm6ocG8eyNfbk+rgkAs9bvYvbPe3zWaRoRyg9P3lWjOMsa219P/0vK8ddrS65Yjgd20XFDLx3BF8rx4vUlPuV4bH+9txyXuog/ZuXH30oxW2se74QbwxnePxSTQSHhVCmzvsogLdNWYfq2LQ3cOrweLRvrqRcawGuzU9mxv8gnTe/OgYy8PpQWjfUEB6p54tUkTqdYqh1jvf7daf7UJEK6tkffIIrdtz1Kxo8bKl9nQE/aznyewLbXYU5O48SMWaR8/r1PmiaTJ9D8yUnoYiIpOJDA4Sf+Tf6ug9WOszz33RrNyIH1MBnVHDlezAefp3Iuo+Ivrn0rE7ePjqRlEwPhYRpefi+JbXsr/i1NfaAhYwaHM+ercyxbm1WjWA9tXcj+X+dSWphFeP3W9Lv570Q17lhu2pz04+xe+x6ZqYcpyj1Hn7HT6Xj9Az5pzp3axf5f55KVcpiSwkxuuP8DmrUfVqMYy1q1/HuWLVlEXm4OTZu15KFHpnFdXJty027fsokl33xJWloqDruD+g0actO4Oxk05AZPmnFjBpW77v1/eoRbbqt5XdGvg4YhXTQEGVWcy3KydJOFs+crrh86tVAzqreOekEqMvOdLN9q5egZd92gKDC6l5Y2TdWEByuYrS6OJTtYvs1KQXHtHOP2/7aQvT/PpaQwk4gGrRl42z+IaVJ+mchOO872Ve9xPvkwhbmpXH/LdLoMmljhtnev/5ity9+i84D7GTDuhVqJ96IxfXX0ba/FoFdxKtXB4g2lZOZVXg8P6KRlaHcdwSYVqZkOvv3FzJl07/ExQA3jBurpFqchQK3i6Bk7izeUUlhS87we009Pvw5aDDoVp87ZWbSuCvF21jKsh94T7zcbSn3i7ddRS/c2WmKj1Bh0Kp5+P5/SWjr3EdcWGTZZh5KSkujWrRs///wzb775JgcPHmT16tUMHjyYKVOmALB8+XJ69+6NxWJh4cKFHD16lC+//JKQkBD+8Y9/+Gzv7NmzbN26lalTpzJv3ry6+EhVNqKXniHddCxcU8zrnxdgsbmYdmcQAeqK1+neWsvtQ4ys2FzKq5/lk3LezrQ7gwgyuq/QhAYqhAQqLPmlhJfm5jN/ZTHtmmu4f5SpVmIe3d/E8F5G5v9UwMsfZ2Oxunj6/jA0lVwC6dlez90jg/hhYxEvzs4iOd3O0/eHEWTy/elt3F3CtP+c97wWry38n4p39YETzFy5lYeHdmfRlNuIqx/O5M9WkF1UWm56m93BI/OWcy6vkJkThvPDk3fx4q0DiQr2/a5bRIWxYfr9ntf8h2+uUZxl3dBLx+BuOr5aU8IbXxRitbl47I7ASstxt9Yabh9iYPkWM6/NLyDlvIPH7gi8pByrLpTjUl6eV8CCFRfK8eial+NxN9RjzOAwZn2VwTP/OYvZ4uRf0xqhCaj4Kqdep5CUamHOooyK02gVjp4s5fNlmTWOEUBtMlJwIJFD016qUnpD00b0+HEO2Rt3sLn7zZx+fwEd5rxCxPD+njT1x4+izZvTOf7Kh2zueSuFBxLotWIu2sh6tRIzwPjRkdw0PIL3F6TyxMsnMFucvPJUMzSayvP31NlSPvoi9Yrb79s1mNYtjGTlVtzYrqoT8SvZ9tPrdBs2hdseX0q9+nGsmPsQpUXZ5aa328wE1Yul16inMAZFlp/GWkp4/db0v/WfNY6vPJs3/cxnn3zEHRMmMvO9T2jarAUv/+MZ8vJyy00fGBTEbXfex+szP+KdD+cyZPgoPnjndfbt2elJM/eLJT6vKU88h0qlonffATWOt3PLAG7pr2XNLitvLS7hXLaTh28yEGgovzw0jVG4b4SeHUdszFxcwqFTDv40Wk9MPXf9qw2ARpEK63bZeGtxCZ+tNBMVqvDQGH2NYwU4tnclvy2bQa+RU7jr6e+JaNiaH2ZPoqSwojJRSkh4I/qNfQpjcPll4qKMswc4tHUREQ3iaiXWSw3roWVgZx2LNpQy86sirDYXU8aZKq2Hu7bScOtAPau2m3njyyJSM51MGWfy+W5uG6SnfXMNc5eX8O43RYSYVDw01ljjeIf31DGoi45F60p4c2EhVhtMvf0K8cZpGDfIwMptZl7/opCU8w6m3m4i0OiNVxug4shpG2t2mGscY11zqZQ6e/kD/4jyv9Sjjz6KSqVi586d3HbbbbRq1Yp27drx5JNPsn37dkpKSnjwwQcZPXo0P/74I8OGDaNZs2b06tWLmTNnMmfOHJ/tffbZZ9x4441MnjyZr7/+mtJS94nvsWPHUKlUJCQk+KR/5513aNGihef/H3/8keuuuw69Xs/gwYNZsGABKpWKvLy8Wv/sQ3voWbnVzP7jNlIzHXy2vJjQQIXOrbQVrjOsp57N+y1sPWglLdvJwtUlWG3Qt6MOgHNZDuZ8X8SBEzay8pwknrGz7NcSOrbUoNRCD/yIPkZ+2lTEvgQLyRl2Pl6aT2iQmq6tKz5wjuxr5Nc9Jfy2r5RzmQ7m/1SA1eZiQFeDTzqLzUV+kdPzqo2eQn+K94vNBxjXow23dGtNi+h6/P3mAei1ASzbk1Bu+u/3JJBfauGde0fQpUl9GoYF0715A+LqR/ikC1ArRAQZPa8wk6Hc7VXX0O56Vm0zs/9E2XKsqXCdYT30bNlvYduFcvzVmhJsNujbwV32z2U5+XhZMQdPXijHZ+38sKmUDi1qXo7HDgnj21XZ7DxQxJlUC+/OT6deSAC9OwdWuM7ew8Us/DGL7WV62y61cWcBi1dms/9occ0CvCBzzSaOvfguGT+sr1L6Jn+5i9LTKRx99g2KEk5x5qOFpC9ZQ7PHJ3rSNHviQZLnfkPKgqUUHT3JwUdfxFFiJnbibbUSM8AtN0Sw6McMtu8rICnFzMxPkgkP09C3a3CF6+w+WMjnSzPYWklvG0B4aACT723Af2afxeGoef1w8Lf5tOk1ntY9biMsuiUDxr1EgEZPwq4l5aaPiu1AnxufpWXnMSgB5Zfvxq0H0HPkEzRrP7zG8ZXnp++/ZfjIMQwdPorYxk15eOqT6PR6fl67stz07Tt2oXff62nUuAkx9Rty482306RZC44e8fa2htUL93nt2r6Z9h27EFO/QY3jHdRZw7bDNnYetZOR6+LbXyxY7S56tSn/CtqAThoSzjr4ZZ+N87kuVu2wkpLp5PqO7vw2W2H2j2biT9jJzHNxJsPJkk0WYqPUhAbW/CC3b+NntO9zB2173UZ4TEuGjH+JAK2eIzvKLxPRjTvS/+bnaNV1DGp1xcduq6WYNV88w5A7X0FnCKlxnGUN7qJjzQ4zB0/aOZfl5PPVJYQEqujUsuJ6eEg3LVsPWdl+2EZ6jpNF60ux2l30ae/+HHot9GmvZemvpRxLdpB83smXa0pp0TCApvUraWVVJd6uOlZvN3PgQrwLVhYTEqhUGu/Q7jq2HrSy/ZCV9Gwni9aVYrXhiRfgl70W1u20eEZxiP9e0nirIzk5OaxevZopU6ZgMl1+RT00NJQ1a9aQlZXFs88+W+42QkNDPX+7XC4+++wz7r33Xlq3bk3Lli357rvvAGjVqhXdu3dn4cKFPusvXLiQCRMmAHD69Gluv/12brnlFvbv38/DDz/MCy/U7rCGiyJC3D1kR5O8V4/NFhenz9lp3rD8g5pagcYxap91XEBCkq3CdQAMOvfQEmcNz3Uiw9SEBqk5fNI7/KnU4uJUqo2WseVXuGo1NK2v8VnH5YLDJ620bOS7Tp+OBj54LopXp4Qzflgg2orr8P+6eG12B0fPZdK7ZSPPMkVR0btFIw6cLb+359ejSXRsHM2MHzcz+NUFjHt3MZ9u3IvD6Tvs5ExWPsNmfM7oNxcyffF60vJq3qN5kbcc2z3LzFbc5bjBFcrxGe86LuDoFcuxqsblODpCQ72QAPYnlHiWlZidHDttJq5Z7TZq/2ihvTuT9fM2n2WZ6zYT1rszACqNhpCu7cjasNWbwOUi6+ethPbuUisxxERqqReqYd8RbyO3pNRJ4skSWreoWa+pSgVP/6Ux363K5Oy56g9Hvchht5KZepiGLft696EoNLquDxln4mu8/d+DzWbj5IlEOnbu5lmmKAodO3cjMeHIFdd3uVwciN/DuZRk2rbvVG6avNwc9uzaztAbRtc4XrUCjaIUjiV7T6RdwPEUB01iyj/5bxqj9kkPkHjWQZOYik/VDFoVTperxsPjHHYr51MOE9vKt0zEtupLWtK+Gm1743cv07TtQBrH9b1y4qsUHuIeqZBw1rceTkp3VNjIUisQG60msUw9nHjGTrML6zSOVhOgVpF4yXYzcp3kFDg9aaoXr/u4cem+zVZISnPQrJLjRmy0moQy8SacrfhYI/67ybdeR06cOIHL5aJ169YVpjl+/DhApWkuWr9+PSUlJYwYMQKAe++9l7lz53LfffcBcM899/DBBx/w73//G3D3xu3Zs4cvv/wSgDlz5hAXF8ebb74JQFxcHIcOHeLVV1+t/oesQHCg+0BUUOx7ol1Q7CTEVP7Vw0CjCrWiorDMuP6CYicx4eW3HEwGFWP66fktvuYnOyEXYs4vKhNzkcPzXllBRgW1WkV+mc+ZX+ygfqT3atn2A6Vk5TvIK3ASGxPAHcODiIkI4P1Fef8T8eaWmHE4XYQH+jYgwgMNnM4sf5spOYWcO3WO0Z2u48OJozmbnc9rP/yG3eHkkaHdAegQG82/bx9M04hQMgtLmPPzbh78+AeWPH4HJl3FV4mrKvjCle6y5biwxEWwqfw8vliOy1snJrz8EwKTQcXovno217AchwW7t59XYPdZnldo97znr3TREVgyfO//smRkoQkJQtHr0ISFoAQEYDmfXSZNNqa45rUSQ1iI+3Cam++bv7kFds971TV+dCROp4sf1pU/fO1qmYtzcTkdGILCfZYbAiPIO3+6VvZR2woL8nE6nYSG+g5zDQ0NIzX5bIXrFRcX8ef7b8dms6EoCn959K907tK93LS/bFiDwWCkd9/raxyvyXDhmFXqe8wqLHERFVpRHay67H6qwhInwcbyy0+AGm7sq2XfMTuWGo6kLb1QJoxlyoQxKJzcjFPV3u6xvSvITDnCnU9+V7MAKxBsdOflZflW7CS4ovOJi99NmXUKSlxEXxiiGmxSsNldlJapdgtKnBXW71WK90JMBSVljwFViLfscaPYSUy9/87TeBcyYUll/ju/dT/gcl35KllV0lw0b9487rzzTgIC3F/p3XffzTPPPMPJkydp0aIFd911F08//TTbt2+nd+/eLFy4kK5du3oahomJiZdNcNKzZ89K92mxWLBYfGs2nU53WbqebbXcM9J75fmDb2uv96Miei08Nj6ItCwHP20u/76pyvTpqGfiWO9Qp7cXln9PRW3YuMcbX8p5O3mFTp5/sB5RYWrO51Zt+IO/xVtTTpeLeiYD/7x1AGpFoW3DSM4XFLPgt/2exlv/uMae9K3qh9MhNopR/1nImoMnGde9/AkOKtOzrZYJI7z3O3z4XcXDCGuLXgtTbw8kLdvJT1uu7j6GgT2CmDwhxvP/vz9Kqe3w/qcN7hPKYw809Pz/4jtJv8t+WjYxcPMNETz24vHfZfv/7QwGI2+9/ynm0lIO7N/LZ59+SHRMfdp3vLzH9ed1K7l+0DC02suPY9caRYEHRupRAd9urPkFyt9DYW4avy59lVsfnUeApnbytHtrDXcP817om7WsdoZq/156tNFw93DvceOjpb//cUP895PGWx257rrryr0P7VIXZ5JMSEigT58+FabLycnh+++/x2azMWvWLM9yh8PBvHnzePXVV4mJiWHIkCF89dVX9O7dm6+++orJkyfX6DPMmDGDl17ynVDgxRdfBP00n2X7T1g5Pc97NTrgwuQIwSaFgmLvyX6wSSH5fPkn/0UlLhxOF0FlrkwFm5TLeop0Wph2RxBmq4tZS4twVj6BU7n2JVg4meK9yq1Ru/cbEqj49GYFB6o5m1b+Jc/CEicOh4uQMlfpQkxq8gsrDupkint7UeFVbwz5W7yXCjPqUSuqyyYnyS4qJSKo/JvDI4OMBKgV1Io31uaRYWQVlmCzO9CUc+d3sEFHk4gQkrOrNyvm/hNWTp+7tBxf2G6ZchxkVJFyhXLsvnLru07Z3jidFh67UI5nV6Mc7zxQRGJSkuf/i5OShAYHkFvg3XdoUECNZoa8FlgystBF+97vqIuOwJZfiNNswZqVi9NuRxcVXiZNOJb06s3YuH1fAQknvUNQL+ZvWEiAT+9bWHAAJ89WfwKB9nEmQoMC+Pwt7wUHtVrFQ3fV55YbIpj4dMXHkIroTWGoFDWlZSaiKC3KwhAUUcFadSsoOARFUcjLy/FZnpeXS2hYxZPOKIpC/QbuIdnNWlxHSvIZln771WWNtyOHDpCaksyTz71YK/EWl144ZpWZnCTIqKKggtkKC0tcnomLvOmVy9IrCjwwQk9YkIqPlpXWuNcNwHChTJSdnKSkMBtjcPXKxPnkw5QWZfP1zHGeZS6ng9RTu9i/eSFTZh5EUa6u1//gSRtJZWaEhIt1qDefgi7M5FueoovfTZm8Dr5kGwXFTjQBKgw6fHrfgo0KBcVVz/ADJ2wkpXkvWF+M172dS48BVYi37HHDpNTaLKPXGn+ZOKSuSO7UkXr16jFixAg+/PBDiosvv3KUl5fHDTfcQEREBP/5z3/K3cbFiUQWLlxIo0aN2L9/P/Hx8Z7XW2+9xfz583E43D/2e+65h8WLF7Nt2zZOnTrFXXd5p0GOi4tj9+7dPtvftWtXpZ9h+vTp5Ofn+7ymT59+WTqLFTLznJ5XWpaD/CInrZt6hzvqtdCsQQCnUu2XrQ/gcMLZdAdtLllHBbRuovFZR6+FJ+4Mxu6ED78rxF7NjiCz1cX5HIfnlZppJ6/QQdvm3uF2ep2K5g01nEguvyJ3OCApzeazjkoFbZtrOZFSceXfpL67VVBZg8nf472UJkBNmwaR7DjhnW3P6XSx42QqHRuX/6iAzk1iSM7Ox3nJTWBnsvKIDDKW23ADKLHYSM4pqLBBeCWXl2P3ZC2tm3ivgXnK8bnKy/Gl66iA1k0vL8eP3xGEw+HioyVF1SrHpRYX6Zk2zys5zUpOvp2Ocd7Pb9ArtGqmJ/H01fdOX0vytscTPqS3z7KIoX3J3R4PgMtmI3/vYSKGXHIRTKUifHAf8rZX736eUrOTtPNWz+vsOQs5eTY6t/VO/mLUK8S1MJJwsvq9Axu25PLoP44x5Z/eV1aujSWrMnlhZvWGOKoDtEQ2bEfqCe99gi6nk9QT24lu0rnasf6eNBoNLVrGcSB+r2eZ0+nkQPwe4lq3rfJ2XC4XNtvlj27YsHYFLVq2olnzlrUSr8MJKeedtIr11kcq4LpGap/p3S+VlO6gVSPf+qtVrJoz6d669WLDLTJUxaxlpZTU0sSC6gAtUY3akXzct0wkH9tG/abVuy80tlVv7nnuJyY8s8zzioptT1y3sUx4ZtlVN9wALDbIynN6XunZ7no4rrFvPdw0Rl3hxB0OJyRnOHzWUQGtGgdw+sI6ZzMc2B0unzRRYQr1ghVPmqrG63PcuBhvmeNG0/pqn4uDVYk3rnHFxxrx30163urQhx9+SL9+/ejZsycvv/wyHTt2xG63s27dOmbNmsXRo0f59NNPGT9+PDfddBPTpk2jZcuWZGVl8c0333D27FkWLVrE3Llzuf3222nfvr3P9mNjY5k+fTqrV69mzJgxjBs3jsmTJzN58mQGDx5Mgwbe2bQefvhh3n77bZ577jkmTZpEfHw88+fPB0BVwcMSdTpducMk4conKht2mRndV8/5HAdZ+U5uvt5AXpGT+GPeg+pf7wpi3zErG/e6L3ut32lm4o0mktLsJKXZGdpdj1YLWw+439dr4fE7g9FqYO5PxRh07qtm4L6ieRWjUMu1ZlsJNw0MJCPbQWaug3FDA8krdLA3wXv0fHZiGHuPWFi/031FfvXWEv58awinz9k4lWJjRB8TOq2K3/a6T5ajwtT07qjnwDELRaUuYqMDmDAqiIQkK8kZNauU/Sne+/p35B/f/UK7RpG0bxTFl1sOUGq1cUtX97TSL3z7M1HBJh4f0QuAO3q1Y9H2Q7yxfAt3923P2ax8Pt24jwl9vb+Bt1ZuY2DrJtQPCySzoIRZG3ahVqkY1bF2Ts4ANuw2M6qvnvO5TrLyHNzkKcfexu4TdwYSf9zmLce7zEwcY+JMuoOkNDtDuuvRamDrQXfZ12th2p1BaANg3vKSWi3HP/2cyx2jw0nLtJKRZWPC2Ahy8u1sj/cO5Xn58UZsjy9i5a957nh0Kp97HqPDNTRrpKOw2EFWrvs7DzQqRNZzT4gC0DDanT63wE5ewdW3PNUmI6aW3mGvxmaNCO7UGmtOPubkNOJeeRJ9w2j2P/gcAGc+XkSTR++h9YxnSJ6/hIjBvak/fhS7bnrYs43T735Gp3lvkLfnEPm7DtB02gMEmAwkL1h61fFVZNnaLO4aG0VqupWMLCv3jYsmO9fmM5PkjGebsXVPAT9tcPdw6HUKDaIvyd8ILc0b6ykscpCZY6Ow2EFhsW8eOhwucvPtpKZXv8e0w/UT2fjN80Q2ak9UbEcObl6AzVpKXHd3L8nPi57DFBJFr1FPufdpt5J7/iQATruN4vwMss4dRaM1EhLhfraizVJMfrb3/rPCnBSyzh1FZwghKKzmszeOvXU87789g5bXxXFdqzb89MN3WMxmhgwfBcD/vfUa4eER3DvxLwAs+WYhLa6LIyamAXabjT27t/Prz2v5y5S/+my3pKSYrZt/ZeJDNRuNUtbGeBsThulIPu/kTIaDgZ20aANU7Djq/t1MGKYjv9jFim3u3/6m/Tam3mpgUGcNR5LsdGmlITZK4Ztf3N+zosDEkXoaRSp8utyMoqi4eC2qxOzCUb3rZx5dBj3Iuq+eIzq2PdGNOxL/6wLs1lLa9nKXibVfPospJJp+Y71lIif9QplwWCnOzyAz5SganZHQyCZo9YGE1/d9Fq1Ga8RgDL1seU38ss/CyF56MnOdZBc4GdNXT36Ri/0nvPXwY7eb2H/CxqZ4d17/vMfKfSMNnM1wkJTuYHBXLTqNiu2H3e+brbDtkJVxAw0Um0swW1yMH2Lg1Dl7jWdz/GWvhZG9dZzPdZCd7+TGfgbyi5w+8U4b7473133ueDbstnD/KCNnM9z7H9JNh04D2w95z5mCjSqCTQqRF+6pbBChYLFCTqGTErN/9dDJQ7orJ423OtS8eXP27t3Lq6++ylNPPUVaWhqRkZF069bNM/zx5ptvZuvWrcyYMYMJEyZQUFBAbGwsQ4YM4ZVXXmHPnj3s37+fTz755LLth4SEMHToUObOncuYMWMICgpi7NixfPPNN5c9B65Zs2Z89913PPXUU/zf//0fffr04YUXXmDy5MkVNNBqZs0OM1qtintHmjDqVZxIsfPeYt+esogwhUCjt3N4d4KVQKP7QdwXH2783uJCz03HjWMCPDP2vfpIqM/+/jYrj+z8mh3ZVm4uRqdVMfGmYM9Dr2d+kYvtkjZLVFgAgSZvBbzzkJlgo8K4IUGEBCqcTbcx84tczxA5u8NFuxY6RvQxodWoyClwsOuImR9/rfk4fn+Kd2THluQWm/lo/S6yCkuIqx/BRw+OIfzCmUl6XqHPNPkxoYHMenAMb67Yyvj3viUq2MQ9/Trw4IDOnjQZ+UU8v3g9eSVmwkwGujSJ4YvJt1IvsPZmVly7w4JOo+KeEUZPOX7/G9+essgwxefZQXsSbAQZSxnbX+8px+9/U+Qtx9EBnhnEXnnYd1rtF2blk11Q/XK8dG0Oeq2KRyfEYDK6n8320vsp2OzeA3tMpJbgQO8V8ZaN9bz6pLchNWl8FAAbtuXz3ufpAPTsGMjjD9T3pHnmIfeJ+tfLs1i04uon2Qjp1p4+G77w/N925t8ASP58KQcmTUdXPxJDrHd/pUkp7LrpYdq+NZ2mj92POSWdgw//nax1mz1p0r5dhTayHq1enOZ+SPf+o+y88SGs568+vop8uzITvU5h2oMNCTSqOXysmH+8dRqbzZu/9aN0BAd5D73XNTPwn+e9j2x5eII779ZtzuHtT3+/+xRbdh6NuTiH3Wvfv/BA5jaMnvQJxgvDJovyzvlcuCspOM+Sd2/1/H9g0zwObJpH/eY9uOkR93eVmXKIn+Z4H9y9bfnrALTqdguD73y9xjH3HzCEgvw8vv7yM/Jyc2jWvCX/ePk/nmGTWZkZKJfEbDGX8slH75CdlYlWq6Nho8Y8/vQL9B8wxGe7m3/9GRcu+g8cWuMYLxV/wk6gQcXIntoLD1Z2MuenUoouTGISFqTgcnl/z0npTr5Ya2Z0bx1j+mjJzHMyb6WZ9Bx3mhCTig7N3WXnmbt9RxB88H0pJ1Nr1qho1XU0pcU5bF/1HsUFmUQ2bMPND3/qKROFuWmoLhnOVpx/nq9n3uL5f+8v89j7yzwatujJbY99UXbzv5v1u6zoNCruHm7AoFNxMtXBR0uLfc8nQnzr4b3HbAQaVYzpqyfI6H7o9YdLi30mMVmy0YzLBQ+NNbof0p3kfkh3Ta3baUGrUTHhBuOFeO18uKRMvKFqTAbvgr2J7uPGjf0M3ni/8423f2cdY/p6HwX05N1BAHyxqsTTKBX/HVSuq5kVQ/xPefXVV5k9ezbJyclXtd7Dr+dcOdE1ZM7z9Xjgn+l1HUaVLXg5xu/iNS95p67DqDL9bX/lkTd+vwlffg+znwvj5smJdR1Glf0wK44Vmtp/WO/vZYwtkVETD9R1GFdl1fyOvP2D/xzen7xZxeETaXUdRpW1a1mfv37gP5NPvDM1kA9X1XUUV2fKKJj6dn5dh1FlHzwZwpSZeXUdRpV9+HRoXYdQodRjB6+c6HfSsFWHOtt3VUnPm/D46KOP6NGjB+Hh4WzZsoU333yTqVOn1nVYQgghhBDif4Q8KqBy0ngTHsePH+eVV14hJyeHxo0b89RTT5U7AYkQQgghhBDijyeNN+Hxzjvv8M47/jO8TQghhBBC/HeRRwVUTnJHCCGEEEIIIfyANN6EEEIIIYQQwg/IsEkhhBBCCCHENUEmLKmc9LwJIYQQQgghhB+QnjchhBBCCCHENUEmLKmc5I4QQgghhBBC+AHpeRNCCCGEEEJcE+Set8pJz5sQQgghhBBC+AFpvAkhhBBCCCGEH5Bhk0IIIYQQQohrgkxYUjnJHSGEEEIIIYTwA9LzJoQQQgghhLgmyIQllZOeNyGEEEIIIYTwA9J4E0IIIYQQQoir9OGHH9K0aVP0ej29evVi586dVVpv0aJFqFQqbrnllqvep8rlcrmuei0hhBBCCCGEqGUnT52qs323aN68ymkXL17M/fffz+zZs+nVqxfvvvsu3377LYmJiURFRVW4XlJSEv3796d58+bUq1ePZcuWXVWM0ngTte7pWSV1HcJVmTnZyN/mWuo6jCp7bZKOv35QVNdhVNk7UwPpP/bXug6jyjb/NNCv8hfcefzSl7a6DqPKXrxXw6iJB+o6jCpbNb8jKzRxdR3GVRljS+ShV7PqOowq+/SFCD5cVddRVN2UUTBlZl5dh1FlHz4d6pf12uQ38+o6jCqb9Uyo35WJa5W/NN569epFjx49+OCDDwBwOp3Exsby2GOP8fzzz5e7jsPhYMCAAfzpT3/it99+Iy8v76obbzJsUgghhBBCCHFNcLlUdfayWCwUFBT4vCyWyy/wW61W9uzZw7BhwzzLFEVh2LBhbNu2rcLP9vLLLxMVFcWkSZOqnT/SeBNCCCGEEEL8z5sxYwYhISE+rxkzZlyWLisrC4fDQXR0tM/y6Oho0tPTy9325s2bmTt3Lp988kmNYpRHBQghhBBCCCGuCa467FuaPn06Tz75pM8ynU5X4+0WFhZy33338cknnxAREVGjbUnjTQghhBBCCPE/T6fTVamxFhERgVqtJiMjw2d5RkYGMTExl6U/efIkSUlJjB071rPM6XQCEBAQQGJiIi1atKhSjDJsUgghhBBCCCGqSKvV0q1bNzZs2OBZ5nQ62bBhA3369LksfevWrTl48CDx8fGe10033cTgwYOJj48nNja2yvuWnjchhBBCCCHENcGFqq5DqJInn3ySBx54gO7du9OzZ0/effddiouLefDBBwG4//77adiwITNmzECv19O+fXuf9UNDQwEuW34l0ngTQgghhBBCiKtw5513kpmZyT//+U/S09Pp3Lkzq1ev9kxicvbsWRSl9gc5SuNNCCGEEEIIcU3wl543gKlTpzJ16tRy39u4cWOl686fP79a+5R73oQQQgghhBDCD0jjTQghhBBCCCH8gAybFEIIIYQQQlwT/GnYZF2QnjchhBBCCCGE8APS8yaEEEIIIYS4JkjPW+Wk562WqVQqli1bVtdhMHHiRG655Za6DkMIIYQQQghRS6TnrRITJ05kwYIFly0fMWIEq1evroOILpeUlESzZs3Yt28fnTt39iz/v//7P1wuV90FdgV92wUwqHMAQUYVadlOvt9sI/m8s8L0HZurGdlTQ1iQiqx8Fyu2W0k4606vKDCqp4bWjdWEB6sotbo4nuJk5XYbBSW1kwe92yhc3yGAQAOk57j4aZudlKyKt92+qcLwbmpCA1VkF7hYvcvBsZTyP9/NfQPo1UbN8u12th521Eq8AP06aBjSRUOQUcW5LCdLN1k4W0ked2qhZlRvHfWCVGTmO1m+1crRM954OjRX06+9hkZRakx6FW8uKuFcVsXbq45J9zRl7A0xBJkCOHi0gJkfHSclrbTimNuFMGFcLHEtAokI1zH91UP8tj3bJ01YqIbJE5vTs3MYgYEB7D+UzztzTlS63aqozfxVFBjdS0ubpmrCgxXMVhfHkh0s32aloLh2ynCPVgp92yruMpzrYtUuJ+eyK95228YqBndSExoI2QWwfp+DE+d800cEw7CuappEqVAUyMx38c2vDgpKaiVkAO67NZqRA+thMqo5cryYDz5P5VyGtcL07VuZuH10JC2bGAgP0/Dye0ls21tQYfqpDzRkzOBw5nx1jmVrs6odZ73+3Wn+1CRCurZH3yCK3bc9SsaPGypfZ0BP2s58nsC212FOTuPEjFmkfP69T5omkyfQ/MlJ6GIiKTiQwOEn/k3+roPVjrM8Nw8wcn0XPUadihMpNr5cVcT53Mp/24O76RnR20BIoEJyhp2v1xZz+pzd8/59o0y0aaYlNFDBYnVxItXGkp9LSM+uWR23/7eF7P15LiWFmUQ0aM3A2/5BTJOO5abNTjvO9lXvcT75MIW5qVx/y3S6DJpY4bZ3r/+YrcvfovOA+xkw7oUaxXmpMf309OugxaBTceqcnUXrSsnMqzx/B3TWMqyHnmCTitRMB99sKOVMujfv+nXU0r2NltgoNQadiqffz6fUUvO6wh+PGwA39tPTv6M3j79ae+U8HthFy/ALeZxy3sHiS/LYqFdxYz89bZsGEBakUFTqYv9xGz9uLsVccfVTZf5UJuqCyyU9b5WRnrcrGDlyJGlpaT6vr7/+uq7DuqKQkBDPk9uvNZ1aqLmpn4Z1u228+52Zc9ku/nyjjkBD+embRCvcM1zLzgQ773xr5tBpBxNH6oip5/5xawOgYYTC+j023vnOzII1VqJCVTw4Slsr8XZopjC6VwAb9tn58AcbaTkuHhypwaQvP33jKBV3Dg5g9zEnHyyzceSMk3uHBRAddnll1LaJQmyUivxaOkG/qHPLAG7pr2XNLitvLS7hXLaTh28yEGgov0JsGqNw3wg9O47YmLm4hEOnHPxptJ6Yet4qQqdRcSrNwU9bLbUa60X33BbL7Tc2ZOZHx/nL0/soNTt4++UOaDUVV+IGvZoTp4t4e/bxCtPMeKE9DaL1PP/qYR58fA/pmWbefaUjel31q7/azl9tADSKVFi3y8Zbi0v4bKWZqFCFh8ZUUMiuUrsmKm7opvDrAQdzVtrJyIV7h6gx6spP3yhCxW391ew76WTOCjuJKU7uGqgmMsSbJiwQHhwRQFa+iwXr7MxebmfTQSf22rv+wPjRkdw0PIL3F6TyxMsnMFucvPJUMzSVlAm9TuHU2VI++iL1itvv2zWY1i2MZOXaahyr2mSk4EAih6a9VKX0hqaN6PHjHLI37mBz95s5/f4COsx5hYjh/T1p6o8fRZs3p3P8lQ/Z3PNWCg8k0GvFXLSR9Woc70Uj+xgY2kPPl6uKeG1+Hhabi7/eHUKAuuJ1erTRcscwEz/9VsLLc/NIPu/gibuCCTJ6v5cz6XY++6mQf8zJ5Z1F+aiAv94djKoG52TH9q7kt2Uz6DVyCnc9/T0RDVvzw+xJlBRml5vebislJLwR/cY+hTE4stJtZ5w9wKGti4hoEFf9AMsxvKeOQV10LFpXwpsLC7HaYOrtpkrzt2uchnGDDKzcZub1LwpJOe9g6u0mAi/JX22AiiOnbazZYa61WP3xuAFwQ08dg7vq+GpdCf9ZWIjFCtPGV57H3eI03DbIwIqtZl77vJCUTAfTxps8ZTg0UEVooIolG0v59/xCPl9VQttmAdw30ljjeP2pTIhrkzTerkCn0xETE+PzCgsLA+D48eMMGDAAvV5P27ZtWbdunc+6GzduRKVSkZeX51kWHx+PSqUiKSnJs2zLli0MGjQIo9FIWFgYI0aMIDc3F4DVq1fTv39/QkNDCQ8P58Ybb+TkyZOedZs1awZAly5dUKlUDBo0CLh82KTFYmHatGlERUWh1+vp378/u3btuizWDRs20L17d4xGI3379iUxMbE2stHHwE4B7DhiZ1eig4xcF0t+tWKzuejRuvyO4Os7BpB41snGeDvn81ys2WUjNctJv/bu9GYrfLzcwv6TDjLzXJzNcPL9bzZio9w9XzXVv72aXYlO9h53cj7PxQ9b7Fjt0K1V+TVt33Zqjqc4+e2gg8x8F+v3OjiX7aJ3G9/0wUYY2yeAbzbacdbyhchBnTVsO2xj51E7Gbkuvv3FgtXuoleb8vN4QCcNCWcd/LLPxvlcF6t2WEnJdHJ9R40nze5EO2t32TiWXItn55cYf1NDPv/mDJt3ZHMyqZhX3kkgvJ6O63tHVLjO9j05fPJlEpu2l3/yFtvAQPvWwbw16zgJxwtJTi1l5kfH0WkVhg2MqnastZ2/ZivM/tFM/Ak7mXkuzmQ4WbLJUmtluHcbhb0nnMSfcpGVD8t3OLA5oEvL8g8BvVornDjnYusRJ1kF8Mt+J2k5LnrGedMP6azmeKqL9fucpOdCbhEcS3FRUovnaLfcEMGiHzPYvq+ApBQzMz9JJjxMQ9+uwRWus/tgIZ8vzWBrJb1tAOGhAUy+twH/mX0Wh6PmF08y12zi2IvvkvHD+iqlb/KXuyg9ncLRZ9+gKOEUZz5aSPqSNTR7fKInTbMnHiR57jekLFhK0dGTHHz0RRwlZmIn3lbjeC8a1tPA8s2lxB+zknLewbwfiwgNUugSV/HFr+G9DPwWb2bLAQtpWQ6+XFmE1e6ifyfvxYZN+ywcT7aTne/kbLqDZb+WEB6iJiKk+qcd+zZ+Rvs+d9C2122Ex7RkyPiXCNDqObJjSbnpoxt3pP/Nz9Gq6xjU6oo/j9VSzJovnmHIna+gM4RUmK46BnfVsXq7mQMn7ZzLcrJgZTEhgQqdWmoqXGdodx1bD1rZfshKeraTRetKsdqgT3vvZ/hlr4V1Oy0kpdVefeyPxw2AId10rNpu5sAJO6mZTuZfyOPO11Wex1sOWNl2IY+/Xuubx+eynHz8QwkHT9rJynOSeNbOj7+Z6dBCg1LDKtmfyoS4NknjrZqcTifjxo1Dq9WyY8cOZs+ezXPPPXfV24mPj2fo0KG0bduWbdu2sXnzZsaOHYvD4f7xFRcX8+STT7J79242bNiAoijceuutOC+c7e/cuROA9evXk5aWxtKlS8vdz7PPPsuSJUtYsGABe/fupWXLlowYMYKcnByfdC+88AJvvfUWu3fvJiAggD/96U9X/Zkqo1agYaTiM4TQBRxPddIkuvzi2CRa4Xiqb2WUmOykSXTFl6n0WnC6XDUeMqBWoEGEihPnfOM9ec5J46jya/DGUcplw8uOp/imVwHjB2r47aCD83m12+umVqBRlOJzsHQBx1McNIkpP8+axqgvO7gmnnXQJOaPqSIaROuJqKdjV3yuZ1lxiYMjxwpo37riE/Ur0Wjc8Vusl3x/LrDanHRsW72TtD8qfw1aVa2UYUWBBvVUnErz3c6pNBeNIsovw7GRKk6l+6Y/meaiUaQ33usaqsgpdHHPEDVP3x7ApJFq4hrV3lCXmEgt9UI17DtS5FlWUuok8WQJrVuYarRtlQqe/ktjvluVydlzv1+PQGVCe3cm6+dtPssy120mrHdnAFQaDSFd25G1Yas3gctF1s9bCe3dpVZiiAhVCA1UOJrkHQdWanFxKtVOi4bln0iqFWhSP4Ajp729lS7g6GkbzRuVf5Kv1UC/jnoycx3kFFTvSpXDbuV8ymFiW/X1LFMpCrGt+pKWtK9a27xo43cv07TtQBrH9b1y4qsQHqIQEqiQeMY7nNRshaQ0B80alJ9XagVio9UkXLKOC0g4a6d5BevUBn88bgBEXMjjhDJ5fPoKedw4ppw8PlN5Hht0KsxWF84aVMn+VCbqkgtVnb38wX/nt16Lli9fTmBgoM+yv/3tb3Tv3p2EhATWrFlDgwYNAHjttdcYNWrUVW3/P//5D927d+ejjz7yLGvXrp3n79tu873COm/ePCIjIzly5Ajt27cnMtI9FCQ8PJyYmJhy91FcXMysWbOYP3++J75PPvmEdevWMXfuXJ555hlP2ldffZWBAwcC8PzzzzNmzBjMZjN6fe0M3zLpVagVFUWlvrVfYYmLqNDyK/wgo4rCMveuFZW4fIboXCpADWP6aIk/7sBSw9FQRj3lxltU6iKygivIgQYuT2/2jXdARzVOF7V6j9tFJoM7jwtrmMeFJU6CjX9MFVEvzH31MDfP9wvLzbN63quOMyklpJ8388gDzXjzg+OUWhzceXMjoiP1hFdzu39E/gao4ca+WvYds9e8DOtAUVQUlxlJU2x2ERFS/m8oUO9+/1JFZvdyAJPePRyqXzuFX+KdrN/noGUDhTsHqlmwzsGZ8zW/IBEW4s6b3Hy7z/LcArvnveoaPzoSp9PFD+vK77H9I+iiI7Bk+N5jZ8nIQhMShKLXoQkLQQkIwHI+u0yabExxzWslhhCTu7wWFPs2qAqKnYQEVlC/GRXUiqrcdWLCfRt8g7rpuX2ICb1WRVqWnbe/ysdRzVEGpcW5uJwOjEHhPsuNQeHkZpyq3kaBY3tXkJlyhDuf/K7a26hIsMn9+yoo8f3QhSVOz3tlBV6sX8rkb2Gxk5h6v1997I/HDbgkj8vJryvlcdnvpaDESXQFeWwyqBjVR8/m/TW74c2fyoS4dsm3fgWDBw9m1qxZPsvq1avHF198QWxsrKfhBtCnT5+r3n58fDzjx4+v8P3jx4/zz3/+kx07dpCVleXpcTt79izt27ev0j5OnjyJzWajX79+nmUajYaePXty9OhRn7QdO3pv/K5fvz4A58+fp3Hjxpdt12KxYLH4XrXW6Sq4ieYPoihw3w3uk/Ilm2rhruLfQYNwFX3bqfngh2szvj/C8IFRPDOllef/Z1+u3QkYLnI4XLzw2mGenxbHqkX9sDtc7InPZdvubFQ1ufnmd6Qo8MBIPSrg24110yt0JRezLjHZxfYEd52UkeskNlJFt1YKZ85f/UWJwX1CeeyBhp7/X3wnqTZCvUzLJgZuviGCx16s+D7J/1a92um4b7T3YuR7i/N/1/3tOGThyCkrIYEKI3obeGRcMDMW5NXqfZE1UZibxq9LX+XWR+cRoKn5satHGw13D/feE/XR0qJKUovq6NFGw4QbLsnjJb9/Huu1MGWcifRsB8u3Xt39ZFImqsdfesDqijTersBkMtGyZctqraso7qtVl876aLP5XkY3GCqYpeOCsWPH0qRJEz755BMaNGiA0+mkffv2WK2/z4m/RuO9cnrx5NZZwQ1ZM2bM4KWXfG/Of/HFFyH62Qq3X2x24XC6LrsBOsioqnBmyMJyetkCy7nipyhw33AtYYEKs38017jHAqDEzCXxevcXaLj8CuVFRaVc9vkC9d54m8YomAzw7J3enh+1omJ0TzX92ql585uafbfFpe48DqphHgcZlVqbrbOszTuzOXJst+d/7YXhjWGhGrJzvZ8/LFTLiVM1O9glniziwcf3YDKq0QQo5BXY+HhmFxJOFFZre79n/ioKPDBCT1iQio+WldZOGbaA0+m6bIIdk15FUQUTbhaZ3e/7lHm9e/nFbTqcLjLzfePPyncRG1m9g+72fQUknPROU6kJcG8nLCTAp/ctLDiAk2erf0N++zgToUEBfP5WG88ytVrFQ3fV55YbIpj4dEK1t301LBlZ6KJ97+fURUdgyy/EabZgzcrFabejiwovkyYcS3r1ZsWMP27l9KfeockBanceB5sU8ou8Lapgk3sGyfIUlThxOF0Em3x7Y4JNCvllegZKLe5hv+dznZxKLeS9p8LpGqdl55Grr+MMpjBUivqyyUlKCrMxBld8X2xlzicfprQom69njvMsczkdpJ7axf7NC5ky8yCKUsksEmUcOGEjKc1br1ycgCLYqFBQ7M3fIKNCSgUXOIou1i8mBbhkHZNSazPPlscfjhtQSR6byuSx6cp5HGz0zWP39+Qbu04DU28PxGJzMXtZ8VXfn+7PZUJcu+Set2pq06YNycnJpKWleZZt377dJ83FIY2XpomPj/dJ07FjRzZsKH866ezsbBITE/n73//O0KFDadOmjWcik4u0WncD4OI9cuVp0aIFWq2WLVu2eJbZbDZ27dpF27ZtK/mUlZs+fTr5+fk+r+nTp1e6jsMJqZlOrmvkLXoqoGVDhTMZ5deKZzKcXNfQ9wDaqpHCmQzvZ77YcIsMVZjzk7nWJk1wOOFclouW9X3jbdFA4WwFQ8POnnfSooHvAa1lQ2/6fSccvP+9jQ+WeV/5xS5+O+jgszU1P1t3OCHlvJNWsd48UwHXNVL7TCt8qaR0B60alcnjWDVn0mt/SmeA0lIHqWlmz+v02RKycix07xTmSWM0qGnbKphDCZVPPFFVxSUO8gpsNKpvIK5lEL/tqN6Qud8rfy823CJDVcxaVkpJLU0Y5nTCuRwXzWN8y2TzGFWFj7tIznTRrGz6+ipSMp3ebWa7CA/2TVMvSEV+cfXiLDU7STtv9bzOnrOQk2ejc1tvT5FRrxDXwkjCyWruBNiwJZdH/3GMKf/0vrJybSxZlckLM09Xe7tXK297POFDevssixjal9zt8QC4bDby9x4mYsglIzpUKsIH9yFve/Xu8bJY3Q2pi69zWQ7yipy0aeq9kKTXqmjeMICTqeXXRQ4nnEmz06bpJRf6gNZNNZxKKb/BdyF0UEFAQPUa9+oALVGN2pF83HufoMvpJPnYNuo3rd49gLGtenPPcz8x4ZllnldUbHviuo1lwjPLrqrhBmCxQWae0/NKy3aSX+Qkron3OrleC03rq30eq3AphxOSMxzENfauowLiGgdwqoJ1aoM/HDegkjxu7JvHza6Qx2fTHT7fiwqIa+Kbx3otTLsjEIcDPlpaXK0eY38uE+LaJT1vV2CxWEhPT/dZFhAQwLBhw2jVqhUPPPAAb775JgUFBbzwgu9zYVq2bElsbCz/+te/ePXVVzl27BhvvfWWT5rp06fToUMHHn30UR555BG0Wi2//PIL48ePp169eoSHh/Pxxx9Tv359zp49y/PPP++zflRUFAaDgdWrV9OoUSP0ej0hIb4TMZhMJiZPnswzzzxDvXr1aNy4Mf/5z38oKSlh0qRJ1c4bnU5XwTDJyh/y9Ot+O3cN0ZKS6eRshpPrOwag1ajYleCuhO4aoiW/2MWqHe6Th98O2Hn0Zh0DOwVw5IyDLi0DaBSp8N2v7qu3igL336ClUaTC3JUWFBUEXejQdPcQVPsjArD5kIPbBwSQkqWQkumiX3s12gDYe8xdk98+IICCEhdrd7v/33rYwZ/HaOjfXk1ispOOzRUaRqhYtsX9+UotXDYJhdMJhaXunovasDHexoRhOpLPOzmT4WBgJy3aABU7jrpjmDBMR36xixXb3Hm4ab+NqbcaGNRZw5EkO11aaYiNUvjmF28r2KiD0CCFkAvj8i/eB1FY4rqsF7Q6vv0xlQfubEzyuVLSMsw8dG9TsnMs/Lbd28vw7isd2bQti6UrzgFg0Cs0rO/tva4fradlMxOFRXYyMt2xD+4XQV6+jYxMC82bmnj8zy35bUcWu/b5Xgi5GrWdv4oCE0fqaRSp8OlyM4qiIujCSJsSs6vGZXj7USe39FVzLsdFapaL3m0UNAEQf9K94Vv6qikscbEh3v3/jgQnE29Q06eNwrFUJ+2bKjSop+Kn7d6zl61HnNzeX83Z8ypOp7to2UAhrpGK+etqb0zcsrVZ3DU2itR0KxlZVu4bF012rs1nJskZzzZj654CftrgbozrdQoNor2NkegILc0b6ykscpCZY6Ow2EFhsW+MDoeL3Hw7qenVv+qjNhkxtfQOLzc2a0Rwp9ZYc/IxJ6cR98qT6BtGs/9B98RWZz5eRJNH76H1jGdInr+EiMG9qT9+FLtuetizjdPvfkaneW+Qt+cQ+bsO0HTaAwSYDCQvKH9iqupYv7OUMf0MZOQ4yMpzcMtAI3mFTvYlenvHnpoQzN5jVn7Z7b6isG5HKX+6KYgzaXZOn7MzrKcenUbFlgPu9yNCFXq01XHklJXCEhdhQQqj+hqw2VwcPFH9kQVdBj3Iuq+eIzq2PdGNOxL/6wLs1lLa9nL3nK398llMIdH0G/sU4J7kJCfdPTuz02GlOD+DzJSjaHRGQiOboNUHEl6/lc8+NFojBmPoZcur65e9Fkb21nE+10F2vpMb+xnIL3Ky/4S3cTxtvIn9J2z8us+dNxt2W7h/lJGzGXaS0hwM6aZDp4Hth7x5F2xUEWxSiLxQDzeIULBYIafQSYm5evWxPx43AH7eY2F0Hx2ZuQ6y8p2M7e/O4/jj3jx+/A4T8cd98/iB0UbOpl/I4+7uPN52IY/1Wpg2PhCNRsVnK4ox6FQYLpzuFJa4qMljdP2pTNQVGTZZOWm8XcHq1as9935dFBcXR0JCAt9//z2TJk2iZ8+eNG3alPfee4+RI0d60mk0Gr7++msmT55Mx44d6dGjB6+88orPPW6tWrVi7dq1/O1vf6Nnz54YDAZ69erF3XffjaIoLFq0iGnTptG+fXvi4uJ47733PI8DAHdD8r333uPll1/mn//8J9dffz0bN2687HO8/vrrOJ1O7rvvPgoLC+nevTtr1qzxPPbgj7T/pINAg40RPbwPAv10ucUzhCssUOVTMZ7JcLJwvZWRvTSM6qUhK9/F/NUW0nPciUJMKto3cxflp+7wHYY66wczJ8/V7Mz34GknJr2dYd0CCDJAWraLz9bYPEPIQsvEe/a8i8W/2BneTc0N3dVkF7j4cr176uU/SvwJO4EGFSN7ai880NPJnJ9KPROphAUpuFzefElKd/LFWjOje+sY00dLZp6TeSvNpOd407RrFsCEYd6xdw+MdP+9eqeVNTtrPox34ZJk9Ho1z05tRaApgINH8nnqxYNYbd58axhjIDTYe8W/dcsg3p/R2fP/tIfcQ5xXbkjntXfdj7kIr6dj6qQW1AvVkp1rZfXPGcxffKZGsdZ2/oaYVHRo7i7Dz9zt+xyhD74v5WRqzRpEh8+4MOqcDOqo9jyke+HPDs8kJiEm34eipmS5WLrZweDOaoZ0VsgphEW/Osi85BaphGQXy3c66N9Ozcju7gd5f7PJQXJm7ZXzb1dmotcpTHuwIYFGNYePFfOPt05ju6RM1I/SERzkPZRd18zAf55v4fn/4Qnu+5LXbc7h7U9Tai22skK6tafPhi88/7ed+TcAkj9fyoFJ09HVj8QQ6z2WlCalsOumh2n71nSaPnY/5pR0Dj78d7LWbfakSft2FdrIerR6cZr7Id37j7LzmxNBDQABAABJREFUxoewnq9er3F5Vm8rRadRcf/oQIx6FceTbby7KN+nlyEyTE2QwTv6YNdRK4GmYm4eaPQMsXx3UYFnCJfNDq1iNQzvYcBocE9ucuysjRkL8mt0wt6q62hKi3PYvuo9igsyiWzYhpsf/hRjkHvYZGFuGiqVN87i/PN8PfMWz/97f5nH3l/m0bBFT2577Iuym/9drNtpQatRMeEGIwadipOpdj5c4tuLExGqxmTwLtibaCPIWMqN/QwEGd0PZP7wu2KfvOvfWceYvt76+Mm7gwD4YlUJ2w9Xrz72x+MGwNqLeTzCiPFCHr//nW8eR4aqCbwkj/ck2gi8kMcXH9L9/iV5HBsd4Jn98d9/9p3x+IU5BdWeNRX8q0yIa5PK5arJ9QMhLvf0rMp73q41Mycb+dvca3NiiPK8NknHXz/wn5ue35kaSP+xv9Z1GFW2+aeBfpW/4M7jl76shRvk/iAv3qth1MQDdR1Gla2a35EVmtp9ePPvbYwtkYderd69cXXh0xci+HBVXUdRdVNGwZSZeXUdRpV9+HSoX9Zrk9/Mq+swqmzWM6F+VyauVQeOn6+zfXe8rvrPgP2jyD1vQgghhBBCCOEHpPEmhBBCCCGEEH5A7nkTQgghhBBCXBOcMmFJpaTnTQghhBBCCCH8gPS8CSGEEEIIIa4J8qiAyknPmxBCCCGEEEL4Ael5E0IIIYQQQlwTLn3uqLic9LwJIYQQQgghhB+QxpsQQgghhBBC+AEZNimEEEIIIYS4JsiEJZWTnjchhBBCCCGE8APS8yaEEEIIIYS4JsiEJZWTnjchhBBCCCGE8APSeBNCCCGEEEIIPyDDJoUQQgghhBDXBJmwpHLS8yaEEEIIIYQQfkB63oQQQgghhBDXBJmwpHIql8vlqusghBBCCCGEEGJnQn6d7btn65A623dVSc+bqHWT38yr6xCuyqxnQv0q5lnPhDJlZl5dh1FlHz4dyrfbnXUdRpWN7634Vf6CO48feSO3rsOostnPhfH2D/5z3fDJm1U89GpWXYdxVT59IYIVmri6DqPKxtgSmb2mrqOoukdGwNS36+4E82p98GQIM75x1HUYV2X6HWq/y2N/OnZ8+HRoXYdQIf85Y6gbcs+bEEIIIYQQQvgBabwJIYQQQgghhB+QYZNCCCGEEEKIa4JMWFI56XkTQgghhBBCCD8gPW9CCCGEEEKIa4I8pLty0vMmhBBCCCGEEH5AGm9CCCGEEEII4Qdk2KQQQgghhBDimiATllROet6EEEIIIYQQwg9Iz5sQQgghhBDimiATllROet6EEEIIIYQQwg9Iz5sQQgghhBDimuB01XUE1zbpeRNCCCGEEEIIPyCNNyGEEEIIIYTwAzJssgomTpzIggULePjhh5k9e7bPe1OmTOGjjz7igQceYP78+dXex7/+9S+WLVtGfHx8zYL1Izf209O/oxaDTsWpc3a+WltKZp6z0nUGdtEyvIeeYJOKlPMOFm8o5Uy6w/N+/45aerTREhutxqBT8eR7+ZRaaq//3d9iHtNPT78O3ngXrbtyvAM6axl2Id7UTAfflIm3X0ct3dtoiY1yx/v0+7UT7/b1C9m8ah5F+VnExLbmxntfoFGLjuWm3bXxG+K3/EhGynEAGjRtyw23/9Un/eHda9n582LOJR2mtDifKS8vpX6TNjWO81L+lL8Xje2vp38nHQadipOpdr5eW8L53CuVYR039NIRbFLcZXh9CUlp7piNehVj++tp01RDvWCFolIX8ces/PhbKWZrzWI9tHUh+3+dS2lhFuH1W9Pv5r8T1bj8MpGTfpzda98jM/UwRbnn6DN2Oh2vf8AnzblTu9j/61yyUg5TUpjJDfd/QLP2w2oWZBk3DzByfRc9Rp2KEyk2vlxVdMX8HdxNz4jeBkICFZIz7Hy9tpjT5+ye9+8bZaJNMy2hgQoWq4sTqTaW/FxCerajkq1Wrl7/7jR/ahIhXdujbxDF7tseJePHDZWvM6AnbWc+T2Db6zAnp3FixixSPv/eJ02TyRNo/uQkdDGRFBxI4PAT/yZ/18Fqx1lW/KaF7Pl5LsUFmUQ2bM3g2/9BTJPyy0RW2nG2rXyP88mHKchJZeCt0+k6eGKF29657mO2/PQWXQbez6DbXqi1mMf01dG3vRaDXsWpVPcx4Ir1RCctQ7vrPPXEt7+YfeuJDhq6t9bS6EI98cyH+ZRaah5r15YqesWpCNTD+TxYu89JWk7F6Vs3ggHtFUJMkFMIGw84OZnufd+og8EdVTSLUaHXQHKme5u5RTWP9VL+lMfgn8eOP5JMWFI56XmrotjYWBYtWkRpaalnmdls5quvvqJx48bV3q7L5cJut1854X+ZG3rqGNxVx1frSvjPwkIsVpg23kSAuuJ1usVpuG2QgRVbzbz2eSEpmQ6mjTcRZPT+yLUaFYdP21i93fw/H/PwnjoGddGxaF0Jby4sxGqDqbdXHm/XOA3jBhlYuc3M618UknLewdTbTQReGm+AiiOnbazZUXvxHtyxklVfv8Hgm6fw6EtLiImNY/7MP1NUkF1u+tMJu+jYezSTnp/Pw//4mpB69Zk/8yEKcjI8aayWUpq06sqIO56qtTgv5U/5e9ENvXQM7qbjqzUlvPFFIVabi8fuCKy8DLfWcPsQA8u3mHltfgEp5x08dkegpwyHBqoICVRY8kspL88rYMGKYto113D/aFONYj0Rv5JtP71Ot2FTuO3xpdSrH8eKuQ9RWlR+mbDbzATVi6XXqKcwBkWWn8ZaSnj91vS/9Z81iq0iI/sYGNpDz5erinhtfh4Wm4u/3h1Saf72aKPljmEmfvqthJfn5pF83sETdwX71BFn0u189lMh/5iTyzuL8lEBf707GFUNzm/UJiMFBxI5NO2lKqU3NG1Ejx/nkL1xB5u738zp9xfQYc4rRAzv70lTf/wo2rw5neOvfMjmnrdSeCCBXivmoo2sV/1AL5G4dyWbvp9B75FTuOeZ74lo2JqlH02ipLCCMmEtJSS8Ef3HPoUxuPwycVH6mQMc3LKIiAZxtRLrRcN6aBnYWceiDaXM/KoIq83FlHFXqCdaabh1oJ5V28288WURqZlOpowzEWjwfuGaABVHkuys3VlLrQmgTayKoZ1UbD7sYt46Jxl5Lu4coGDUlZ++YTjc3Fth/2kX89Y6OX7OxW39FCKCvWlu76cQGqhiyWYn89Y5yS9xcfdABU0ln/9q+VMeg38eO8S1RRpvVdS1a1diY2NZunSpZ9nSpUtp3LgxXbp08SyzWCxMmzaNqKgo9Ho9/fv3Z9euXZ73N27ciEqlYtWqVXTr1g2dTseXX37JSy+9xP79+1GpVKhUKk8vXkJCAv3790ev19O2bVvWr1+PSqVi2bJlnm0+99xztGrVCqPRSPPmzfnHP/6BzWbzif+VV14hKiqKoKAgHnroIZ5//nk6d+7sk+bTTz+lTZs26PV6WrduzUcffVR7GVjGkG46Vm03c+CEndRMJ/NXFhMSqND5Ok2F6wztrmPLASvbDllJz3by9dpSrDbo017rSfPzHgtrd1o4nVb9K9L/LTEP7qpj9XYzB07aOZflZMGFeDu1rDzerQetbL8Q76J1l8f7y14L63ZaPD0vtWHL6gV0HziebgPGEdWwJTdN/BcarZ49m5aWm/6OR96k19AJ1G/ShsgGzbl10r9xOZ2cPLLNk6ZLv5sZcssUWrTrW2txXsqf8te7fz2rtpnZf8JGaqaDz5YXExqo0LlVxTEP66Fny34L2w5aSct28tWaEmw26NvBHfO5LCcfLyvm4EkbWXlOEs/a+WFTKR1aaFBq0Lg4+Nt82vQaT+setxEW3ZIB414iQKMnYdeSctNHxXagz43P0rLzGJSA8j9P49YD6DnyCZq1H179wCoxrKeB5ZtLiT9mJeW8g3k/FhEapNAlTlvhOsN7Gfgt3syWAxbSshx8ubIIq91F/056T5pN+ywcT7aTne/kbLqDZb+WEB6iJiKk+ofwzDWbOPbiu2T8sL5K6Zv85S5KT6dw9Nk3KEo4xZmPFpK+ZA3NHp/oSdPsiQdJnvsNKQuWUnT0JAcffRFHiZnYibdVO85L7f3lM9r3vYN2vW8jvH5Lht3xEgFaPYe2l18mYpp0ZMAtzxHXbQwBARV/B1ZLMas+f4Zhd7+C3hhSK7FeNLiLjjU7zBy8UE98vrqEkEBVpfXEkG5ath6ysv2wjfQcJ4vWl2K1u3zqiY37rKzbZSEprfYu/vZspWL/KRcHk1xkF8DqPS7sdujYrPwfcvfrVJxKhx2JLrILYdMhF+l50O06d/p6gdAwQsWaPU7Sct09c6v3uAhQQ9vGtdez4k95DP557PijuVyqOnv5A2m8XYU//elPfPbZZ57/582bx4MPPuiT5tlnn2XJkiUsWLCAvXv30rJlS0aMGEFOju+4g+eff57XX3+do0ePMnz4cJ566inatWtHWloaaWlp3HnnnTgcDm655RaMRiM7duzg448/5v/Zu+/wKIr/gePvu8vdJZcKBJJAAgkl9N57l6qCCFgRxAqIilj4WrAjCgoqYqOJSFEQQXoVpffQEmpIgHTSy/XfHwd3XEhCQoLhfn5ez3OPsje7+7nJ7OzOzuzsm2/ePJTD29ub+fPnc/LkSWbOnMkPP/zAF198Yf9+0aJFfPTRR0ydOpWDBw9SvXp1Zs+e7bSNRYsW8c477/DRRx9x6tQpPv74Y95++20WLFhQFlnnxN9Xia+XksiLjgoxzwAX4syEVS14JK9KCdUDVU7rWIHIiyZqFrJOWXK1mCtdizcqX7zRt4g3JKCAeGPubLwmk4Er0Seo1bC9fZlSqaRWw/bEnj1SrG0Y9XmYzSY8vMr2wqswrpS/110vw6ei85XhK4Xv/3oZPpUv5lPRRmpWKzxmD62CPIP1tmcMM5sMJF0+QbXajoa3QqkkuE57Ei4eub2N3mH+fkr8vJScinaMFc3VWzl/2UStagVflKmUUCPIjZMXHDfbrMCpC0ZqBhecvxo1dGziTlKqmasZRQ+zKkt+7ZqRvHW307KkTf9QoV0zABRqNb4tGpK8ZZcjgdVK8tZd+LVrTmmZTQYSYk9Qva5zmahetwNxFw6Xattbf32fsIZdqVG3bG/0VPK19UpHxuSrJ+LNhAYV3M1yvZ6IynfMRV00EVbIOmVBqYTACnAhwfmgjU60Uq1SwRe01SopiM6X/kK8I73qWrimfG0JswWC/csmblfKY1u8rnfuEHcfabyVwGOPPcY///zDxYsXuXjxIjt37uSxxx6zf5+dnc3s2bP57LPP6NevHw0aNOCHH37Aw8ODOXPmOG3r/fffp3fv3tSqVYtq1arh5eWFm5sbgYGBBAYG4uHhwaZNmzh37hw//fQTTZs2pVOnTnz00Uc3xfXWW2/RoUMHQkNDuffee5k4cSLLli2zf//VV18xevRoRo0aRXh4OO+88w6NGzd22sbkyZOZPn06DzzwAGFhYTzwwAO8/PLLfPfdd2Wci+DjaavYM7KdLzwysy327/Lz8lCgUirIyHFeJyOn8HXKkqvFbI83374zi9j39XgzS/Aby0JOZhoWixkv30rO8fhWIis9uVjb2LBsGt5+VajV4M70suXnSvl7nY9XIWU4x4qPZ8GnAi/dtTJcgnU8PRT07+DOP0duf6hRXnYqVosZD2/nMuHh5U9uZvHKxL/N91p+5M+rjGwLvl6F5a+ywPzNyLbYt3ddt5bufP1qJb55zZ9GtdR8/ks65n+v7YY2wB99gnPe6xOSUft6o3TXovGvgNLNDX1iSr40KWgDS3+lnnutTOjylQmddyVySlEmog6uITH2JJ3uLfvh1T46298wM8e5gVOc80b+dTJyrHe0ntBpQKlUkJPvsM3OAy/3gtfxcrd9X1j6lAxIz7bSrYnteTelEtrVU+CjUzgNTywNV8pjcM1zh7j7SJO9BCpXrsyAAQOYP38+VquVAQMG4O/vOCmdO3cOo9FIx44d7cvUajVt2rTh1KlTTttq1arVLfcXFRVFSEgIgYGB9mVt2rS5Kd3SpUv58ssvOXfuHFlZWZhMJnx8fJy2M2bMGKd12rRpw9atWwFbo/PcuXOMHj2ap59+2p7GZDLh61t4T4Zer0evd67ptdqbB8e3rq/mkXt09n9/s7yMn1S+A1wt5tb11Tzc+4Z4V9zd8Zalv/78gWN71zH6jQWoNYU8nFFKrpi/bRpoeKSPI+ZZv935mN01MO5BL+JSLKze+f/7uYu2DbU83t/L/u8vl6bf0f3tPa7n5HkDvl5K+rTz4LkHfJiyIO2mXg1RfJmpcWxf8REPjJmLm7r0dUeremoe7uVh//fsldml3qYrs1hhxS4L/VspeXmwEovFSnQCnIu7/Uk0XC2PXfHccTewuuY8K/8aabyV0JNPPsm4ceMAmDVr1m1vx9OzdA/zX7d7924effRR3nvvPfr06YOvry9Llixh+vTpxd5GVpatMvnhhx9o27at03cqVeFDCKZMmcJ77zk/7D558mTwfMlpWcRZI9FxmfZ/X38o18dTSUa248rD+9pMdgXGmGvFbLFeu8vmSOOjU5KRXfZHuavFXGi8unzx6m4dr7enc7zenncmj6/TefuhVKrISne+Y5+VnoKXb9F37P9ZO5e/1/zAqNfmEli9bCcauJEr5u/RswanGQvdrtX2N5VhnaLwmHOuleH8Metu7i3SauCFYd7kGax8uyILSyl6hdw9K6BQqsjNNxFFblYyHt5lNN6qlI6cMXDhx1T7v91UtjvgPp5K0rNuON49bTNIFiQrx3JD/uK0Tnq+/M3VW8nVW0lMtXD+ciZfvlKJFnU17DtZyik9i0mfkIw2wDnvtQH+GNMzseTpMSSnYjGZ0FaplC9NJfTxpe8t9bhWJvJPTpKTmYLuNstEQuwJcjJTWPTZA/ZlVouZS+f2c+TvRYz//BhKZfGH0R07ZyT6htn/rtcTtuPFcYwX57xx44Q1AD75tlHWcgxgsVhvmpzE0x2yCrkPk5Vn+76o9PGpMHeTBe21nrdcPTzRU0lc6u39FlfLY1c8d4i7nwybLKG+fftiMBgwGo306dPH6btatWqh0WjYuXOnfZnRaGT//v00aNCgyO1qNBrMZucDt27dusTGxpKQ4JhB78bJTwB27dpFjRo1ePPNN2nVqhV16tTh4sWLN20n/3o3/jsgIICqVaty/vx5ateu7fQJCwsrNOZJkyaRnp7u9Jk0adJN6fRGSEqz2D9xKRbSsyzUre64d+CugbAgldPF5o3MFoiJN1O3hmMdBVC3hhvnC1mnNFwt5kLjreEcb+gt4o1NMDv9RgVQt/qdyePr3Nw0VA1tyPmTe+zLLBYL50/uIaR2s0LX+3vNj2xbNZsnXvmeamGN7lh84Jr5qzfkiznZFnO9fDGHVS18/9fLcL18ZbheqJrzlx3ruGvgxWHemM1WvlmeVereIJWbhsrVGnL5rOMZK6vFwuWzewio0ax0Gy8jeoOtIXX9cyXZTFqWhfqhjgkE3DUKalZz49xlY4HbMFvgYpyJ+qGOZ+Ls+Xup8DKhUNgSurn9e0Om0vYcoVKPdk7L/Ht2IHXPEQCsRiPph07g38Px7CoKBZW6tydtT+meSQNbmQgIaUjsaecyERu1m6Cw23umrnp4Ox5/YzWPvbbS/gmo3oh6Le/lsddWlqjhBrZ6IjnNYv/EF3LeCA1UFTqpRGH1RHh1tzsyEdd1FoutoRUa4FymalRRcDml4AbC5RQrNfKlDw0oOL3eaGu4VfCyPVt35vLtNTpcLY9d8dxxN7CgKLePK5CetxJSqVT2IZD5e6U8PT15/vnnefXVV6lYsSLVq1fn008/JScnh9GjRxe53dDQUC5cuMCRI0cIDg7G29vb/kzcE088waeffkpmZiZvvfUWAIprc0TXqVOHmJgYlixZQuvWrVmzZg2//+783p0XXniBp59+mlatWtGhQweWLl1KREQENWvWtKd57733GD9+PL6+vvTt2xe9Xs+BAwdITU1lwoQJBcas1WoLHCYJuQUsc7b1oJ7+7bUkpZpJTrdwbycP0rMsHDnjuMh5cZgnR84Y+euw7c7ylgN6nuivIybeRHScmR6ttGjVsPu4486zj6cCH08lVfxs9yWq+SvJM8LVDAs5eaW7Q+VqMW87pKdvOy2JqWZS0i0M7GiL9+hZR7zjh3py9KxzvCP66YhJuBZvS1u8e26MV2eLt/K1eKv6K9Eb4Grm7cfbse8TLP9hElXDGhFcszG7NvyEQZ9Ly86DAfjtu9fxqRDAPcNsZXHHmh/YsuIrhj03DT//amSmJQGgcdehdbf1audkpZGeEkdGWiIAyfEXAPDy9cfbr+hpw4vDlfL3ui0H8ujXwZ3EVAvJaWbu6+xBWpaFI6cdMb803IsjZ4xsP2QbEr15fx4jB3hyMd5MdJyJHq3c0ahh1zFbzO4aGD/cG40bzP0zBw+tAo9r1UJmjvW2h7807jyS7cveoHJwI6qENOHYPwswGnKp28rWS7J1yet4+lahbT/bs0pmk4HUxHMAWExGstMTSL5yCrVGh69/DQCM+mzSU2Ls+8i8eonkK6fQevjiXaHq7QV6g837chnQ0YOEq2aS08wM6qojLdPC4SjH3/eVR3w4dNrAtgO27olNe3N58j5vLsaZuHDFRK827mjVCnZG2L7391PSuoGWk+cNZOZYqeCtpF8HD4xGK8fO3n6vm8pTh2dtx2tudGHB+DSth+FqOnmxcdT9cALu1QI4Oup1AC5+v4QaYx6l3pRXiZ2/HP/u7Qga2o/99z1r38aFGfNoOncqaQePk74/gtDxT+Dm6UHsgoJnjS2pFt1HseHn16kS0ojAGk04vN1WJhq2tZWJ9Qtfw8s3gE73OcpESvw5+/9npSeQeOkUGq0Ov8o10Lh74V813Gkfao0OD0+/m5bfrm2H9fRt605SqoWUDAsDOriTnmV1qideeNBWT+w4Yvt7bj1o4PG+HsQkmImON9O9hQatWsGeE46/t7dOgY+nAn97PaEiz2AlNdN62/XEvtNWBrZREH8Vrly10jpcgdoNIi7YtjewjYLMXPjrmO3fB85YebS7gjbhCs7GWWlQXUFQBVh3wLH/esGQo4eMHKjsC72aKzl9BS4kFBjCbXGlPAbXPHeIu4s03m7Djc+T5ffJJ59gsVh4/PHHyczMpFWrVmzYsIEKFSoUuc0hQ4awYsUKunfvTlpaGvPmzWPkyJGsXLmSp556itatW1OzZk0+++wz7r33XtzdbWMV7rvvPl5++WXGjRuHXq9nwIABvP3227z77rv2bT/66KOcP3+eiRMnkpeXx7Bhwxg5ciT79u2zp3nqqafQ6XR89tlnvPrqq3h6etK4cWNeeumlUuVVYTbu06NRK3ikjw7dtZcFf/VbttMd+8p+Krw8HAsORhnx0uUysKOH/YXXX/2W7fTQceemWgZ2dIzjeOURbwAWrM1xqpT/CzFvuh7vPTr7C5lnLXeO199PhecN8R6KMuJ9LV5vne1FoLPyxdupmZYBHRzxTnjYFu/Cdbcfb+O2/cnOSGXLii/JSk8mqHp9npj4vX3YZNrVOBRKx0CBfVuXYDYZWfz1i07b6T5oLD0H24Y1Rx7exoof/2f/buk3r9yUpjRcKX+v27hXj1at4NE+OnTuCs5eMvHVMueessoVlE6TCRyMtMV8byd3+0u6v1qWZY+5eoCbfcazD591fkb2zdnppNzmjIi1m/UnL/sqBzZ+RU5mEv5V69N/9A/2IXJZaVfsN7EAcjISWT5jsP3fETvmErFjLkE1W3PfcwsBSLp0nNXfOV7cvfvPTwAIbzmI7sM/ua04b7R+dy5atYIR/b3QuSs4E2tkxpL0fPmrwtvDUZb3nzLg5ZnN/V119iGWM5Zk2IdDGU0QHqKmd2sPdB624aqnY4xMWZB+04QLJeHbshHttyy0/7vBNNuxEvvTCiJGT0IbVBmPkCD797nRl9h/37M0mD6J0BdGkHcpnmPPvkXypn/saeJ+XYemckXCJ4+3vaT76Cn2DXwKQ75JTG5X3Rb9yc26yu61X5KTkUTl4PoMfv5HPH1sZSIzNQ6FwpG3WemJLPp0kP3fB7fO5eDWuQTXbsPQ8Qvzb/6O2LzfgFat4OHeHtfqCTPfrMhXT/g6H3OHThvx0ikY0MHdUU+syH/e0NC/vaOeeHm47fnLhetz2Huy4J7eWzkVaxs22bmRAk93BYlpsGyHxT6JiY9OgfWGuzGXU2DVHgtdGinp2lhBahYs32khOcOxTS8PBT2bKfDU2oZTHr9o5Z+TZduQcKU8Btc8d/zbXGXK/vKisFrlsUBXsnPnTjp16sTZs2epVavWbW+nd+/eBAYGsnBh2Z/Anv8srcy3eSfNftXPpWKe/aofY6ellXcYxTZroh+/7vkXp8UrpaHtlC6Vv2DL4+empt464V3i29cr8PkfrnPqmXC/gqc+ujtnuSzMj2/6s0Z9554DLWsDjFF8u6G8oyi+5/rAuM/v7CQ1ZenrCb5MWeZas9tMGqZyuTx2pXPHrIl+5R1CoTZHlO2L0UuiV5M7M/FZWZKet7vc77//jpeXF3Xq1OHs2bO8+OKLdOzYsUQNt5ycHL799lv69OmDSqVi8eLFbN68mU2bNt3ByIUQQgghhBBlSRpvd7nMzExef/11YmJi8Pf3p1evXiWaSRJsz8etXbuWjz76iLy8POrWrcvy5cvp1avXHYpaCCGEEEKIkpMxgUWTxttdbsSIEYwYMaJU2/Dw8GDz5s1lFJEQQgghhBCiPEjjTQghhBBCCHFXsLrIlP3lRd7zJoQQQgghhBAuQBpvQgghhBBCCOECZNikEEIIIYQQ4q5gkQlLiiQ9b0IIIYQQQgjhAqTnTQghhBBCCHFXsFplwpKiSM+bEEIIIYQQQrgA6XkTQgghhBBC3BXkJd1Fk543IYQQQgghhHAB0ngTQgghhBBCCBcgwyaFEEIIIYQQdwULMmFJUaTnTQghhBBCCCFcgPS8CSGEEEIIIe4KMmFJ0aTnTQghhBBCCCFcgMJqlfatEEIIIYQQovytPmgqt33f2/LuH5R490coXM6zn1wt7xBK5Ls3KjJ2Wlp5h1Fssyb6uVy8aUe2l3cYxebXrBsvzMgo7zBK5KuXfJj8k7G8wyi290aoOXE2rrzDKLaGtYOYta68oyiZsf3g2w3lHUXxPdcH1qjrlncYxTbAGMXE2TnlHUaxTXtex57I9PIOo0Ta1fPlxZmZ5R1Gsc180dvl4r1bWa0yYUlRZNikEEIIIYQQQrgA6XkTQgghhBBC3BUs8kBXkaTnTQghhBBCCCFcgPS8CSGEEEIIIe4KMpVi0aTnTQghhBBCCCFcgDTehBBCCCGEEMIFyLBJIYQQQgghxF3BirwqoCjS8yaEEEIIIYQQLkB63oQQQgghhBB3BXlVQNGk500IIYQQQgghXIA03oQQQgghhBDCBciwSSGEEEIIIcRdQd7zVjTpeRNCCCGEEEIIFyCNt7vEyJEjGTRoUHmHIYQQQgghRLmxWsvvU1KzZs0iNDQUd3d32rZty759+wpN+8MPP9C5c2cqVKhAhQoV6NWrV5HpC+NSwyZHjhzJggULAFCr1VSvXp0RI0bwv//9Dzc3l/opJbZ9+3a6d+9Oamoqfn5+5R1Ombi3swedm2rx0Co4d9nELxuySUy1FLlOtxZaerd1x9dTyaVEM0s2ZRMdZwZA567gvs4e1A9VU9FHSVaOhSNnjPzxdy55+rLpgx/Q0Z2OjTV4aBWcv2JiyaZcktKKjrlLMw29Wrvj46ngcpKZZVtyuRhvtn/fsYmGVvU1hFRR4aFVMPGrdHL/g/H+umEbi1ZvIiUtnTo1gnll1EM0rB1WYNo/t+/ig9kLnJZp1G78/fMs+7+tVivf/7qaP7b8TVZ2Lk3q1uK1px6helBAqWMF6NxETc9WWnx0Ci4nW/htWy4XEwrP22Z13BjYXktFHyVJaRb++EfPyWiTU5r+7bR0aKzGQ6vgwhUzS7fm3fLvVVxt6irp0FCJlwckXLWydp+FyymF/90a1FDQo5kKPy+4mgGbDpk5c9k5vb8v9G6hIjRAgVIBSelWlv5lJj27TEJm3Z+/s3L5EtJSrxIaVpunnhtPnbr1C0y7Z+cOli/7mbi4y5hNZoKqVuO+B4bTrcc99jQPDOhW4LojnnyOQUMeKnW8R/9exKGtc8jJTMK/aj26DnmbwBpNCkybEneGPeu+JDH2BJmpl+k8aBLNu40sdNsHNn/Prj+n06zLCLo88GapYwU4smMRB7fOITsjicrV6tH9wcLjTY47w+61tngzrl6m6+BJtOheeLz7Nn3PztXTad51BN2GlD7eip1aUfOV0fi2aIR71SocGDKGhFVbil6nSxsaTHsDrwZ1yIuN4+yU2Vz66XenNDWef4SaE0ajDaxMRkQkJ176gPT9x0od73UdGrrRrZkb3joFcSkWfv/HSGxi4cd0k5oq+rZRU8FbQXK6lTV7DETG2NIrldCvjZp61VVU8lGQa7By5pKFtXuMZOSUzTlj85pfWbfyZ9JTUwgJrcNjz0ykVnjDAtMe2L2N1b/OIzH+EiaTicCqIfS9/1E6du8PgMlkYvmi2UQc3EVi/GV0Oi8aNG3NsBHjqFCpcpnE26mJmh4tNfZ6ePn2PGKKqodru9G/vcZeD6/eqedktOP81qSWGx0bqwmposLTQ8Gni7K5nFw2dfCdihmgXzsN7Rs5zh2/bssjKU3GHt5pS5cuZcKECXz77be0bduWGTNm0KdPH6KioqhSpcpN6bdv387DDz9Mhw4dcHd3Z+rUqdxzzz2cOHGCatWqFXu/Ltfz1rdvX+Li4jhz5gyvvPIK7777Lp999tltbctsNmOxlO1BKYqnT1t3erTUsmhDNp/8lIHeaGX8cG/cVIWv06qehgd76FjzTy4fzUvnUqKJ8cO98dbZXubo56XE10vJ8m05vDcnnflrs2lYU82Ifp5lEnPvNlq6NdeyZFMOny3KxGCEcQ96Fhlzi7pqHujmwdrdeXyyMJNLiWbGPeiJl87xAkqNm4KTF4xs2JtXJnG6Yrybdu1n5k+/MXrIABZ88ia1awTz4sdfcjU9o9B1PD3cWfvdp/bPyq+nOH2/cNUGlq3byutPPcqcj97A3V3Lix9/id5gLHW8LcLdGNzFnXV79Hz6SzaXk8yMGeyJl0fBLxYNC1Ixsp8Hu08Ymboom4hzJp6+14OgSo4quFcrDV2ba1i6JY/pS7LRG62MGawr8u9VXA1DFfRppWT7UTPf/WkiPhUe76XC073g9CGVFTzYWcXhsxa+/dNEZKyFh7qpqOLnSFPBC0b3dSM53cq8jSa+WW3irwgLJnPB2yypf3ZsZd4P3zDskZFM+/IHQsNq8f7br5KWllpgei9vb4YMf5xPpn3DF7Pm0KN3P77+4hMOH3Tc1ZyzcLnTZ+xLr6NQKGjXoUup4z19aC1/r5xC275jeWji7/hXq8cf344mJzOlwPQmYy6+lYLpeO8r6HyKvpBNiIng+K4l+FetW+o4r4s6tJYdv0+hXd+xPPqqLd4V3xQRr8EWb6dixBt/MYJjO8s2XpWnjoyIKI6Pf69Y6T1Cg2m96jtStu/ln1b3c+GrBTT+7kP8e3eypwka2o/6n03izIez+KfNYDIjImm7Zg6ayhXLJOamtVTc11HNpgNGZvyWx5UUK08P1OLlUXD6GgFKHu2tYV+kiS9+zeP4BTMj+2oJrGirVzRuUM1fyeaDRr74LY8FGwxU8VMwqp+mTOLd+/cmFs+dwf3Dn+K9z38iJKwO094dT0ba1QLTe3r5cO/QUbw9dQ4fzvyFzj3v5ccvP+DYod0AGPR5XDwXxX3DnuT9zxfywqSpxF+OYcZHr5RJvM3ruDG4s5YNe/V8tjiHK0lmnh+kK7QeDg1SMqKfO3tOGPnslxyOnTMxeqBzPaxRw/krZlbt1JdJjP9GzD1baujSTMOyrXq+WJqDwWjluUFlc+4QRfv88895+umnGTVqFA0aNODbb79Fp9Mxd+7cAtMvWrSIMWPG0KxZM+rVq8ePP/6IxWJhy5aib0Tl53KNN61WS2BgIDVq1OD555+nV69erFq1CgC9Xs/EiROpVq0anp6etG3blu3bt9vXnT9/Pn5+fqxatYoGDRqg1WqJiYlh+/bttGnTBk9PT/z8/OjYsSMXL160rzd79mxq1aqFRqOhbt26LFy40CkmhULBjz/+yODBg9HpdNSpU8ceE9gaiaNHjyYsLAwPDw/q1q3LzJkzyzRfUlNTGTFiBBUqVECn09GvXz/OnDlj/z4lJYWHH36YatWqodPpaNy4MYsXL3baRrdu3Rg/fjyvvfYaFStWJDAwkHfffbdM47yuZ2t31u7K4+gZI5eTzMz7Mxs/LyXNwgs/CfVq484/R/XsOmYgLsXCovU5GIzQoYkWgCvJZr77PYuIs0aS0yxEXTSx8q8cmtRWoyy4XiyR7i20rN+TR8Q5E1eSLSxYm42vl5KmtdWF/85WWnYdM7DnuIH4FAtLNuViMEL7Ro7fue2Qnk379PYexLLiSvEuXrOZ+3t24t7uHakZXJU3nnoUd42G1dt2FbqOQqGgkp/vDR8f+3dWq5Ula7cw6oH+dG3djDo1gnl37CiSU9P4a/+RUsfbvYWW3ceN7D1pJP6qhaVb8jCYrLRvWHDedmuu4VS0iS0HDSSkWlizW09sopkuTTVOaTbs1XPsvO3vtXBDLr6eCprUKv2ogg71lRw8Y+HIOStJ6fDnHjNGMzSvXfApoF19JWevWNl5wkJyOmw9YiHuqpU2dW+4YGiu4swlK5sOWYi/CqlZEHXJSnYZtelX//4rvfsOoGfvfoRUD+XZcRPQuruzdePaAtM3atKcdh06E1y9BoFB1Rh4/4PUCKvFqZOOXpQKFSs5ffbv+YdGTZoTGFS11PEe3j6PRu2H0aDtECoF1qbH0Pdw07hzcu/yAtMHVG9Cp/tfJ7zFAFSqwus9gz6bDQtfpcfwD9F6+JY6zusObZtHow7DaNhuCJWCatNrmC3e43sKjjewRhO6DHqdui0H4OZWdLzrfnqVXg9/iLuu7OJN2rCD05NnkPDH5mKlr/HMQ+ReuMSp16aSFXmei98sIn75BsJeHGlPE/bSKGLnLOPSghVknTrHsTGTMefkETJySJnE3LWpG3tPmtgfZSYh1cryvwwYjVZa1yv4mO7cxI2oGAvbj5hITLOyYb+Ry8kWOjaypc8zwPd/6jl6zkxSmpWYBAu//20kpIoKP6/Sn+TW//ELXe8ZRJde91Ktek1GPv8GGq07OzavLjB9/cYtadW+O1VDwggICuaeex8iJLQ2p08dBUDn6cVr739N2069CQquQe26jXn82VeJPhdJSlJ8qePt1kLDrhNG9p40kXDVwrKtegwmK+0KqYe7NtMQedHM1kNGElItrN1j4FKihc5NHekPRJrYsM/A6RhTgdu4G2Pu2lzNxn16jl87d/y8MQ9fTwWNy+DcUV4sVkW5ffR6PRkZGU4fvf7mxrzBYODgwYP06tXLvkypVNKrVy92795drN+Zk5OD0WikYsWS3TByucZbfh4eHhgMBgDGjRvH7t27WbJkCREREQwdOpS+ffs6NWJycnKYOnUqP/74IydOnKBixYoMGjSIrl27EhERwe7du3nmmWdQKGwV4e+//86LL77IK6+8wvHjx3n22WcZNWoU27Ztc4rjvffeY9iwYURERNC/f38effRRrl613a2yWCwEBwfz66+/cvLkSd555x3+97//sWzZsjLLh5EjR3LgwAFWrVrF7t27sVqt9O/fH6PR1suQl5dHy5YtWbNmDcePH+eZZ57h8ccfv2ms7YIFC/D09GTv3r18+umnvP/++2zatKnM4gTw97X1kJ2KdvSA5OmtXLhioma1gisblRKqB6qc1rECkdHGQtcB8NAqyTNYS/3Cx0rXYo666KjQ8wwQHWcmrGrhMYcEqIi8YR0rEBljomYh65QVV4rXaDIReT6GNo0dw+GUSiWtG9fj2Jnzha6Xm6fn/rGTuHfMG0z87BvOx16xf3clMZmUtAynbXrpPGhYO6zIbRaHSgkhVZRExTrnU1SMidCggm91hgaqiIp1buxGXjQTdi19JR8Fvp7O28wzQHS8I01p4g2qpOB8nOMgsALn46yEVC74gi+4snN6gHNXrIRUtp0yFEB4sIKUDCuP91Lx6lA3nu6nol5IGdwlAYxGI+fORtGkWUv7MqVSSZNmLYmKPHnL9a1WKxFHDnLlUiwNGjUtME1a6lUO7t9Dz3v6lzpes8lA4qUThIR3sC9TKJWEhHcgLvpwqba9/bf3CW3Qlep1O9w6cTGZTQYSYk84bVOhVFK9bgfiLpQu3q2/vk9Yw67UKMN4b4dfu2Ykb3W+gEra9A8V2jUDQKFW49uiIclbbrhBZLWSvHUXfu2al3r/KiVUq6zk9CXH6B4rcOayhRoBBV961QhQcuaycz0RFWuhRkDhdYC7BixWa6mHrpuMRqLPRdKwaWv7MqVSScOmrTkbdethpFarlRNH9xF3+SJ1Gxaef7nZWSgUCnSeXqWK93o9fDrGkV9W4HSMmdDAgvM3LEhFVL5GWWSMidDAf6eL6k7EfP3cceM28wxwMd5M2L/0u/6/mTJlCr6+vk6fKVOm3JQuOTkZs9lMQIDzoxgBAQHExxfv5sTrr79O1apVnRqAxeGyzXKr1cqWLVvYsGEDL7zwAjExMcybN4+YmBiqVrXdRZ04cSLr169n3rx5fPzxx4DtouCbb76haVPbCf3q1aukp6czcOBAatWqBUD9+o4LvmnTpjFy5EjGjBkDwIQJE9izZw/Tpk2je/fu9nQjR47k4YcfBuDjjz/myy+/ZN++ffTt2xe1Ws177zmGeoSFhbF7926WLVvGsGHDSp0XZ86cYdWqVezcuZMOHWwnzEWLFhESEsLKlSsZOnQo1apVY+LEifZ1XnjhBTZs2MCyZcto06aNfXmTJk2YPHkyAHXq1OHrr79my5Yt9O7du9RxXufjZaukMrKdh6xmZFvw9Sz44s9Lp0ClVJCZbb1pncBKBd+x8vRQMKCjO38fKf3wB59rcWXkOMecmWOxf3dTzB7XY863TraFwIp39tBzpXjTMrIwWyxU9PV2Wl7R14eLVwquAGtUDeCt50ZQu0YwWTm5LFq9kafensri6e8SUKkCKWkZ9m3k3+bVtPRSxet5LZ/yP2OSmWMloGLBJ0sfTwWZBfwtrg/59fG0HRP5y3dmjtX+3e3SaUGlVJCV67w8K9eKv08hZcHd9r1T+jzsw7083UGrVtCpkZKtRyxsOmimdjUlw7upmL/RzMWE0l1IZmakY7FY8PNzvhvp51eBy7Exha6XnZ3F0yMexGg0olQqeWbMyzRr3qrAtNu2bMDDQ0e7Dp1LFStAbnYqVosZnXclp+U670qkJtz+zYLTh9aQdOkkwyf8VtoQndypeKMOriEx9iSPTCzbeG+HNsAffUKy0zJ9QjJqX2+U7lrUFXxRurmhT0zJlyYFz7o1S71/T3fFtePu5mO6il/Bx7S3TkFmvnolK8dqryfyc1PBgPYajpwxoy/laPDMjDQsFjO++Y45X7+KxF26WMhakJOdxUtPDsBkNKBUqhjx3Gs0ata2wLQGg56lP31Nu8734KErXePtej18c71qpUoh9XBB+WurY8vmptOt3ImYva/9t6A03v/S77oTyvNVAZMmTWLChAlOy7RabZnv55NPPmHJkiVs374dd/dCnmEohMs13v7880+8vLwwGo1YLBYeeeQR3n33XbZv347ZbCY8PNwpvV6vp1IlxwlKo9HQpInjgeyKFSsycuRI+vTpQ+/evenVqxfDhg0jKCgIgFOnTvHMM884bbNjx443DXu8cZuenp74+PiQmJhoXzZr1izmzp1LTEwMubm5GAwGmjVrVur8uB6jm5sbbds6KsxKlSpRt25dTp06BdiGbn788ccsW7aMy5cvYzAY0Ov16HS6Qn8HQFBQkNPvuJFer7+pK7mgAt6mgYZH+zqeO/v618yS/cDb4K6BF4Z6E5dsZvU/ubdeIZ/W9dU83NuRN9+syCrL8Mqcq8VbWo3Da9E4vJb9303CazF8wmR+37yD54bfX46R/TdcG5hA5CUru0/ZLkTiUy2EVFbQOlzJxYSyHQJcXB4eOqZ/9SN5ublEHD3EvB9nERAYRKMmN/cEbN20ls7deqHRlP1JuSxkpsbx14qPGDxmLm7quzPGG2WmxrF9xUc84CLxujqlEh6/xzZ8dfkOQ7nF4e6h44MZP5OXm8vJiP0snjuDygHVqN+4pVM6k8nErE//B1YrTzz/ejlFK8StabXaYjXW/P39UalUJCQkOC1PSEggMDCwyHWnTZvGJ598wubNm2+67i4Ol2u8de/endmzZ6PRaKhatap9lsmsrCxUKhUHDx5EpXK+g+Hl5bjD4+HhYR8Sed28efMYP34869evZ+nSpbz11lts2rSJdu3aFTsutdq590ehUNgnQ1myZAkTJ05k+vTptG/fHm9vbz777DP27t1bot9eGp999hkzZ85kxowZNG7cGE9PT1566SX7kNPi/I78pkyZ4tSjCNh67dzHOy07etbAhbmObn83N0dvQ0a24yLPx1NJbGLBF31ZOVbMlpvvJPl4KknP11Ok1cD4Yd7kGazMXpHF7cxJE3HWSHSco5F5/cFfH51zzN4626yXBcacez1mJXDDOp5KMrLL9raSq8V7Iz8fL1RKJVfTnRv1V9MzqOhXvGdm3NxUhIeGcCk+CcD+/NvV9Az8Kzi2cTU9gzqhIaWKN/taPvnkuxvurVPc1Jt8XUa2FW+dMl96pf1u6fX1vD2de/S8dbYZP0sjRw9mi/WmSRK8PBRkFfJ8mq2XTYFtUM+19O7Ye++ubzP/bGbJ6VaqVyn93V5vH1+USiVp+SZKSEtLxa9C4c8GKJVKgqoGAxBWqw6XYi+y4tdfbmq8nTweweVLsUx4fXKpYwXw8KyAQqm6abKPnMwUdD7+t7XNxNgT5GalsHjaA/ZlVouZy+f3c/SfRYyddgyl8vaGRRUZr/ftxZsQe4KczBQWfeYc76Vz+zny9yLGf3778d4OfUIy2gDn36IN8MeYnoklT48hORWLyYS2SqV8aSqhj3fusbsd2XnWa8ddAfVEITNDZhbQy+ZVQM+LUgmP99ZQwUvJt6vySt3rBuDt44dSqSI93zGXnnYV3wqVClnLdswFBNnq1Bo1w7kSe4E/f5vv1HizNdwmkZIUxxsffFPqXjdw1MO2etVR73rrbh49cl1B+Wurt/+dbp47EfP10Rr5y5Xt3OG6E/K5wku6NRoNLVu2ZMuWLfZXfV2ffGTcuHGFrvfpp5/y0UcfsWHDBlq1KnhkyK243DNvnp6e1K5dm+rVqzu9HqB58+aYzWYSExOpXbu20+dWLeDr60+aNIldu3bRqFEjfvnlF8A2hHLnzp1OaXfu3EmDBg2KHfP14YxjxoyhefPm1K5dm3PnzhV7/VupX78+JpPJqTGYkpJCVFSUPc6dO3dy//3389hjj9G0aVNq1qzJ6dOnS7XfSZMmkZ6e7vSZNGnSTen0BkhKs9g/cclm0rMs1At1NBTdNRBW1Y3zlwt+SNhsgZh4M/VvWEcB1KuhdlrHXQMvDffBZIFZv2Xe9sx3emO+mFMspGdZqFvDUebcNRAapOLClcJjjk0wU7e6Yx0FULe6G+cLWed2uVq8N1K7uVGvZnX2HztlX2axWNh/PJLGdYo3fMlssXAu9jL+FWyNtqpV/Knk58P+Y5H2NFk5uZw4e6HY2yx8XxCbaCE8xDmfwkPcCp3EJTreTHiI84Vr3eoqLlxLn5JhJT3bQt2QfH+vQEea0sQbl2KlZpDjAkABhAUqiE0q+Ax5KclKzUDnC4aaQQpir10MmC1wOfnmYZeVfBSklcFrAtRqNbVq1yXiyCH7MovFQsSRg9StV/y612q1YjTe3CuxZeMaatUOJ6xm7dIHC6jcNFQJbkjsGcczVlaLhdjTuwkKvb3np0LC2/Ho66t55NWV9k+VkEbUbXkvj7y6slQNIZWbhoCQhsSezhdv1G6Cwm4v3urh7Xj8jdU89tpK+yegeiPqtbyXx14rXby3I23PESr1cL4B69+zA6l7jgBgNRpJP3QC/x7tHQkUCip1b0/antI99wfXjpEkC3WCHZdZCqB2NWWhrxS5mGChTjXnfAoPdu7Jvt5wq+yn5LvVeeSU0aSIbmo1obXqcTJiv32ZxWLhZMQBatdtXOztWK1WTCZHa/J6wy0hLpbX3p+Fl49fmcTrqIcd+WWrh1VExxecvxfizE71NkDdEDei4/+dkQJ3Iubr544bt6nVQI1AFRf+pd/1XzZhwgR++OEHFixYwKlTp3j++efJzs5m1KhRAIwYMcLpunjq1Km8/fbbzJ07l9DQUOLj44mPjycrq2SjpVyu560w4eHhPProo4wYMYLp06fTvHlzkpKS2LJlC02aNGHAgAEFrnfhwgW+//577rvvPqpWrUpUVBRnzpxhxIgRALz66qsMGzaM5s2b06tXL1avXs2KFSvYvLl4M16B7dmxn376iQ0bNhAWFsbChQvZv38/YWEFv8OqKMeOHcPb2/FskEKhoGnTptx///08/fTTfPfdd3h7e/PGG29QrVo17r//fnsMv/32G7t27aJChQp8/vnnJCQklKgRml/hXcu3vnrbsj+P/h3cSbxqJjndwv2dPUjLsnDktONC6+WHvDl82sD2Q7az0+Z9eYwc6El0nInoOBM9W7mj0cCuCNv37hp4cbgPGjXMWZ2Nh1aBx7XwMnOspb6Ts+2Qnr7ttCSmmklJtzCwowfpWRaOnnWcqMYP9eToWSN/Hbb9ji0H9IzopyMmwUR0nJkeLbVo1bDnuON3+ugU+HgqqXztOYiq/kr0BriaaSEn7/aDdqV4Hx7Qi/e/mU/9WqE0qBXKkrVbyNMbGNjN9gznu1/Po3JFP8Y+MhiAH3/7k0Z1ahISWJnM7Fx+Xr2R+KSr3NfDNg24QqHgof49mff7WkKCqlC1ij/fLf0D/wp+dG3d7LZivNG2Q3oeu8eDmAQzF+PNdGuhQatWsOekLW8fv8edtGwrq69NN739sIEXH9TRo4WGExdMtKirpnqAiiVbHF1f2w8b6NNGS2Kaxfb36qAlPdtKxLnSN5x3nbIwuKOKy8lWLqdYaV9ficYNDp+1XTAM7qgiM8fK5sO2f+85ZWFUHxUdGtgmXGgUpqRqJQWr9zguBnaesDC0i4qLiQouxFupXVVJeLCC+RvL5oLh3sFD+erzKdSuU5c64fVZ/cdv6PPy6NG7HwAzp39MpUr+PDbSNqx9+bJF1KpTl8DAqpiMRg4e2MNfWzfyzNiXnbabk5PNrn/+YuRTz5dJnNc17zaKTb+8TkBIIwKqN+HIXwswGXJp0NbWE7Xx59fw9A2g4722adLNJgNX42038SxmA9npCSRdOoVaq8Ovcg007l5UCnJ+DECt0eGh87tp+e1o0X0UG35+nSohjQis0YTD2xdgNOTS8Fq86xe+hpdvAJ3uc8Sbci1es8lAVnoCiZdOobkhXv+qBcTr6XfT8tuh8tThWbu6/d+6sGB8mtbDcDWdvNg46n44AfdqARwdZRuSd/H7JdQY8yj1prxK7Pzl+HdvR9DQfuy/71n7Ni7MmEfTuVNJO3ic9P0RhI5/AjdPD2IXrCh1vAB/HTXxUA8Nl5IsxCRY6NzEDY1awf5I2zH9UA8N6dlW1u211Rt/R5gYc7+Wrk3dOHnRTPPabgRXVvLbX7b6V6mEEfdoCK6sZM5aPUoFeF/rUbf1hpcu3r73P8IPM98jrHZ9atZpyIbVS9Dn5dK510AAvvtiMhUqVWHYiLEArP5tPmG161MlMBiT0cDRg7vYtX0tI56z/Q1MJhNfT32Di+ciefntz7FYzKSl2no1vbx8cVMXPvNxcWw/ZODRe9yJSTQTE2+ha3M1GrWCvdfq4UfvcSc9y8Kfu2z599cRA+OH6OjeXM2JaDMtwt0ICVCydKujHtZpoYK3Et9rs3dWqXDtGf0c6009oHdLzH8dNnJPGy1JaRZSMqz0b28rV8fK4NwhijZ8+HCSkpJ45513iI+Pp1mzZqxfv94+iUlMTAxKpeMGzuzZszEYDDz44INO25k8eXKJZnf/f9N4A9vwxw8//JBXXnmFy5cv4+/vT7t27Rg4cGCh6+h0OiIjI1mwYAEpKSkEBQUxduxYnn3WVsEPGjSImTNnMm3aNF588UXCwsKYN28e3bp1K3Zczz77LIcPH2b48OEoFAoefvhhxowZw7p160r8G7t0cX4fkUqlwmQyMW/ePF588UUGDhyIwWCgS5curF271j4M8q233uL8+fP06dMHnU7HM888w6BBg0hPL93kDbdrw948NBoFj/X1ROeu4OwlE18ude4p86+gxOuGoWYHIg146Wwv4va59pLuL5dm2ivU6oFu9pknP3rOz2l//5udRkp66c5sm/bp0agVPHKPzv5i8VnLs51j9lPh6eFYcCjKiLcul4EdPexD4Gb9lu10EujUTMuADo6HVSc8bGucL1yXw54Tt/8sgyvF27tDa9Iysvh+2SpS0jIIDw1mxqTx9uGPCSlXUd7wvofM7BymfL+QlLQMvD111KtZnR8+eI2awY4p3x+/rw+5egNTvv+ZrJwcmtatzcxJ49FqSnfBAHDotAkvjzwGtNfa8inZwjcrc+z5VMFHifWGYTEX4szMX5/LwPZaBnawnWR/WJ1LXIojzeYDBjRuCh7u6X7tpepmvvk9p0zem3Yi2oqn1kKPZiq8PCD+qpWFW8z2af19PcFqdeRvbJKV3/4207OZip7NlaRkwJLtZhLTHNuMjLXy514znRup6NcakjNg6V9mYhLLZrxLpy49yEhPY/HP80hLvUpYzdq8/f6n9mGTyUkJKG8YAq/Py+WHb74gJTkJjUZLteDqvDjxTTp16eG03X/+2ooVK5269iyTOK8Lb9Gf3Oyr7Fn35bWXXtfn/md/tA9DzEyNQ6Fw1GfZ6YksnjbI/u9D2+ZyaNtcqtVqw5AXFubffJmr26I/uVlX2b32S3IykqgcXJ/Bz/+Ip0/B8WalJ7LoU0e8B7fO5eDWuQTXbsPQ8Xc+Xt+WjWi/xbGfBtP+B0DsTyuIGD0JbVBlPEKC7N/nRl9i/33P0mD6JEJfGEHepXiOPfsWyZv+saeJ+3UdmsoVCZ883vaS7qOn2DfwKQz5JjG5XUfPmfHyMNKntRpvnYIryRZ+/FNvH35cwUvhdFPxYoKFRZsN9G2rpl9bNcnpVuav1xN/1ZbI11NBozDbOe6VYc7joGf/kce5K6U7x7Xt3JuMjFRW/PI96akpVA8LZ+Lkmfj62YZNXk1OcLoQ1efl8tO3n3I1JRGNRktQtRo8+/L7tO1sm+AsNSWRw/t2APD2S4857euND2ff9FxcSR0+Y8LLQ0//dlp8dAouJVv49sZ62FuB1eqINzrOwk/r8+jfQcvADgqS0izM+dO5Hm5U041H73Hk7cj+tv9ft0fP+r2lf7bwTsS85aABjRqG33Du+HZl2Zw7yktpZwj/N40bN67QYZI3vq4MIDo6ukz2qbBaXWFkqXAlz35S8As971bfvVGRsdPSyjuMYps10c/l4k07sr28wyg2v2bdeGFG4S8Hvxt99ZIPk38qgwdf/iXvjVBz4mxceYdRbA1rBzGr5PfaytXYfvDthvKOovie6wNr1GX3Uu87bYAxiomzc8o7jGKb9ryOPZHlc7P2drWr58uLM+/8BGdlZeaL3i4X793q57/Lr2nyWOe7f5bO/1c9b0IIIYQQQgjXdeNIEHEzl5uwRAghhBBCCCH+i6TxJoQQQgghhBAuQIZNCiGEEEIIIe4KMhtH0aTnTQghhBBCCCFcgPS8CSGEEEIIIe4KrvSqgPIgPW9CCCGEEEII4QKk500IIYQQQghxV5Bn3oomPW9CCCGEEEII4QKk8SaEEEIIIYQQLkCGTQohhBBCCCHuCjJssmjS8yaEEEIIIYQQLkB63oQQQgghhBB3BXlVQNGk500IIYQQQgghXIA03oQQQgghhBDCBciwSSGEEEIIIcRdQSYsKZr0vAkhhBBCCCGEC1BYrdK+FUIIIYQQQpS/7zaW376fvaf89l1cMmxSlLnnpqaWdwgl8u3rFXhhRkZ5h1FsX73k43Lxjvs8vbzDKLavJ/i6VP6CLY9f+Sa7vMMotuljPHn566zyDqPYvhjnxdhpaeUdRonMmujncsfdxNk55R1GsU17Xscadd3yDqPYBhij2BPpOuUBoF09X5erJ57/LK28wyi22a/6lXcI4jZJ400IIYQQQghxV5AxgUWTZ96EEEIIIYQQwgVI400IIYQQQgghXIAMmxRCCCGEEELcFWTYZNGk500IIYQQQgghXID0vAkhhBBCCCHuChbpeSuS9LwJIYQQQgghhAuQxpsQQgghhBBCuAAZNimEEEIIIYS4K1jLdcYSRTnuu3ik500IIYQQQgghXID0vAkhhBBCCCHuCvKqgKJJz5sQQgghhBBCuADpeRNCCCGEEELcFSyW8o7g7vb/pudt/vz5+Pn53TKdQqFg5cqVdzweIYQQQgghhChLJep5S0pK4p133mHNmjUkJCRQoUIFmjZtyjvvvEPHjh3vVIzFMnz4cPr372//97vvvsvKlSs5cuSIU7q4uDgqVKhwx+N59tln+fHHH1myZAlDhw694/srayNHjiQtLe2ONnTv7eROp6ZaPLQKzl02sXhjDompRd9u6dpcyz1ttfh4KrmUaGbp5hyi48wA6NwV3NvJnfqhair6KMnKtXLktIFVf+eSZyibmPu309KhsRoPrYILV8ws3ZpHUlrRMXduoqZnKy0+OgWXky38ti2XiwmOddxUMLiLOy3D3XBTKTh10cSybXlk5pR+0LerxTugg5YOjTR4uCs4f9nM0i25t4y3S1ONLV5PBZeTzPy6LY+L8WaneB/o6k7Lump7vEu35JY63lvlU37N6rgxsL2Wij5KktIs/PGPnpPRJqc0t/P3Kq6Ojdzo1kyNt07BlRQLv/9tIDax8G03qaWiXxsNFbwVJKdb+XO3gcgYW74qldCvjZr6Ndyo6KMgz2DlzCUza3YbySiDcmCPubGaHs2vxZxsYcUOPTFFxNy0lop+7bRU9FaQlG7hz10GTl10xNy/rYb6oSoq+SjJM1g5HWvmz90GMrLLLuYBHd3p2FiDh1bB+SsmlmwqRhlupqFXa3d7GV62JdepDHdsoqFVfQ0hVVR4aBVM/CqdXH0ZxnwHjruOjdW0qqch+FrMr85KJ1df+lg7NHSjWzM3vHUK4lIs/P6PsehyXFNF3zZqezles8dAZIwt/fVyXK+6iko+CnINVs5csrB2T9mU44qdWlHzldH4tmiEe9UqHBgyhoRVW4pep0sbGkx7A68GdciLjePslNlc+ul3pzQ1nn+EmhNGow2sTEZEJCde+oD0/cdKHS/A5jW/sm7lz6SnphASWofHnplIrfCGBaY9sHsbq3+dR2L8JUwmE4FVQ+h7/6N07G67FjOZTCxfNJuIg7tIjL+MTudFg6atGTZiHBUqVS6TeMuyjgBoXFNFx0Zqgquo8HRX8NmSHK4kl3030MCO7nRq4qgnftl462Oua3MNva/VE5cSbcfp9WNO565gYEd3GoS6UcHbdv1z9IyRVf+U3fWPuHuUqOdtyJAhHD58mAULFnD69GlWrVpFt27dSElJuVPxFYvRaMTDw4MqVarcMm1gYCBarfaOxpOTk8OSJUt47bXXmDt37h3dl6u6p62W7i21/LIhh6kLMzEYrbwwzAs3VeHrtKyn5sEeHvy5M4+P52dwKdHMC8O88NbZpnX181Lg66Vk+bZc3p+bwYI12TSsqWZEf88yiblXKw1dm2tYuiWP6Uuy0RutjBmsKzLmFuFuDO7izro9ej79JZvLSWbGDPbEy8MxFe0DXd1pFObG3DW5zPwtG18vBU8N9PjvxdtaQ9dmWpZsyWXaL1kYjFbGPuB5i3jVDO7qzro9eUz9OYvLSRbGPuAc75Bu7jSqqWbOnznMWJaFr6eCp+7VlSrW4uTTjcKCVIzs58HuE0amLsom4pyJp+/1IKiSowq+nb9XcTWrreK+jho2HjDyxa+5XEm28MxAd7wK+bOFBip5rLeWvadMfP5rLscvmBjVT0tgRdvv07hBcGUVmw4Y+OLXXOav11PZT8mT/cuubm1W241BnTRs2G9g+tIcrqRYePY+j0LzODRQyeN93Nl70si0pTkcP2/myf7uBFZU3hCzkk37jUxfmsO8tXlU8VPy1AD3Mou5dxst3ZprWbIph88WZWIwwrgHb1GG66p5oJsHa3fn8cnCTC4lmhn3oCdeOsfv1LgpOHnByIa9eWUW63V36rhTuyk4GW1i474yaLFd07SWivs6qtl0wMiM3/K4kmLl6YHaQstxjQAlj/bWsC/SxBe/5nH8gpmRfZ3LcTV/JZsPGvnitzwWbDBQxU/BqH6aMolX5akjIyKK4+PfK1Z6j9BgWq/6jpTte/mn1f1c+GoBjb/7EP/enexpgob2o/5nkzjz4Sz+aTOYzIhI2q6Zg6ZyxVLHu/fvTSyeO4P7hz/Fe5//REhYHaa9O56MtKsFpvf08uHeoaN4e+ocPpz5C5173suPX37AsUO7ATDo87h4Lor7hj3J+58v5IVJU4m/HMOMj14pdaxQ9nUEgFat4HycmdW7yq7c5ndPGy3dW2j5ZVMOny7KRG+A8UOLPuZa1lUzpJsHa3bl8fFPmVxKMjN+qKfT9Y+fl4Ll23P5YH4mP63LoUGYG4/3Ld25rrxYreX3cQXFbrylpaXx999/M3XqVLp3706NGjVo06YNkyZN4r777nNK99RTT1G5cmV8fHzo0aMHR48eddrW6tWrad26Ne7u7vj7+zN48GD7dwUNa/Tz82P+/PkAREdHo1AoWLp0KV27dsXd3Z1FixY5DZucP38+7733HkePHkWhUKBQKOzr599+bGwsw4YNw8/Pj4oVK3L//fcTHR1t/3779u20adMGT09P/Pz86NixIxcvXiwyr3799VcaNGjAG2+8wY4dO4iNjXX6Xq/X8/rrrxMSEoJWq6V27drMmTPH/v2JEycYOHAgPj4+eHt707lzZ86dOweAxWLh/fffJzg4GK1WS7NmzVi/fr1TvAqFgrS0NPuyI0eOoFAo7L/rel5t2LCB+vXr4+XlRd++fYmLiwNsvZYLFizgjz/+sOff9u3bi/zNJdWzlTvrdudx9KyRy0lm5v2ZjZ+Xkmbh6kLX6dXanZ1H9ew+ZiAuxcIvG3IwGqFDY9uJ9kqyhe9XZnPsnJHkNAtRMSb+2JFL41pqlGXw2o5uzTVs2Kvn2HkTV5ItLNyQi6+ngia1Cu/A7t5Cy+7jRvaeNBJ/1cLSLXkYTFbaN7T9TncNtG+o5vcdeZy+ZCY20cKijXnUrOpGaGDprtpdLd7uzbVs2JvHsXO2eH9an4Ovl4KmtQsvEz1aath13MCeE7Z4l2zOtcXbSOOIt5GGFX/lcjrWFu/PG3KpVc2N0KDbj/dW+ZRft+YaTkWb2HLQQEKqhTW79cQmmunSVOOUpqR/r+Lq0lTNnpMm9keaSEi1svwvA0aTlTb1Co63cxM1UTFmth8xkphqZf0+I5eTLHRsbEufZ4DvVudx9JyZpDQrMQm2nryQKir8vMrmHTndmqnZfcLIvlO2mH/dpsdgstK2fsH50aWpmsgYM9sO22Jet9fApSQLnZs4Yv52VR5HzppISrNyMcHC8h36Mo25ewst6/fkEXGtDC9Ym42vl7LIMtyzlZZdxwzsOW4gPsXCkk25GIzYyzDAtkN6Nu3T20cZlKU7cdwBbD9sYNN+PdFxpkK3U1Jdm7qx96SJ/VFmRzk2Wmldr+Ay0bmJG1ExFrYfMZGYZmXDfiOXky10bGRLn2eA7//U5yvHxjIrE0kbdnB68gwS/thcrPQ1nnmI3AuXOPXaVLIiz3Pxm0XEL99A2Isj7WnCXhpF7JxlXFqwgqxT5zg2ZjLmnDxCRg4pdbzr//iFrvcMokuve6lWvSYjn38DjdadHZtXF5i+fuOWtGrfnaohYQQEBXPPvQ8RElqb06ds13w6Ty9ee/9r2nbqTVBwDWrXbczjz75K9LlIUpLiSx1vWdcRAAeiTGzcb+R0bNkfa9f1aKll3Z48Is6auJxkYf61eqJZnaLriZ0RBnZfqycWb3SuJ64kW/j+jxyOnTPZr39W/Z1XZtc/4u5S7Mabl5cXXl5erFy5Er2+8DsSQ4cOJTExkXXr1nHw4EFatGhBz549uXrVdudmzZo1DB48mP79+3P48GG2bNlCmzZtShz4G2+8wYsvvsipU6fo06eP03fDhw/nlVdeoWHDhsTFxREXF8fw4cNv2obRaKRPnz54e3vz999/s3PnTntDxmAwYDKZGDRoEF27diUiIoLdu3fzzDPPoFAUfSTMmTOHxx57DF9fX/r162dvOF43YsQIFi9ezJdffsmpU6f47rvv8PLyAuDy5ct06dIFrVbL1q1bOXjwIE8++SQmk+0EOHPmTKZPn860adOIiIigT58+3HfffZw5c6ZE+ZeTk8O0adNYuHAhO3bsICYmhokTJwIwceJEhg0bZm/QxcXF0aFDhxJtvyj+vkp8vZScumHIWJ4BLlwxUbNqwZWuSgnVA1WcuuhYxwqcijZSs1rhF7ceWtuQLksp76ZU8lHg66kkKtY55uh4M2GFNAJUSgip4ryOFYiKMdkbDtWrqHBTKZzSJKRauJphKXS7/y/j9bX1mkbG3BxvYY0slRJCAlRE5SsTURdN9liqB1yLN6bs4i1OPuUXGqgiKt/FQORFx9/idv5eJYk3uLKSM5cc+7cCpy+ZqRFY8CmgRoCS05ec442KNRMaUPgpw10DFqu1TIbzqZQQXEXpdAFlBc5cMlOjkJsEoYGqmy64omIK/40AHhpFmcVc6Vq9dmN5zDNAdJyZsCLqtZAAFZH5ynBkTOF1YVm6U8fdnaBSQrXKSk5fcgwtswJnLluoUUi5rBGg5Mzl/OXYQo2AwuMsy3JcUn7tmpG8dbfTsqRN/1ChXTMAFGo1vi0akrxllyOB1Ury1l34tWteqn2bjEaiz0XSsGlr+zKlUknDpq05G3XrIZlWq5UTR/cRd/kidRsWHktudhYKhQKdp1ep4v236oiydv36JzJfPXHhFvVE9cAC6omLRdcTZXX9Ux4s1vL7uIJinx3c3NyYP38+Tz/9NN9++y0tWrSga9euPPTQQzRp0gSAf/75h3379pGYmGgfmjht2jRWrlzJb7/9xjPPPMNHH33EQw89xHvvOYYRNG3atMSBv/TSSzzwwAMFfufh4YGXlxdubm4EBgYWuo2lS5disVj48ccf7Q2yefPm4efnx/bt22nVqhXp6ekMHDiQWrVqAVC/fv0i4zpz5gx79uxhxYoVADz22GNMmDCBt956C4VCwenTp1m2bBmbNm2iV69eANSsWdO+/qxZs/D19WXJkiWo1ba7MOHh4fbvp02bxuuvv85DDz0EwNSpU9m2bRszZsxg1qxZRcZ2I6PRyLfffmv/XePGjeP9998HbA11Dw8P9Hp9kfl3u3yu3dHMyHYe352ZY8XHs+BK1EunQKVUFLhOYKWCK2pPDwX9O7jzz5HSD3+4HldmvmdjiorZ0+NazDk3rxNQ0Razt6cCo8l607MgmTlWvD1v/3aZy8WrU9q347TdbAs+hWzX61q8+dfJyLEScG0YjI+nssB4M3IshebDrRQnn/Lz8VSQmZO/7FrsQ15u5+9V7HjdC86nrFwrVSoUvG1vnYKsAn6ft67g9G4qGNBOw5EzZvTGUoVri/n63zb35hiq+BUe803lJ8eCj67g05ybCgZ20HD4tKlMYr5eTjMK+Dvfsgznr9eyLQRWvPONtzt13N0J18txVinLRFaO1X7c5eemggHty64cl5Q2wB99QrLTMn1CMmpfb5TuWtQVfFG6uaFPTMmXJgXPujUpjcyMNCwWM75+zsMvff0qEnep8NFGOdlZvPTkAExGA0qlihHPvUajZm0LTGsw6Fn609e063wPHrrSNd7+jTriTrDXEwUc87c65vLXLRk5FgIKqSc8PRT0a+/OP0flgbf/j0pUYocMGcKAAQP4+++/2bNnD+vWrePTTz/lxx9/ZOTIkRw9epSsrCwqVarktF5ubq592N+RI0d4+umnSx14q1atSr2No0ePcvbsWby9vZ2W5+Xlce7cOe655x5GjhxJnz596N27N7169WLYsGEEBQUVus25c+fSp08f/P39Aejfvz+jR49m69at9OzZkyNHjqBSqejatWuB6x85coTOnTvbG243ysjI4MqVKzdNDtOxY8ebhqbeik6nszfcAIKCgkhMTCzRNvR6/U29sAU9T9imgYZH+jjGXc/6LatE+7kd7hoY96AXcSkWVu8s+XMireq68VBPx4MU3/6RU5bhlTmXi7eemod7OeKdvTK7HKMRpaFUwoh7tCgU8Ntfd+45kbKkVMITfd1RAL9uv72YW9dX83BvR732zYo7X6+Vlhx3hVMq4fF7bEPQlu+QC97icvfQ8cGMn8nLzeVkxH4Wz51B5YBq1G/c0imdyWRi1qf/A6uVJ55/vZyi/fe1rq/mkXtuqCeW/zvXP2Mf8CQ+xcyfu8r+OVlR/kp8u8Hd3Z3evXvTu3dv3n77bZ566ikmT57MyJEjycrKIigoqMDno64/j+bhUfTEBgqFAmu+JwaNxptvgXl6ln4SiqysLFq2bMmiRYtu+q5yZdtMSPPmzWP8+PGsX7+epUuX8tZbb7Fp0ybatWt30zpms5kFCxYQHx+Pm5ub0/K5c+fSs2fPW/7+W31/K0ql7Y7TjXlYUP7lbxwWlO+3MmXKFKceVIDJkyeDx4tOy46eNXDhiqO7/3rW+Hgqych2DGHw1tlmUCpIVo4Vs+V6L4TzOvnvYGk18MIwb/IMVr5dkXVb7ws5dt5EdLyjknVT2e6IeXs697h462wzrRUkO/dazPnu8t4Yc2a2FbWbAg8tTr1D3jrFTb0w/6/iPWckOt+MkI593RDvtVlFC5J1Ld78d9F9bthGRralwHh9dEoysm/v1npx8im/jOybe628dUr7XeDr65Xk71XsePMKzicvj5vvQl+XmWN1mjDjeiz5ew+vN9wqeCuY/UdemfVWXM9jb48C8riImPP/Rm+d8qb0SiU80cedCt4KvlmZe9sxR5w1Eh2Xaf/39TJsK1s31lHFKMP56zVPZZnOgHndv3Xc3QnXy3H+yShKWia8Cuh9USrh8d4aKngp+XZV2ZXjktInJKMN8Hdapg3wx5ieiSVPjyE5FYvJhLZKpXxpKqGPd+6xKylvHz+UShXp+SYnSU+7im+FSoWsZbvmCAgKAaBGzXCuxF7gz9/mOzXebA23SaQkxfHGB9+UutcN7mwdUZYKrSfyX/8U45iz9ZQ70tjqGufYtWrbjWu90cq3K7Nd9n1prjJxSHkp9RiHBg0akJ1tu3vXokULe8Oldu3aTp/rPVFNmjRhy5bCp8qtXLmyfeIMsA1DzMkpeS+CRqPBbC76oqdFixacOXOGKlWq3BSvr6+vPV3z5s2ZNGkSu3btolGjRvzyyy8Fbm/t2rVkZmZy+PBhjhw5Yv8sXryYFStWkJaWRuPGjbFYLPz1118FbqNJkyb8/fffBTa4fHx8qFq1Kjt37nRavnPnTho0aAA4Gp035mH+1yUUR3Hyb9KkSaSnpzt9Jk2adFM6vQGS0iz2T1yyhfQsC/VqOBq47hoIq+rG+SsFP9xutkBMvNlpHQVQL1TN+cuOddw18OIwb8xmK98sz8J0m9e9eiMkp1vtn/irFtKzLdQNcY45NFDFhUImETBbIDbRQniIc8zhIW72iQdiEs2YzFanNFUqKKnooyx0u/9v4k2z2D/xKbYyUbf6zfEWNkmD2QKxCWandRRAeHU3eywxCbZ4b0xzO/HetN9b5FN+0fFmwkOch1TWre74W6RkWEv89ypJvJeSLNSp5ti/AqgTrOJifMFn9osJFuoEO8cbHqIi+oZXIVxvuPn72i54c8qw081sgUuJFqc8c8RcRB4XEPONv/F6w62yn4LZK3PJKcVNab0xX712vQznq9dCg1RON6/y/86CynDd6oXXhaXxbx13d4LZApeTLNQJdly2KIDa1ZSFvqLjYoJzuQcID1ZyMcER5/WGW2U/Jd+tLttyXFJpe45QqYfzjWH/nh1I3XMEAKvRSPqhE/j3aO9IoFBQqXt70vYcLtW+3dRqQmvV42TEfvsyi8XCyYgD1K7buNjbsVqtmEyO65frDbeEuFhee38WXj5+pYrzujtVR5S1QuuJfMdc2C3qiZh4s1PdogDq1nCuJ9w1MH6YF2YzfLMi+7avf8Tdr9iNt5SUFHr06MHPP/9MREQEFy5c4Ndff+XTTz/l/vvvB6BXr160b9+eQYMGsXHjRqKjo9m1axdvvvkmBw4cAGw9M4sXL2by5MmcOnWKY8eOMXXqVPt+evTowddff83hw4c5cOAAzz33XIFDCG8lNDSUCxcucOTIEZKTkwucZOXRRx/F39+f+++/n7///psLFy6wfft2xo8fz6VLl7hw4QKTJk1i9+7dXLx4kY0bN3LmzJlCn3ubM2cOAwYMoGnTpjRq1Mj+uT6b5aJFiwgNDeWJJ57gySefZOXKlfZ9Llu2DLA9e5aRkcFDDz3EgQMHOHPmDAsXLiQqKgqAV199lalTp7J06VKioqJ44403OHLkCC++aOvtql27NiEhIbz77rucOXOGNWvWMH369NvKv4iICKKiokhOTi6wManVavHx8XH6FPc1DFsO5NGvgztNaqup6q9k5ABP0rIsHDnt2M9Lw73o1sKxvc378+jUVEu7RhoCKyl5uI8OjRp2HbMNcXHXwPjh3mjU8NO6HDy0Cnw8bZ9bzDFTLNsPG+jTRkujmm4EVVLyeB8P0rOtRJxzVJ7jHtDRpamjvG47pKdDIzVt6qsJqKBkWE93tGoFe07afmeeAXafMPJAF3fqBKsIqaLk0d7unL9icrpD/l+Id9thPX3butO4phtV/ZU83ldHepaVo2cdZeKFBz3p0swxo93WgwY6NNbQtoGagIpKhve6Fu8JgyPe4wYe6OpBnRBbvI/18bDFW4oLzVvl0+P3uHNvR0fZ3X7YQIMabvRooSGggpJ+7bRUD1Cx44bnEYrz97pdO44aadvAjVZ13ahSQcGQrho0bgr2Rdrifbinhv7tHOXg7wgj9UJUdG3qRhU/Bfe0VhNcWcnOY7b0tkaQlpAqShZt1qNUKPD2sH1UZfTY0/YjRto1UNO6ni3mB7tp0bgp2HvKlh+P9NIyoL2jLOw4aqRedRXdmqmp4qegTxsNIVWU/B3hiHlkX3dCqij5eaMepVKBt872KauYtx3S07edlsa1bGV4RD9P0rMsTmV4/FBPujZ3xL3lgJ6OTTS0bWgrww/19kCrhj3HHWXDR6cguLKKytee5anqryS4sgqde+krtjtx3IGtB6RaZSX+9phVVKusLFXMfx010ba+G63qqqjip+CBLmo0agX7I21l4qEeGvq1vbEcm6gboqRrUzcq+ym4p9W1cnzclt52A0JzQzkGbw/bpyzKhMpTh0/Tevg0rQeALiwYn6b1cA+xPXpR98MJNJ3nuP65+P0SdGEh1JvyKp51a1LjuUcIGtqPCzPn29NcmDGPkNHDqPb4ILzq1aTRrHdx8/QgdsGKUsfb9/5H+GvjH/yz9U+uxF5gwbdT0efl0rnXQAC++2Iyy35yPFu/+rf5HD+yl8T4y1yJvcC6lYvYtX0t7bv2BWwNt6+nvkH02VM8N+F9LBYzaanJpKUmYyrgmqKkyrqOANBpbcfX9dcHVPFTUtVfWehzkrdj60E9/dtraXKtnniiv62eOHLGEceLw26uJzo10dCuoZrAikoevsdWT+w+fsP1z1AvNGoFCzeU/fXPv81qsZbbxxUUe9ikl5cXbdu25YsvvuDcuXMYjUZCQkJ4+umn+d///gfYht6tXbuWN998k1GjRpGUlERgYCBdunQhICAAgG7duvHrr7/ywQcf8Mknn+Dj40OXLl3s+5k+fTqjRo2ic+fOVK1alZkzZ3Lw4MES/7AhQ4awYsUKunfvTlpaGvPmzWPkyJFOaXQ6HTt27OD111/ngQceIDMzk2rVqtGzZ098fHzIzc0lMjKSBQsWkJKSQlBQEGPHjuXZZ5+9aX8JCQmsWbOmwF45pVLJ4MGDmTNnDmPHjmX27Nn873//Y8yYMaSkpFC9enV7HlaqVImtW7fy6quv0rVrV1QqFc2aNbM/5zZ+/HjS09N55ZVXSExMpEGDBqxatYo6deoAtuGQixcv5vnnn6dJkya0bt2aDz/8sMQvCn/66aftk7ZkZWWxbds2unXrVqJtFGXjXj1atYJH++jQuSs4e8nEV8uce8oqV1A6DZE5GGnEW5fLvZ3c7S/p/mpZln0ITPUAN/vMSx8+6+u0vzdnp5OSUbq7a5sPGNC4KXi4p/u1F2ua+eb3HKeY/f2UeHo4zvqHTpvw8shjQHutbQhcsoVvVuY4DdtZ8VceVqs7owfa3ukVedHE0q2lH6fucvHuN6BVK3i4t8e1F7ebb7p76O/rXCYOnTbipVMwoIO7fYjhrBXZTvEu356H1QpP3auzvaQ72vaS7tK4VT5V8FFixVHeLsSZmb8+l4HttQzsoCUpzcIPq3OJS3GkKc7f63YdOWvG091AnzZqfHQaLidb+OHPPLKuZYOflxKr1RFLdLyFnzfr6ddGQ/92GpLSrMxbpyf+qu33+XoqaBRmO9YmDnce6v3NylzOXSn9newjZ014eSjo20Zz7UXQFr5bnWufsKKC980xL9yYR/92tgu2pDQLc9fmEX/VYo+5cU1bzK8+7Pzuo69/z+Xc5dJn9KZ9ejRqBY/co7tWhk3MWp6vDPup8PRwLDgUZavXBnb0cJTh35zLcKdmWgZ0cLyPbsLDtue0F67LcWow3Y47ddx1bqqhf3tHzC8Ptw2VW7g+h70nb+/C/eg5M14eRvq0dryU+cc/9fZyXMFL4TTc6mKChUWbDfRtq6ZfWzXJ6Vbmry+4HL8yzLkcz/4jr9Tl2LdlI9pvWWj/d4NptvN87E8riBg9CW1QZTxCHM/Q50ZfYv99z9Jg+iRCXxhB3qV4jj37Fsmb/rGnift1HZrKFQmfPN72ku6jp9g38CkM+SYxuR1tO/cmIyOVFb98T3pqCtXDwpk4eSa+frZhk1eTE+yPZgDo83L56dtPuZqSiEajJahaDZ59+X3adu4NQGpKIof37QDg7Zcec9rXGx/Ovum5uJIq6zoCoGGYG4/0cpTbJ/ra/n/9PgMb9pXNs5Abr9cTfXTortUTX/3mfMxV9lPhdUM9cTDKiNe1euL6S7q/uqGeCAlws89W+cHTPk77e/O7DK6W8vpH3F0U1pI+6CTELTw3NbW8QyiRb1+vwAszMso7jGL76iUfl4t33Ofp5R1GsX09wdel8hdsefzKN64z+cT0MZ68/PXdP8HHdV+M82LstLTyDqNEZk30c7njbuLsu3uipRtNe17HGnXd8g6j2AYYo9gT6TrlAaBdPV+Xqyee/yytvMMottmv+pV3CIX6dHn5NTZfG/LvvTridt39EQohhBBCCCGEkMabEEIIIYQQQriCf+/NhEIIIYQQQghRBHmgq2jS8yaEEEIIIYQQLkB63oQQQgghhBB3BYuLTNlfXqTnTQghhBBCCCFcgDTehBBCCCGEEMIFyLBJIYQQQgghxF1BJiwpmvS8CSGEEEIIIYQLkJ43IYQQQgghxF1Bet6KJj1vQgghhBBCCOECpOdNCCGEEEIIcVewSNdbkaTnTQghhBBCCCFcgDTehBBCCCGEEMIFyLBJIYQQQgghxF3BainvCO5u0vMmhBBCCCGEEC5Aet6EEEIIIYQQdwWrTFhSJIVVckgIIYQQQghxF3jvZ2O57XvyY+py23dxSc+bKHNjp6WVdwglMmuiHy99lVXeYRTbjBe8XC7e+dvLO4riG9kNXv7adfIX4ItxXi4V8xfjvJi1rryjKL6x/VyzTExZZi7vMIpt0jAVeyLTyzuMYmtXz9fl4l2jrlveYZTIAGMUP/1V3lEU34iusO1YbnmHUWzdG3uUdwjiNknjTQghhBBCCHFXsMiEJUWSCUuEEEIIIYQQwgVIz5sQQgghhBDiriDTcRRNet6EEEIIIYQQwgVI400IIYQQQgghXIAMmxRCCCGEEELcFSwyarJI0vMmhBBCCCGEEC5Aet6EEEIIIYQQdwWrdL0VSXrehBBCCCGEEMIFSM+bEEIIIYQQ4q4gbwoomvS8CSGEEEIIIYQLkMabEEIIIYQQQrgAGTYphBBCCCGEuCtYZMKSIknPmxBCCCGEEEK4gP9cz1t8fDwfffQRa9as4fLly1SpUoVmzZrx0ksv0bNnTwBCQ0O5ePEiAO7u7gQEBNCmTRuee+45evToUaz9LF68mMcee4znnnuOWbNm3bHfc6fMnz+fl156ibS0tDu2jwEd3enYWIOHVsH5KyaWbMolKc1S5Dpdmmno1dodH08Fl5PMLNuSy8V4s/37jk00tKqvIaSKCg+tgolfpZOrL/0dnE6N1fRoocZbp+BKsoXlO/TEJBQea9PaKvq301LRW0FSmoXVuwycuuiIs0ktFR0aqQmprMLTQ8Fni3O4nFz0b///HvPBbYvYu2kOWelJVAmuxz0PvU3VsCYFpk26coa/V31JfMwJ0lMu03PoJNr0GumU5pv/9SA95fJN67bo+gh9Hplc6ng7NlbTo7kjf1fs0BOTWET+1lLR73r+plv4M1/+Nq6pomMjNcFVVHi6K/hsSQ5XyjB/XS1egKN/L+LQ1jnkZCbhX7UeXYe8TWCNgstEStwZ9qz7ksTYE2SmXqbzoEk07zay0G0f2Pw9u/6cTrMuI+jywJtlEq+r5XGL2gra1lXg5Q6JabDxsIW4q4WnrxcMXRop8fWEq5mwPcLCuXjH9zotdG+iICxQgbsaYpNs20zNKrOQ2bzmV9at/Jn01BRCQuvw2DMTqRXesMC0B3ZvY/Wv80iMv4TJZCKwagh973+Ujt37A2AymVi+aDYRB3eRGH8Znc6LBk1bM2zEOCpUqvyfi7dip1bUfGU0vi0a4V61CgeGjCFh1Zai1+nShgbT3sCrQR3yYuM4O2U2l3763SlNjecfoeaE0WgDK5MREcmJlz4gff+xUscLcGDbIvZstJ03AoLrcc/Db1OtiPPGX384zhu9h9183rBYzOxY/RXH96wiOyMZL98qNOkwmE4DxqBQKMok5u3rlrBx1QIy0lIIrhHO8NGvE1ancYFp/960nL1//cmV2LMAVK/ZgPsfGeeUPi83h98XzeTovm1kZ6VTqUo1evR7mC59hpZJvOXBKjOWFOk/1fMWHR1Ny5Yt2bp1K5999hnHjh1j/fr1dO/enbFjxzqlff/994mLiyMqKoqffvoJPz8/evXqxUcffVSsfc2ZM4fXXnuNxYsXk5eXdyd+jkvr3UZLt+ZalmzK4bNFmRiMMO5BT9xUha/Toq6aB7p5sHZ3Hp8szORSoplxD3ripXNUqBo3BScvGNmwt+zyvHkdNwZ11rB+n4FpS2wNlufu88DLo+CKPDRQyYg+7uw5YWTakhyOnTczeoA7gRUdh5vGTcGFK2ZW79KXWZyuHPPJ/WvZ8tsUOg0Yy5Nv/k5AcD2Wfjma7IyUAtMbDbn4+QfTbfArePoUfNEyctJvvPDpP/bPQy/NA6Bey76ljrdZbTcGddKwYb+B6UtzuJJi4dlb5O/jfdzZe9LItKU5HD9v5sn+zvmrVSs4H3dn8tfV4gU4fWgtf6+cQtu+Y3lo4u/4V6vHH9+OJiez4DJhMubiWymYjve+gq6QMnFdQkwEx3ctwb9q3TKL19XyuH6Igp5NFfxzwsrcTRYS0qwM76JEpy04fbVKcH87JUcvWJm70cKZK1aGdFTi7+NI82BHJX5eCpb/Y2HuJgvpOVYe7qpEXUS9XhJ7/97E4rkzuH/4U7z3+U+EhNVh2rvjyUgruMXp6eXDvUNH8fbUOXw48xc697yXH7/8gGOHdgNg0Odx8VwU9w17kvc/X8gLk6YSfzmGGR+98p+MV+WpIyMiiuPj3ytWeo/QYFqv+o6U7Xv5p9X9XPhqAY2/+xD/3p3saYKG9qP+Z5M48+Es/mkzmMyISNqumYOmcsVSx3ty/1o2/zqFzgPHMvqt36kSUo8lM4s+b1SoHEz3Is4bu9f/wKHti+nz8Ds8+95aegyZyJ4NP3Jg68JSxwtwYOcGflswnYFDn+V/ny4mODScrz4cQ0Z6wWXi9IkDtOrUl5ff/YHXPv6JCv4BfPnB86SmJNjT/LZgGieP7GLU+I+YPGMFPQc8wpI5n3B0//YyiVncff5TjbcxY2x3Tvbt28eQIUMIDw+nYcOGTJgwgT179jil9fb2JjAwkOrVq9OlSxe+//573n77bd555x2ioqKK3M+FCxfYtWsXb7zxBuHh4axYseKmNHPnzqVhw4ZotVqCgoIYN26c/bu0tDSeffZZAgICcHd3p1GjRvz555/275cvX25fNzQ0lOnTpzttW6FQsHLlSqdlfn5+zJ8/H7A1YhUKBStWrKB79+7odDqaNm3K7t22E8T27dsZNWoU6enpKBQKFAoF77777q2yt0S6t9Cyfk8eEedMXEm2sGBtNr5eSprWVhe6Ts9WWnYdM7DnuIH4FAtLNuViMEL7Rhp7mm2H9Gzapyc6zlzodkqqWzM1u08Y2XfKREKqlV+36TGYrLRtUHDHdddmaiIvmtl22EhCqpV1ew1cSrLQuYnjtx2IMrFhv5HTsWUXpyvHvG/zPJp2GkaTjkPwr1qbvo++h5vGnYhdywtMXzW0CT0efJ0GrQfgptYUmEbnXREv38r2z9mIbfhVrk718DaljrfQ/K1fcP52aaomMsaWv4lF5O/GO5S/rhYvwOHt82jUfhgN2g6hUmBtegy1lYmTewsuEwHVm9Dp/tcJbzEAlargMgFg0GezYeGr9Bj+IVoP3zKL19XyuE24gqPnrRyLtpKSAesPWjGZoElYwY3NVnUUnI+HvVFWUjJhx3Er8WnQso4tfUUvqOavYMNBC3Gptp659QetuKmgQfWy6bFY/8cvdL1nEF163Uu16jUZ+fwbaLTu7Ni8usD09Ru3pFX77lQNCSMgKJh77n2IkNDanD51FACdpxevvf81bTv1Jii4BrXrNubxZ18l+lwkKUnxBW7z/3O8SRt2cHryDBL+2Fys9DWeeYjcC5c49dpUsiLPc/GbRcQv30DYiyPtacJeGkXsnGVcWrCCrFPnODZmMuacPEJGDil1vHs3zaNZp2E07TiEylVr0//aeePozsLPGz0ffJ2GbQo/b1w6d5jwZj2p06Qbfv7B1G/Zl7AGnbgSHVHqeAE2r15Ix14P0KHHIKqG1OKRZ95CrXVn19aVBaYf/dIUuvUdTkhYPQKrhfH4c5OxWq1EHdtnT3M+6ijtut5L3Uat8a9Sjc69HyQ4NJzos8fLJGZx9/nPNN6uXr3K+vXrGTt2LJ6enjd97+fnd8ttvPjii1itVv74448i082bN48BAwbg6+vLY489xpw5c5y+nz17NmPHjuWZZ57h2LFjrFq1itq1awNgsVjo168fO3fu5Oeff+bkyZN88sknqFS2W5cHDx5k2LBhPPTQQxw7dox3332Xt99+294wK4k333yTiRMncuTIEcLDw3n44YcxmUx06NCBGTNm4OPjQ1xcHHFxcUycOLHE2y9MJV8lvl5Koi6a7MvyDBAdZyasasEXOiolhASoiLxhHSsQGWOiZiHrlAWVEoKrKJ0unqzA6VgzoYEF304ODVTddLEVGWMmNOjfOdxcLWazyUB8zAnC6newL1MolYTW68Dl84fLbB8n9q6iaYchpR76Ulj+nrlkpkYJ8jcqxkyNwDufv64WL9j+XomXThAS7lwmQsI7EBddujKx/bf3CW3Qlep1O9w6cTG5Wh4rlRBYAS4kOA9Nik60Uq1SwcdHtUoKovOlvxDvSH/tFIUpXzvTbIFg/9LHbDIaiT4XScOmre3LlEolDZu25mzUrYfgWa1WThzdR9zli9Rt2LzQdLnZWSgUCnSeXv+peG+HX7tmJG/d7bQsadM/VGjXDACFWo1vi4Ykb9nlSGC1krx1F37tCv9NxWE2GYgr4LwRVr8Dl0px3giu1ZzoyD2kJFwAICE2kktnD1KrUZdSxQu2MhFz/hT1m7S1L1MqldRv3JbzUcVrHBoMeZjNJnRejhtPNes2JeLAdlJTEmwNu+P7SbhykQZN25c65vJitZTfxxX8Z555O3v2LFarlXr16t32NipWrEiVKlWIjo4uNI3FYmH+/Pl89dVXADz00EO88sorXLhwgbCwMAA+/PBDXnnlFV588UX7eq1b2yr4zZs3s2/fPk6dOkV4eDgANWvWtKf7/PPP6dmzJ2+//TYA4eHhnDx5ks8++4yRI0eW6PdMnDiRAQMGAPDee+/RsGFDzp49S7169fD19UWhUBAYGFiibRaHj6ftZJ+R43yUZOZY7N/l5+WhQKVUkJmdb51sC4EV71wx9ry+3xzni5bMHCsBFQq+yPLWFZTego/u3zncXC3mnKxUrBYzOu9KTss9fSqREn++TPZx+shm8nIzadxhcKm3Zc/f3Jvzt4rf3Ze/rhYvQG52wWVC512J1ITbLxOnD60h6dJJhk/4rbQhOnG1PNZpQKlUkJNvNGZ2HlTyLngdL3fb9/nTe7nb/j8lA9KzrXRromD9ASsGs613z0enwMsDbM3Z25eZkYbFYsbXz3m4na9fReIuXSx0vZzsLF56cgAmowGlUsWI516jUbO2BaY1GPQs/elr2nW+Bw9d6RpDrhbv7dAG+KNPSHZapk9IRu3rjdJdi7qCL0o3N/SJKfnSpOBZtyalcf284emT77zhXYmUuNuvIzr0fQZ9XhbfvtMPpUKFxWqm26CXadT2vlLFC5CVmYrFYsbH1zlmb79KxF+OLtY2Vvw8A98KlZ0agMNHv8Gib99n0rN9UKrcUCoUPPbcO9Rp0LLUMYu703+m8VZWDz9ardYi79xv2rSJ7Oxs+ve3PWDs7+9P7969mTt3Lh988AGJiYlcuXLFPjlKfkeOHCE4ONjecMvv1KlT3H///U7LOnbsyIwZMzCbzfYeuuJo0sTxUG9QUBAAiYmJxW7g6vV69Hrns79We/MDE63rq3m4t87+729WlOHT60IUw9Gdy6nVsAvefgHlHYooJ5mpcfy14iMGj5mLm7qQB7vEbbNYYcUuC/1bKXl5sBKLxUp0ApyLK9+JB9w9dHww42fycnM5GbGfxXNnUDmgGvUbO1/YmkwmZn36P7BaeeL518spWteL9/+bkwfWcXzvagaNnk7lqrVJiD3FpmVT8L42cUl5Wv/7XA7s3MCEd39ErXHUYdvWLubCmWOMeWMmFf2DOHPqEIt/nIJvxcrUb9KuHCO+fRaZsKRI/5nGW506dVAoFERGRt72NlJSUkhKSrL3oBVkzpw5XL16FQ8PD/syi8VCREQE7733ntPygtzq++JQKBQ3NVaNRuNN6dRqx7MV1xukFkvx+4ynTJnCe+85P9g8efJk8HrJaVnEWSPRcZn2f1+flMRHpyQj2zHGxlun5FJiwc92ZOVaMVuseHsqgRvW8VSSkX3nDvLs6/vVOTfYvXUKMnIK3m9mTkHplYWmL2uuFrPOqwIKpeqmiSiyM1Lw8i39eKv0lMtEn9rFA899VeptwQ356+Ea+etq8QJ4eBZcJnIyU9D53F6ZSIw9QW5WCounPWBfZrWYuXx+P0f/WcTYacdQKm9vZg1Xy+Mcg+09SvknJ/F0h6xC5nrKyrN9X1T6+FSYu8mCVm0bmpmrhyd6KolLLf1v8vbxQ6lUkZ5vso/0tKv4VqhUyFq2YWkBQSEA1KgZzpXYC/z523ynxpCtITSJlKQ43vjgmzLpxXK1eG+HPiEZbYDz8agN8MeYnoklT48hORWLyYS2SqV8aSqhj3fusSup6+eN/JOTZGem4FmK88aW5Z/Soe8zNGxjG5VUJbgu6VevsGvdd6VuvHl5V0CpVJGR7hxzZloKPn5Fx7zxjwVs+H0uL73zHcGhjpv7Bn0efyz+iude/ZzGLW1DO4NDw7kUHcWmVT+5bONNFO0/88xbxYoV6dOnD7NmzSI7O/um74szJf7MmTNRKpUMGjSowO9TUlL4448/WLJkCUeOHLF/Dh8+TGpqKhs3bsTb25vQ0FC2bCl4+t0mTZpw6dIlTp8+XeD39evXZ+fOnU7Ldu7cSXh4uL3XrXLlysTFxdm/P3PmDDk5Obf8fTfSaDSYzUU/JD9p0iTS09OdPpMmTbopnd4ISWkW+ycuxUJ6loW6NRz3Dtw1EBqk4sIV003rg+25idgEM3WrO9ZRAHWru3G+kHXKgtkClxIt1Al2XNQpgPAQFdHxBedPdLyZOiHOF4F1Q1REx/07g6ldLWaVm4bA6g2JPuV4dsJqsXAxcjfVapbuuQiAiF0r0HlXonbjbqXeFjjyNzzEOX/rBKucXltxo+h4M+HBzvkbHqLiYvydz19XixdsZaJKcENizziXidjTuwkKvb0yERLejkdfX80jr660f6qENKJuy3t55NWVt91wA9fLY4vF1tAKDXBuPNaoouBySsENrcspVmrkSx8aUHB6vdHWcKvgZXu27szl0jfe3NRqQmvV42TE/ht+h4WTEQeoXbfgadYLYrVaMZkcNzOvN4QS4mJ57f1ZePn4lTpWV4z3dqTtOUKlHs6NA/+eHUjdcwQAq9FI+qET+Pe44dkrhYJK3duTtqd0z66q3DQEVW9IdKRzHRF9ajfBpThvmAx5N42uUihVZTJ6y02tpnrN+kTeMNmIxWIh8tg+atYt+PUGABtWzmPt8h944a1vqFHb+TUTZrMJs8mEQuF8Oa9UKrGW4Gb83cZqtZbbxxX8Z3reAGbNmkXHjh1p06YN77//Pk2aNMFkMrFp0yZmz57NqVOn7GkzMzOJj4/HaDRy4cIFfv75Z3788UemTJlin1wkv4ULF1KpUiWGDRt208Hfv39/5syZQ9++fXn33Xd57rnnqFKlCv369SMzM5OdO3fywgsv0LVrV7p06cKQIUP4/PPPqV27NpGRkSgUCvr27csrr7xC69at+eCDDxg+fDi7d+/m66+/5ptvvrHvq0ePHnz99de0b98es9nM66+/7tTLVhyhoaFkZWWxZcsWmjZtik6nQ6fTOaXRarUFDpOE3Ftuf9shPX3baUlMNZOSbmFgRw/SsywcPes4SY0f6snRs0b+OmwAYMsBPSP66YhJMBEdZ6ZHSy1aNew5brCv46NT4OOppPK150yq+ivRG+BqpoWcvNs7KLcfMfJILy2xiRZiEsx0baZB46Zg70lbo/HR3lrSs6z8udsWx19HjLzwgAfdmqs5GW2iRR01IVWULN3qGGKq00IFb6X9Gb8q155Fy8ix3vQczH8h5ja9RvHn/NcJDG1E1dAm7N+yAKMhlyYdbL0kq+e9hrdfAN0G26bENpsMJMeds/9/VloCCbGnUGt1VKxSw75dq8VCxK4VNG4/CKWq7Kq7G/P3YoKZrk2v5e8pW/4+0ktLeraVNdfyd8dRI+MGe9CtmS1/m4fb8nfZNuf89fNW4ns9f6+V4cwyyF9XixegebdRbPrldQJCGhFQvQlH/lqAyZBLg7a2MrHx59fw9A2g472OMnE13lYmLGYD2ekJJF2ylQm/yjXQuHtRKch5OLpao8ND53fT8tvhanm877SVgW0UxF+FK1ettA5XoHaDiAu27Q5soyAzF/46Zvv3gTNWHu2uoE24grNxVhpUVxBUAdYdcMRRLxhy9JCRA5V9oVdzJaevwIWEAkMosb73P8IPM98jrHZ9atZpyIbVS9Dn5dK510AAvvtiMhUqVWHYCNurf1b/Np+w2vWpEhiMyWjg6MFd7Nq+lhHP2YYZmkwmvp76BhfPRfLy259jsZhJS7X1CHl5+eJWwvOmq8er8tThWbu6/d+6sGB8mtbDcDWdvNg46n44AfdqARwdZYvn4vdLqDHmUepNeZXY+cvx796OoKH92H/fs/ZtXJgxj6Zzp5J28Djp+yMIHf8Ebp4exC64eRbukmrbexSr5r1OUI1GVA1rwr7N184bHW11xKq5tvNG9wccdUTSDeeNzLQE4mNPobnhvFGnSXd2rv0Wn4pVqVy1NvGxp9i3aR5NO5Z+dkyAXvc+zvyv36ZGrQaE1m7E1jWLMOhz6dDd9jjMvC/fwq9SFQY/Oh6ADb/PY/XSb3jypSlUqlyV9Gt/b627DncPHR46L+o0aMmKhV+g1mipVLkqp08eYM9ff/LgE2XzCglx9/lPNd5q1qzJoUOH+Oijj3jllVeIi4ujcuXKtGzZktmzZzulfeedd3jnnXfQaDQEBgbSrl07tmzZQvfu3Qvd/ty5cxk8eHCBz8QNGTKExx9/nOTkZJ544gny8vL44osvmDhxIv7+/jz44IP2tMuXL2fixIk8/PDDZGdnU7t2bT755BMAWrRowbJly3jnnXf44IMPCAoK4v3333earGT69OmMGjWKzp07U7VqVWbOnMnBgwdLlFcdOnTgueeeY/jw4aSkpDB58uQyfV3Apn16NGoFj9yjw0Or4NxlE7OWZzvNVObvp8LTw7HgUJQRb10uAzt64K2zvaR71m/ZThcxnZppGdDBMbZnwsO2p+8XrsthzwlHI68kDp8x4emhoF9bzbWXg1v4blUuWdcmJ6jgpcR6wxRF0fEWftqYx4B2Wga215CUZmHOmjzirzrSNApz45Hejjif6Gv7//V7Dazfd3txunLMDVr3JyfrKn+v+pLsjCSqBNdn2Pgf8bw2RC7japzTncXMtETmfjjI/u+9m+ayd9Ncqoe34dFXHO/juRC5i4yrV2hSRife646cNeHloaBvmxvyd/UN+et9c/4u3JhH/3ZaBlzL37lrnfO3YZgbj/QqIH/3GdhQyvx1tXgBwlv0Jzf7KnvW2cpE5Wr1uf/ZH9F528pEZqpzmchOT2TxtEH2fx/aNpdD2+ZSrVYbhrxQNu9oKoqr5fGpWNuwyc6NFHi6K0hMg2U7LPZJTHx0zsPvL6fAqj0WujRS0rWxgtQsWL7TQnKGY5teHgp6NlPgqbUNpzx+0co/J8vuTnbbzr3JyEhlxS/fk56aQvWwcCZOnomvn21Y3tXkBJRKR5nQ5+Xy07efcjUlEY1GS1C1Gjz78vu07dwbgNSURA7v2wHA2y895rSvNz6cfdNzZv/f4/Vt2Yj2WxzHSoNp/wMg9qcVRIyehDaoMh4hQfbvc6Mvsf++Z2kwfRKhL4wg71I8x559i+RN/9jTxP26Dk3lioRPHm97SffRU+wb+BSGfJOY3I4GrfuTnXmVv66dNwKC6/PQ+B/xunbeSC/gvDHng0H2f+/ZOJc9G23njccn2n73PQ+/xV9/zGT9L++Rk5mCl28VmncZTueBzu8Cvl2tOvYhMyOV1Utmk5GWTHBoXV548xt87GUiDoXScQ3518ZlmExGvp/mPOP3gKHPcu/w5wF46uWprPzlS+Z++T9ysjKo6B/E/Q+Po8s9rvuSblE0hdVV+giFyxg7La28QyiRWRP9eOkr15lEZcYLXi4X7/zt5R1F8Y3sBi9/7Tr5C/DFOC+XivmLcV7MWlfeURTf2H6uWSamLLsz7+C7EyYNU7EnMr28wyi2dvV8XS7eNeqyeyn9v2GAMYqf/irvKIpvRFfYduzWI4/uFt0bl36OhTulPOvbL8aVzzOkJfGfeeZNCCGEEEIIIVzZf2rYpBBCCCGEEOLuJWMCiyY9b0IIIYQQQgjhAqTxJoQQQgghhBAuQBpvQgghhBBCiLuC1WItt09JzZo1i9DQUNzd3Wnbti379u0rMv2vv/5KvXr1cHd3p3Hjxqxdu7bE+5TGmxBCCCGEEEKUwNKlS5kwYQKTJ0/m0KFDNG3alD59+pCYmFhg+l27dvHwww8zevRoDh8+zKBBgxg0aBDHjx8v0X6l8SaEEEIIIYS4K1is1nL76PV6MjIynD56vb7AOD///HOefvppRo0aRYMGDfj222/R6XTMnTu3wPQzZ86kb9++vPrqq9SvX58PPviAFi1a8PXXX5cof6TxJoQQQgghhPjPmzJlCr6+vk6fKVOm3JTOYDBw8OBBevXqZV+mVCrp1asXu3fvLnDbu3fvdkoP0KdPn0LTF0ZeFSCEEEIIIYS4K9zOs2dlZdKkSUyYMMFpmVarvSldcnIyZrOZgIAAp+UBAQFERkYWuO34+PgC08fHx5coRmm8CSGEEEIIIf7ztFptgY21u4kMmxRCCCGEEEKIYvL390elUpGQkOC0PCEhgcDAwALXCQwMLFH6wkjjTQghhBBCCHFXcIVXBWg0Glq2bMmWLVvsyywWC1u2bKF9+/YFrtO+fXun9ACbNm0qNH1hZNikEEIIIYQQQpTAhAkTeOKJJ2jVqhVt2rRhxowZZGdnM2rUKABGjBhBtWrV7BOevPjii3Tt2pXp06czYMAAlixZwoEDB/j+++9LtF9pvAkhhBBCCCHuCuU4X0mJDB8+nKSkJN555x3i4+Np1qwZ69evt09KEhMTg1LpGOTYoUMHfvnlF9566y3+97//UadOHVauXEmjRo1KtF9pvAkhhBBCCCFECY0bN45x48YV+N327dtvWjZ06FCGDh1aqn3KM29CCCGEEEII4QKk500IIYQQQghxVyjP97y5AoXVapUcEkIIIYQQQpS756amltu+v329Qrntu7ik502UuXGfp5d3CCXy9QRfXv46q7zDKLYvxnlJvHfQF+O8GDstrbzDKJFZE/146SvXyeMZL3i5VD3x9QRfnv8srbzDKJHZr/q5XB6/ODOzvMMotpkvertcvfbTX+UdRcmM6Apr1HXLO4xiG2CMcrkyfLeSfqWiyTNvQgghhBBCCOECpOdNCCGEEEIIcVewyDNvRZKeNyGEEEIIIYRwAdJ4E0IIIYQQQggXIMMmhRBCCCGEEHcFmbCkaNLzJoQQQgghhBAuQHrehBBCCCGEEHcFeUl30aTnTQghhBBCCCFcgDTehBBCCCGEEMIFyLBJIYQQQgghxF1Bhk0WTXrehBBCCCGEEMIFSM+bEEIIIYQQ4q5gkVcFFEl63oQQQgghhBDCBUjj7f+J6OhoFAoFR44cAWD79u0oFArS0tLKNS4hhBBCCCGKy2qxltvHFciwybtAbGwskydPZv369SQnJxMUFMSgQYN45513qFSp0m1ts0OHDsTFxeHr61vG0ZadAR20dGikwcNdwfnLZpZuySUpzVLkOl2aaujZSouPp4LLSWZ+3ZbHxXiz/Xs3FTzQ1Z2WddW4qRScumhi6ZZcMnNKd0B2bKymR3M13joFV5ItrNihJyax8Fib1lLRr52Wit4KktIt/LnLwKmLjjgb11TRsZGa4CoqPN0VfLYkhyvJRf/2/+8xu1q8AAM6utOxsQYPrYLzV0ws2VSMMtxMQ6/W7vYyvGxLrlMZ7thEQ6v6GkKqqPDQKpj4VTq5+tKfUDo1VtOjhSN/l+/QE5NQRP7WVtH/ev6mWVidL3+b1FLRoZGakMoqPD0UfLY4h8tlnL/gWvUEwMCO7nRq4igTv2y8dbxdm2vofa1MXEq0/cbr8ercFQzs6E6DUDcqeCvJyrVy9IyRVf/kkmcodbjAncnjjo3VtKqnIfhaOX51Vjq5+tLH2qmJmh4tNfjoFFxOtrB8e16R5bhZbTf6t9dQ0UdpK8c79ZyMvrEcu9GxsZqQKrZy/Omi7DItx65Wrx3Ytog9G+eQlZ5EQHA97nn4baqFNSkwbdKVM/z1x5fEx5wgPeUyvYdNok2vkU5pLBYzO1Z/xfE9q8jOSMbLtwpNOgym04AxKBSKUsVasVMrar4yGt8WjXCvWoUDQ8aQsGpL0et0aUODaW/g1aAOebFxnJ0ym0s//e6Upsbzj1Bzwmi0gZXJiIjkxEsfkL7/WKlivVFZl2GAfu00tG+kxkOr4MIV2/GYlOYaDRFRctLzVs7Onz9Pq1atOHPmDIsXL+bs2bN8++23bNmyhfbt23P16tXb2q5GoyEwMLDUleOd0qu1hq7NtCzZksu0X7IwGK2MfcATN1Xh67QIVzO4qzvr9uQx9ecsLidZGPuAJ14ejt84pJs7jWqqmfNnDjOWZeHrqeCpe3WlirVZbTcGddKwYb+B6UtzuJJi4dn7PJz2e6PQQCWP93Fn70kj05bmcPy8mSf7uxNY0XG4adUKzseZWb2rDK5m/h/E7GrxAvRuo6Vbcy1LNuXw2aJMDEYY9+AtynBdNQ9082Dt7jw+WZjJpUQz4x70xEvn+J0aNwUnLxjZsDevzGJtXseNQZ01rN9nYNoSWyPruVvk74g+7uw5YWTakhyOnTczeoBz/mrcbBcJdyp/wbXqCYB72mjp3kLLL5ty+HRRJnoDjB9adLwt66oZ0s2DNbvy+PinTC4lmRk/1BPva2XCz0uBn5eC5dtz+WB+Jj+ty6FBmBuP9y19vHDn8ljtpuBktImN+8qufDSv48bgzlo27NXz2eIcriSZeX6QrvByHKRkRD9bOf7slxyOnTMxeqAHQZVuKMdqOH/FzKqdUq+d3L+Wzb9OofPAsYx+63eqhNRjyczRZGekFJjeaMilQuVgug9+BU+fygWm2b3+Bw5tX0yfh9/h2ffW0mPIRPZs+JEDWxeWOl6Vp46MiCiOj3+vWOk9QoNpveo7Urbv5Z9W93PhqwU0/u5D/Ht3sqcJGtqP+p9N4syHs/inzWAyIyJpu2YOmsoVSx0v3Jky3LOlhi7NNCzbqueLpTkYjFaeG6Qr8hgWrk0ab+Vs7NixaDQaNm7cSNeuXalevTr9+vVj8+bNXL58mTfffBOA0NBQPv74Y5588km8vb2pXr0633//faHbzT9scv78+fj5+bFhwwbq16+Pl5cXffv2JS4uzmm9H3/8kfr16+Pu7k69evX45ptv7sjv7t5cy4a9eRw7Z+JKsoWf1ufg66WgaW11oev0aKlh13EDe04Yib9qYcnmXAwmK+0baQBw10D7RhpW/JXL6VgzsYkWft6QS61qboQG3X4t1q2Zmt0njOw7ZSIh1cqv2/QYTFba1i+447pLUzWRMWa2HTaSmGpl3V4Dl5IsdG7i+G0Hokxs3G/kdKy5wG2UlqvF7GrxAnRvoWX9njwirpXhBWuz8fVSFlmGe7bSsuuYgT3HDcSnWFiyKReDEXsZBth2SM+mfXqi48ou7kLzt0HB+du1mZrIi7b8TSgifzfcwfwF16onbPvWsm5PHhFnTVxOsjD/WploVqfoMrEzwsDua2Vi8UbnMnEl2cL3f9gu2pLTLETFmFj1dx6Na6lRlsG9uTuRxwDbDxvYtF9PdJyp9EFe062Fhl0njOw9aSLhqoVlW23luF3DgmPt2kxD5EUzWw8ZSUi1sHaPgUuJFjo3vaEcR5rYsM/A6Ziyi9Mer4vVa3s3zaNZp2E07TiEylVr0//R93DTuHN05/IC01cNbULPB1+nYZsBuKk1Baa5dO4w4c16UqdJN/z8g6nfsi9hDTpxJTqi1PEmbdjB6ckzSPhjc7HS13jmIXIvXOLUa1PJijzPxW8WEb98A2EvjrSnCXtpFLFzlnFpwQqyTp3j2JjJmHPyCBk5pNTxwp0pw12bq9m4T8/x87Zj+OeNefh6Kmhcy3UH11mt1nL7uAJpvJWjq1evsmHDBsaMGYOHh4fTd4GBgTz66KMsXbrUXpimT59Oq1atOHz4MGPGjOH5558nKiqq2PvLyclh2rRpLFy4kB07dhATE8PEiRPt3y9atIh33nmHjz76iFOnTvHxxx/z9ttvs2DBgrL5wddU8lXg66Uk8oaTZZ4BouPNhV48qZQQEqAi6qJjHSsQddFE2LV1qgeocFMpiLphuwmpFq5mWOxpSkqlhOAqSqcTpRU4c8lMjcCCtxkaqLrpxBoVY6ZG4L9zuLlazK4WL0AlXyW+Xkqn8phngOg4M2FVCz5hXi/DkfnKcGSMiZqFrFMWCsvf07FmQkuQv5ExZkKD/r1ThivVEwD+18pEZL4yceEWZaJ6YAFl4mLRZcJDqyDPYKW0j2fcqTy+E1RKCKmi5HRMvnIcYya0kOM+LEjl9HcG2/FWWLkvS65Wr5lNBuJiThBWv4N9mUKpJKx+By6dP3zb2w2u1ZzoyD2kJFwAICE2kktnD1KrUZdSx1xSfu2akbx1t9OypP9r777jmjj/OIB/EiAJG1RAVBAQRFTcWrcVB+D6KdY66p51W6tV68A96qhaB7aiiFXUuq2Ke+/FUFkiCCogioDICEnu90ckGJIgVuXu5Pt+vXhV7g7y4elDuOeedeoyLJvWAwAIDAxg3qAWXp65WngBw+Dl2auwaFr/k1//S9Th8mYCmBurf89cKfAkWQ7HUqjnhB38bZZ/BWJiYsAwDNzc3LSed3Nzw+vXr5GamgoA6NSpE8aMGQMAmDZtGn7//XecO3cOrq6uJXq9/Px8+Pn5oVq1agCAcePGYf78+arzvr6+WLlyJXx8fAAAjo6OePjwITZt2oRBgwb955+zKDMj5ZtU0fklb94qYGas/VGyiaEAekKBxtdkZjOweTekxMxYiHwZozGvIjNbATPj//bHz7jgdXOKZM1mYG2h/XuaGmnmfJOtgJlR6fy68S0z3/ICUNXTzGz1eQpvsktQh98W+Zq3ClQs9+VyG+v43XmTzcDGkpvlC/DrfUL5fd/VCS3/fz+Ut2g9ysxWwEZHnTA2FMC7mQSXQz99wtuXKuMvobAeF/2dY2BdTvtNqvZ6zOj82T4nvr2vZWe9BqOQw9hMfZ69sWl5vEp6/J+/b3OvkcjLzYLfHG8IBXpQMHJ82/0n1P6m26dG/mhimwrIS3mpdiwv5SUMzE0hlIhhYGkOob4+8l68KnLNKxi7On3y63+JOmz67r/arjEthXr+pSh4snAIW6jxxgEl7aatU6dw0rBAIEDFihXx4sWLEr+OkZGRquEGALa2tqqvf/v2LWJjYzFs2DCMGDFCdY1MJtO56EleXh7y8tTvgMRiscZ1jWoYoG/7wp7FjQffljgzIVzQ2M0AfTsUzjHasD+LxTRfJ769TzR2M0C/ju/ViX1fvk5IRMBYH2Mkv5Lj36sfPyeSb2VM+O/h7eO4f+MIug9bCatKzkhJjMCpPUtg+m7hEkLIx6PGG4ucnZ0hEAgQERGBHj0038QiIiJgaWkJKyvlRGADA/Ux0QKBAApFyVeZ0vb1BQ3HrCzljcdff/2Fb775Ru06PT3tT4SWLFmCefPUJwr7+voCZj+pHQuPzUd8kZXeAOUTpcy3hQ1XU2Mhnr7QPo4/K4eBXMGoJvEXMHvve2S+VcBAXwBDMdSeqpsZCZH5Nl/r9/2QtwWvW2QysamRAJk6VqZ7k62Z09RIqPP6z41vmfmQN+xRPuKT3qg+L6jDyrpVWGdNjUpQh42FAN77GmOh2u/B5/ZWx+8Ol8oX4N/7hM46YVykTpQgr7IHrPAaZRb1shYbAOO+M0FePgO/g2/xEW/9KqVVxl9CYT0WAij84U2NNHuzC2ivx182ZwE+vK+9z8jEEgKhnsbiJG/fvIKxeYX//H3P7PsNzb1GolaTzgAA6yquyEh7jqvHN5V64y0v5SXENuo/i9imAvIz3kCRmwfpy9dQyGQQW5cvck155CWr99j9F1+iDr9599+i9crUSIBnqZ9/9V/CDTTnjUXly5dHhw4dsGHDBuTk5KidS05Oxo4dO9C7d+9SWTHSxsYGlSpVwuPHj+Hs7Kz24ejoqPVrZsyYgYyMDLWPGTNmaFyXlw+8TFeoPpJfKZCRpYCrfeGzA4lIOd5f1yINcgWQmCJX+xoBgOr2+oh79zUJKXLI5IzaNdaWQpQzE6qu+VhyBfD0hQLV7QobsAIALlX01JbFfl98shzVq6g3eKvb6eFJcum8kfItMx/y5uUDqekK1UdSQR2uWqQO2+oh7rn2hQ901WFXe3081vE1n0NB+bpUUS/f6nZ6ajfy74tPlsPFTr18Xe30EJ/05eoD394ndNaJInkdP1AnEpLlavVIAMC1qnqdkIiACd+bQC4HNux/C9l/XKuitMr4S5ArgEQt7xPKeqy9XsYlyVHdTv0Ztaudvs56/znx4X3tfXr6Itja10J8ZOGcMEahQHzENVRx+u/zvWTSXI17GIFQj5WFIdKvh6C8R1O1YxXaNcfr6yEAACY/Hxl3H6CCR7PCCwQClG/bDOnX//u8vwJfog6/ymSQ8Vb9e4pFQNWKeogrhXr+pdA+b8WjxhvL1q1bh7y8PHh6euLixYtITExEcHAwOnTogMqVK2PRokWllmXevHlYsmQJ1q5di+joaISHh2Pr1q1YtWqV1uvFYjHMzMzUPrQNm9Tm3L08eH0jgbuTPipVEGKAlxEyshiEPip88j3+O2O0rle4gtXZO1I0dxfhm5oGsCknRO/2EogNBLj+QDn3I1cKXLsvhU8bQ7jY6cHOWoj+noZ4/Fz2SSv3nQ/JR9OaBmhcQx/WlgJ8960YIn0BbkQob676tRejc7PCnBdD81HDXg/f1jOAtYUAnk1EsLMW4lJY4c9mJAYqVRCqloC2thCiUgWhxhO2spKZb3kB5aqQXk3FcK+mrMMDvY2RkaVQq8MTehmjTf3C3Gdu56FFHRG+qaWsw306GEJsAFy/Xzh/ycxIgCpWerB6Ny+mUgUhqljpwUjy33OfD8lHs1rK8rWxFKBX23fl+1BZvj90EKPLe+V7ISQfbvZ6+La+AawtBfDSUb6VKwhV85ysLYWo/BnLF+DX+4TytfPQqZkYdd7ViUGdlHUiJKYw78TvNetEyzoiNK1lgIrlhOjbUVknrr2rExIRMKGXCUQGAmw/kQ1DsQBmxsqPz/Fc70uUMaB88l/ZSogKqnqsh8pWwk+rx3elaFbbAI3d9GFjKUQvDzFEBgLceKjM+kNHCbo0f78eS+FWVQ9t6xvA2lIIr29EsLMR4lKoZj2uWP7z12O+va9902EI7l3ag7CrB/AyKRbHd8xFvjQHdVoo58Ef3vILzu1fqbpeLpMiOTECyYkRkMukeJOeguTECKS9eKK6xqVOW1w55oeYsPNIf/kUkfdO4eaprXCt3/6T8+oZG8Gsbg2Y1a0BADByrAKzujUgsbMFALgunIy6W5eprn/y5y4YOdqhxpKpMHZ1QtUf+8G2lzfi1gSorolbvRV2w75H5QHdYVLDCbXXz4W+sSESt+3/5LzAl6nDF+7lo2MTMWo76sG2vBD9O0qQ8ZZBeOyXeyhI2EXDJlnm4uKC27dvw9fXF99//z3S0tJQsWJFdO/eHb6+vihX7vPsLVISw4cPh5GREZYvX46pU6fC2NgY7u7umDRp0md/rdO3pBAbCNC3gyEMxQLEPpNrPFGuYC5U2/vkbnQ+TIwE6Nxc8m5IgBzr979Vm6i773wuGAYY3tVIufluvHLz3U8R8kgGE0PlDaxyQ1oFNh3JQda7ieiWpkIwTOFTs/hkBbafzEWnpso/zKnpCmw5lovktMJrajnqo197ierzQV7KfwfflOLEzU9fiIBvmfmWFwBO3cyDyECAfh2N3tVhGdbvK1KHLfRgbFh44G5UPkyNctClhWFhHd6rXodb1hOjc/PC3JP7mgIAth/PVrs5/hj3YmTKhS6+ea98D79Xviaa5Rt4MhedmyobdanpCvgfVS/f2o766NdBS/nekCL4M5QvwK/3CQA4WVAnPI1g9K5O/LFXPa+VhR5M3qsTd6LyYfKuThRs0v3He3XCzkZftVrlghFmaq83c1Mm0jI/rVfmS5Vxq7oidGpWWD9+6m0CANgenK26Uf1Y92JkMDHMQ6emYpgZCfD0pQJ+B7NVr2tpKgDDFD6Tjk9SIDA4F52ai9GluXKzef9/c5D06r167KSPHzoWzgMc3En57+PX8xB8o2y9r9Vs3Alv36ThwuG1eJuZCpsqbugzYTNMzJRDDTPSkiAQFJbvm/QX8F/QXfX59ZNbcP3kFthXb4IBU5T7uHXsOwsXDq1B8M55yH7zCibm1qjfujdadRn7SVkBwLxhbTQ7U7hfXM0VvwIAEgP3I2zYDIhtrWD4riEHADnxT3Gr2yjUXDkDDuMHIvdpMsJHzcLLU5dV1yT9cxwiq3Ko7jtBuUl3aARudhkOaZFFTP6rL1GHz9yRQmQA9G4ngaFYgMfP5fA7mP2fe+i5gC9L9rNFwFAJkc9s3KoMtiN8lHWTzfHTOv4sQPH7OBPK+wX9Ps4EY1eksx3jo6yfYoFJf/CnjFePN+HV+8S6yeYYvTyd7RgfZeNUC96V8cQ1bz58IUesmWjKu/e1wAtsp/g4A9sARw1Ktpo2F3TOj+JdHeaqftOfsvbaO5dWYe21S4p63gghhBBCCCGcwPyXFZnKEJrzRgghhBBCCCE8QI03QgghhBBCCOEBGjZJCCGEEEII4QQFT5bsZwv1vBFCCCGEEEIID1DPGyGEEEIIIYQTaCH84lHPGyGEEEIIIYTwADXeCCGEEEIIIYQHaNgkIYQQQgghhBMYWrCkWNTzRgghhBBCCCE8QD1vhBBCCCGEEE6gnrfiUc8bIYQQQgghhPAANd4IIYQQQgghhAdo2CQhhBBCCCGEExSMgu0InEY9b4QQQgghhBDCA9TzRgghhBBCCOEEWrCkeNTzRgghhBBCCCE8IGAYhpq3hBBCCCGEENZ1HxPN2msf3FCdtdcuKRo2ST67nze8ZTvCR1k5xhiT/shiO0aJrR5vwru841ZlsB2jxNZNNudVXkCZmW91YuyKdLZjlNj6KRa8ygvwL/P6KRaYuOYN2zFKbM1EU4xens52jBLbONUC58Jz2I7xUdq6G/KuThw1cGU7Rol1zo9iOwL5j2jYJCGEEEIIIYTwAPW8EUIIIYQQQjiBZnQVj3reCCGEEEIIIYQHqOeNEEIIIYQQwgkKBW3SXRzqeSOEEEIIIYQQHqDGGyGEEEIIIYTwAA2bJIQQQgghhHACo6AFS4pDPW+EEEIIIYQQwgPU80YIIYQQQgjhBIahBUuKQz1vhBBCCCGEEMID1PNGCCGEEEII4QSa81Y86nkjhBBCCCGEEB6gxhshhBBCCCGE8AA13lgiEAhw8OBBAEB8fDwEAgFCQkJYzaSNg4MDVq9ezXYMQgghhBBSBjAKhrUPPqA5b+9JTk7GokWLcPToUTx79gzW1taoV68eJk2ahHbt2n2x17Wzs0NSUhIqVKgAADh//jzatm2L169fw8LCghMZP7cWtfXxbT0DmBoJ8PyVAgcuSZH4QvfqQnWq6cG7iQiWpgK8zGDw7zUpIhPkAAChEPBuYgC3qvooZyZArpRBzFM5jl7LR2b25/lFbOluAI8G7/K+VGDfxTwkpOjOW9dZD52ailHOVIDUdAWOXJUi4olc7edpXtsAdlZ6MDYUYHlQNp69/LyrK/Exc+fmYjSvLYKhRIDHz+TYfSYHqenFv0bruiK0aySGmbEAz1Ll+OdcLp4kF+bW1wN82kjQ0NUA+noCRDyRYfeZHLz5THWDL5n5WB8AoHMLCVq4i2AoFuDxcxl2nSpB+dYToX1jiap895zJUSvfFnVEaOQmgp21HgzFAkz5IwM5eZ+pPvAsL98yt6xjAI+GIpgZCfDspQL7zucWW4/rOeujUzMRypkJlfX4Sh4exsvVrvFuKkKz2gYwFAsQ91z5+5ia/vnKt0sLCVrWKSzfnSc/XL5t6ovQ4V35Pn2hfF8pKF8jiQBdWkhQ00EflqZCZOUwCI3Jx+HLOciVflrW88d34eThbchMf4UqVauj97BpcHRx13rtpVP7cOPCv3ie+AgAYO9UE//rN07t+tycbBzYsQahN8/hbVYGyltXhod3X7T27PVpQd/hU30o17IRnH4eBvMGtSGpZI3bPccg5fCZ4r+mdRPUXDEdJjVdkJuYhEdLNuJp4AG1a6qO7genycMgrmiFzLBIPJi0ABm3wj85L+Eu6nl7Jz4+Hg0bNsTZs2exfPlyhIeHIzg4GG3btsXYsWO1fk1+fv5neW09PT1UrFgR+vrFt6X/S8aSkMvlUChKb1nWes566NZChJO38/H7Pzl4/lKBkV0kMDHUfr1DRSH6dxDjRoQMq/7Jwf04GYZ4i1GxnAAAINIHqljp4dRtKX7/JwcBwXmwshBiaCfxZ8lb30Uf3VuJEHxTihW7lDeoP3YzhImhQGfegZ4SXH+QjxW7shH+WI5hnSWoWK7w102kr/yjcORq3mfJ+DVkbt9YhDb1xNh1JgcrdmZBms9grI8x9PV0f02D6gbo0UaC49dzsezvLDxLVWCsj7Haz9nzWwlqOxnA/99srN6TBXNjAYZ3NSpTmflYHwCgQxMxvq0vxq5T2Vi+4w2k+cC47z5Qvq4G8PnWEMeu5WLp9jd4+kKOcd8Zw8So8GcV6QvwMC4fJ27klum8fMtc30UfPVqJceJGHpYHZeN5qhyjuxvprse2Qgz0Vtbj5TuzER4rw7AuhrAtX1iP2zUUoXU9EfaczcPvu7MhzWfwY3ejYn/+j9GxiRhtG4ix81Q2ftvxBnlSYEKv4su3oasBen5riKNXc7E48A2epsoxoZcxTN+Vr4WJABYmAuw7n4MFAW8QeDwbNR31McDr097Xbl85gb3bVqJLr1H49bcgVHGojj8WjkFmRprW66Mf3Eajll74ae5f+GVxICwr2GDtgtF4/SpFdc3ebSvwMOQqhkxYBN/V+9Gucz/s8l+K0FvnPykrwL/6oGdshMywKNyfMK9E1xs6VEHjw5vw6vwNXG70P8T9sQ3umxaiQoeWqmtse3nDbfkMxCxcj8tNeuBNWCS+OeoPkVW5Tw/MIgWjYO2DD6jx9s6YMWMgEAhw8+ZN9OzZE9WrV0etWrUwefJkXL9+HYByqOPGjRvRrVs3GBsbY9GiRQCAQ4cOoUGDBpBIJHBycsK8efMgk8lU3zsmJgatW7eGRCJBzZo1cerUKbXXfn/YZHx8PNq2bQsAsLS0hEAgwODBg0ucEQBWrVoFd3d3GBsbw87ODmPGjEFWVpbqfEBAACwsLHD48GHUrFkTYrEYCQkJePHiBbp27QpDQ0M4Ojpix44dX6SsW9c1wPWHMtyKlCHlNYN9F6TIlzFoUsNA6/Wt6hggKkGO8yH5ePGaQfDNfDxLVaCFu/L6XCmw6UguQmPlSE1nkJCi7Mmzs9aDhYn2N/GP8W09A1x7kI+bEcq8/5zLg1TG4Jua2hvbbeoZIPKJHOfu5SPlNYPjN6R4mqpAqzqFP9/tKBlO3MpHdKJc6/coi5nb1hfjxI1chMfK8PylAoHB2TA3EaCus/Z6AQAeDUW4el+K6w/ykZymwK7TOZDKGDSrLQIASERAs9oi7L+Qg+hEORJfKPD3iRxUq6wPB9tP/2vMl8x8rA8A0LaBGMHXcxH2rny3HXsLcxNhseXbrpEYV8OluH5fiuRXCuw6lQNpPlTlCwDn7ubh1M08xCd93ux8y8u3zN82EOHqg3zceChDSpoCe84q63HTWtqztqknQuQTOc7ezUfKawWOXZfi6QsFWtUtvL5NfQOcvJmH+4+VP//fJ3NhbiyAe7XPMzDJo6EYx6/nIuyRDM9SFQh4V771XIov3ythUlx7V75BJ9XL9/lLBf48pGx8vExXICpBhsOXcuFezQDCT/iTd/rIdrRo74PmHt1Rya4a+o2cBQOxBFfPHtR6/bBJS/CtV2/YOdZAxcqOGPCjLxiGQVT4TdU1j6NC0bRNV7jWbowK1pXRqsN3qOJQHfGP7v/3oO/wrT6knriIaN/VSDl0ukTXVx3ZBzlxTxHxyzJkRT7Gkw07kLzvBBwnDlZd4zhpCBL99+Dptv3IiohF+BhfyLNzYTe45yfnJdxFjTcAaWlpCA4OxtixY2FsbKxx/v2hi3PnzkWPHj0QHh6OoUOH4tKlSxg4cCAmTpyIhw8fYtOmTQgICFA17BQKBXx8fCASiXDjxg34+flh2rRpOrPY2dlh3759AICoqCgkJSVhzZo1H5VRKBRi7dq1ePDgAbZt24azZ8/il19+Ubs+Ozsby5Ytw+bNm/HgwQNYW1tj8ODBSExMxLlz57B3715s2LABL168+Jii/CA9IVDFSoiYp4V/0BkA0U/lqFpRe3WsaiNE9FP1G4CoRDkcbHRXX4kIUDDMJw/T0RMCVayFajeoDIDoRDkcKmq/kXaoqKdxQxuZIIeDben8uvExc3lzAcxNhIhMKHzokSsF4pPlOhssekLAzkYPUU8Kv4YBEPVEBsd3X2Nvowd9PQGi3vu+Ka8VSMtUqK752jPzsT4AQHlzIcxNhGpllSsF4pPkcKyk/UaqoHwji5RvZIIMTjq+pqzmBfiVWU8I2FkLEZ1QpB4nyOGg42+Ho62e2u8R3uUsqPflzQQwN1b/nrlS4EmyHI46fjc+RoV35RtZpHzjPlC+9hW1lO+T4svXUKycMvBfp+zI8vOR8DgCbnW+UR0TCoVwc/8Gj6PCSvQ9pNJcyOUyGJmYq445udZF2O3zeP0qRdmwu38LKc+foGbdZv8t6Dt8rA8fy6JpPbw8e03tWOqpy7BsWg8AIDAwgHmDWnh55mrhBQyDl2evwqJp/VJMSkobzXkD8OjRIzAMgxo1anzw2n79+mHIkCGqz4cOHYrp06dj0KBBAAAnJycsWLAAv/zyC3x9fXH69GlERkbixIkTqFSpEgBg8eLF8Pb21vr99fT0UK6csrvb2tpa1Si7efNmiTNOmjRJ9W8HBwcsXLgQP/74IzZs2KA6np+fjw0bNqBu3boAgOjoaBw/fhw3b95E48aNAQD+/v5wc3P74Ot9DGOJAHpCgcbcnawcBtaW2t9wTY0EyCpy/ZtsBqZG2q/X1wM6NxUhJEaOvE8c2WpsqD3vm2wGNsXk1bxeATOj0vl142Nms3f/LzUyvFXAzFj7o2QTHT9nZjYDm3fD+8yMhciXMcgpMrIvM1sBM+NPa4jwJTMf6wMAVRlmZqsPY3mTXYLyfVvka94qULHcl83Ot7wAvzIX1uOiWRlYl9N+Y629HjOqn8303X+1XWOq4+f/GKry1VJWHyrfov9PMrMVsNFRvsaGAng3k+By6H+f8Jb15jUUCjnMzMurHTe1KI/kZ/El+h77/14Nc0srtQZg72HTscNvPmaM8oRQTx9CgQD9f5wDl5oN/3NWgJ/14WOJbSogL+Wl2rG8lJcwMDeFUCKGgaU5hPr6yHvxqsg1r2Ds6lSaUT87viwcwhZqvAFgmJJXkkaNGql9HhoaiitXrqh62gDlHLLc3FxkZ2cjIiICdnZ2qoYbADRr9vFPnD4m4+nTp7FkyRJERkYiMzMTMplMlcfISDkmXiQSoU6dOqqviYiIgL6+Pho2LHxDrVGjhsaCKe/Ly8tDXp76HaZY/Hnmmf1XQiEwsKMYAgGw98KXm4tDPk2jGgbo275wkuPGg29ZTFMyfMzMJ43dDNC3Q+GcnQ37s4q5mn18ywvwMzOfNHYzQL+O75Xvvi9fvhIRMNbHGMmv5Pj36uefE1lSwQe24PaVE5g8dzMMRIX3AeeOBSEuJhxjpq9BuQq2iIm4i6DNS2BezgpudZqylpcQPqPGGwAXFxcIBAJERkZ+8NqiQxazsrIwb948+Pj4aFwrkUhKPWN8fDy6dOmC0aNHY9GiRShXrhwuX76MYcOGQSqVqhpvhoaGEAg+7UnSkiVLMG+e+sRbX19fwHqqzq95m8tArmBUE68LmBhqPhEr8CabUZsIDxQ8QVN/4lbQcLM0FWDjodxP7nUDgLc52vOaGgl0rmSp7BUser3ws618+SF8yBwem4/4IqsrqjK+LXxNU2Mhnr7QPmcmS8fPafbe98h8q4CBvgCGYqj1ZJkZCZH59uMqCB8zA/yoDwAQ9igf8UlvVJ8XlK/y5y4sT1OjEpSvsRDAe19jLFT7f1QW8/I1c4HCeiwEUPjeb2qk2QtYQHs9Lvxde/Puv0V/F0yNBHiW+vELF+gsX+Mi5VuC9whlz37hNcr/R+rlKzYAxn1ngrx8Bn4H3+JT1h0zMbWEUKiHzAz1Xpw36a9gZlGh2K89eWgbThzYgklzNqGKQ3XVcWleLg4F/YEfp66Ce8PWAIAqDtXxND4Kpw4HflLjjQ/14VPlpbyE2Ea97MU2FZCf8QaK3DxIX76GQiaD2Lp8kWvKIy9ZvceOb5hSXESPj2jOG4By5crB09MT69evx9u3mk/T09PTdX5tgwYNEBUVBWdnZ40PoVAINzc3JCYmIikpSfU17y8uoo1IpJyULJcXvnGXNOOdO3egUCiwcuVKNG3aFNWrV8fz58+LfT1A2csmk8lw584d1bGoqKhif/YZM2YgIyND7WPGjBnFvo5cATxNVcClcuGwBgEAlyp6eJKs/Zf1SYoCLlXUh0FUt9ND/HvLARc03CqYC+F3OBfZn6nTTa4Anr5Qf31Bwesna//jG58sh4udel5XOz3EJ5XOmxEfMuflAy/TFaqP5FcKZGQp4Gpf+DxJIlLOvdK14IFcASSmyNW+RgCgur0+4t59TUKKHDI5o3aNtaUQ5cyEqmu+5swFr8n1+gAoyzc1XaH6SCoo36pFytdWD3HPZVq/h67ydbXXx2MdX1NW8vI1s9rrvlCgup22eqy9XsYlyVHdTv0Ztaudvqrev8pkkPFW/XuKRUDVinqI0/G7URyd5VvkPcLxA+WbkCxX+38iAOBaVb18JSJgwvcmkMuBDfvfQvaJ68LoGxjA3skNke8tNqJQKBAZfhNOrnV0ft2Jg1txbN9fGD9rA6o611L/WeQyyGUyCATqt5pCofCTb875UB8+Vfr1EJT3UG/gVmjXHK+vhwAAmPx8ZNx9gAoe743mEghQvm0zpF+/V4pJSWmjxts769evh1wuR5MmTbBv3z7ExMQgIiICa9euLXaY45w5cxAYGIh58+bhwYMHiIiIwK5duzBr1iwAQPv27VG9enUMGjQIoaGhuHTpEmbOnFlslqpVq0IgEODff/9FamqqaqXIkmR0dnZGfn4+/vjjDzx+/Bjbt2+Hn5/fB39+V1dXeHl5YdSoUbhx4wbu3LmD4cOHw9BQx/r9UA6RNDMzU/soybDJi6H5+KamPhq56sPaUoCebUQQ6QtwM1LZq9C3nQidmhau/nQpLB817PTQpq4+rC0E6NjYAFWshLgSrrxeKAQGeYphZy3EjtN5EAoEMDVUfuh9hhp+PiQfzWoZoHENfdhYCtCrrRgifQFuPFT+If2hgxhdmhWusnYhJB9u9nr4tr4BrC0F8Goigp21EJfCCntNjMRA5QpC1Twna0shKlcQajwVLEuZz93Lg9c3Erg76aNSBSEGeBkhI4tB6KPCDOO/M0breoW5z96Rorm7CN/UNIBNOSF6t5dAbCDA9QfKuR+5UuDafSl82hjCxU4PdtZC9Pc0xOPnss+yCh5fMvOxPgDKFQu9morhXk1ZvgO9jZGRpVAr3wm9jNGmfmH2M7fz0KKOCN/UUpZvnw6GEBsA1+8XzgcyMxKgipUerCyU2StVEKKKlR6MJJ+WnW95+Zb5/F0pmtU2QGM3fdhYCtHLQwyRgQA3Hiqz/tBRgi7N36/HUrhV1UPb+gawthTC6xsR7GyEuBRa+LNduJePjk3EqO2oB9vyQvTvKEHGWwbhsZ+nIXr2Th46NROjzrvyHdRJWb4hMYUZJn6vWb4t64jQtJYBKpYTom9HZflee1e+EhEwoZcJRAYCbD+RDUOxAGbGyo9PGVDTvusAXD69H9fOH0bS08cI+msRpHk5aN72fwCArWtn4cCOtarrTxzYiiO7NmDgmLkob1UJGa9fIuP1S+TmZAMADI1M4FKzIfZv/x1R92/hZcozXD13CNcv/It633j896Dv8K0+6BkbwaxuDZjVVa5dYORYBWZ1a0BiZwsAcF04GXW3LlNd/+TPXTBytEONJVNh7OqEqj/2g20vb8StCVBdE7d6K+yGfY/KA7rDpIYTaq+fC31jQyRu2//JedlEm3QXj4ZNvuPk5IS7d+9i0aJF+Pnnn5GUlAQrKys0bNgQGzdu1Pl1np6e+PfffzF//nwsW7YMBgYGqFGjBoYPHw5A+YTpwIEDGDZsGJo0aQIHBwesXbsWXl5eOr9n5cqVMW/ePEyfPh1DhgzBwIEDERAQUKKMdevWxapVq7Bs2TLMmDEDrVu3xpIlSzBw4MAPlsHWrVsxfPhwtGnTBjY2Nli4cCFmz579kSX5YSGP5DCWSOHZxABmRiI8e6nAX//mIitHed7CRAjmvb024pMV+Pt0HrybiNCpqQip6Qy2Hs9Dcpryl8zcWIDajsqqPKW3emNzw8EcxD7/tCd892Jkygnh34jebUirwKbDOcjKUb6+pZa8gSdz0bmp8oY4NV0B/6O5SE4rvKa2oz76dSgcVjvIS/nv4BtSBN/8xF1WeZr59C0pxAYC9O1gCEOxALHP5BpPlCuYC9X28LkbnQ8TIwE6N5e8G9oix/r9b9WG4O47nwuGAYZ3NVJueB2v3PD6c+BLZj7WBwA4dTMPIgMB+nU0ele+MqzfV6R8LfRgbFh44G5UPkyNctClhWFh+e5VL9+W9cTo3Lww++S+pgCA7cezVY3ospCXb5nvxchgYpiHTk3FMDMS4OlLBfwOZqte19JUAIYpfGIXn6RAYHAuOjUXo0tz5Wbz/v/mIOlVYT0+c0cKkQHQu53k3SbacvgdzP7knqwCJwvK19MIRu/K94+96uVrZaEHk/fK905UPkzelW/BJt1/vFe+djb6qtUqF4wwU3u9mZsykZb53/7mNWrhiTeZr3Fk10Zkpr9EFQdXjJ+5AWYWymF5aS+TIHhvL4ILJ/dAJsvHnyumqH2fzr1GoWvv0QCA4T8tw8Gda7Fl7a/IzspEuQq2+F/fcWjd8dM36eZbfTBvWBvNzmxXfV5zxa8AgMTA/QgbNgNiWysYvmvIAUBO/FPc6jYKNVfOgMP4gch9mozwUbPw8tRl1TVJ/xyHyKocqvtOUG7SHRqBm12GQ1pkERPydREwH7MSBiEl8PMGfi3ksHKMMSb9wZ+J+6vHm/Au77hVGWzHKLF1k815lRdQZuZbnRi7Ip3tGCW2fooFr/IC/Mu8fooFJq558+ELOWLNRFOMXp7OdowS2zjVAufCP89Dq9LS1t2Qd3XiqIEr2zFKrHN+FNsRdGrf9zZrr306qNGHL2IZ9bwRQgghhBBCOOH9kSBEE815I4QQQgghhBAeoJ43QgghhBBCCCcoeLJwCFuo540QQgghhBBCeIAab4QQQgghhBDCAzRskhBCCCGEEMIJn7qJ+9eOet4IIYQQQgghhAeo540QQgghhBDCCQwtWFIs6nkjhBBCCCGEEB6gnjdCCCGEEEIIJ9Am3cWjnjdCCCGEEEII4QFqvBFCCCGEEEIID9CwSUIIIYQQQggn0IIlxaOeN0IIIYQQQgjhAep5I4QQQgghhHACbdJdPOp5I4QQQgghhBAeoMYbIYQQQgghhPABQwjH5ebmMr6+vkxubi7bUUqMb5kp75fHt8yU98viW16G4V9myvvl8S0z5SVfAwHDMLSkC+G0zMxMmJubIyMjA2ZmZmzHKRG+Zaa8Xx7fMlPeL4tveQH+Zaa8Xx7fMlNe8jWgYZOEEEIIIYQQwgPUeCOEEEIIIYQQHqDGGyGEEEIIIYTwADXeCOeJxWL4+vpCLBazHaXE+JaZ8n55fMtMeb8svuUF+JeZ8n55fMtMecnXgBYsIYQQQgghhBAeoJ43QgghhBBCCOEBarwRQgghhBBCCA9Q440QQgghhBBCeIAab4QQQgghhBDCA9R4I4SQL0gqlSIqKgoymYztKIQQDrl48aLW9wWZTIaLFy+ykOjD5s+fj+zsbI3jOTk5mD9/PguJCCl7aLVJQj4jqVSKuLg4VKtWDfr6+mzHISzKzs7G+PHjsW3bNgBAdHQ0nJycMH78eFSuXBnTp09nOSH/ZWZmaj0uEAggFoshEolKORFh25kzZ3DmzBm8ePECCoVC7dyWLVtYSqWdnp4ekpKSYG1trXb81atXsLa2hlwuZymZbnzMTMjXhu4uCfkM+HqjHhsbi61btyI2NhZr1qyBtbU1jh8/Dnt7e9SqVYvteDrxoZE8Y8YMhIaG4vz58/Dy8lIdb9++PebOncvJOnHu3Dm0bduW7RglZmFhAYFAoPN8lSpVMHjwYPj6+kIo5NZAE6lUqrWBYW9vz1Ii/ps3bx7mz5+PRo0awdbWtti6wQUMw2jN+OrVKxgbG7OQ6MN0ZQ4NDUW5cuVYSFQy27dvh5+fH+Li4nDt2jVUrVoVq1evhqOjI/73v/+xHQ9r164t8bUTJkz4gkkILzCEcJBcLmf8/f2Zzp07M7Vq1WJq167NdO3aldm2bRujUCjYjqdhwoQJTMOGDZlLly4xxsbGTGxsLMMwDHPw4EGmXr16LKfT7vz584yhoSHTvn17RiQSqTIvWbKE6dmzJ8vptHv79i0zdOhQRk9Pj9HT01NlHjduHLNkyRKW06mzt7dnrl27xjAMw5iYmKiyxsTEMKampmxG00kkEjFOTk7MggULmISEBLbjfNC2bduYKlWqMLNmzWIOHz7MHD58mJk1axZjZ2fHbNq0iVm4cCFjYWHBLFq0iO2oKtHR0UzLli0ZoVCo9iEQCBihUMh2PK0CAwOZ5s2bM7a2tkx8fDzDMAzz+++/MwcPHmQ5mbqKFSsygYGBbMf4oB49ejA9evRghEIh06lTJ9XnPXr0YLp168Y4ODgwnp6ebMdUY2FhwVhaWjJCoVD174IPMzMzRigUMmPGjGE7plYbNmxgKlSowCxcuJAxNDRUvRdv3bqV+fbbb1lOp+Tg4KD2YWxszAgEAlUZCwQCxtjYmHF0dGQ7KuEAbj6yJmUawzDo1q0bjh07hrp168Ld3R0MwyAiIgKDBw/G/v37cfDgQbZjqjl48CB2796Npk2bqj2VrFWrFmJjY1lMptv06dOxcOFCTJ48GaampqrjHh4eWLduHYvJdONTb1ZqaqrG0CIAePv2LWd7BJ49e4bt27dj27ZtmDdvHjw8PDBs2DB0796dk0MQt23bhpUrV+L7779XHevatSvc3d2xadMmnDlzBvb29li0aBF+/fVXFpMWGjx4MPT19fHvv//yondo48aNmDNnDiZNmoRFixaphsVZWFhg9erVnOi1KCCVStG8eXO2Y3yQubk5AOXfOlNTUxgaGqrOiUQiNG3aFCNGjGArnlarV68GwzAYOnQo5s2bp/oZAGVmBwcHNGvWjMWEuv3xxx/466+/0L17dyxdulR1vFGjRpgyZQqLyQrFxcWp/r1z505s2LAB/v7+cHV1BQBERUVhxIgRGDVqFFsRCZew23YkRNOWLVsYU1NT5uzZsxrnzpw5w5iamjLbtm1jIZlu7z/Ne7+XJSQkhDEzM2Mzmk7GxsbM48ePGYZRzxwXF8eIxWI2o+nEp96sVq1aMWvXrmUYRpm1oKzHjRvHuafq2ty5c4cZN24cU758eaZ8+fLM+PHjmZCQELZjqZFIJEx0dLTG8ejoaMbQ0JBhGIZ5/Pix6t9cYGRkxERERLAdo8Tc3NyYAwcOMAyj/jsXHh7OlC9fnsVkmn755Rdm/vz5bMcosblz5zJZWVlsx/go58+fZ6RSKdsxPopEIlH1GL9fh6OjoxmJRMJmNK2cnJyYu3fvahy/ffs24+DgwEIiwjXU80Y4JygoCL/++qvWuTceHh6YPn06duzYgYEDB7KQTrtGjRrh6NGjGD9+PAConqZv3ryZs08jLSwskJSUBEdHR7Xj9+7dQ+XKlVlKVTw+9WYtXrwY3t7eePjwIWQyGdasWYOHDx/i6tWruHDhAtvxPqhBgwaoWLEiypcvj6VLl2LLli3YsGEDmjVrBj8/P07MibSzs4O/v7/a03QA8Pf3h52dHQDl/CFLS0s24mlVs2ZNvHz5ku0YJRYXF4f69etrHBeLxXj79i0LiXTLzc3Fn3/+idOnT6NOnTowMDBQO79q1SqWkmnn6+vLdoSP1qZNGygUCkRHR2uds9m6dWuWkunm6OiIkJAQVK1aVe14cHAw3NzcWEqlW1JSktZVSOVyOVJSUlhIRLiGGm+Ec8LCwvDbb7/pPO/t7f1Rk3tLAx9v1Pv06YNp06bhn3/+gUAggEKhwJUrVzBlyhRONYzfx6dGcsuWLRESEoKlS5fC3d0dJ0+eRIMGDXDt2jW4u7uzHU+n/Px8HDp0CFu2bMGpU6fQqFEjrFu3Dn379kVqaipmzZqFXr164eHDh2xHxYoVK9CrVy8cP34cjRs3BgDcvn0bkZGR2Lt3LwDg1q1b6N27N5sx1Sxbtgy//PILFi9eDHd3d40GhpmZGUvJtOPTjW9YWBjq1asHALh//77aOa493AGAlJQUTJkyRbU6JlNk8W8urtx4/fp19OvXD0+ePNHIKxAIOJl58uTJGDt2LHJzc8EwDG7evImgoCAsWbIEmzdvZjuehnbt2mHUqFHYvHkzGjRoAAC4c+cORo8ejfbt27OcjnABbRVAOEckEuHJkyewtbXVev758+dwdHREXl5eKScrXmxsLJYuXYrQ0FBkZWWhQYMGmDZtGmdv1KVSKcaOHYuAgADI5XLo6+tDLpejX79+CAgIgJ6eHtsRNVy+fBne3t7o378/AgICMGrUKLVGcsOGDdmOyGvjx49HUFAQGIbBgAEDMHz4cNSuXVvtmuTkZFSqVEnjiTtb4uLi8OeffyIqKgoA4OrqilGjRsHBwYHdYDoUrHpZtDHBvFvFj2s3v5s3b8bcuXOxcuVKDBs2DJs3b0ZsbKzqxrdPnz5sR+Qtb29vJCQkYNy4cVrnP3JpPmGBevXqoXr16pg3b57WzO/PheOSHTt2YO7cuao56JUqVcK8efMwbNgwlpNpSk1NxaBBgxAcHKx6uCOTyeDp6YmAgACto09I2UKNN8I5enp6SE5OhpWVldbzKSkpqFSpEuducvgqMTER4eHhyMrKQv369eHi4sJ2pGJxuZGsa98xbbjWwwIon/gOHz4cPj4+EIvFWq+RyWS4cuUK2rRpU8rpvg4f6onnYrny6caXT0xNTXHp0iVVbyEfGBsbIzQ0FM7OzmxH+U+ys7ORlZXF2QYQwzBITEyElZUVnj59ioiICABAjRo1UL16dZbTEa6gxhvhHKFQCG9vb503j3l5eQgODuZU4402CyaAsu6WdHgWl+ovXzk7O6N///744YcfOP/Q4WvA9RtfQDlsds+ePUhISIBUKlU7t3//fpZSaVezZk3s2LFD65xCrvLw8MAvv/yittov+XwUCgUkEgkePHhA72lEJ5rzRjhn4MCBH7wB5tqcLD5uFtyzZ080adIE06ZNUzv+22+/4datW/jnn39YSvZhL1680DpZvk6dOiwlUjp37pzq3/Hx8Zg+fToGDx6smo937do1bNu2DUuWLGEroobDhw+X+Npu3bp9wSQfb+zYsdi5cyfmz5+Phg0bon///ujduzcqVqzIdrRipaenw9/fX/VUvVatWhg6dChnh5wVMDIygpGREdsxdNq1axcGDhwIT09PnDx5Eh07dkR0dDRSUlLQo0cPtuNpWL16NaZPn45NmzZxdphvUePHj8fPP/+M5ORkrXM22X4P1oZPcwuFQiFcXFzw6tUrarwRnajnjZDPIDAwEDNnzsTgwYPRpEkTAMDNmzexbds2zJo1C6mpqVixYgWmTp3Kmf2mrKyscPbsWY3hhuHh4Wjfvj0nV7W6c+cOBg0ahIiICM5Pli8Ygti3b1+14zt37sSff/6J8+fPsxOsiJI+TOBa+b4vOjoaO3bsQFBQEOLi4tC2bVv079+fcw95AGXPkKenJwwNDVXvFbdu3UJOTo5qURsuqV+/vtYHUwKBABKJBM7Ozhg8eLDW1YFLW506dTBq1CiMHTsWpqamCA0NhaOjI0aNGgVbW1vMmzeP7YhqLC0tkZ2dDZlMBiMjI42GUFpaGkvJdNP2fiEQCDg7ZxPg39zCI0eO4LfffsPGjRs15hwTAlDjjXCQj4/PB68RCATYt29fKaQpmYLVod7fLBgA9uzZo9osePv27Vi0aBEiIyNZSqnO0NAQISEhqk1AC0RGRqJ+/frIyclhKZludevWRbVq1TBt2jTY2Nho/BEuuiIem4yMjBAaGqrx9DQ6Ohr16tVDdnY2S8m+btevX8fo0aMRFhbGyRvJVq1awdnZGX/99Rf09ZWDX2QyGYYPH47Hjx/j4sWLLCdUN2PGDGzcuBHu7u5qjc2wsDAMHjwYDx8+xJkzZ7B//37Wb4KNjY3x4MEDODg4oHz58jh//jzc3d0REREBDw8PJCUlsZqvqG3bthV7ftCgQaWUpOSePHlS7HkuvQcX4Nvcwvcb9SKRSG0Td4CbjXpSumjYJOEcrg8d0ubq1avw8/PTOF6/fn1cu3YNgHLp+ISEhNKOppO7uzt2796NOXPmqB3ftWsXatasyVKq4j1+/Bj79u3jxWR5Ozs7/PXXXxrbXmzevFm1Bxn5fG7evImdO3di9+7dyMzMRK9evdiOpNXt27fVGm4AoK+vj19++QWNGjViMZl2L1++xM8//4zZs2erHV+4cCGePHmCkydPwtfXFwsWLGC98WZpaYk3b94AACpXroz79+/D3d0d6enpnHxYwsXG2YdwsXH2IXZ2dhojNbhs9erVbEcgHEeNN8I5W7duZTvCR+PjZsGzZ8+Gj48PYmNj4eHhAQA4c+YMgoKCODvfrV27drxZ6ez3339Hz549cfz4cXzzzTcAlA2MmJgYTvUar127FiNHjoREIvng/okTJkwopVQlU3S4pIeHB5YtWwYfHx+YmJiwHU8rMzMzJCQkoEaNGmrHExMTYWpqylIq3fbs2YM7d+5oHO/Tpw8aNmyIv/76C3379uXEBtitW7fGqVOn4O7ujl69emHixIk4e/YsTp06hXbt2rEdT8OHHubZ29uXUpKSCwwMLPY8F4cq821uIR8b9aR00bBJQj6Dw4cPo1evXqhRo4baZsERERHYt28funTpgo0bNyImJoYTNzkFjh49isWLFyMkJASGhoaoU6cOfH19OblcOaDsBRg0aBCaNGmC2rVra8wR4dqCGk+fPsWGDRtUQ2Xd3Nzw448/cqrnzdHREbdv30b58uXh6Oio8zqBQIDHjx+XYrIPEwqFaNy4Mfr164c+ffrAxsaG7UgfNGHCBBw4cAArVqxA8+bNAQBXrlzB1KlT0bNnT849dbexscHy5cs1bsoDAwMxdepUpKSk4OHDh2jTpg1SU1NZSqmUlpaG3Nxc1T6Ev/32G65evQoXFxfMmjWLUw/PgA+vTsvFYb9FyzA/Px/Z2dkQiUQwMjLi5JA+Ps4tLJCbm6uxaioXt5khpYsab4R8JvHx8fDz80N0dDSAws2Cs7KyaNLxZ3LkyBEMGDBA69YMXJ0sT76cmJgYjTmFDMMgODgY/v7+2Lt3L0vJdJNKpZg6dSr8/Pwgk8kAAAYGBhg9ejSWLl2qc4sUtixcuBCLFy/GiBEjVA+mbt26hc2bN+PXX3/FzJkz8fvvv+PYsWM4deoUy2n5JTQ0VO3z/Px83Lt3D6tWrcKiRYtKNP+bC2JiYjB69GhMnToVnp6ebMfRwLe5hW/fvsW0adOwZ88evHr1SuM8/Z0j1Hgj5AvIzMxEUFAQtmzZgtu3b3P6zVYqlWpddp+LQ3YcHBzQpUsXzJ49mxe9LHxdEp6P4uLisGXLFgQEBCA1NRXt27fHv//+y3YsnbKzs1WbXlerVo3TS/Dv2LED69atQ1RUFADlg6nx48ejX79+AICcnBzV6pNsk8vlOHjwoNrvXLdu3aCnp8dyspI7evQoli9fzpkVaUvi9u3b6N+/P2cW5OKzsWPH4ty5c1iwYAEGDBiA9evX49mzZ9i0aROWLl2KH374ge2IhGXUeCPkM7p48SL8/f2xb98+VKpUCT4+PujZs6fqiTWXxMTEYOjQobh69aracS4v+WxqaoqQkBBUq1aN7SgfxLcl4QHl//u9e/fi3LlzWhv0XNvkOC8vD3v37oW/vz8uX74MuVyOFStWYNiwYTS0qAx69OgROnfujKdPn6pW0Y2KioKdnR2OHj3Ki/cNQPlz1K1bF2/fvmU7SomFhISgdevWWkdFsCEzM1P1HvChTFx7r7C3t0dgYCC+/fZbmJmZ4e7du3B2dsb27dsRFBSEY8eOsR2RsIwWLCHkEyUnJyMgIAD+/v7IzMzE999/j7y8PBw8eJCzqzYCwODBg6Gvr49///1X6943XOTj44Nz587x4ibsp59+Qrdu3bQuCT9p0iTOLQkPAJMmTcKmTZvQtm1brVsxcMWdO3fg7++PoKAgODs7Y8CAAQgKCkKVKlXg6enJuZsxHx8fBAQEwMzM7IND4bjWQOaTCRMmwMnJCdeuXUO5cuUAKBeK6t+/PyZMmICjR4+ynFBd0UYFwzBISkrC3LlzObtB8+HDh9U+L8i8bt06tGjRgqVUmiwtLZGUlARra2tYWFhofS/j6oPKtLQ0ODk5AVA2LAvm5LVs2RKjR49mMxrhCGq8EfIJunbtiosXL6Jz585YvXo1vLy8oKenp3XbAK4JCQnBnTt3NFa947Lq1atjxowZuHz5Mtzd3TUmnnNpNUS+LQkPANu3b8f+/fvRqVMntqMU65tvvsH48eNx/fp1jX0Kucjc3Fx182hmZsbZRrE2crkcv//+O/bs2YOEhASNxRO4tNjDhQsXcP36dVXDDQDKly+PpUuXcqphUUBbo4JhGNjZ2WHXrl0spSpe9+7d1T4XCASwsrKCh4cHVq5cyU4oLc6ePauqB+fOnWM5zcdxcnJCXFwc7O3tUaNGDezZswdNmjTBkSNHYGFhwXY8wgHUeCPkExw/fhwTJkzA6NGjOfukVJeaNWvi5cuXbMf4KJs3b4aJiQkuXLiACxcuqJ0TCAScarzxbUl4QNnIKHjiy2Xt2rWDv78/Xrx4gQEDBsDT05PTDaL3tz8JCAhgL8h/MG/ePGzevBk///wzZs2ahZkzZyI+Ph4HDx7U2COSbWKxWLXP2/uysrIgEolYSFS8oo0KoVAIKysrODs7qz304ZKiQ6m56v0Vk7m6erIuQ4YMQWhoKNq0aYPp06eja9euWLduHfLz8zm1WjVhD815I+QTXL9+Hf7+/ti9ezfc3NwwYMAA9OnTB7a2tggNDeX0sMmzZ89i1qxZWLx4sdZeLK4NPeMbvi0JDyhXZQsODsaWLVtgaGjIdpxiJSYmYuvWrdi6dStycnLQu3dvbNiwAWFhYXBzc2M7nk4eHh7Yv3+/xhP0zMxMdO/eHWfPnmUnmA7VqlXD2rVr0blzZ7U5p2vXrsX169exc+dOtiOqDBw4EHfv3oW/v79qnumNGzcwYsQINGzYkHcNZ64ruH3k4oOTsLCwEl9bp06dL5jk0z158gR37tyBs7Mz57OS0kGNN0I+g7dv32L37t3YsmULbt68CblcjlWrVmHo0KGc7WURCoUANP/wcnUeQFFcvnEA+LckPKBcNbBHjx64cuUKHBwcNBr0d+/eZSlZ8U6dOoWtW7fiwIEDsLOzw3fffYfvvvuOk4vCCIVCJCcnw9raWu34ixcvULlyZeTn57OUTDtjY2NERETA3t4etra2OHr0KBo0aIDHjx+jfv36yMjIYDuiSnp6OgYNGoQjR46o6q5MJkO3bt2wdetWTg45i42NxerVq1WrY9asWRMTJ07k9LzewMBALF++HDExMQCUw9mnTp2KAQMGsJysUMEeeh+6xeXD3zpCiqLGGyGfWVRUFPz9/bF9+3akp6ejQ4cOGpO8uaDosMOiuDrUhA83Du/j05Lw33//Pc6dO4fvvvtO64Ilvr6+LCUrmdevX+Pvv//Gli1bEBYWxqmbsoKegHr16qnNxwGU88qCg4OxadMmxMfHs5RQO1dXVwQGBuKbb75By5Yt0aVLF0yfPh27d+/G+PHj8eLFC7Yjanj06JGqMeTm5gZnZ2eWE2l34sQJdOvWDfXq1VPNybty5QpCQ0Nx5MgRdOjQgeWEmlatWoXZs2dj3LhxqsyXL1/G+vXrsXDhQvz0008sJ1R68uRJia+tWrXqF0xScmfPnsW4ceNw/fp1jZEvGRkZaN68Ofz8/NCqVSuWEhLOYAghX4RMJmMOHDjAdO3ale0oX42VK1cyRkZGzC+//MIcOnSIOXToEDN16lTGyMiIWbVqFdvxGIZR/n8PDQ1lsrOzNc5lZ2czoaGhjFwuZyHZhxkZGTGXLl1iO8ZncefOHbYjqBEIBIxQKGSEQiEjEAg0PoyMjBh/f3+2Y2qYNm0as2jRIoZhGGbXrl2Mvr4+4+zszIhEImbatGkspyuZ0NBQxsDAgO0YGurVq6e1DKdNm8bUr1+fhUQf5uDgwGzbtk3jeEBAAOPg4MBCoq9H165di/07tmbNGqZ79+6lmIhwFfW8EVKGXbp0CZs2bcLjx4/xzz//oHLlyti+fTscHR3RsmVLtuNpcHR0xLx58zBw4EC149u2bcPcuXMRFxfHUrJCAQEBWLduHW7cuKGxMbBMJkPTpk0xadIk9O/fn6WEuhWsbMb1eRUxMTGYM2cONm3apPUJ9ejRo7Fw4UJOLb7y5MkTMAwDJycn3Lx5E1ZWVqpzIpEI1tbWvNhI+tq1a7h27RpcXFzQtWtXtuOUSGhoKBo0aMCpnlgAkEgkCA8P11jsKjo6GnXq1EFubi5LyXSTSCS4f/++Rm9mTEwM3N3dOZkZUObTtX8lVxbeqVq1KoKDg3XO2Y2MjETHjh2RkJBQyskI1wjZDkAIYce+fftUm0jfvXsXeXl5AJQ3v4sXL2Y5nXZJSUmqxT/e17x5cyQlJbGQSJO/vz+mTJmi9Ua8YKuAP//8k4VkH7Zy5Ur88ssvnBu6V9Ty5cthZ2endVEdc3Nz2NnZYfny5Swk061q1apwcHCAQqFAo0aNULVqVdWHra0tLxpuANCsWTNMnjyZNw03LrOyskJISIjG8ZCQEI05kVzh7OyMPXv2aBzfvXs3Z1dc/uuvv+Dm5oY5c+Zg7969OHDggOrj4MGDbMdTSUlJ0Zhn/D59fX2kpqaWYiLCVdxci5YQ8sUtXLgQfn5+GDhwoNqeQi1atMDChQtZTKZbwY3Dr7/+qnacSzcOUVFRaNq0qc7zjRs3Vs3H4Zr+/fsjOztbNTev6I0EV/b0unDhAv7++2+d57///nv069evFBN9vIcPH2rdN61bt24sJdJO13xdgUAAiUQCZ2dnODo6lnKqr8OIESMwcuRIPH78WG1F2mXLlmHy5Mksp9Nu3rx56N27Ny5evKg2T+/MmTNaG3VcsHDhQixatAjTpk1jO0qxKleurLVXs0BYWBhsbW1LORXhImq8EVJGRUVFoXXr1hrHzc3NkZ6eXvqBSoAPNw5v375FZmamzvNv3rxBdnZ2KSYqOS5uX6BNQkJCsT0TFSpUQGJiYikmKrnHjx+jR48eCA8PV1sNr2BxGK4N7evevbvWVfsKjgkEArRs2RIHDx6EpaUlKxmL+30DoHXvNy6YPXs2TE1NsXLlSsyYMQMAUKlSJcydO5dTe1a+r2fPnrhx4wZ+//13Va+Vm5sbbt68ifr167MbTofXr1+jV69ebMf4oE6dOmH27Nnw8vKCRCJRO5eTkwNfX1906dKFpXSES6jxRkgZVbFiRTx69AgODg5qxy9fvsypuULv48ONg4uLC65evapz3tjly5c500tY1KBBg9iOUCLm5uaIjY3VuUrco0ePOLtP4cSJE+Ho6IgzZ87A0dERN2/exKtXr/Dzzz9jxYoVbMfTcOrUKcycOROLFi1S7Z128+ZNzJ49G7NmzYK5uTlGjRqFKVOmwN/fn5WMFhYWxW4ZUtDI5BqBQICffvoJP/30k6qBydWtZd7XsGHDYnu+uaZXr144efIkfvzxR7ajFGvWrFnYv38/qlevjnHjxsHV1RWAcq7b+vXrIZfLMXPmTJZTEi6gxhshZdSIESMwceJEbNmyBQKBAM+fP8e1a9cwZcoUzJ49m+14OnH9xqFfv36YNWsWmjdvrtGACw0NxZw5c/DLL7+wlK7kcnNzNYb0caVB1Lp1a/zxxx/w8PDQen7t2rWcXU772rVrOHv2LCpUqAChUAihUIiWLVtiyZIlmDBhAu7du8d2RDUTJ07En3/+qTbXtF27dpBIJBg5ciQePHiA1atXY+jQoaxlPHfuHGuv/Sni4uIgk8ng4uKi1miLiYmBgYGBxoM1Ljh27Bj09PTg6empdvzEiRNQKBTw9vZmKZluzs7OmD17Nq5du4Y6depoDAfnSi+njY0Nrl69itGjR2PGjBlqvfKenp5Yv349bGxsWE5JOIG9hS4JIWxSKBTMwoULGWNjY9Vy5RKJhJk1axbb0XQ6evQoExwcrHE8ODiYOXbsGAuJNEmlUubbb79l9PX1GS8vL2bSpEnMpEmTGC8vL0ZfX59p06YNI5VK2Y6pVVZWFjN27FjGyspKtaz9+x9ccffuXUYsFjM9e/Zkbty4waSnpzPp6enM9evXGR8fH0YsFnNuq4ACFhYWzOPHjxmGYRgnJyfm7NmzDMMwzKNHjxhDQ0M2o2klkUiY8PBwjeNhYWGMRCJhGIZh4uPjOZmd61q3bs0EBARoHN++fTvTpk2b0g9UAu7u7szRo0c1jh8/fpypU6cOC4k+zMHBQeeHo6Mj2/G0SktLY27evMncuHGDSUtLYzsO4RhqvBFSxuXl5TEPHjxgbty4wbx584btOMXiy42DVCplli1bxtStW5cxMjJiDA0Nmbp16zLLli1j8vLy2I6n05gxYxg3Nzdm7969jKGhIbNlyxZmwYIFTJUqVZi///6b7Xhqjhw5orWRaWVlxRw6dIjteDq1bNmSOXDgAMMwDNO3b1/Gy8uLuXz5MjNw4ECmVq1a7IbTokWLFoyXlxfz4sUL1bEXL14wXl5eTKtWrRiGYZhTp04x1atXZysib5mamjIxMTEax2NiYhhzc/PSD1QCEomEiYuL0zgeFxfHGBkZlX6gj5CamsqkpqayHeODhgwZwmRmZmocz8rKYoYMGcJCIsI1tM8bIYQ3DA0NERERoTGcKD4+HrVq1cLbt2/ZCfaVsLe3R2BgIL799luYmZnh7t27cHZ2xvbt2xEUFIRjx46xHVFNTk4OgoOD8ejRIzAMg+rVq6Njx44wMjJiO5pOJ06cwNu3b+Hj44NHjx6hS5cuiI6ORvny5bF7926dQ0HZEhkZie7duyMuLg52dnYAgMTERDg5OeHQoUOoXr06Dh48iDdv3mDAgAEsp+UXc3NznD9/XmO+7p07d/Dtt99ycqGVihUrYufOnRr19PTp0+jXrx9evHjBUjLt0tPTMXPmTOzevRuvX78GAFhaWqJPnz5YtGgRzM3NWU6oSU9PD0lJSRqLMr18+RIVK1aETCZjKRnhCprzRkgZ4uPjg4CAAJiZmcHHx6fYa/fv319KqUrO3Nwcjx8/1mi8PXr0CMbGxuyE+oqkpaWpFqsxMzNTbQ3QsmVLjB49ms1oas6ePYtx48bh+vXr6NGjh9q5jIwM1KpVC35+fpyc9/b+XCFnZ2dERkYiLS0NlpaWnFxUo0aNGnj48CFOnjyJ6OhoAICrqys6dOgAoVC5VWz37t1ZTMhfrVu3xpIlSxAUFKTa508ul2PJkiVo2bIly+m0+9///odJkybhwIEDqFatGgDl++/PP//MuW0u0tLS0KxZMzx79gw//PCDavPrhw8fIiAgAGfOnMHVq1dZWyW1qMzMTDDKEXF48+aN2oqTcrkcx44d4+z+f6R0UeONkDLE3NxcdYPIxSeOH8KnGwc+cnJyQlxcHOzt7VGjRg3s2bMHTZo0wZEjR2BhYcF2PJXVq1djxIgROjfpHjVqFFatWsXJxltGRgbkcjnKlSunOlauXDmkpaVBX1+fM4vCFAgMDETv3r3h5eUFLy8v1XGpVIpdu3Zh4MCBLKbjt2XLlqF169ZwdXVV1dVLly4hMzMTZ8+eZTmddr/99hu8vLxQo0YNVKlSBQDw9OlTtGrVinOrpc6fPx8ikQixsbEaC33Mnz8fHTt2xPz58/H777+zlFBdwaqpAoEA1atX1zgvEAgwb948FpIRrqFhk4SUQQzDIDExEVZWVjA0NGQ7TollZGTAy8sLt2/f1rhx2L9/P6caGHxS0Ju5Zs0a6OnpYcKECTh9+jS6du0KhmGQn5+PVatWYeLEiWxHBQBUrVoVwcHBqifpRUVGRqJjx45ISEgo5WQf5u3tja5du2LMmDFqx/38/HD48GHODU3VNYTr1atXsLa25ty+dHzz/PlzrFu3DqGhoTA0NESdOnUwbtw4tcY91zAMg1OnTqll1rZnKNscHBywadMmjZUxCwQHB+PHH39EfHx86QbT4cKFC2AYBh4eHti3b59aHRCJRKhatSoqVarEYkLCFdR4I6QMUigUkEgkePDgAWf3HNOFLzcOfFL0Br13795Yu3YtcnNzcefOHTg7O+vct44NEokE9+/fh7Ozs9bzjx49gru7O3Jycko52YeVK1cOV65c0Wh4RkZGokWLFnj16hVLybQTCoVISUmBlZWV2vHQ0FC0bdtWNbSWLR8a/v0+Lg4FJ1+OWCxGbGys6kFfUU+fPoWzszNyc3NLOVnxnjx5Ant7e04OoybcQMMmCSmDhEIhXFxc8OrVK9413gQCATp27IiOHTuyHUWnzMxM3LhxA1KpFE2aNNG48eWaos/wjh07hiVLlsDJyUnnRthsqly5crGNt7CwMNja2pZyqpLJy8vTuuBAfn4+pxqb9evXVw3hateuHfT1C28X5HI54uLi1IZRsoWPw78LbN26FSYmJujVq5fa8X/++QfZ2dkYNGgQS8l0mzBhApydnTX2Rlu3bh0ePXqE1atXsxNMiwoVKiA+Pl5n4y0uLo4zPZxhYWGoXbs2hEIhMjIyEB4ervNaLj1II+ygnjdCyqgjR47gt99+w8aNG1G7dm2245TYmTNncObMGbx48QIKhULt3JYtW1hKVSgkJASdOnVCSkoKGIaBqakp9uzZo3PoDhcIhUIkJyeret5MTU0RGhqqWryEa8aPH4/z58/j1q1bapP6AeUKlE2aNEHbtm2xdu1alhLq1rZtW9SuXRt//PGH2vGxY8ciLCwMly5dYimZuoK5NfPmzcPPP/8MExMT1TmRSAQHBwf07NkTIpGIrYi8V716dWzatAlt27ZVO37hwgWMHDkSUVFRLCXTrXLlyjh8+DAaNmyodvzu3bvo1q0bnj59ylIyTUOHDkVsbCxOnTqlUU/z8vLg6ekJJycnTvzdeP89WCgUQiAQaDxUA5QPL2moMqHGGyFllKWlJbKzsyGTySASiTTmvrE9HEqbefPmYf78+WjUqBFsbW01hpUcOHCApWSFPD09kZWVhRUrVkAikWDBggUIDw9HTEwM29F00tPTQ3JysqqH0NTUFGFhYXB0dGQ5mXYpKSlo0KAB9PT0MG7cOLi6ugJQDj1cv3495HI57t69q7FIARdcuXIF7du3R+PGjdGuXTsAygcSt27dwsmTJzm1yIpcLsfff/+Njh07crYnk88kEgkiIyO1bn3i5ubGqZ7YArqGLD969Ai1a9fm1BDEp0+folGjRhCLxRg7dixq1KgBhmEQERGBDRs2IC8vD7dv31ZtgcGm94dKPnnypNhruTgagpQuarwRUkZt27at2PNcHLJja2uL3377jdP7SVWoUAEnT55EgwYNACj3GSpXrhzS09M5t5JgAaFQCG9vb4jFYgDKXlkPDw+N7Re4NGfoyZMnGD16NE6cOKF6Qi0QCODp6Yn169dztuEJKHtnly9fjpCQENW8zRkzZnByCLNEIkFERASny/N9e/fuxZ49e5CQkACpVKp27u7duyyl0s7e3h7r1q3TWCn30KFDGDt2LKd6sQrUrl0bP/74I8aNG6d2/I8//sDGjRvx8OFDlpJpFxcXhzFjxuDkyZNq7xMdOnTAunXrdA69JoTLaM4bIWUUFxtnHyKVStG8eXO2YxQrLS1NbY6FhYUFjI2N8erVK8423orWhf79+7OUpOSqVq2KY8eO4fXr16pNul1cXDizZ1Nx6tWrhx07drAdo0Rq166Nx48f86LxtnbtWsycORODBw/GoUOHMGTIEMTGxuLWrVsYO3Ys2/E09O3bFxMmTICpqalq0aULFy5g4sSJ6NOnD8vptJs8eTLGjRuH1NRU1UbdZ86cwcqVKzk1362Ao6Mjjh8/jtevX6tGPzg7O3NmrluBw4cPl/ha2haHUM8bIWVYbGwstm7ditjYWKxZswbW1tY4fvw47O3tUatWLbbjaZg2bRpMTEwwe/ZstqPoJBQKcfbsWbWbg+bNm2PPnj1qjTqadF42fWj7Ant7+1JKUjLBwcGYMWMGFixYgIYNG2r0xnLpgUSNGjXg6+uLvn37qs3bnDNnDtLS0rBu3Tq2I6qRSqUYMGAA/vnnH9WCMAqFAgMHDsTGjRtVPeFcs3HjRixatAjPnz8HoFySf+7cubTn3yco2PC+QNE5b+9PEaA5b4Qab4SUURcuXIC3tzdatGiBixcvIiIiAk5OTli6dClu376NvXv3sh1Rw8SJExEYGIg6deqgTp06MDAwUDu/atUqlpIV+tBkc4ZhaNJ5GVZQP3ThWr14/6by/dxcrMdGRkaIiIhA1apVYW1tjVOnTqFu3bqIiYlB06ZNObcNQ4GYmBjVEFp3d3fezGlKTU2FoaGhajGbtLQ0zvVo8dHp06cxbdo0LF68GM2aNQMAXLt2DbNmzcLixYvRoUMHlhMSttGwSULKqOnTp2PhwoWYPHkyTE1NVcc9PDw494S6QFhYGOrVqwcAuH//PrthdIiLi2M7AuGwe/fuqX2en5+Pe/fuYdWqVVi0aBFLqXQ7d+4c2xFKrGLFikhLS0PVqlVhb2+P69evo27duoiLi9P6MIUrXFxcVPMdMzMzsXHjRvj7++P27dssJytewQJHJ0+exObNm3HkyBFOLrLCN5MmTYKfnx9atmypOubp6QkjIyOMHDkSERERLKYjXECNN0LKqPDwcOzcuVPjuLW1NV6+fMlCog/jw40kX56aE3bUrVtX41ijRo1QqVIlLF++/KM2nS4Nbdq0YTtCiXl4eODw4cOoX78+hgwZgp9++gl79+7F7du3OVeuRZ07dw5btmzB/v37YW5ujh49erAdqVhPnjzBli1bsG3bNrx+/Rre3t4IDAxkO9ZXITY2FhYWFhrHzc3NER8fX+p5CPdQ442QMsrCwgJJSUkaCxHcu3cPlStXZimVdiW58RIIBNi3b18ppCleWFhYia6jOW/kfa6urrh16xbbMbRKT0+Hv7+/6ol/rVq1MHToUM5tkP3nn3+q9n4cO3Ysypcvj6tXr6Jbt24YNWoUy+k0PXv2DAEBAdi6dSvS09Px+vVr7Ny5E99//32xQ2vZIpVKsX//fmzevFm15cXTp09x7949uLu7sx3vq9G4cWNMnjwZ27dvV213kpKSgqlTp6JJkyYspyNcQI03QsqoPn36YNq0afjnn38gEAigUChw5coVTJkyhXMTz7l2k1icevXq6ZzzVoBrc4VI6cnMzFT7nGEYJCUlYe7cuZzcKuD27dvw9PSEoaGh6saxYIjn+1ticIFQKFSbo9enTx9Ortq4b98++Pv74+LFi/D29sbKlSvh7e0NY2NjuLu7c7LhNn78eAQFBcHFxQX9+/fH7t27Ub58eRgYGEBPT4/teF+VLVu2oEePHrC3t1ftQZeYmAgXFxccPHiQ3XCEE2jBEkLKKKlUirFjxyIgIAByuRz6+vqQy+Xo168fAgIC6A/yf/ShDVYL0PDKsknbgiUMw8DOzg67du1SLVDAFa1atYKzszP++usv1YqIMpkMw4cPx+PHj3Hx4kWWE6pLT0/HzZs38eLFC1UvXAGuPJTS19fHtGnTMH36dLX5xgYGBggNDUXNmjVZTKcdHzPzGcMwOHXqFCIjIwEAbm5uaN++PScb9qT0UeONkDIuISEB9+/fR1ZWFurXr8/Jp/+EfC0uXLig9rlQKISVlRWcnZ1VjSMuMTQ0xL1791CjRg214w8fPkSjRo2QnZ3NUjJNR44cwQ8//ICsrCyYmZmp3egKBAKkpaWxmK7QqFGjsHv3btSqVQsDBgxA7969YWlpyemGUFBQELZs2YJr166hc+fOGDBgALy9vSGRSDib+WuQm5sLsVhMjTaiRvjhSwghXzN7e3t4e3ujV69e1HD7DNq1a4f9+/frPP/y5Us4OTmVYiLCJW3atFH7aNWqFWrUqMHJhhug3MdN2950iYmJaj0wXPDzzz9j6NChyMrKUs0hK/jgSsMNADZt2oSkpCSMHDkSQUFBsLW1xf/+9z8wDKPRW8gVffv2xalTpxAeHo4aNWpg7NixqFixIhQKBR4+fMh2vK+KQqHAggULULlyZZiYmKhWMJ49ezb8/f1ZTke4gHreCCnD/P398fvvvyMmJgaAcsnqSZMmYfjw4Swn46+CeTczZ87EvHnzNM6npKSgUqVKNOetDDl8+HCJr+3WrdsXTPLxJkyYgAMHDmDFihVo3rw5AODKlSuYOnUqevbsidWrV7Mb8D3GxsYIDw/n3cORmJgYbN26Fdu2bUNWVhY6d+6M7777jtMrZDIMg5MnT8Lf3x+HDx9GhQoV4OPjg7Vr17Idjffmz5+Pbdu2Yf78+RgxYgTu378PJycn7N69G6tXr8a1a9fYjkhYRo03QsqoOXPmYNWqVRg/frzaRqDr1q3DTz/9hPnz57OckJ+EQiE2bdqEKVOmwMPDA3///TeMjY1V56nxVva8v4gGAI0Fbd4fEsW1eiGVSjF16lT4+flBJpOBYRiIRCKMHj0aS5cuhVgsZjuiio+PD/r06YPvv/+e7Sj/iUKhwNGjR+Hv74/jx48jLy+P7UglkpaWhsDAQGzduhWhoaFsx+E9Z2dnbNq0Ce3atYOpqSlCQ0Ph5OSEyMhINGvWDK9fv2Y7ImEZNd4IKaOsrKywdu1a9O3bV+14UFAQxo8fz9m93rhOKBQiOTkZr169wv/+9z+IxWIcOnRI1RtAjbey7fTp05g2bRoWL16s9tBk1qxZWLx4MTp06MByQu2ys7MRGxsLAKhWrRqMjIxYTqTJ398f8+fPx5AhQ+Du7g4DAwO181zr1SzOixcvYG1tzXYMwgJDQ0NERkaiatWqao23hw8fokmTJsjKymI7ImEZNwfZE0K+uPz8fDRq1EjjeMOGDSGTyVhI9HVxc3PDrVu30LdvXzRu3Bi7d+9G+/bt2Y5FWDZp0iT4+fmhZcuWqmOenp4wMjLCyJEjVXupsW3o0KElum7Lli1fOEnJjRgxAgC0jhrg2/Yc1HAru2rWrIlLly5prEi8d+9e1K9fn6VUhEuo8UZIGTVgwABs3LgRq1atUjv+559/4ocffmAp1dfF3NwcR48exYwZM9CpUycsW7YM/fr1YzsWYVFsbCwsLCw0jpubmyM+Pr7U8+gSEBCAqlWron79+sXuWcglXF3sg5CPMWfOHAwaNAjPnj2DQqHA/v37ERUVhcDAQPz7779sxyMcQMMmCSmjxo8fj8DAQNjZ2aFp06YAgBs3biAhIQEDBw5UG3JUtIFHdNPT00NSUpLGk/Ndu3Zh+PDhaNu2LY4dO8arXgDy+bRu3RoSiQTbt2+HjY0NAOVQ2oEDByI3N1djKwG2jB07FkFBQahatSqGDBmC/v37o1y5cmzHIqRMuHTpEubPn4/Q0FBkZWWhQYMGmDNnDjp27Mh2NMIB1HgjpIxq27Ztia4TCAQ4e/bsF07z9SiY86Zt2FNISAi6d++OxMREaryVUY8ePUKPHj0QHR0NOzs7AMpl911cXHDgwAFObdeRl5eH/fv3Y8uWLbh69So6d+6MYcOGoWPHjpzdd+rChQtYsWKFavhpzZo1MXXqVLRq1YrlZIR8mEwmw+LFizF06FBUqVKF7TiEo6jxRgghn9GFCxfQokULnft2vXr1CkePHsXAgQNLORnhCoZhcPr0aVUDw83NDe3bt+dsgwgAnjx5goCAAAQGBkImk+HBgwcwMTFhO5aav//+G0OGDIGPjw9atGgBQLmtwYEDBxAQEMC5IcuJiYkQCASqm/SbN29i586dqFmzJkaOHMlyOu1iYmJw6NAhxMfHQyAQwNHREd27d+fd9gxcZmJigvv378PBwYHtKISjqPFGSBmVmpoKKysrrefCw8Ph7u5eyokI+Xp16tQJQUFBMDc3BwAsXboUP/74o2r+26tXr9CqVSvObnicmJiIrVu3IiAgAFKpFJGRkZxrvLm5uWHkyJH46aef1I6vWrUKf/31F2cWgynQqlUrjBw5EgMGDEBycjJcXV1Rq1YtxMTEYPz48ZgzZw7bEdUsWbIEc+bMgUKhgLW1NRiGQWpqKvT09LB48WJMmTKF7Yhfhf/973/w8fHBoEGD2I5COEr44UsIIV8jd3d3HD16VOP4ihUr0KRJExYSEfL1OnHihNq+XYsXL0ZaWprqc5lMhqioKDai6ZSXl4egoCB06NAB1atXR3h4ONatW4eEhATONdwA4PHjx+jatavG8W7duiEuLo6FRMW7f/++6r12z549qF27Nq5evYodO3YgICCA3XBFnDt3DrNmzcLMmTPx8uVLJCUlITk5GampqZg+fTqmT5+Oixcvsh3zq+Dt7Y3p06djypQpCAoKwuHDh9U+CKHVJgkpoyZPnoyePXtiyJAhWLVqFdLS0jBw4ECEh4dj586dbMcj5KtSdJAL1we9jBkzBrt27YKdnR2GDh2KoKAgVKhQge1YxbKzs8OZM2fg7Oysdvz06dOq+YVckp+fr9rk/PTp06p96GrUqIGkpCQ2o2nw8/PD8OHDMXfuXLXj5cqVw/z585GcnIyNGzeidevW7AT8iowZMwaA9oXC+LblBfkyqPFGSBn1yy+/oEOHDhgwYADq1KmDtLQ0fPPNNwgLC0PFihXZjkcIYZGfnx/s7e3h5OSECxcu6FwFc//+/aWcTLeff/4ZEyZMQEhICJo3bw5AOectICAAa9asYTmdplq1asHPzw+dO3fGqVOnsGDBAgDA8+fPUb58eZbTqbt58ya2b9+u8/yAAQNoHu9nQltekA+hxhshZZizszNq166Nffv2AQB69+5NDTdCvgCBQKCxIAmXFygZOHAgp/NpM3r0aFSsWBErV67Enj17ACjnwe3evRv/+9//WE6nadmyZejRoweWL1+OQYMGoW7dugCAw4cPc27oekpKSrELaDg6OiI5Obn0An2Fzp49i3HjxuH69eswMzNTO5eRkYHmzZvDz8+PVk4ltGAJIWXVlStXVHs3/f3337hy5QomT54Mb29v+Pn5wdLSku2IhHw1hEIhvL29VcPkjhw5Ag8PDxgbGwNQzi8LDg6mIVFljFwuR2Zmptr7bXx8PIyMjLRuN8KW4rZAAZSNu0qVKlH9/QTdunVD27ZtNRbcKbB27VqcO3cOBw4cKOVkhGuo8UZIGSUWi/HTTz9hwYIFqg25Y2Nj0b9/fyQmJuLp06csJyTk6zFkyJASXbd169YvnOTrxcel92UyGc6fP4/Y2Fj069cPpqameP78OczMzDi1KIxQKMTChQt1Znrz5g3mzJlDjbdPULVqVQQHB8PNzU3r+cjISHTs2BEJCQmlnIxwDTXeCCmjLly4gDZt2mgcVygUWLRoEWbPns1CKkII+W+KLr1fvXp11K5dm7NL7z958gReXl5ISEhAXl4eoqOj4eTkhIkTJyIvLw9+fn5sR1RxcHAo0TBaLq7qyRcSiQT379/XWHCnwKNHj+Du7o6cnJxSTka4hrYKIKSM6dSpEzIyMlQNt6VLlyI9PV11/vXr1wgKCmIpHSGE/DdFl953d3fn7NL7ADBx4kQ0atQIr1+/hqGhoep4jx49cObMGRaTaYqPj0dcXNwHP8h/V7lyZdy/f1/n+bCwMNja2pZiIsJV1HgjpIzh435ThBDyIXxaeh8ALl26hFmzZkEkEqkdd3BwwLNnz1hKRdjSqVMnzJ49G7m5uRrncnJy4Ovriy5durCQjHANNd4IKWP4tt8UIYSURMHS+5cuXcKpU6fg5eUFgJtL7wPKIera5og9ffoUpqamLCTS7ezZs6hZsyYyMzM1zmVkZKBWrVq0SfcnmjVrFtLS0lC9enX89ttvOHToEA4dOoRly5bB1dUVaWlpmDlzJtsxCQdQ440QQgghvLds2TJs2rQJ3377Lfr27cvppfcBoGPHjli9erXqc4FAgKysLPj6+qJTp07sBdNi9erVGDFihMYS9gBgbm6OUaNG4ffff2ch2dfDxsYGV69eRe3atTFjxgz06NEDPXr0wK+//oratWvj8uXLsLGxYTsm4QBasISQMkZPTw/JycmwsrICAJiamiIsLAyOjo4AaMlnQgj/MAyDxMREWFpaQiaTcX7pfUDZw+bp6QmGYRATE4NGjRohJiYGFSpUwMWLFzmVl1ZCLF2vX7/Go0ePwDAMXFxcaOseooYab4SUMbTfFCHka6NQKCCRSPDgwQO4uLiwHafEZDIZdu3ahbCwMGRlZaFBgwb44Ycf1BYw4QJaCZEQ7tBnOwAhpHQNGjRI7fP+/ftrXDNw4MDSikMIIZ9MKBTCxcUFr1694lXjTV9fX+t7MNcUrISoq/FGKyESUnqo540QQgghvHfkyBH89ttv2LhxI2rXrs12HK0OHz4Mb29vGBgY4PDhw8VeW7BaJheMHz8e58+fx61btyCRSNTO5eTkoEmTJmjbti3Wrl3LUkJCyg5qvBFCCCGE9ywtLZGdnQ2ZTAaRSKQx9PD9LVHYIhQKkZycDGtrawiFuteMEwgEnBq6npKSggYNGkBPTw/jxo2Dq6srAOVct/Xr10Mul+Pu3bu0oAYhpYAab4QQQgjhvW3bthV7vuiQcfJxnjx5gtGjR+PEiROqLWYEAgE8PT2xfv161aJXhJAvixpvhBBCCCGlLDAwEL1791YtHlVAKpVi165dnJ17TCshEsIuarwRQggh5KsQGxuLrVu3IjY2FmvWrIG1tTWOHz8Oe3t71KpVi+14avT09JCUlKSxJcCrV69gbW3NqWGThBDuoE26CSGEEMJ7Fy5cgLu7O27cuIH9+/cjKysLABAaGgpfX1+W02liGAYCgUDj+NOnT2Fubs5CIkIIH9BWAYQQQgjhvenTp2PhwoWYPHkyTE1NVcc9PDywbt06FpOpq1+/PgQCAQQCAdq1awd9/cJbMblcjri4OHh5ebGYkBDCZdR4I4QQQgjvhYeHY+fOnRrHra2t8fLlSxYSade9e3cAQEhICDw9PWFiYqI6JxKJ4ODggJ49e7KUjhDCddR4I4QQQgjvWVhYICkpSWPVw3v37qFy5cospdJUMITTwcEBvXv31tg3jRBCikNz3gghhBDCe3369MG0adOQnJwMgUAAhUKBK1euYMqUKZxcuXHQoEHUcCOEfDRabZIQQgghvCeVSjF27FgEBARALpdDX18fcrkc/fr1Q0BAAPT09NiOiHLlyiE6OhoVKlSApaWl1gVLCnBhU3FCCPdQ440QQgghX43ExESEh4cjKysL9evXh4uLC9uRVLZt24Y+ffpALBbTpuKEkP+EGm+EEEII4S2FQoHly5fj8OHDkEqlaNeuHXx9fWFoaMh2NJ1kMhl27twJT09P2NjYsB2HEMIjNOeNEEIIIby1aNEi/PrrrzAxMUHlypWxZs0ajB07lu1YxdLX18ePP/6I3NxctqMQQniGGm+EEEII4a3AwEBs2LABJ06cwMGDB3HkyBHs2LEDCoWC7WjFatKkCe7du8d2DEIIz9CwSUIIIYTwllgsxqNHj2BnZ6c6JpFI8OjRI1SpUoXFZMXbs2cPZsyYgZ9++gkNGzaEsbGx2vk6deqwlIwQwmXUeCOEEEIIb+np6SE5ORlWVlaqY6ampggLC9PY841LhELNwU8CgQAMw0AgEEAul7OQihDCdbRJNyGEEEJ4i2EYDB48GGKxWHUsNzcXP/74o1pv1v79+9mIp1NcXBzbEQghPEQ9b4QQQgjhrSFDhpTouq1bt37hJIQQ8uVR440QQgghpJQFBgYWe37gwIGllIQQwifUeCOEEEIIKWWWlpZqn+fn5yM7OxsikQhGRkZIS0tjKRkhhMtoqwBCCCGEkFL2+vVrtY+srCxERUWhZcuWCAoKYjseIYSjqOeNEEIIIYQjbt++jf79+yMyMpLtKIQQDqKeN0IIIYQQjtDX18fz58/ZjkEI4SjaKoAQQgghpJQdPnxY7XOGYZCUlIR169ahRYsWLKUihHAdDZskhBBCCCllRTfpFggEsLKygoeHB1auXAlbW1uWkhFCuIwab4QQQgghhBDCAzTnjRBCCCGEEEJ4gBpvhBBCCCGlrGfPnli2bJnG8d9++w29evViIREhhA9o2CQhhBBCSCmzsrLC2bNn4e7urnY8PDwc7du3R0pKCkvJCCFcRj1vhBBCCCGlLCsrCyKRSOO4gYEBMjMzWUhECOEDarwRQgghhJQyd3d37N69W+P4rl27ULNmTRYSEUL4gPZ5I4QQQggpZbNnz4aPjw9iY2Ph4eEBADhz5gyCgoLwzz//sJyOEMJVNOeNEEIIIYQFR48exeLFixESEgJDQ0PUqVMHvr6+aNOmDdvRCCEcRY03QgghhBBCCOEBmvNGCCGEEMKC9PR0bN68Gb/++ivS0tIAAHfv3sWzZ89YTkYI4SrqeSOEEEIIKWVhYWFo3749zM3NER8fj6ioKDg5OWHWrFlISEhAYGAg2xEJIRxEPW+EEEIIIaVs8uTJGDx4MGJiYiCRSFTHO3XqhIsXL7KYjBDCZdR4I4QQQggpZbdu3cKoUaM0jleuXBnJycksJCKE8AE13gghhBBCSplYLNa6GXd0dDSsrKxYSEQI4QNqvBFCCCGElLJu3bph/vz5yM/PBwAIBAIkJCRg2rRp6NmzJ8vpCCFcRQuWEEIIIYSUsoyMDHz33Xe4ffs23rx5g0qVKiE5ORnNmjXDsWPHYGxszHZEQggHUeONEEIIIYQlV65cQWhoKLKystCgQQO0b9+e7UiEEA6jxhshhBBCCCGE8ADNeSOEEEIIKSXXrl3Dv//+q3YsMDAQjo6OsLa2xsiRI5GXl8dSOkII11HjjRBCCCGklMyfPx8PHjxQfR4eHo5hw4ahffv2mD59Oo4cOYIlS5awmJAQwmU0bJIQQgghpJTY2triyJEjaNSoEQBg5syZuHDhAi5fvgwA+Oeff+Dr64uHDx+yGZMQwlHU80YIIYQQUkpev34NGxsb1ecXLlyAt7e36vPGjRsjMTGRjYeNyKkAAAEMSURBVGiEEB6gxhshhBBCSCmxsbFBXFwcAEAqleLu3bto2rSp6vybN29gYGDAVjxCCMdR440QQgghpJR06tQJ06dPx6VLlzBjxgwYGRmhVatWqvNhYWGoVq0aiwkJIVymz3YAQgghhJCyYsGCBfDx8UGbNm1gYmKCbdu2QSQSqc5v2bIFHTt2ZDEhIYTLaMESQgghhJBSlpGRARMTE+jp6akdT0tLg4mJiVqDjhBCClDjjRBCCCGEEEJ4gOa8EUIIIYQQQggPUOONEEIIIYQQQniAGm+EEEIIIYQQwgPUeCOEEEIIIYQQHqDGGyGEEEIIIYTwADXeCCGEEEIIIYQHqPFGCCGEEEIIITzwfyjPMdI7jiwEAAAAAElFTkSuQmCC"},"metadata":{}}]},{"cell_type":"markdown","source":"# Data Visualization\n\n#### Histogram of Age\n- This plot shows the distribution of ages in the dataset.\n- The histogram is stacked by the 'Personal Loan' variable, allowing us to see the distribution of ages for those who got and those who did not get personal loans.\n- It helps visualize if there are any differences in age distribution between those who got personal loans and those who did not.\n\n#### Boxplot of Income\n- This plot displays the distribution of income for each category of 'Personal Loan'.\n- The boxplot provides information about the median, quartiles, and potential outliers in income for each group.\n- It helps us to identify if there are significant differences in income between those who got personal loans and those who did not.\n\n#### Barplot of Education\n- This plot shows the count of individuals in each category of education, separated by the 'Personal Loan' variable.\n- It helps visualize the distribution of education levels among those who got personal loans and those who did not.\n- Differences in the proportions of education levels between the two groups can be observed.\n\n#### Violin Plot of CCAvg\n- This plot displays the distribution of average credit card spending (CCAvg) for each category of 'Personal Loan'.\n- It combines the features of a box plot and a kernel density plot, showing both summary statistics and the probability density of the data at different values.\n- It helps compare the distribution of CCAvg between individuals who got personal loans and those who did not.\n\n#### Boxen Plot of Mortgage\n- This plot shows the distribution of mortgage amounts for each category of 'Personal Loan'.\n- Similar to a box plot, it displays information about the median, quartiles, and potential outliers in mortgage amounts for each group.\n- It helps identify any differences in mortgage amounts between individuals who got personal loans and those who did not.\n\n#### Swarm Plot of Experience\n- This plot displays the distribution of work experience (in years) for each category of 'Personal Loan'.\n- It shows individual data points along the categorical axis, providing a clearer picture of the distribution compared to a traditional scatter plot.\n- It helps visualize if there are any patterns or differences in work experience between individuals who got personal loans and those who did not.\n\nThese plots collectively provide insights into how different variables relate to the likelihood of individuals accepting personal loans.","metadata":{}},{"cell_type":"code","source":"import matplotlib.pyplot as plt\nimport seaborn as sns\n\n# Define the figure and axes\nfig, axs = plt.subplots(3, 2, figsize=(14, 18))\n\n# Plot 1: Histogram of Age\nsns.histplot(data=train, x='Age', hue='Personal Loan', multiple='stack', ax=axs[0, 0])\naxs[0, 0].set_title('Distribution of Age')\n\n# Plot 2: Boxplot of Income\nsns.boxplot(data=train, y='Income', x='Personal Loan', ax=axs[0, 1])\naxs[0, 1].set_title('Boxplot of Income')\n\n# Plot 3: Barplot of Education\nsns.countplot(data=train, x='Education', hue='Personal Loan', ax=axs[1, 0])\naxs[1, 0].set_title('Distribution of Education')\n\n# Plot 4: Violin Plot of CCAvg\nsns.violinplot(data=train, x='Personal Loan', y='CCAvg', ax=axs[1, 1])\naxs[1, 1].set_title('CCAvg Distribution by Personal Loan')\n\n# Plot 5: Boxen Plot of Mortgage\nsns.boxenplot(data=train, x='Personal Loan', y='Mortgage', ax=axs[2, 0])\naxs[2, 0].set_title('Mortgage Distribution by Personal Loan')\n\n# Plot 6: Swarm Plot of Experience\nsns.swarmplot(data=train, x='Personal Loan', y='Experience', ax=axs[2, 1])\naxs[2, 1].set_title('Experience Distribution by Personal Loan')\n\n# Adjust layout\nplt.tight_layout()\n\n# Show the plots\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2024-05-22T13:45:50.242161Z","iopub.execute_input":"2024-05-22T13:45:50.242579Z","iopub.status.idle":"2024-05-22T13:46:54.777627Z","shell.execute_reply.started":"2024-05-22T13:45:50.242547Z","shell.execute_reply":"2024-05-22T13:46:54.776311Z"},"trusted":true},"execution_count":42,"outputs":[{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAABW0AAAb+CAYAAAAijRLDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVyVZf7/8fdhO4AIhMiWgpYm7poVkuWSJKJWKk1Z7po2BjZpUw2NpmgTjTUulenUlFrK2DLZoqm5NyU6Rl9Tcxk1CxtZQhNcABHu3x/9PHkCBQXOfYDX8/E4jwfnuq5zX5+b8xBv3tznuiyGYRgCAAAAAAAAADgFF7MLAAAAAAAAAAD8itAWAAAAAAAAAJwIoS0AAAAAAAAAOBFCWwAAAAAAAABwIoS2AAAAAAAAAOBECG0BAAAAAAAAwIkQ2gIAAAAAAACAEyG0BQAAAAAAAAAnQmgLAAAAAAAAAE6E0BZAvTR9+nRZLBaHzNWzZ0/17NnT9nzz5s2yWCx6//33HTL/qFGj1KxZM4fMdbVOnz6thx56SCEhIbJYLHrsscfMLgkAAAAXsVgsmj59utll2NmxY4duvfVWNWjQQBaLRTt37jS7JACoNoS2AGq9xYsXy2Kx2B6enp4KCwtTbGysXnrpJZ06dapa5jl27JimT5/ulBeDzlxbZTz33HNavHixJkyYoLffflvDhw+v8DUlJSUKCwuTxWLR6tWrHVAlAABA9fvttazFYlFQUJB69epVJ65x9u7dq+nTp+v777+v1uMWFxfrd7/7nU6cOKE5c+bo7bffVkRERLljHX3TBABUBzezCwCA6jJjxgw1b95cxcXFysrK0ubNm/XYY49p9uzZ+vjjj9WhQwfb2ClTpuhPf/rTFR3/2LFjSk5OVrNmzdSpU6dKv+6zzz67onmuxuVqe/3111VaWlrjNVTFxo0b1bVrV02bNu2KXpOZmalmzZpp2bJliouLq8EKAQAAataFa1nDMJSdna3FixerX79++uSTTzRgwACzy7tqe/fuVXJysnr27Fmtn/46fPiwfvjhB73++ut66KGHqu24AOAsCG0B1BlxcXG66aabbM+TkpK0ceNGDRgwQHfffbf27dsnLy8vSZKbm5vc3Gr2R+DZs2fl7e0tDw+PGp2nIu7u7qbOXxk5OTlq06bNFb1m6dKluvHGGzVy5Eg9/fTTOnPmjBo0aFBDFQIAANSs317Ljh07VsHBwfrnP/9Zq0PbmpKTkyNJ8vf3N7cQAKghLI8AoE674447NHXqVP3www9aunSprb28NW3XrVun2267Tf7+/vLx8VGrVq309NNPS/rlI1U333yzJGn06NG2j64tXrxY0i/r1rZr107p6enq3r27vL29ba/97Zq2F5SUlOjpp59WSEiIGjRooLvvvltHjx61G9OsWTONGjWqzGsvPmZFtZW3pu2ZM2f0+OOPq2nTprJarWrVqpVefPFFGYZhN85isSgxMVEffvih2rVrJ6vVqrZt22rNmjXlf8N/Iycnx/YLh6enpzp27KglS5bY+i98VO3IkSNatWqVrfaKPj5XUFCgFStWaMiQIbrvvvtUUFCgjz76qNyx7733ntq0aSNPT0+1a9dOK1asKPd7Ulpaqrlz56pt27by9PRUcHCwHn74Yf3888+VOlcAAIDq5O/vLy8vrzI3GlR0HVdQUKDIyEhFRkaqoKDA9roTJ04oNDRUt956q0pKSiT9cp3o4+Oj7777TrGxsWrQoIHCwsI0Y8aMMteF5fm///s/xcXFydfXVz4+Purdu7e2bdtm61+8eLF+97vfSZJ69eplu9bbvHnzZY+7ceNG3X777WrQoIH8/f11zz33aN++fbb+UaNGqUePHpKk3/3ud7JYLOVeb1/Ohd8HDh06pFGjRsnf319+fn4aPXq0zp49W2b80qVLdcstt8jb21vXXHONunfvXuYTda+++qratm0rq9WqsLAwJSQk6OTJk3ZjLvzesGvXLvXo0UPe3t5q0aKFbemGLVu2KCoqSl5eXmrVqpXWr19fppb//e9/GjNmjIKDg23X52+++eYVnT8A50doC6DOu7A+6uWWKfj22281YMAAFRUVacaMGfrb3/6mu+++W19++aUkqXXr1poxY4Ykafz48Xr77bf19ttvq3v37rZjHD9+XHFxcerUqZPmzp2rXr16Xbauv/zlL1q1apWeeuopPfroo1q3bp1iYmLsLq4rozK1XcwwDN19992aM2eO+vbtq9mzZ6tVq1Z64oknNHny5DLjv/jiCz3yyCMaMmSIZs2apcLCQsXHx+v48eOXraugoEA9e/bU22+/raFDh+qFF16Qn5+fRo0apXnz5tlqf/vttxUYGKhOnTrZam/cuPFlj/3xxx/r9OnTGjJkiEJCQtSzZ08tW7aszLhVq1bp/vvvl7u7u1JSUjR48GCNHTtW6enpZcY+/PDDeuKJJ9StWzfNmzdPo0eP1rJlyxQbG6vi4uLL1gMAAFBVeXl5ys3N1U8//aRvv/1WEyZM0OnTpzVs2DDbmMpcx3l5eWnJkiU6dOiQ/vznP9tem5CQoLy8PC1evFiurq629pKSEvXt21fBwcGaNWuWunTpomnTplW4bNW3336r22+/Xd98842efPJJTZ06VUeOHFHPnj21fft2SVL37t316KOPSpKefvpp27Ve69atL3nc9evXKzY2Vjk5OZo+fbomT56srVu3qlu3brY/7D/88MO2GyQeffRRvf3223bneiXuu+8+nTp1SikpKbrvvvu0ePFiJScn241JTk7W8OHD5e7urhkzZig5OVlNmzbVxo0bbWOmT5+uhIQEhYWF6W9/+5vi4+P197//XX369ClzLfnzzz9rwIABioqK0qxZs2S1WjVkyBC98847GjJkiPr166fnn39eZ86c0b333mu3R0d2dra6du2q9evXKzExUfPmzVOLFi00duxYzZ0796q+BwCclAEAtdyiRYsMScaOHTsuOcbPz8/o3Lmz7fm0adOMi38Ezpkzx5Bk/PTTT5c8xo4dOwxJxqJFi8r09ejRw5BkLFy4sNy+Hj162J5v2rTJkGRce+21Rn5+vq393XffNSQZ8+bNs7VFREQYI0eOrPCYl6tt5MiRRkREhO35hx9+aEgynn32Wbtx9957r2GxWIxDhw7Z2iQZHh4edm3ffPONIcl4+eWXy8x1sblz5xqSjKVLl9razp07Z0RHRxs+Pj525x4REWH079//sse72IABA4xu3brZnr/22muGm5ubkZOTYzeuffv2RpMmTYxTp07Z2jZv3mxIsvue/Pvf/zYkGcuWLbN7/Zo1a8ptBwAAqC4XrmV/+7BarcbixYvtxl7JdVxSUpLh4uJifP7558Z7771nSDLmzp1r97qRI0cakoyJEyfa2kpLS43+/fsbHh4edtfGkoxp06bZng8cONDw8PAwDh8+bGs7duyY0bBhQ6N79+62tgtzb9q0qVLfj06dOhlBQUHG8ePHbW3ffPON4eLiYowYMcLWduGa+r333qvwmOWNvfD7wJgxY+zGDho0yGjUqJHt+cGDBw0XFxdj0KBBRklJid3Y0tJSwzAMIycnx/Dw8DD69OljN+aVV14xJBlvvvmmre3C7w2pqam2tv379xuSDBcXF2Pbtm229rVr15a5xh87dqwRGhpq5Obm2tUyZMgQw8/Pzzh79myF3w8AtQN32gKoF3x8fOz+Qv1bF9bC+uijj6560y6r1arRo0dXevyIESPUsGFD2/N7771XoaGh+vTTT69q/sr69NNP5erqarvr4YLHH39chmGU2aU4JiZG119/ve15hw4d5Ovrq++++67CeUJCQvTAAw/Y2tzd3fXoo4/q9OnT2rJly1XVf/z4ca1du9buuPHx8bJYLHr33XdtbceOHdPu3bs1YsQI+fj42Np79Oih9u3b2x3zvffek5+fn+68807l5ubaHl26dJGPj482bdp0VbUCAABU1vz587Vu3TqtW7dOS5cuVa9evfTQQw/pgw8+sI25kuu46dOnq23btho5cqQeeeQR9ejRo8zrLkhMTLR9fWF5rHPnzpX70Xzpl7tzP/vsMw0cOFDXXXedrT00NFQPPvigvvjiC+Xn51/x9yAzM1M7d+7UqFGjFBAQYGvv0KGD7rzzzhq5Tv79739v9/z222/X8ePHbfV/+OGHKi0t1TPPPCMXF/sI5cJya+vXr9e5c+f02GOP2Y0ZN26cfH19tWrVKrvX+fj4aMiQIbbnrVq1kr+/v1q3bq2oqChb+4WvL1x3G4ahf/3rX7rrrrtkGIbddWtsbKzy8vL09ddfV/VbAsBJENoCqBdOnz5tF5D+1v33369u3brpoYceUnBwsIYMGaJ33333igLca6+99oo2HWvZsqXdc4vFohYtWlS4nmtV/fDDDwoLCyvz/bjwMbUffvjBrj08PLzMMa655poK13r94Ycf1LJlyzIXt5eap7LeeecdFRcXq3Pnzjp06JAOHTqkEydOKCoqym6JhAvHb9GiRZlj/Lbt4MGDysvLU1BQkBo3bmz3OH36tG2jCwAAgJpyyy23KCYmRjExMRo6dKhWrVqlNm3a2AJU6cqu4zw8PPTmm2/qyJEjOnXqlBYtWlRmTwdJcnFxsQteJemGG26QpEtel/700086e/asWrVqVaavdevWKi0tLbNXQ2VcqP9Sx83NzdWZM2eu+LiX89tr3WuuuUaSbNe6hw8flouLy2U3zb1U3R4eHrruuuvKXPc2adKkzHvh5+enpk2blmm7uJaffvpJJ0+e1GuvvVbmmvXCzSNctwJ1R81unQ4ATuDHH39UXl5eueHdBV5eXvr888+1adMmrVq1SmvWrNE777yjO+64Q5999pndul+XO0Z1K+/CWvrl7obK1FQdLjWPUYnNKWrChWC2W7du5fZ/9913ZX7xqEhpaamCgoLKXRdXUoVr7AIAAFQ3FxcX9erVS/PmzdPBgwfVtm3bKz7G2rVrJUmFhYU6ePCgmjdvXt1l1npmXOteas6KarlwQ8mwYcM0cuTIcsd26NChGioE4AwIbQHUeW+//bYkKTY29rLjXFxc1Lt3b/Xu3VuzZ8/Wc889pz//+c/atGmTYmJiLhmgXq2DBw/aPTcMQ4cOHbK70LrmmmvK7Dgr/fLX/IuDySupLSIiQuvXr9epU6fs7tLYv3+/rb86REREaNeuXSotLbW727Yq8xw5ckRbt25VYmKibcfgC0pLSzV8+HClpqZqypQptuMfOnSozHF+23b99ddr/fr16tatW42E7wAAAFfj/Pnzkn751Jh0Zddxu3bt0owZMzR69Gjt3LlTDz30kHbv3m27e/OC0tJSfffdd7a7ayXpv//9rySpWbNm5dbVuHFjeXt768CBA2X69u/fLxcXF9tdo1d6nSrpkscNDAxUgwYNKn286nD99dertLRUe/fuVadOncodc3HdF1+jnzt3TkeOHFFMTEy11NK4cWM1bNhQJSUl1XZMAM6L5REA1GkbN27UzJkz1bx5cw0dOvSS406cOFGm7cJFWVFRkSTZLhDLC1GvxltvvWW3zu7777+vzMxMxcXF2dquv/56bdu2zfaROElauXJlmY+bXUlt/fr1U0lJiV555RW79jlz5shisdjNXxX9+vVTVlaW3nnnHVvb+fPn9fLLL8vHx6dM6FoZF+6EffLJJ3XvvffaPe677z716NHDNiYsLEzt2rXTW2+9ZftFR5K2bNmi3bt32x33vvvuU0lJiWbOnFlmzvPnz1fbew4AAFBZxcXF+uyzz+Th4WFb/qCy13HFxcUaNWqUwsLCNG/ePC1evFjZ2dmaNGlSuXNdfDzDMPTKK6/I3d1dvXv3Lne8q6ur+vTpo48++shuCYXs7Gylpqbqtttuk6+vr6Qru04NDQ1Vp06dtGTJErvxe/bs0WeffaZ+/fpVeIzqNnDgQLm4uGjGjBlllk67cAdsTEyMPDw89NJLL9ndofvGG28oLy9P/fv3r5ZaXF1dFR8fr3/961/as2dPmf6ffvqpWuYB4By40xZAnbF69Wrt379f58+fV3Z2tjZu3Kh169YpIiJCH3/8sTw9PS/52hkzZujzzz9X//79FRERoZycHL366qtq0qSJbrvtNkm/BKj+/v5auHChGjZsqAYNGigqKuqqP2YWEBCg2267TaNHj1Z2drbmzp2rFi1aaNy4cbYxDz30kN5//3317dtX9913nw4fPqylS5fabQx2pbXddddd6tWrl/785z/r+++/V8eOHfXZZ5/po48+0mOPPVbm2Fdr/Pjx+vvf/65Ro0YpPT1dzZo10/vvv68vv/xSc+fOvewaw5eybNkyderUqcx6Xxfcfffdmjhxor7++mvdeOONeu6553TPPfeoW7duGj16tH7++We98sorateunV2Q26NHDz388MNKSUnRzp071adPH7m7u+vgwYN67733NG/ePN17771X/b0AAACoyIVrWemXdUlTU1N18OBB/elPf7IFoJW9jnv22We1c+dObdiwQQ0bNlSHDh30zDPPaMqUKbr33nvtwk9PT0+tWbNGI0eOVFRUlFavXq1Vq1bp6aefvuwSUc8++6zWrVun2267TY888ojc3Nz097//XUVFRZo1a5ZtXKdOneTq6qq//vWvysvLk9Vq1R133KGgoKByj/vCCy8oLi5O0dHRGjt2rAoKCvTyyy/Lz89P06dPr+q3+Yq1aNFCf/7znzVz5kzdfvvtGjx4sKxWq3bs2KGwsDClpKSocePGSkpKUnJysvr27au7775bBw4c0Kuvvqqbb75Zw4YNq7Z6nn/+eW3atElRUVEaN26c2rRpoxMnTujrr7/W+vXry70ZBUAtZQBALbdo0SJDku3h4eFhhISEGHfeeacxb948Iz8/v8xrpk2bZlz8I3DDhg3GPffcY4SFhRkeHh5GWFiY8cADDxj//e9/7V730UcfGW3atDHc3NwMScaiRYsMwzCMHj16GG3bti23vh49ehg9evSwPd+0aZMhyfjnP/9pJCUlGUFBQYaXl5fRv39/44cffijz+r/97W/Gtddea1itVqNbt27GV199VeaYl6tt5MiRRkREhN3YU6dOGZMmTTLCwsIMd3d3o2XLlsYLL7xglJaW2o2TZCQkJJSpKSIiwhg5cmS553ux7OxsY/To0UZgYKDh4eFhtG/f3lbXb4/Xv3//yx4rPT3dkGRMnTr1kmO+//57Q5IxadIkW9vy5cuNyMhIw2q1Gu3atTM+/vhjIz4+3oiMjCzz+tdee83o0qWL4eXlZTRs2NBo37698eSTTxrHjh2r8FwBAACuxm+vZSUZnp6eRqdOnYwFCxaUuT6r6DouPT3dcHNzMyZOnGj3uvPnzxs333yzERYWZvz888+GYfxyndigQQPj8OHDRp8+fQxvb28jODjYmDZtmlFSUmL3eknGtGnT7Nq+/vprIzY21vDx8TG8vb2NXr16GVu3bi1zjq+//rpx3XXXGa6uroYkY9OmTZf9nqxfv97o1q2b4eXlZfj6+hp33XWXsXfvXrsxF66p33vvvcse61JjL/w+8NNPP9mNvfB+HDlyxK79zTffNDp37mxYrVbjmmuuMXr06GGsW7fObswrr7xiREZGGu7u7kZwcLAxYcIE2/f6gkv93nCp6+Hyrsezs7ONhIQEo2nTpoa7u7sREhJi9O7d23jttdcq/F4AqD0shmHSTjIAAJikU6dOaty4sdatW2d2KQAAAKYZNWqU3n//fbtPIAEAnANr2gIA6qzi4mLbBh4XbN68Wd9884169uxpTlEAAAAAAFSANW0BAHXW//73P8XExGjYsGEKCwvT/v37tXDhQoWEhOj3v/+92eUBAAAAAFAuQlsAQJ11zTXXqEuXLvrHP/6hn376SQ0aNFD//v31/PPPq1GjRmaXBwAAAABAuVjTFgAAAAAAAACcCGvaAgAAAAAAAIATIbQFAAAAAAAAACfCmraVUFpaqmPHjqlhw4ayWCxmlwMAAID/zzAMnTp1SmFhYXJx4X6Ei3ENCwAA4Hwqe/1KaFsJx44dU9OmTc0uAwAAAJdw9OhRNWnSxOwynArXsAAAAM6routXQttKaNiwoaRfvpm+vr4mVwMAAIAL8vPz1bRpU9v1Gn7FNSwAAIDzqez1K6FtJVz4OJmvry8XvAAAAE6Ij/+XxTUsAACA86ro+pWFvwAAAAAAAADAiRDaAgAAAAAAAIATIbQFAAAAAAAAACfCmrYAAKBeKykpUXFxsdll4BLc3d3l6upqdhkAAACAQxHaAgCAeskwDGVlZenkyZNml4IK+Pv7KyQkhM3GAAAAUG8Q2gIAgHrpQmAbFBQkb29vAkEnZBiGzp49q5ycHElSaGioyRUBAAAAjkFoCwAA6p2SkhJbYNuoUSOzy8FleHl5SZJycnIUFBTEUgkAAACoF9iIDAAA1DsX1rD19vY2uRJUxoX3ibWHAQAAUF8Q2gIAgHqLJRFqB94nAAAA1DeEtgAAAAAAAADgRAhtAQAA6pFRo0Zp4MCBZpcBAAAA4DIIbQEAAH5j1KhRslgsslgs8vDwUIsWLTRjxgydP3/e7NJq3ObNm2WxWHTy5EmzSwEAAADqLTezCwAAAHBGffv21aJFi1RUVKRPP/1UCQkJcnd3V1JS0hUfq6SkRBaLRS4u/L0cAAAAQMX4zQEAAKAcVqtVISEhioiI0IQJExQTE6OPP/5YklRUVKQ//vGPuvbaa9WgQQNFRUVp8+bNttcuXrxY/v7++vjjj9WmTRtZrVZlZGRo8+bNuuWWW9SgQQP5+/urW7du+uGHH2yvW7Bgga6//np5eHioVatWevvtt+1qslgs+sc//qFBgwbJ29tbLVu2tNUk/RIOjx07Vs2bN5eXl5datWqlefPmVev35eeff9aIESN0zTXXyNvbW3FxcTp48KCt//jx43rggQd07bXXytvbW+3bt9c///lPu2P07NlTjz76qJ588kkFBAQoJCRE06dPr9Y6AQAAgNqM0BYAAKASvLy8dO7cOUlSYmKi0tLStHz5cu3atUu/+93v1LdvX7vw8uzZs/rrX/+qf/zjH/r2228VEBCggQMHqkePHtq1a5fS0tI0fvx4WSwWSdKKFSv0hz/8QY8//rj27Nmjhx9+WKNHj9amTZvs6khOTtZ9992nXbt2qV+/fho6dKhOnDghSSotLVWTJk303nvvae/evXrmmWf09NNP6913362278OoUaP01Vdf6eOPP1ZaWpoMw1C/fv1UXFwsSSosLFSXLl20atUq7dmzR+PHj9fw4cP1n//8x+44S5YsUYMGDbR9+3bNmjVLM2bM0Lp166qtTgAAAKA2sxiGYZhdhLPLz8+Xn5+f8vLy5Ovra3Y5AACgigoLC3XkyBE1b95cnp6eZfpHjRqlkydP6sMPP5RhGNqwYYMGDBigiRMnauLEibruuuuUkZGhsLAw22tiYmJ0yy236LnnntPixYs1evRo7dy5Ux07dpQknThxQo0aNdLmzZvVo0ePMnN269ZNbdu21WuvvWZru++++3TmzBmtWrVK0i932k6ZMkUzZ86UJJ05c0Y+Pj5avXq1+vbtW+65JiYmKisrS++//36ZcyvP5s2b1atXL/3888/y9/e36zt48KBuuOEGffnll7r11lsl/XJnbdOmTbVkyRL97ne/K/eYAwYMUGRkpF588UVJv9xpW1JSon//+9+2MbfccovuuOMOPf/882Vef7n3i+u0S+N7AwAA4Hwqe43GnbYAAADlWLlypXx8fOTp6am4uDjdf//9mj59unbv3q2SkhLdcMMN8vHxsT22bNmiw4cP217v4eGhDh062J4HBARo1KhRio2N1V133aV58+YpMzPT1r9v3z5169bNroZu3bpp3759dm0XH7NBgwby9fVVTk6OrW3+/Pnq0qWLGjduLB8fH7322mvKyMiolu/Jvn375ObmpqioKFtbo0aN1KpVK1udJSUlmjlzptq3b6+AgAD5+Pho7dq1ZWq4+DwkKTQ01O48ANQOW7du1f3336+tW7eaXQoAAHUKG5EBAACUo1evXlqwYIE8PDwUFhYmN7dfLptOnz4tV1dXpaeny9XV1e41Pj4+tq+9vLxsSx9csGjRIj366KNas2aN3nnnHU2ZMkXr1q1T165dK12Xu7u73XOLxaLS0lJJ0vLly/XHP/5Rf/vb3xQdHa2GDRvqhRde0Pbt26/o3KvihRde0Lx58zR37ly1b99eDRo00GOPPWZbWqIy5wGgdigsLNTs2bOVm5ur2bNn68Ybbyz30wsAAODKcactAABAORo0aKAWLVooPDzcFthKUufOnVVSUqKcnBy1aNHC7hESElLhcTt37qykpCRt3bpV7dq1U2pqqiSpdevW+vLLL+3Gfvnll2rTpk2la76wbMEjjzyizp07q0WLFnZ3/1ZV69atdf78ebsQ+Pjx4zpw4ICtzi+//FL33HOPhg0bpo4dO+q6667Tf//732qrAYDzWLZsmY4fPy7pl58FF36eAQCAquNOWwAAgCtwww03aOjQoRoxYoT+9re/qXPnzvrpp5+0YcMGdejQQf379y/3dUeOHNFrr72mu+++W2FhYTpw4IAOHjyoESNGSJKeeOIJ3XfffercubNiYmL0ySef6IMPPtD69esrXVvLli311ltvae3atWrevLnefvtt7dixQ82bN7/i89y9e7caNmxoe26xWNSxY0fdc889GjdunP7+97+rYcOG+tOf/qRrr71W99xzj62G999/X1u3btU111yj2bNnKzs7+4rCZwDO78cff1RqaqoubJFiGIZSU1PVp08fNWnSxOTqAACo/WrVnbbPP/+8LBaLHnvsMVtbYWGhEhIS1KhRI/n4+Cg+Pl7Z2dl2r8vIyFD//v3l7e2toKAgPfHEEzp//ryDqwcAAHXFokWLNGLECD3++ONq1aqVBg4cqB07dig8PPySr/H29tb+/fsVHx+vG264QePHj1dCQoIefvhhSdLAgQM1b948vfjii2rbtq3+/ve/a9GiRerZs2el63r44Yc1ePBg3X///YqKitLx48f1yCOPXNU5du/eXZ07d7Y9unTpYjv3Ll26aMCAAYqOjpZhGPr0009tyx1MmTJFN954o2JjY9WzZ0+FhIRo4MCBV1UDAOdkGIbmzZt3yXb2ugYAoOosRi35H3XHjh2677775Ovrq169emnu3LmSpAkTJmjVqlVavHix/Pz8lJiYKBcXF9vHC0tKStSpUyeFhITohRdeUGZmpkaMGKFx48bpueeeq9Tc7LwLAEDNyMjIUG5urkPnDAwMVFBQkI4cOaLmzZuz/mItUFhYeMn3i+u0S+N7g5ryww8/aOTIkZfsX7JkiSIiIhxYEQAAtUdlr9FqxfIIp0+f1tChQ/X666/r2WeftbXn5eXpjTfeUGpqqu644w5Jv9z90bp1a23btk1du3bVZ599pr1792r9+vUKDg5Wp06dNHPmTD311FOaPn26PDw8zDotAADqtYyMDEVGtlZBwVmHzuvl5a09e3Y7dE4AqEvCw8N188036+uvv1ZJSYmt3dXVVV26dLnspw4AAEDl1IrQNiEhQf3791dMTIxdaJuenq7i4mLFxMTY2iIjIxUeHq60tDR17dpVaWlpat++vYKDg21jYmNjNWHCBH377bfq3LlzmfmKiopUVFRke56fn19DZwYAQP2Vm5urgoKzihozTb6hzRwyZ37m99r+ZrJ+/vlneXt7O2ROAKhrLBaL/vCHP5S52/ZCu8ViMakyAADqDqcPbZcvX66vv/5aO3bsKNOXlZUlDw8P+fv727UHBwcrKyvLNubiwPZC/4W+8qSkpCg5ObkaqgcAABXxDW2mgPBWZpcBALgCTZo00YMPPqilS5fKMAxZLBY9+OCDuvbaa80uDQCAOsGpNyI7evSo/vCHP2jZsmUOXW8uKSlJeXl5tsfRo0cdNjcAAAAA1AZDhw5Vo0aNJP2yXviDDz5ockUAANQdTh3apqenKycnRzfeeKPc3Nzk5uamLVu26KWXXpKbm5uCg4N17tw5nTx50u512dnZCgkJkSSFhIQoOzu7TP+FvvJYrVb5+vraPQAAAAAAv/L09NTkyZMVHBysSZMmsbEjAADVyKmXR+jdu7d277bfKGT06NGKjIzUU089paZNm8rd3V0bNmxQfHy8JOnAgQPKyMhQdHS0JCk6Olp/+ctflJOTo6CgIEnSunXr5OvrqzZt2jj2hAAAAACgDrn11lt16623ml0GAAB1jlOHtg0bNlS7du3s2ho0aKBGjRrZ2seOHavJkycrICBAvr6+mjhxoqKjo9W1a1dJUp8+fdSmTRsNHz5cs2bNUlZWlqZMmaKEhARZrVaHnxMAAAAAAAAAXI5TL49QGXPmzNGAAQMUHx+v7t27KyQkRB988IGt39XVVStXrpSrq6uio6M1bNgwjRgxQjNmzDCxagAAAACo/bZu3ar7779fW7duNbsUAADqFKe+07Y8mzdvtnvu6emp+fPna/78+Zd8TUREhD799NMargwAAAAA6o/CwkLNnj1bubm5mj17tm688UbWtQUAoJrUutAWAACgNsvIyFBubq7D5gsMDFR4eLjD5gNQfyxbtkzHjx+XJB0/flypqakaM2aMyVUBAFA3ENoCAAA4SEZGhiIjW6ug4KzD5vTy8tb+/fuuOLidP3++XnjhBWVlZaljx456+eWXdcstt9RQlQBqmx9//FGpqakyDEOSZBiGUlNT1adPHzVp0sTk6gAAqP0IbQEAABwkNzdXBQVnFTVmmnxDm9X4fPmZ32v7m8nKzc29otD2nXfe0eTJk7Vw4UJFRUVp7ty5io2N1YEDBxQUFFSDFQOoDQzD0Lx58y7ZPmvWLFksFhMqAwCg7iC0BQAAcDDf0GYKCG9ldhmXNHv2bI0bN06jR4+WJC1cuFCrVq3Sm2++qT/96U8mVwfAbBkZGdqxY0eZ9pKSEu3YsUMZGRmKiIgwoTIAAOoOF7MLAAAAgPM4d+6c0tPTFRMTY2tzcXFRTEyM0tLSTKwMgLMIDw/XzTffLFdXV7t2V1dX3XLLLayjDQBANSC0BQAAgE1ubq5KSkoUHBxs1x4cHKysrCyTqgLgTCwWi/7whz9csp2lEQAAqDpCWwAAAADAFWnSpIkefPBBW0BrsVj04IMP6tprrzW5MgAA6gZCWwAAANgEBgbK1dVV2dnZdu3Z2dkKCQkxqSoAzmjo0KFq1KiRpF9+djz44IMmVwQAQN1BaAsAAAAbDw8PdenSRRs2bLC1lZaWasOGDYqOjjaxMgDOxtPTU5MnT1ZwcLAmTZokT09Ps0sCAKDOcDO7AAAAnFVGRoZyc3MdPm9gYCCbuMBUkydP1siRI3XTTTfplltu0dy5c3XmzBmNHj3a7NIAOJlbb71Vt956q9llAABQ5xDaAgBQjoyMDEVGtlZBwVmHz+3l5a39+/cR3NZh+ZnfO/U8999/v3766Sc988wzysrKUqdOnbRmzZoym5MBAAAAqBmEtgAAlCM3N1cFBWcVNWaafEObOWze/Mzvtf3NZOXm5hLa1kGBgYHy8vLW9jeTHTanl5e3AgMDr/h1iYmJSkxMrIGKAAAAAFSE0BYAgMvwDW2mgPBWZpeBOiI8PFz79+9z6LIbLLcBAAAA1D6EtgAAAA4UHh5OiAoAAADgslzMLgAAAAAAAAAA8CvutEW9xa7wAAAAAAAAcEaEtqiX2BUeAAAAAAAAzorQFvUSu8IDAAAAAADAWRHaol5jV3gAAAAAAAA4GzYiAwAAAAAAAAAnQmgLAAAAAAAAAE6E5REAAAAcKCMjQ7m5uQ6bLzAwkHXUAQAAgFqG0BYAAMBBMjIy1Dqylc4WFDpsTm8vT+3bf+CKgtvPP/9cL7zwgtLT05WZmakVK1Zo4MCBNVckAAAAADuEtgBQSzn6br0LuGsPuHq5ubk6W1CopeM7qXWoT43Pty/ztIa9tlO5ublX9O/2zJkz6tixo8aMGaPBgwfXYIUAAAAAykNoCwC1UEZGhiIjW6ug4KzD5/by8tb+/fsIboEqaB3qoxub+ZldxiXFxcUpLi7O7DIAAACAeovQFgBqodzcXBUUnFXUmGnyDW3msHnzM7/X9jeTr/iuPQAAAAAAUHmEtgBQi/mGNlNAeCuzywAAAPXUG2+8oWXLlmno0KEaO3as2eUAAFBnuJhdAAAAAACg9jl58qSWLVum0tJSLVu2TCdPnjS7JAAA6gxCWwAAAADAFZs6dapKS0slSaWlpXrmmWdMrggAgLqD0BYAAAAAcEW++uor7d69265t165d+uqrr0yqCACAuoXQFgAAAHZOnz6tnTt3aufOnZKkI0eOaOfOncrIyDC3MABOobS0VDNmzCi3b8aMGba7bwEAwNVjIzIAAAAH25d52qnn+eqrr9SrVy/b88mTJ0uSRo4cqcWLF1dHaQBqse3btys/P7/cvvz8fG3fvl3R0dEOrgoAgLqF0BYAAMBBAgMD5e3lqWGv7XTYnN5engoMDLyi1/Ts2VOGYdRQRQBqu5tuuqlK/QAAoGKEtgAAAA4SHh6uffsPKDc312FzBgYGKjw83GHzAaj7Pv300wr777nnHgdVA6C6GYahwsJCs8twOMMwVFRUJEmyWq2yWCwmV+RYnp6e9e6cnR2hLQAAgAOFh4cTogKo1fr37685c+Zcth9A7VVYWKi4uDizy4CDrV69Wl5eXmaXgYuwERkAAAAAoNL+97//VakfAABUjDttAQAAAACV1rRpU/n6+pa7GZmvr6+aNm1qQlUAqounp6dWr15tdhkOV1hYqEGDBkmSVqxYIU9PT5Mrcqz6dr61AaEtAACot9hsq3aobe9TSkqKPvjgA+3fv19eXl669dZb9de//lWtWrWyjSksLNTjjz+u5cuXq6ioSLGxsXr11VcVHBxsG5ORkaEJEyZo06ZN8vHx0ciRI5WSkiI3Ny7hYa6jR4+WG9hKUn5+vo4ePaqIiAgHVwWgulgslnr/MXlPT896/z2A+VgeAQAA1Ftnz541uwRUwoX3yd3d3eRKKmfLli1KSEjQtm3btG7dOhUXF6tPnz46c+aMbcykSZP0ySef6L333tOWLVt07NgxDR482NZfUlKi/v3769y5c9q6dauWLFmixYsX65lnnjHjlAA74eHhatKkSbl9TZo0Yd1uAACqAX+mBwAA9Y7FYpG/v79ycnIkSd7e3uyW64QMw9DZs2eVk5Mjf39/ubq6ml1SpaxZs8bu+eLFixUUFKT09HR1795deXl5euONN5Samqo77rhDkrRo0SK1bt1a27ZtU9euXfXZZ59p7969Wr9+vYKDg9WpUyfNnDlTTz31lKZPny4PDw8zTg2Q9MsfFX788cdy+3788UeVlJRwRzgAAFXE/6QAAKBeCgkJkSRbcAvn5e/vb3u/aqO8vDxJUkBAgCQpPT1dxcXFiomJsY2JjIxUeHi40tLS1LVrV6Wlpal9+/Z2yyXExsZqwoQJ+vbbb9W5c2fHngRwkbfeeqvC/jFjxjioGgAA6iZCWwAAUC9ZLBaFhoYqKChIxcXFZpeDS3B3d681d9iWp7S0VI899pi6deumdu3aSZKysrLk4eEhf39/u7HBwcHKysqyjbk4sL3Qf6GvPEVFRSoqKrI9v9Sao0BVDR069LLB7dChQx1YDQAAdROhLQAAqNdcXV1rdSgI55aQkKA9e/boiy++qPG5UlJSlJycXOPzAL9dAqS8/nvuucdB1QAAUDexERkAAABQAxITE7Vy5Upt2rTJbtOmkJAQnTt3TidPnrQbn52dbVsGIiQkRNnZ2WX6L/SVJykpSXl5ebbH0aNHq/FsgF/FxcVVqR8AAFSM0BYAAACoRoZhKDExUStWrNDGjRvVvHlzu/4uXbrI3d1dGzZssLUdOHBAGRkZio6OliRFR0dr9+7ddmsur1u3Tr6+vmrTpk2581qtVvn6+to9gJqwevXqKvUDAICKEdoCAAAA1SghIUFLly5VamqqGjZsqKysLGVlZamgoECS5Ofnp7Fjx2ry5MnatGmT0tPTNXr0aEVHR6tr166SpD59+qhNmzYaPny4vvnmG61du1ZTpkxRQkKCrFarmacHcKctAAAOQGgLAAAAVKMFCxYoLy9PPXv2VGhoqO3xzjvv2MbMmTNHAwYMUHx8vLp3766QkBB98MEHtn5XV1etXLlSrq6uio6O1rBhwzRixAjNmDHDjFMC7HCnLQAANY+NyAAAAIBqZBhGhWM8PT01f/58zZ8//5JjIiIi9Omnn1ZnaUC1GDBggF566SWVlJSU6XNzc9OAAQNMqAoAgLqF0BZAjcnIyFBubq5D5wwMDFR4eLhD5wQAAKhPXF1d9cQTT+j5558v0/fkk0/K1dXVhKoAAKhbCG0B1IiMjAxFRrZWQcFZh87r5eWt/fv3EdwCAADUoL59+5Yb2vbp08eEagAAqHucOrRdsGCBFixYoO+//16S1LZtWz3zzDO2he179uypLVu22L3m4Ycf1sKFC23PMzIyNGHCBG3atEk+Pj4aOXKkUlJS5Obm1KcO1Hq5ubkqKDirqDHT5BvazCFz5md+r+1vJis3N5fQFgAAoAY9/PDDl2z/+9//7uBqAACoe5w6uWzSpImef/55tWzZUoZhaMmSJbrnnnv0f//3f2rbtq0kady4cXYbMnh7e9u+LikpUf/+/RUSEqKtW7cqMzNTI0aMkLu7u5577jmHnw9QH/mGNlNAeCuzywAAAEA1OXv2rA4cOFBu34EDB3T27Fm738sAAMCVczG7gMu566671K9fP7Vs2VI33HCD/vKXv8jHx0fbtm2zjfH29lZISIjt4evra+v77LPPtHfvXi1dulSdOnVSXFycZs6cqfnz5+vcuXNmnBIAAAAA1GoTJkyoUj8AAKiYU4e2FyspKdHy5ct15swZRUdH29qXLVumwMBAtWvXTklJSTp79tf1M9PS0tS+fXsFBwfb2mJjY5Wfn69vv/32knMVFRUpPz/f7gEAAAAA+GUZu6r0AwCAijn18giStHv3bkVHR6uwsFA+Pj5asWKF2rRpI0l68MEHFRERobCwMO3atUtPPfWUDhw4oA8++ECSlJWVZRfYSrI9z8rKuuScKSkpSk5OrqEzAgAAAIDay8PDo0r9AACgYk4f2rZq1Uo7d+5UXl6e3n//fY0cOVJbtmxRmzZtNH78eNu49u3bKzQ0VL1799bhw4d1/fXXX/WcSUlJmjx5su15fn6+mjZtWqXzAAAAAIC64K233qqwf8yYMQ6qBgCAusnpl0fw8PBQixYt1KVLF6WkpKhjx46aN29euWOjoqIkSYcOHZIkhYSEKDs7227MhechISGXnNNqtcrX19fuAQAAAACQhg0bVqV+AABQMacPbX+rtLRURUVF5fbt3LlTkhQaGipJio6O1u7du5WTk2Mbs27dOvn6+tqWWAAAAAAAVF56enqV+gEAQMWcenmEpKQkxcXFKTw8XKdOnVJqaqo2b96stWvX6vDhw0pNTVW/fv3UqFEj7dq1S5MmTVL37t3VoUMHSVKfPn3Upk0bDR8+XLNmzVJWVpamTJmihIQEWa1Wk88OAAAAAGqfm2++uUr9AACgYk59p21OTo5GjBihVq1aqXfv3tqxY4fWrl2rO++8Ux4eHlq/fr369OmjyMhIPf7444qPj9cnn3xie72rq6tWrlwpV1dXRUdHa9iwYRoxYoRmzJhh4lkBAAAAQO21Y8eOKvUDAICKOfWdtm+88cYl+5o2baotW7ZUeIyIiAh9+umn1VkWAAAAANRbnTt3rlI/AAComFPfaQsAAAAAcC5//etfq9QPAAAqRmgLAAAAAKi0J554okr9AACgYoS2AAAAAIBKW758eZX6AQBAxQhtAQAAAACVNnz48Cr1AwCAihHaAgAAAAAq7dixY1XqBwAAFSO0BQAAAABUWnh4uJo1a1ZuX/PmzRUeHu7YggAAqIMIbQEAAAAAlVZaWqqjR4+W25eRkaHS0lIHVwQAQN1DaAsAAAAAqLSVK1eqpKSk3L6SkhKtXLnSwRUBAFD3ENoCAAAAACptwIABcnV1LbfPzc1NAwYMcHBFAADUPYS2AAAAAIBKc3V11RNPPFFu35NPPnnJQBcAAFQeoS0AAAAA4Ir07dtXFovFrs1isahPnz4mVQQAQN1CaAsAAAAAuCJr1qyRYRh2bYZhaM2aNSZVBABA3UJoCwAAAACotJKSEr3wwgvl9r3wwguX3KQMAABUHqEtAAAAAKDSVq5ceclgtqSkRCtXrnRwRQAA1D2EtgAAAACASouLi6tSPwAAqBihLQAAAACg0lavXl2lfgAAUDFCWwAAAABApfXp06dK/QAAoGKEtgAAAACASps1a1aV+gEAQMUIbQEAAAAAlZaUlFSlfgAAUDFCWwAAAABApbm5ucnd3b3cPnd3d7m5uTm4IgAA6h5CWwAAAABApW3fvl3FxcXl9hUXF2v79u0OrggAgLqH0BYAAAAAUGldunSpUj8AAKgYoS0AAAAAoNKWLl1apX4AAFAxQlsAAAAAQKXde++9VeoHAAAVI7QFAAAAAFTaxIkTq9QPAAAqRmgLAAAAAKi0OXPmVKkfAABUjNAWAAAAAFBp06ZNq1I/AACoGKEtAAAAAKDSUlJSqtQPAAAqRmgLAAAAAKi0d999t0r9AACgYoS2AAAAAIBKGzFiRJX6AQBAxQhtAQAAAACV5ubmpocffrjcvgkTJsjNzc3BFQEAUPcQ2gIAAAAArsgDDzwgq9Vq12a1WnX//febVBEAAHULoS0AAAAA4IoVFRVd9jkAALh6hLYAAAAAgCsyffr0K2oHAABXhtAWAAAAAFBpRUVF2rx5c7l9mzdv5o5bAACqAaEtAAAAAKDSpk6dWqV+AABQMUJbAAAAAEClTZs2rUr9AACgYoS2AAAAAIBKe+edd6rUDwAAKkZoCwAAAACotAceeKBK/QAAoGJuZhcAAAAAAKg9FixYUGH/5MmTHVQNUHMMw1BhYaHZZcBBLn6ved/rD09PT1ksFrPLKBehLQAAAACg0h555BF9/PHHl+0H6oLCwkLFxcWZXQZMMGjQILNLgIOsXr1aXl5eZpdRLpZHAAAAAABU2tq1a6vUDwAAKsadtgAAAACASouNjdWcOXMu2w/UNa/cdkJWV8PsMlCDDEM6V/rL1x4ukpN+Yh7VoKjEosQvAswuo0KEtgAAAACASnv11Vcr7GdNW9Q1VldDVlezq0BN8zS7ADhI7fgDDMsjAAAAAAAqbeLEiVXqBwAAFSO0BQAAAABUWkW7bDvrLtwAANQmhLYAAAAAgEp76623qtQPAAAqRmgLAAAAAKi04cOHV6kfAABUjNAWAAAAAFBpx44dq1I/AACoGKEtAAAAAKDSmjRpIldX13L7XF1d1aRJEwdXBABA3ePUoe2CBQvUoUMH+fr6ytfXV9HR0Vq9erWtv7CwUAkJCWrUqJF8fHwUHx+v7Oxsu2NkZGSof//+8vb2VlBQkJ544gmdP3/e0acCAAAAAHXCf/7zH5WUlJTbV1JSov/85z8OrggAgLrHqUPbJk2a6Pnnn1d6erq++uor3XHHHbrnnnv07bffSpImTZqkTz75RO+99562bNmiY8eOafDgwbbXl5SUqH///jp37py2bt2qJUuWaPHixXrmmWfMOiUAAAAAqNWioqLk6+tbbp+fn5+ioqIcXBEAAHWPU4e2d911l/r166eWLVvqhhtu0F/+8hf5+Pho27ZtysvL0xtvvKHZs2frjjvuUJcuXbRo0SJt3bpV27ZtkyR99tln2rt3r5YuXapOnTopLi5OM2fO1Pz583Xu3DmTzw4AAAAAah8XF5dL3ggzbdo0ubg49a+ZAADUCrXmf9OSkhItX75cZ86cUXR0tNLT01VcXKyYmBjbmMjISIWHhystLU2SlJaWpvbt2ys4ONg2JjY2Vvn5+ba7dctTVFSk/Px8uwcAAAAA4Bc33XRTue033nijgysBAKBucvrQdvfu3fLx8ZHVatXvf/97rVixQm3atFFWVpY8PDzk7+9vNz44OFhZWVmSpKysLLvA9kL/hb5LSUlJkZ+fn+3RtGnT6j0pAAAAAKjFFi5ceEXtAADgyjh9aNuqVSvt3LlT27dv14QJEzRy5Ejt3bu3RudMSkpSXl6e7XH06NEanQ8AAAAAaovi4mItX7683L7ly5eruLjYwRUBAFD3OH1o6+HhoRYtWqhLly5KSUlRx44dNW/ePIWEhOjcuXM6efKk3fjs7GyFhIRIkkJCQpSdnV2m/0LfpVitVvn6+to9AAAAAADSyy+/XKV+AABQMacPbX+rtLRURUVF6tKli9zd3bVhwwZb34EDB5SRkaHo6GhJUnR0tHbv3q2cnBzbmHXr1snX11dt2rRxeO0AAAAAUNtNnDixSv0AAKBibmYXcDlJSUmKi4tTeHi4Tp06pdTUVG3evFlr166Vn5+fxo4dq8mTJysgIEC+vr6aOHGioqOj1bVrV0lSnz591KZNGw0fPlyzZs1SVlaWpkyZooSEBFmtVpPPDgAAAABqH8MwqtQPAAAq5tR32ubk5GjEiBFq1aqVevfurR07dmjt2rW68847JUlz5szRgAEDFB8fr+7duyskJEQffPCB7fWurq5auXKlXF1dFR0drWHDhmnEiBGaMWOGWacEAAAAALVaSkpKlfoBAEDFnPpO2zfeeOOy/Z6enpo/f77mz59/yTERERH69NNPq7s0AAAAAKiXJk+erE2bNl22HwAAVI1T32kLAAAAAHAuM2fOrFI/AACoGKEtAAAAAKDSpkyZUqV+AABQMUJbAAAAAEClPfvss1XqBwAAFSO0BQAAAABU2tNPP12lfgAAUDFCWwAAAABApT3xxBNV6gcAABUjtAUAAAAAVNqsWbOq1A8AACpGaAsAAAAAqLRnnnmmSv0AAKBihLYAAAAAgEp7/vnnq9QPAAAqRmgLAAAAAKi09evXV6kfAABUjNAWAAAAAFBpAwYMqFI/AACoGKEtAAAAAKDSiouLq9QPAAAqRmgLAAAAAKi0J554okr9AACgYoS2AAAAAIBKe+GFF6rUDwAAKkZoCwAAAACoNE9PT91yyy3l9nXt2lWenp4OrggAgLqH0BYAAAAAcEVmzZpVbvvzzz/v4EoAAKib3MwuAAAAAABqM8MwVFhYaHYZDpecnKxp06bZPS8oKDCxIsfz9PSUxWIxuwwAQB1EaAsAAAAAVVBYWKi4uDizyzDdxQFufbF69Wp5eXmZXQYAoA5ieQQAAAAAAAAAcCLcaQsAAAAAVeDp6anVq1ebXYbDFRYWatCgQZKkFStW1MsNyOrjOQMAHIPQFgAAAACqwGKx1PuPyHt6etb77wEAANWJ5REAAAAAAAAAwIkQ2gIAAAAAAACAEyG0BQAAAAAAAAAnwpq2AFANMjIylJub67D59u3b57C5AABX5vPPP9cLL7yg9PR0ZWZmasWKFRo4cKCtf9SoUVqyZInda2JjY7VmzRrb8xMnTmjixIn65JNP5OLiovj4eM2bN08+Pj6OOg0AAACYiNAWAKooIyNDkZGtVVBw1uFzFxedc/icAIDLO3PmjDp27KgxY8Zo8ODB5Y7p27evFi1aZHtutVrt+ocOHarMzEytW7dOxcXFGj16tMaPH6/U1NQarR0AAADOgdAWAKooNzdXBQVnFTVmmnxDmzlkzszdadrz8Ws6f/68Q+YDAFReXFyc4uLiLjvGarUqJCSk3L59+/ZpzZo12rFjh2666SZJ0ssvv6x+/frpxRdfVFhYWLXXDAAAAOdCaAsA1cQ3tJkCwls5ZK78zO8dMg8AoGZs3rxZQUFBuuaaa3THHXfo2WefVaNGjSRJaWlp8vf3twW2khQTEyMXFxdt375dgwYNMqtsAAAAOAihLQAAAOBAffv21eDBg9W8eXMdPnxYTz/9tOLi4pSWliZXV1dlZWUpKCjI7jVubm4KCAhQVlbWJY9bVFSkoqIi2/P8/PwaOwcAAADULEJbAAAAwIGGDBli+7p9+/bq0KGDrr/+em3evFm9e/e+6uOmpKQoOTm5OkoEAACAyVzMLgAAAACoz6677joFBgbq0KFDkqSQkBDl5OTYjTl//rxOnDhxyXVwJSkpKUl5eXm2x9GjR2u0bgAAANQcQlsAAADARD/++KOOHz+u0NBQSVJ0dLROnjyp9PR025iNGzeqtLRUUVFRlzyO1WqVr6+v3QMAAAC1E8sjAADghPbt2+fQ+QIDAxUeHu7QOYG66vTp07a7ZiXpyJEj2rlzpwICAhQQEKDk5GTFx8crJCREhw8f1pNPPqkWLVooNjZWktS6dWv17dtX48aN08KFC1VcXKzExEQNGTJEYWFhZp0WAAAAHIjQFgAAJ1KQd1ySRcOGDXPovFarp/71r/dtd/o5gqODacBRvvrqK/Xq1cv2fPLkyZKkkSNHasGCBdq1a5eWLFmikydPKiwsTH369NHMmTNltVptr1m2bJkSExPVu3dvubi4KD4+Xi+99JLDzwUAAADmILQFAMCJFJ89JclQpwefUuPmkQ6Z86eD32jnu/M0YMAAh8z3W8VF50yZF6gpPXv2lGEYl+xfu3ZthccICAhQampqdZYFAACAWoTQFgAAJ+QTFK6A8FYOmSs/83s5OiiWpMzdadrz8Ws6f/68w+YEAAAAgNqA0BYAAEhybFAsXQiLAQAAAAC/5WJ2AQAAAAAAAACAXxHaAgAAAAAAAIATIbQFAAAAAAAAACdCaAsAAAAAAAAAToSNyADUOfv27avT8wEAAAAAgLqN0BZAnVGQd1ySRcOGDTNl/uKic6bMCwAAAAAA6hZCWwB1RvHZU5IMdXrwKTVuHumweTN3p2nPx6/p/PnzDpsTAAAAQM0yDMP2dVGJiYUAqFYX/3u++N+5syG0BeqBjIwM5ebmOnROM5cM8AkKV0B4K4fNl5/5vcPmAgAAAOAYRUVFtq8Tv2hkYiUAakpRUZG8vb3NLqNchLZAHZeRkaHIyNYqKDhryvwsGQAAAAAAAHBlCG2BOi43N1cFBWcVNWaafEObOWxelgwAAAAAUJtZrVbb16/cdlxWVxOLAVBtikp+vXv+4n/nzobQFqgnfEObsWQAAAAAAFSSxWKxfW11FaEtUAdd/O/c2biYXQAAAAAAAAAA4FfcaQuYwJGbdJm5IRgAAAAAAACuHKEt4EAFecclWTRs2DCHz82GYKjNMjIylJub69A5+YMHAAAAAMAsTh3apqSk6IMPPtD+/fvl5eWlW2+9VX/961/VqtWv63L27NlTW7ZssXvdww8/rIULF9qeZ2RkaMKECdq0aZN8fHw0cuRIpaSkyM3NqU8fdVDx2VOSDHV68Ck1bh7pkDnZEAy1XUZGhiIjW6ug4Kwp8/MHDwAAAACAozl1arllyxYlJCTo5ptv1vnz5/X000+rT58+2rt3rxo0aGAbN27cOM2YMcP23Nvb2/Z1SUmJ+vfvr5CQEG3dulWZmZkaMWKE3N3d9dxzzzn0fIALfILCHbYpGBuCobbLzc1VQcFZRY2ZJt/QZg6blz94AAAAAADM4tSh7Zo1a+yeL168WEFBQUpPT1f37t1t7d7e3goJCSn3GJ999pn27t2r9evXKzg4WJ06ddLMmTP11FNPafr06fLw8KjRcwAAVA/f0GYO+2OHxB88AAAAAADmcTG7gCuRl5cnSQoICLBrX7ZsmQIDA9WuXTslJSXp7NlfP0Kblpam9u3bKzg42NYWGxur/Px8ffvtt+XOU1RUpPz8fLsHAAAAAAAAADiCU99pe7HS0lI99thj6tatm9q1a2drf/DBBxUREaGwsDDt2rVLTz31lA4cOKAPPvhAkpSVlWUX2EqyPc/Kyip3rpSUFCUnJ9fQmQAAAAAAAADApdWa0DYhIUF79uzRF198Ydc+fvx429ft27dXaGioevfurcOHD+v666+/qrmSkpI0efJk2/P8/Hw1bdr06goHAAAAAAAAgCtQK5ZHSExM1MqVK7Vp0yY1adLksmOjoqIkSYcOHZIkhYSEKDs7227MheeXWgfXarXK19fX7gEAAAAAAAAAjuDUoa1hGEpMTNSKFSu0ceNGNW/evMLX7Ny5U5IUGhoqSYqOjtbu3buVk5NjG7Nu3Tr5+vqqTZs2NVI3AAAAAAAAAFwtp14eISEhQampqfroo4/UsGFD2xq0fn5+8vLy0uHDh5Wamqp+/fqpUaNG2rVrlyZNmqTu3burQ4cOkqQ+ffqoTZs2Gj58uGbNmqWsrCxNmTJFCQkJslqtZp4eAAAAAAAAAJTh1KHtggULJEk9e/a0a1+0aJFGjRolDw8PrV+/XnPnztWZM2fUtGlTxcfHa8qUKbaxrq6uWrlypSZMmKDo6Gg1aNBAI0eO1IwZMxx5KgAAwIns27fP4XMGBgYqPDzc4fMCAAAAqH2cOrQ1DOOy/U2bNtWWLVsqPE5ERIQ+/fTT6ioLAADUUgV5xyVZNGzYMIfP7eXlrf379xHcAgAAAKiQU4e2AAAA1an47ClJhjo9+JQaN4902Lz5md9r+5vJys3NJbQFAAAAUCFCWwAAUO/4BIUrILyV2WUAAAAAQLlczC4AAAAAAAAAAPArQlsAAAAAAAAAcCKEtgAAAAAAAADgRAhtAQAAAAAAAMCJENoCAAAAAAAAgBMhtAUAAAAAAAAAJ0JoCwAAAAAAAABOhNAWAAAAAAAAAJwIoS0AAAAAAAAAOBFCWwAAAAAAAABwIoS2AAAAAAAAAOBECG0BAAAAAAAAwIkQ2gIAAAAAAACAE3EzuwAAQO2zb9++OjkXAAAAAADOgNAWAFBpBXnHJVk0bNgwh89dXHTO4XMCAAAAAGAGQlsAQKUVnz0lyVCnB59S4+aRDpkzc3ea9nz8ms6fP++Q+QAAAAAAMBuhLQDgivkEhSsgvJVD5srP/N4h8wDABefOndORI0d0/fXXy82Ny2UAAAA4HhuRAQAAAJLOnj2rsWPHytvbW23btlVGRoYkaeLEiXr++edNrg4AAAD1CaEtAAAAICkpKUnffPONNm/eLE9PT1t7TEyM3nnnHRMrAwAAQH3D573gFDIyMpSbm+uw+diNHgAA/NaHH36od955R127dpXFYrG1t23bVocPHzaxMgAAANQ3NRLaXnfdddqxY4caNWpk137y5EndeOON+u6772piWtRSGRkZioxsrYKCsw6fm93oAQDABT/99JOCgoLKtJ85c8YuxAUAAABqWo2Ett9//71KSkrKtBcVFel///tfTUyJWiw3N1cFBWcVNWaafEObOWROdqMHAAC/ddNNN2nVqlWaOHGiJNmC2n/84x+Kjo42szQAAADUM9Ua2n788ce2r9euXSs/Pz/b85KSEm3YsEHNmjWrzilRh/iGNmM3egAAYJrnnntOcXFx2rt3r86fP6958+Zp79692rp1q7Zs2WJ2eQAAAKhHqjW0HThwoKRf7koYOXKkXZ+7u7uaNWumv/3tb9U5JQAAAFAtbrvtNu3cuVPPP/+82rdvr88++0w33nij0tLS1L59e7PLAwAAQD1SraFtaWmpJKl58+basWOHAgMDq/PwAAAAQI26/vrr9frrr5tdBgDAyRSVWCQZZpeBGmQY0rlfYi15uEgsZ193/fLv2fnVyJq2R44cqYnDAgAAADUuJydHOTk5thsSLujQoYNJFQEAzJb4RYDZJQCoZ2oktJWkDRs2aMOGDeVe8L755ps1NS0AAABwVdLT0zVy5Ejt27dPhmF/N5XFYil3o10AAACgJtRIaJucnKwZM2bopptuUmhoqG3nXQAAAMBZjRkzRjfccIPeeOMNBQcHcw0LAPWcp6enVq9ebXYZcJDCwkINGjRIkrRixQp5enqaXBEcwZnf5xoJbRcuXKjFixdr+PDhNXF4AAAAoNp99913+te//qUWLVqYXQoAwAlYLBZ5eXmZXQZM4OnpyXsP07nUxEHPnTunW2+9tSYODQAAANSI3r1765tvvjG7DAAAAKBm7rR96KGHlJqaqqlTp9bE4QEAAIBq949//EMjR47Unj171K5dO7m7u9v133333SZVBgAAgPqmRkLbwsJCvfbaa1q/fr06dOhQ5oJ39uzZNTEtAAAAcNXS0tL05Zdflrt+IRuRAQAAwJFqJLTdtWuXOnXqJEnas2ePXR8bOgAAAMAZTZw4UcOGDdPUqVMVHBxsdjkAAACox2oktN20aVNNHBYAAACoMcePH9ekSZMIbAEAAGC6GtmIDAAAAKhtBg8ezM0HAAAAcAo1cqdtr169LrsMwsaNG2tiWgAAAOCq3XDDDUpKStIXX3yh9u3bl9mX4dFHHzWpMgAAANQ3NRLaXljP9oLi4mLt3LlTe/bs0ciRI2tiSgAAAKBK/vGPf8jHx0dbtmzRli1b7PosFguhLQAAABymRkLbOXPmlNs+ffp0nT59uiamBAAAAKrkyJEjZpcAAAAASHLwmrbDhg3Tm2++6cgpAQAAgCtmGIYMwzC7DAAAANRTDg1t09LS5Onp6cgpAQAAgEp766231L59e3l5ecnLy0sdOnTQ22+/bXZZAAAAqGdqZHmEwYMH2z03DEOZmZn66quvNHXq1JqYEgAAAKiS2bNna+rUqUpMTFS3bt0kSV988YV+//vfKzc3V5MmTTK5QgAAANQXNRLa+vn52T13cXFRq1atNGPGDPXp06cmpgQAAACq5OWXX9aCBQs0YsQIW9vdd9+ttm3bavr06YS2AAAAcJgaCW0XLVpUE4cFAAAAakxmZqZuvfXWMu233nqrMjMzTagIAAAA9VWNrmmbnp6upUuXaunSpfq///u/mpwKAAAAqJIWLVro3XffLdP+zjvvqGXLliZUBAAAgPqqRu60zcnJ0ZAhQ7R582b5+/tLkk6ePKlevXpp+fLlaty4cU1MCwAAAFy15ORk3X///fr8889ta9p++eWX2rBhQ7lhLgAAAFBTauRO24kTJ+rUqVP69ttvdeLECZ04cUJ79uxRfn6+Hn300ZqYEgAAAKiS+Ph4bd++XYGBgfrwww/14YcfKjAwUP/5z380aNAgs8sDAABAPVIjd9quWbNG69evV+vWrW1tbdq00fz589mIDAAAAE6rS5cuWrp0qdllAAAAoJ6rkTttS0tL5e7uXqbd3d1dpaWllT5OSkqKbr75ZjVs2FBBQUEaOHCgDhw4YDemsLBQCQkJatSokXx8fBQfH6/s7Gy7MRkZGerfv7+8vb0VFBSkJ554QufPn7+6kwMAAECd9Omnn2rt2rVl2teuXavVq1ebUBEAAADqqxoJbe+44w794Q9/0LFjx2xt//vf/zRp0iT17t270sfZsmWLEhIStG3bNq1bt07FxcXq06ePzpw5YxszadIkffLJJ3rvvfe0ZcsWHTt2TIMHD7b1l5SUqH///jp37py2bt2qJUuWaPHixXrmmWeq52QBAABQJ/zpT39SSUlJmXbDMPSnP/3JhIoAAABQX9XI8givvPKK7r77bjVr1kxNmzaVJB09elTt2rW7oo+brVmzxu754sWLFRQUpPT0dHXv3l15eXl64403lJqaqjvuuEOStGjRIrVu3Vrbtm1T165d9dlnn2nv3r1av369goOD1alTJ82cOVNPPfWUpk+fLg8Pj+o7cQAAANRaBw8eVJs2bcq0R0ZG6tChQyZUBAAAgPqqRkLbpk2b6uuvv9b69eu1f/9+SVLr1q0VExNTpePm5eVJkgICAiRJ6enpKi4utjtuZGSkwsPDlZaWpq5duyotLU3t27dXcHCwbUxsbKwmTJigb7/9Vp07d65STQAAAKgb/Pz89N1336lZs2Z27YcOHVKDBg3MKQoAAAD1UrUuj7Bx40a1adNG+fn5slgsuvPOOzVx4kRNnDhRN998s9q2bat///vfV3Xs0tJSPfbYY+rWrZvatWsnScrKypKHh4f8/f3txgYHBysrK8s25uLA9kL/hb7yFBUVKT8/3+4BAACAuu2ee+7RY489psOHD9vaDh06pMcff1x33323iZUBAACgvqnW0Hbu3LkaN26cfH19y/T5+fnp4Ycf1uzZs6/q2AkJCdqzZ4+WL19e1TIrlJKSIj8/P9vjwhIPAAAAqLtmzZqlBg0aKDIyUs2bN1fz5s3VunVrNWrUSC+++KLZ5QEAAKAeqdbQ9ptvvlHfvn0v2d+nTx+lp6df8XETExO1cuVKbdq0SU2aNLG1h4SE6Ny5czp58qTd+OzsbIWEhNjGZGdnl+m/0FeepKQk5eXl2R5Hjx694poBAABQu/j5+Wnr1q1atWqVHnnkET3++OPasGGDNm7cWOaTXQAAAEBNqtY1bbOzs+Xu7n7pydzc9NNPP1X6eIZhaOLEiVqxYoU2b96s5s2b2/V36dJF7u7u2rBhg+Lj4yVJBw4cUEZGhqKjoyVJ0dHR+stf/qKcnBwFBQVJktatWydfX99yN5qQJKvVKqvVWuk6AQAAUDdYLBb16dNHffr0MbsUAAAA1GPVGtpee+212rNnj1q0aFFu/65duxQaGlrp4yUkJCg1NVUfffSRGjZsaFuD1s/PT15eXvLz89PYsWM1efJkBQQEyNfXVxMnTlR0dLS6du0q6Ze7e9u0aaPhw4dr1qxZysrK0pQpU5SQkEAwCwAAADsbNmzQhg0blJOTo9LSUru+N99806SqAAAAUN9U6/II/fr109SpU1VYWFimr6CgQNOmTdOAAQMqfbwFCxYoLy9PPXv2VGhoqO3xzjvv2MbMmTNHAwYMUHx8vLp3766QkBB98MEHtn5XV1etXLlSrq6uio6O1rBhwzRixAjNmDGjaicLAACAOiU5OVl9+vTRhg0blJubq59//tnuAQAAADhKtd5pO2XKFH3wwQe64YYblJiYqFatWkmS9u/fr/nz56ukpER//vOfK308wzAqHOPp6an58+dr/vz5lxwTERGhTz/9tNLzAgAAoP5ZuHChFi9erOHDh5tdCgAAAOq5ag1tg4ODtXXrVk2YMEFJSUm20NVisSg2Nlbz589XcHBwdU4JAAAAVItz587p1ltvNbsMAAAAoHpDW+nXu1p//vlnHTp0SIZhqGXLlrrmmmuqeyoAAACg2jz00ENKTU3V1KlTzS4FAAAA9Vy1h7YXXHPNNbr55ptr6vAAAABAtSosLNRrr72m9evXq0OHDnJ3d7frnz17tkmVAQAAoL6psdAWAAAAqE127dqlTp06SZL27NljbjEAAACo1whtAQAAAEmbNm0yuwQAAABAEqEtAAAA6rnBgwdXOMZisehf//qXA6oBAAAACG0BAABQz/n5+ZldAgAAAGCH0BYAAAD12qJFi8wuAQAAALDjYnYBAAAAAAAAAIBfEdoCAAAAAAAAgBNheQQAAAAH2bdvn0PnCwwMVHh4uEPnBAAAAFB1hLYAAAA1rCDvuCSLhg0b5tB5vby8tX//PoJbB/v888/1wgsvKD09XZmZmVqxYoUGDhxo6zcMQ9OmTdPrr7+ukydPqlu3blqwYIFatmxpG3PixAlNnDhRn3zyiVxcXBQfH6958+bJx8fHhDMCAACAoxHaAgAA1LDis6ckGer04FNq3DzSIXPmZ36v7W8mKzc3l9DWwc6cOaOOHTtqzJgxGjx4cJn+WbNm6aWXXtKSJUvUvHlzTZ06VbGxsdq7d688PT0lSUOHDlVmZqbWrVun4uJijR49WuPHj1dqaqqjTwcAAAAmILQFAABwEJ+gcAWEtzK7DNSwuLg4xcXFldtnGIbmzp2rKVOm6J577pEkvfXWWwoODtaHH36oIUOGaN++fVqzZo127Nihm266SZL08ssvq1+/fnrxxRcVFhbmsHMBAACAOdiIDAAAAHCQI0eOKCsrSzExMbY2Pz8/RUVFKS0tTZKUlpYmf39/W2ArSTExMXJxcdH27dsveeyioiLl5+fbPQAAAFA7EdoCAAAADpKVlSVJCg4OtmsPDg629WVlZSkoKMiu383NTQEBAbYx5UlJSZGfn5/t0bRp02quHgAAAI5CaAsAAADUAUlJScrLy7M9jh49anZJAAAAuEqEtgAAAICDhISESJKys7Pt2rOzs219ISEhysnJses/f/68Tpw4YRtTHqvVKl9fX7sHAAAAaidCWwAAAMBBmjdvrpCQEG3YsMHWlp+fr+3btys6OlqSFB0drZMnTyo9Pd02ZuPGjSotLVVUVJTDawYAAIDjuZldAAAAAFCXnD59WocOHbI9P3LkiHbu3KmAgACFh4frscce07PPPquWLVuqefPmmjp1qsLCwjRw4EBJUuvWrdW3b1+NGzdOCxcuVHFxsRITEzVkyBCFhYWZdFYAAABwJEJbAAAAoBp99dVX6tWrl+355MmTJUkjR47U4sWL9eSTT+rMmTMaP368Tp48qdtuu01r1qyRp6en7TXLli1TYmKievfuLRcXF8XHx+ull15y+LkAAADAHIS2AAAAQDXq2bOnDMO4ZL/FYtGMGTM0Y8aMS44JCAhQampqTZQHAACAWoA1bQEAAAAAAADAiRDaAgAAAAAAAIATIbQFAAAAAAAAACdCaAsAAAAAAAAAToTQFgAAAAAAAACcCKEtAAAAAAAAADgRQlsAAAAAAAAAcCKEtgAAAAAAAADgRAhtAQAAAAAAAMCJuJldAJxLRkaGcnNzHTrnvn37HDofAAAAAAAA4MwIbWGTkZGhyMjWKig4a8r8xUXnTJkXAAAAAAAAcCaEtrDJzc1VQcFZRY2ZJt/QZg6bN3N3mvZ8/JrOnz/vsDkBAAAAAAAAZ0VoizJ8Q5spILyVw+bLz/zeYXMBAAAAAAAAzo6NyAAAAAAAAADAiRDaAgAAAAAAAIATIbQFAAAAAAAAACdCaAsAAAAAAAAAToTQFgAAAAAAAACcCKEtAAAAAAAAADgRQlsAAAAAAAAAcCKEtgAAAAAAAADgRAhtAQAAAAAAAMCJENoCAAAAAAAAgBMhtAUAAAAAAAAAJ0JoCwAAAAAAAABOhNAWAAAAAAAAAJyIm9kFAAAAAKgbDMNQYWGh2WXAQS5+r3nf6w9PT09ZLBazywCAOo/QFgAAAEC1KCwsVFxcnNllwASDBg0yuwQ4yOrVq+Xl5WV2GQBQ5zn98giff/657rrrLoWFhclisejDDz+06x81apQsFovdo2/fvnZjTpw4oaFDh8rX11f+/v4aO3asTp8+7cCzAAAAAAAAAIDKcfo7bc+cOaOOHTtqzJgxGjx4cLlj+vbtq0WLFtmeW61Wu/6hQ4cqMzNT69atU3FxsUaPHq3x48crNTW1RmsHAAAA6qvTnR6Q4eL0v26gKgxDKj3/y9cubhIfma+zLKXn5bPzn2aXAQD1itNfRcXFxVX4ESur1aqQkJBy+/bt26c1a9Zox44duummmyRJL7/8svr166cXX3xRYWFh1V4zAAAAUN8ZLm6Sq7vZZaDGeZhdABzAMLsAAKiHnH55hMrYvHmzgoKC1KpVK02YMEHHjx+39aWlpcnf398W2EpSTEyMXFxctH37djPKBQAAAAAAAIBLcvo7bSvSt29fDR48WM2bN9fhw4f19NNPKy4uTmlpaXJ1dVVWVpaCgoLsXuPm5qaAgABlZWWVe8yioiIVFRXZnufn59foOQAAAAAAAADABbU+tB0yZIjt6/bt26tDhw66/vrrtXnzZvXu3fuqjpmSkqLk5OTqKhEAAAAAAAAAKq1OLI9wseuuu06BgYE6dOiQJCkkJEQ5OTl2Y86fP68TJ05cch3cpKQk5eXl2R5Hjx6t8boBAAAAAAAAQKqDoe2PP/6o48ePKzQ0VJIUHR2tkydPKj093TZm48aNKi0tVVRUVLnHsFqt8vX1tXsAAAAAAAAAgCM4/fIIp0+ftt01K0lHjhzRzp07FRAQoICAACUnJys+Pl4hISE6fPiwnnzySbVo0UKxsbGSpNatW6tv374aN26cFi5cqOLiYiUmJmrIkCEKCwsz67QAAAAAAAAAoFxOf6ftV199pc6dO6tz586SpMmTJ6tz58565pln5Orqql27dunuu+/WDTfcoLFjx6pLly7697//LavVajvGsmXLFBkZqd69e6tfv3667bbb9Nprr5l1SgAAAAAAAABwSU5/p23Pnj1lGMYl+9euXVvhMQICApSamlqdZQEAAAAAAABAjXD6O20BAAAAAAAAoD4htAUAAAAAAAAAJ0JoCwAAAAAAAABOhNAWAAAAAAAAAJwIoS0AAAAAAAAAOBFCWwAAAAAAAABwIoS2AAAAAAAAAOBECG0BAAAAAAAAwIkQ2gIAAAAAAACAEyG0BQAAAAAAAAAnQmgLAAAAAAAAAE6E0BYAAAAAAAAAnAihLQAAAAAAAAA4EUJbAAAAAAAAAHAihLYAAAAAAAAA4EQIbQEAAAAAAADAiRDaAgAAAAAAAIATIbQFAAAAAAAAACdCaAsAAAAAAAAAToTQFgAAAAAAAACcCKEtAAAAAAAAADgRQlsAAAAAAAAAcCKEtgAAAAAAAADgRAhtAQAAAAAAAMCJENoCAAAAAAAAgBMhtAUAAAAAAAAAJ0JoCwAAAAAAAABOhNAWAAAAAAAAAJwIoS0AAAAAAAAAOBFCWwAAAAAAAABwIoS2AAAAAAAAAOBECG0BAAAAAAAAwIkQ2gIAAAAAAACAEyG0BQAAAAAAAAAn4mZ2AQAAAKg5+/btc/icgYGBCg8Pd/i8AAAAQF1BaAsAAFAHFeQdl2TRsGHDHD63l5e39u/fR3ALAAAAXCVCWwAAgDqo+OwpSYY6PfiUGjePdNi8+Znfa/ubycrNzSW0BQAAAK4SoS0AAEAd5hMUroDwVmaXAQAAAOAKsBEZAAAAAAAAADgR7rQFAAAAAACAJMkwDBUWFppdhsNdfM718fw9PT1lsVjMLgMXIbQFAAAAAACApF8Cy7i4OLPLMNWgQYPMLsHhVq9eLS8vL7PLwEUIbQEAAABUC8Mwfn1SUmxeIQCq10X/nu3+nQMAagyhLQAAAIBqUVRUZPu64TfLTawEQE0pKiqSt7e32WWgBnl6emr16tVml+FwhmHY/h+zWq31bqkAT09Ps0vAbxDaAgAAAAAAQJJksVjq7cfk+YMEnAmhLQAAAIBqYbVabV+f6jhEcnU3sRoA1aak2Hb3/MX/zgEANYfQFgAAAEC1sPsoqas7oS1QB9W3j4wDgFlczC4AAAAAAAAAAPArQlsAAAAAAAAAcCKEtgAAAAAAAADgRAhtAQAAAAAAAMCJOH1o+/nnn+uuu+5SWFiYLBaLPvzwQ7t+wzD0zDPPKDQ0VF5eXoqJidHBgwftxpw4cUJDhw6Vr6+v/P39NXbsWJ0+fdqBZwEAAAAAAAAAleP0oe2ZM2fUsWNHzZ8/v9z+WbNm6aWXXtLChQu1fft2NWjQQLGxsSosLLSNGTp0qL799lutW7dOK1eu1Oeff67x48c76hQAAAAAAAAAoNLczC6gInFxcYqLiyu3zzAMzZ07V1OmTNE999wjSXrrrbcUHBysDz/8UEOGDNG+ffu0Zs0a7dixQzfddJMk6eWXX1a/fv304osvKiwszGHnAgAAAAAAAAAVcfo7bS/nyJEjysrKUkxMjK3Nz89PUVFRSktLkySlpaXJ39/fFthKUkxMjFxcXLR9+3aH1wwAAAAAAAAAl+P0d9peTlZWliQpODjYrj04ONjWl5WVpaCgILt+Nzc3BQQE2Mb8VlFRkYqKimzP8/Pzq7NsAAAAAAAAALikWn2nbU1JSUmRn5+f7dG0aVOzSwIAAAAAAABQT9Tq0DYkJESSlJ2dbdeenZ1t6wsJCVFOTo5d//nz53XixAnbmN9KSkpSXl6e7XH06NEaqB4AAAAAAAAAyqrVoW3z5s0VEhKiDRs22Nry8/O1fft2RUdHS5Kio6N18uRJpaen28Zs3LhRpaWlioqKKve4VqtVvr6+dg8AAAAAAAAAcASnD21Pnz6tnTt3aufOnZJ+2Xxs586dysjIkMVi0WOPPaZnn31WH3/8sXbv3q0RI0YoLCxMAwcOlCS1bt1affv21bhx4/Sf//xHX375pRITEzVkyBCFhYWZd2IAAACol6ZPny6LxWL3iIyMtPUXFhYqISFBjRo1ko+Pj+Lj48t8sgwAAAB1m9NvRPbVV1+pV69etueTJ0+WJI0cOVKLFy/Wk08+qTNnzmj8+PE6efKkbrvtNq1Zs0aenp621yxbtkyJiYnq3bu3XFxcFB8fr5deesnh5wIAAABIUtu2bbV+/Xrbcze3Xy/LJ02apFWrVum9996Tn5+fEhMTNXjwYH355ZdmlAoAAAATOH1o27NnTxmGccl+i8WiGTNmaMaMGZccExAQoNTU1JooDwAAALhibm5u5e6vkJeXpzfeeEOpqam64447JEmLFi1S69attW3bNnXt2tXRpQIAAMAETr88AgAAAFDXHDx4UGFhYbruuus0dOhQZWRkSJLS09NVXFysmJgY29jIyEiFh4crLS3tsscsKipSfn6+3QMAAAC1k9PfaVtfZWRkKDc316Fz7tu3z6HzAQAA1EdRUVFavHixWrVqpczMTCUnJ+v222/Xnj17lJWVJQ8PD/n7+9u9Jjg4WFlZWZc9bkpKipKTk2uwcgAAADgKoa0TysjIUGRkaxUUnDVl/uKic6bMCwAAUB/ExcXZvu7QoYOioqIUERGhd999V15eXld93KSkJNv+D5KUn5+vpk2bVqlWAAAAmIPQ1gnl5uaqoOCsosZMk29oM4fNm7k7TXs+fk3nz5932JwAAAD1nb+/v2644QYdOnRId955p86dO6eTJ0/a3W2bnZ1d7hq4F7NarbJarTVcLQAAAByB0NaJ+YY2U0B4K4fNl5/5vcPmAgAAwC9Onz6tw4cPa/jw4erSpYvc3d21YcMGxcfHS5IOHDigjIwMRUdHm1wpAAAAHIXQFgAAAHCgP/7xj7rrrrsUERGhY8eOadq0aXJ1ddUDDzwgPz8/jR07VpMnT1ZAQIB8fX01ceJERUdHq2vXrmaXDgAAAAchtAUAAAAc6Mcff9QDDzyg48ePq3Hjxrrtttu0bds2NW7cWJI0Z84cubi4KD4+XkVFRYqNjdWrr75qctUAAABwJEJbAAAAwIGWL19+2X5PT0/Nnz9f8+fPd1BFAAAAcDYuZhcAAAAAAAAAAPgVoS0AAAAAAAAAOBFCWwAAAAAAAABwIoS2AAAAAAAAAOBECG0BAAAAAAAAwIkQ2gIAAAAAAACAEyG0BQAAAAAAAAAnQmgLAAAAAAAAAE6E0BYAAAAAAAAAnAihLQAAAAAAAAA4EUJbAAAAAAAAAHAihLYAAAAAAAAA4EQIbQEAAAAAAADAiRDaAgAAAAAAAIATIbQFAAAAAAAAACdCaAsAAAAAAAAAToTQFgAAAAAAAACcCKEtAAAAAAAAADgRQlsAAAAAAAAAcCKEtgAAAAAAAADgRAhtAQAAAAAAAMCJENoCAAAAAAAAgBMhtAUAAAAAAAAAJ0JoCwAAAAAAAABOxM3sAgAAAADUPZbS8zLMLgI1yzCk0vO/fO3iJlks5taDGmO58D4DAByG0BYAAABAtfPZ+U+zSwAAAKi1WB4BAAAAAAAAAJwId9oCAAAAqBaenp5avXq12WXAQQoLCzVo0CBJ0ooVK+Tp6WlyRXAE3mcAcAxCWwAAAADVwmKxyMvLy+wyYAJPT0/eewAAqhHLIwAAAAAAAACAEyG0BQAAAAAAAAAnQmgLAAAAAAAAAE6E0BYAAAAAAAAAnAihLQAAAAAAAAA4EUJbAAAAAAAAAHAihLYAAAAAAAAA4EQIbQEAAAAAAADAiRDaAgAAAAAAAIATIbQFAAAAAAAAACdCaAsAAAAAAAAAToTQFgAAAAAAAACcCKEtAAAAAAAAADiRWh/aTp8+XRaLxe4RGRlp6y8sLFRCQoIaNWokHx8fxcfHKzs728SKAQAAAAAAAODSan1oK0lt27ZVZmam7fHFF1/Y+iZNmqRPPvlE7733nrZs2aJjx45p8ODBJlYLAAAAAAAAAJfmZnYB1cHNzU0hISFl2vPy8vTGG28oNTVVd9xxhyRp0aJFat26tbZt26auXbs6ulQAAAAAAAAAuKw6caftwYMHFRYWpuuuu05Dhw5VRkaGJCk9PV3FxcWKiYmxjY2MjFR4eLjS0tLMKhcAAAAAAAAALqnW32kbFRWlxYsXq1WrVsrMzFRycrJuv/127dmzR1lZWfLw8JC/v7/da4KDg5WVlXXJYxYVFamoqMj2PD8/v6bKBwAAAAAAAAA7tT60jYuLs33doUMHRUVFKSIiQu+++668vLyu6pgpKSlKTk6urhIBAAAAAAAAoNLqxPIIF/P399cNN9ygQ4cOKSQkROfOndPJkyftxmRnZ5e7Bu4FSUlJysvLsz2OHj1aw1UDAAAAAAAAwC/qXGh7+vRpHT58WKGhoerSpYvc3d21YcMGW/+BAweUkZGh6OjoSx7DarXK19fX7gEAAAAAAAAAjlDrl0f44x//qLvuuksRERE6duyYpk2bJldXVz3wwAPy8/PT2LFjNXnyZAUEBMjX11cTJ05UdHS0unbtanbpAAAAAAAAAFBGrQ9tf/zxRz3wwAM6fvy4GjdurNtuu03btm1T48aNJUlz5syRi4uL4uPjVVRUpNjYWL366qsmVw0AAAAAAAAA5av1oe3y5csv2+/p6an58+dr/vz5DqoIAAAAAAAAAK5enVvTFgAAAAAAAABqM0JbAAAAAAAAAHAihLYAAAAAAAAA4EQIbQEAAAAAAADAiRDaAgAAAAAAAIATcTO7AADA1Tt+9KBD5/v52PcOnQ8AAAAAgPqI0BYAaiGLm6cki/b9a64p85capabMCwAAAABAfUBoCwC1kJu3ryRDE3qFq1vLAIfN++XBE1qwKUMuFlbXAQAAAACgphDaAkAt1q1lgIZGX+vQORdsynDofAAAAAAA1DfcKgUAAAAAAAAAToQ7bVGvsYkTgIrwcwIAAAAA4GiEtqiX2MQJQEX4OQEAAAAAMAuhLeolNnECUBF+TgAAAAAAzEJoi3qNTZwAVISfEwAAAAAARyO0BUzgyDUyWR8TAAAAAACgdiG0BRzo3PkSmbVGZm7Gfx06H2ExAAAAAADA1SG0BRzIw81VkqEp/SIU2eQah8y55cBxvb7lR+3/YJ5D5vstNlMCAAAAAAC4MoS2gAn6tA3Q7W3CHDbf61uOOjQolthMCQAAAAAA4GoR2gL1hKODYqn+babkyLWKHTkXUNNY5xsAAAAA7BHaAkAVWdw8Zc5axRZ5u7H8BGov8/7tsHQLAAAAAOdGaAsAVeTm7SvJ0IRe4erWMsAhc15YfiKwgatD5gNqgpn/dli6BQAAAIAzI7QFgGrSrWWAhkZf67D56tvyE6i7+LcDAAAAAPYIbQHUKNaqBGoPR6+VzNrMAAAAAFA+QluU4ehfogna6qZz50vEWpVA7WDm2rKszQwAAAAAZRHawsbcX9ql3Iz/Omwu7u6qeR5urpIMTekXocgm1zhkTtaqRF3iyJ9Tecez5ei1ZaX6uTYznz4AAAAAUBmEtrAxY0MYSdpy4Lhe3/Kj9n8wz2Fz/oK7uxyhT9sA3d4mzGHzsVYlajvz7lK36M7W/hp0s+PWlpXqz79ZM/8wyqcPAAAAgNqH0BZlOHpDGEl6fctRU+7IrE93dwG1XX1Zb9XMu9T5mVhzzPjDKJ8+AAAAAGovQls4De7IBGoPRwaaJ7KPqT6ut8rPxLrJ0X8Y5X0FAAAAaidCWwBApZm5wdwfYprq5usaOWw+7j6t2+rLndsAAAAAaidCWwBApZn50f34zoEOvfNU4i7FusjMPzywljpQdxmGocLCQrPLcLiLz7k+nr8keXp6ymKxmF0GAKAOIrQFAFwxPrqP2sqMPzxI3LkN1HWFhYWKi4szuwxTDRo0yOwSTLF69Wp5eXmZXQYAoA4itAUAAPWOo//wIPHHBwAAAACVR2gLAAAAAFXg6emp1atXm12GwxmGoaKiIkmS1Wqtl8sEeHp6ml0CAKCOIrQFAAAAgCqwWCz19iPy3t7eZpcAAECdRGgLoM5hV3gAAAAAAFCbEdoCqDPYFR4AAAAAANQFhLYA6gx2hQcAAAAAAHUBoS2AOodd4QHgV45ewuV0Dj8PAQAAgKoitAUAAKiDTF0yxmKx7SgPAAAA4MoR2gIAANRBZi0ZcyT3rKZ+8F9ZrVaHzQkAAADUNYS2AAAAdZijl4z5+vs8Tf3gvw6bDwAAAKiLXMwuAAAAAAAAAADwK0JbAAAAAAAAAHAihLYAAAAAAAAA4EQIbQEAAAAnNX/+fDVr1kyenp6KiorSf/7zH7NLAgAAgAMQ2gIAAABO6J133tHkyZM1bdo0ff311+rYsaNiY2OVk5NjdmkAAACoYYS2AAAAgBOaPXu2xo0bp9GjR6tNmzZauHChvL299eabb5pdGgAAAGoYoS0AAADgZM6dO6f09HTFxMTY2lxcXBQTE6O0tDQTKwMAAIAjuJldAAAAAAB7ubm5KikpUXBwsF17cHCw9u/fX+5rioqKVFRUZHuen59fozUCAACg5nCnLQAAAFAHpKSkyM/Pz/Zo2rSp2SUBAADgKtWr0JbddwEAAFAbBAYGytXVVdnZ2Xbt2dnZCgkJKfc1SUlJysvLsz2OHj3qiFIBAABQA+pNaMvuuwAAAKgtPDw81KVLF23YsMHWVlpaqg0bNig6Orrc11itVvn6+to9AAAAUDvVm9CW3XcBAABQm0yePFmvv/66lixZon379mnChAk6c+aMRo8ebXZpAAAAqGH1YiOyC7vvJiUl2drYfRcAAADO7P7779dPP/2kZ555RllZWerUqZPWrFlTZnMyAAAA1D31IrS90t13f7vzbl5eniTH7cB7+vRpSVLWf7/RqRPHHTKnJJ3432FJ0r7MU/r8gOPm3Zd5SpK0M+OUDFfHzGvGnGbNy7nWzXk5V+at7XOaNS/nWvMOZJ2R9Mv1jCOunS7MYRhGjc9lhsTERCUmJl7Vay98Txx1DQsAAICKVfb61WLU1Svcixw7dkzXXnuttm7darcG2JNPPqktW7Zo+/btduOnT5+u5ORkR5cJAACAq3T06FE1adLE7DKcyo8//qimTZuaXQYAAADKUdH1a7240/ZKd99NSkrS5MmTbc9LS0t14sQJNWrUSBaLpcbrhWPk5+eradOmOnr0KBt11DO89/Ub73/9xvtf9xiGoVOnTiksLMzsUpxOWFiYjh49qoYNG3INixrDz1UAdQk/0+AIlb1+rReh7cW77w4cOFDSr7vvlvdxM6vVKqvVatfm7+/vgEphBnZXrr947+s33v/6jfe/bvHz8zO7BKfk4uLC3cdwGH6uAqhL+JmGmlaZ69d6EdpKv+y+O3LkSN1000265ZZbNHfuXHbfBQAAAAAAAOB06k1oy+67AAAAAAAAAGqDehPaSlXbfRd1j9Vq1bRp08oshYG6j/e+fuP9r994/wGgevFzFUBdws80OBOLYRiG2UUAAAAAAAAAAH7hYnYBAAAAAAAAAPD/2LvzuKgK9Y/j32HfQVxYzAXTTM0Fzcws07LUsrRMs+y6ZOmvXFLbrt0ys8XKFs26lrdS62pWXjPLXMh9wV00NddwKQVNBQRlmzm/P3BGRxABgTPA5/16zUvmnDNnnjODevjyzHNwAaEtAAAAAAAAALgQQlsAAAAAAAAAcCGEtijXJk+erCZNmigoKEhBQUFq3bq1FixY4Fifnp6uwYMHq3LlygoICFD37t2VmJhoYsUoKW+//bYsFouGDx/uWMb7X36NGTNGFovF6Xb99dc71vPel39//fWXHnvsMVWuXFm+vr5q3LixNm3a5FhvGIZGjx6tiIgI+fr6qkOHDtq3b5+JFQNA2fPJJ5+odu3a8vHxUatWrbRhwwazSwKAIlm5cqXuu+8+RUZGymKxaO7cuWaXBBDaony75ppr9Pbbb2vz5s3atGmT7rjjDnXt2lU7d+6UJI0YMUI//fSTvv/+e61YsUJHjx7Vgw8+aHLVKG4bN27UZ599piZNmjgt5/0v3xo1aqRjx445bqtXr3as470v306fPq02bdrI09NTCxYs0K5du/T++++rUqVKjm3effddffTRR/r000+1fv16+fv7q2PHjkpPTzexcgAoO7799luNHDlSr776qrZs2aKmTZuqY8eOOn78uNmlAUChpaWlqWnTpvrkk0/MLgVwsBiGYZhdBFCaQkNDNX78eD300EOqWrWqZs6cqYceekiStHv3bjVo0ECxsbG6+eabTa4UxSE1NVXNmzfXv//9b73xxhtq1qyZJkyYoOTkZN7/cmzMmDGaO3eu4uLicq3jvS///vnPf2rNmjVatWpVnusNw1BkZKSeffZZPffcc5Jyvi/CwsI0bdo09erVqzTLBYAyqVWrVmrZsqU+/vhjSZLNZlONGjU0dOhQ/fOf/zS5OgAoOovFoh9++EHdunUzuxRUcHTaosKwWq2aNWuW0tLS1Lp1a23evFlZWVnq0KGDY5vrr79eNWvWVGxsrImVojgNHjxY9957r9P7LIn3vwLYt2+fIiMjVadOHfXu3VuHDx+WxHtfEcybN0833nijevTooWrVqik6Olr/+c9/HOvj4+OVkJDg9D0QHBysVq1a8T0AAAWQmZmpzZs3O/076ubmpg4dOvDvKAAAxYTQFuXeb7/9poCAAHl7e+v//u//9MMPP6hhw4ZKSEiQl5eXQkJCnLYPCwtTQkKCOcWiWM2aNUtbtmzRuHHjcq3j/S/fWrVqpWnTpmnhwoWaPHmy4uPjddttt+nMmTO89xXAH3/8ocmTJ6tevXpatGiRnnrqKQ0bNkzTp0+XJMf7HBYW5vQ4vgcAoGD+/vtvWa1W/h0FAKAEeZhdAFDS6tevr7i4OCUnJ2v27Nnq27evVqxYYXZZKGFHjhzRM888o5iYGPn4+JhdDkpZ586dHV83adJErVq1Uq1atfTdd9/J19fXxMpQGmw2m2688Ua99dZbkqTo6Gjt2LFDn376qfr27WtydQAAAABwZXTaotzz8vJS3bp11aJFC40bN05NmzbVxIkTFR4erszMTCUlJTltn5iYqPDwcHOKRbHZvHmzjh8/rubNm8vDw0MeHh5asWKFPvroI3l4eCgsLIz3vwIJCQnRddddp/379/N3vwKIiIhQw4YNnZY1aNDAMSLD/j4nJiY6bcP3AAAUTJUqVeTu7s6/owAAlCBCW1Q4NptNGRkZatGihTw9PbVkyRLHuj179ujw4cNq3bq1iRWiONx555367bffFBcX57jdeOON6t27t+Nr3v+KIzU1VQcOHFBERAR/9yuANm3aaM+ePU7L9u7dq1q1akmSoqKiFB4e7vQ9kJKSovXr1/M9AAAF4OXlpRYtWjj9O2qz2bRkyRL+HQUAoJgwHgHl2qhRo9S5c2fVrFlTZ86c0cyZM7V8+XItWrRIwcHBGjBggEaOHKnQ0FAFBQVp6NChat26NVePLwcCAwN1ww03OC3z9/dX5cqVHct5/8uv5557Tvfdd59q1aqlo0eP6tVXX5W7u7seeeQR/u5XACNGjNAtt9yit956Sz179tSGDRs0ZcoUTZkyRVLOFYGHDx+uN954Q/Xq1VNUVJReeeUVRUZGcpVgACigkSNHqm/fvrrxxht10003acKECUpLS1P//v3NLg0ACi01NVX79+933I+Pj1dcXJxCQ0NVs2ZNEytDRUZoi3Lt+PHj6tOnj44dO6bg4GA1adJEixYt0l133SVJ+vDDD+Xm5qbu3bsrIyNDHTt21L///W+Tq0Zp4f0vv/7880898sgjOnnypKpWrapbb71V69atU9WqVSXx3pd3LVu21A8//KBRo0Zp7NixioqK0oQJE9S7d2/HNi+88ILS0tI0cOBAJSUl6dZbb9XChQuZgQ0ABfTwww/rxIkTGj16tBISEtSsWTMtXLgw18XJAKAs2LRpk9q3b++4P3LkSElS3759NW3aNJOqQkVnMQzDMLsIAAAAAAAAAEAOZtoCAAAAAAAAgAshtAUAAAAAAAAAF0JoCwAAAAAAAAAuhNAWAAAAAAAAAFwIoS0AAAAAAAAAuBBCWwAAAAAAAABwIYS2AAAAAAAAAOBCCG0BAAAAAAAAwIUQ2gIAAAAAgDKtX79+6tatm9llAECxIbQFgHIkNjZW7u7uuvfee80uBQAAAC6mX79+slgsslgs8vLyUt26dTV27FhlZ2ebXVqJW758uSwWi5KSkswuBQAKhNAWAMqRL774QkOHDtXKlSt19OhRs8sBAACAi+nUqZOOHTumffv26dlnn9WYMWM0fvz4Iu3LarXKZrMVc4UAAInQFgDKjdTUVH377bd66qmndO+992ratGlO6+fNm6d69erJx8dH7du31/Tp03N1G6xevVq33XabfH19VaNGDQ0bNkxpaWmleyAAAAAoMd7e3goPD1etWrX01FNPqUOHDpo3b54kKSMjQ88995yqV68uf39/tWrVSsuXL3c8dtq0aQoJCdG8efPUsGFDeXt76/Dhw1q+fLluuukm+fv7KyQkRG3atNGhQ4ccj5s8ebKuvfZaeXl5qX79+vr666+darJYLPr888/1wAMPyM/PT/Xq1XPUJOWEwwMGDFBUVJR8fX1Vv359TZw4sVhfl9OnT6tPnz6qVKmS/Pz81LlzZ+3bt8+x/uTJk3rkkUdUvXp1+fn5qXHjxvrmm2+c9tGuXTsNGzZML7zwgkJDQxUeHq4xY8YUa50AKg5CWwAoJ7777jtdf/31ql+/vh577DF9+eWXMgxDkhQfH6+HHnpI3bp107Zt2zRo0CD961//cnr8gQMH1KlTJ3Xv3l3bt2/Xt99+q9WrV2vIkCFmHA4AAABKga+vrzIzMyVJQ4YMUWxsrGbNmqXt27erR48e6tSpk1N4efbsWb3zzjv6/PPPtXPnToWGhqpbt266/fbbtX37dsXGxmrgwIGyWCySpB9++EHPPPOMnn32We3YsUODBg1S//79tWzZMqc6XnvtNfXs2VPbt2/XPffco969e+vUqVOSJJvNpmuuuUbff/+9du3apdGjR+ull17Sd999V2yvQ79+/bRp0ybNmzdPsbGxMgxD99xzj7KysiRJ6enpatGihebPn68dO3Zo4MCB+sc//qENGzY47Wf69Ony9/fX+vXr9e6772rs2LGKiYkptjoBVBwWw/4TPQCgTGvTpo169uypZ555RtnZ2YqIiND333+vdu3a6Z///Kfmz5+v3377zbH9yy+/rDfffFOnT59WSEiInnjiCbm7u+uzzz5zbLN69WrdfvvtSktLk4+PjxmHBQAAgGLSr18/JSUlae7cuTIMQ0uWLFGXLl00dOhQDR06VHXq1NHhw4cVGRnpeEyHDh1000036a233tK0adPUv39/xcXFqWnTppKkU6dOqXLlylq+fLluv/32XM/Zpk0bNWrUSFOmTHEs69mzp9LS0jR//nxJOZ22L7/8sl5//XVJUlpamgICArRgwQJ16tQpz2MZMmSIEhISNHv27FzHlpfly5erffv2jnPfi+3bt0/XXXed1qxZo1tuuUVSTmdtjRo1NH36dPXo0SPPfXbp0kXXX3+93nvvPUk5nbZWq1WrVq1ybHPTTTfpjjvu0Ntvv53nPgDgcjzMLgAAcPX27NmjDRs26IcffpAkeXh46OGHH9YXX3yhdu3aac+ePWrZsqXTY2666San+9u2bdP27ds1Y8YMxzLDMGSz2RQfH68GDRqU/IEAAACgRP38888KCAhQVlaWbDabHn30UY0ZM0bLly+X1WrVdddd57R9RkaGKleu7Ljv5eWlJk2aOO6HhoaqX79+6tixo+666y516NBBPXv2VEREhCTp999/18CBA5322aZNm1zjDS7ep7+/v4KCgnT8+HHHsk8++URffvmlDh8+rHPnzikzM1PNmjW76tfDXqOHh4datWrlWFa5cmXVr19fv//+u6ScEQ1vvfWWvvvuO/3111/KzMxURkaG/Pz8LnsckhQREeF0HABQUIS2AFAOfPHFF8rOznbqijAMQ97e3vr4448LtI/U1FQNGjRIw4YNy7WuZs2axVYrAAAAzNO+fXtNnjxZXl5eioyMlIdHTiyQmpoqd3d3bd68We7u7k6PCQgIcHzt6+vrGH1gN3XqVA0bNkwLFy7Ut99+q5dfflkxMTG6+eabC1yXp6en032LxeK4yNmsWbP03HPP6f3331fr1q0VGBio8ePHa/369YU69qsxfvx4TZw4URMmTFDjxo3l7++v4cOHO0ZLFOQ4AKAwCG0BoIzLzs7WV199pffff193332307pu3brpm2++Uf369fXLL784rdu4caPT/ebNm2vXrl2qW7duidcMAAAAc/j7++d5vhcdHS2r1arjx4/rtttuK/R+o6OjFR0drVGjRql169aaOXOmbr75ZjVo0EBr1qxR3759HduuWbNGDRs2LPC+7WMLnn76aceyAwcOFLrGy2nQoIGys7O1fv16p/EIe/bscdS5Zs0ade3aVY899piknDm7e/fuLdRxAEBhENoCQBn3888/6/Tp0xowYICCg4Od1nXv3l1ffPGFvvvuO33wwQd68cUXNWDAAMXFxWnatGmS5OiUePHFF3XzzTdryJAheuKJJ+Tv769du3YpJiamwN26AAAAKJuuu+469e7dW3369NH777+v6OhonThxQkuWLFGTJk1077335vm4+Ph4TZkyRffff78iIyO1Z88e7du3T3369JEkPf/88+rZs6eio6PVoUMH/fTTT5ozZ45+/fXXAtdWr149ffXVV1q0aJGioqL09ddfa+PGjYqKiir0cf72228KDAx03LdYLGratKm6du2qJ598Up999pkCAwP1z3/+U9WrV1fXrl0dNcyePVtr165VpUqV9MEHHygxMZHQFkCJcTO7AADA1fniiy/UoUOHXIGtlBPabtq0SWfOnNHs2bM1Z84cNWnSRJMnT9a//vUvSZK3t7eknPlbK1as0N69e3XbbbcpOjpao0ePdhq5AAAAgPJr6tSp6tOnj5599lnVr19f3bp108aNG/MdleXn56fdu3ere/fuuu666zRw4EANHjxYgwYNkpTzya+JEyfqvffeU6NGjfTZZ59p6tSpateuXYHrGjRokB588EE9/PDDatWqlU6ePOnUdVsYbdu2dXQFR0dHq0WLFo5jb9Gihbp06aLWrVvLMAz98ssvjnEHL7/8spo3b66OHTuqXbt2Cg8PV7du3YpUAwAUhMUwDMPsIgAApe/NN9/Up59+qiNHjphdCgAAAAAAuAjjEQCggvj3v/+tli1bqnLlylqzZo3Gjx+vIUOGmF0WAAAAAAC4BKEtAFQQ+/bt0xtvvKFTp06pZs2aevbZZzVq1CizywIAAAAAAJdgPAIAAAAAAAAAuBAuRAYAAAAAAAAALoTQFgAAAAAAAABcCKEtAAAAAAAAALgQQlsAAAAAAAAAcCGEtgAAAAAAAADgQghtAQAAAAAAAMCFENoCAAAAAAAAgAshtAUAAAAAAAAAF0JoCwAAAAAAAAAuhNAWAAAAAAAAAFwIoS0AAAAAAAAAuBBCWwAAAAAAAABwIYS2AAAAAAAAAOBCCG0BAAAAAAAAwIUQ2gJwOWPGjJHFYimV52rXrp3atWvnuL98+XJZLBbNnj27VJ6/X79+ql27dqk8V1GlpqbqiSeeUHh4uCwWi4YPH15iz1UWXo9Lv2cAAAAKg3Pdklfax1nRTZs2TRaLRQcPHjS7FKBcIbQFUKLs/4Hbbz4+PoqMjFTHjh310Ucf6cyZM8XyPEePHtWYMWMUFxdXLPsrTq5cW0G89dZbmjZtmp566il9/fXX+sc//nHZbWvXru30fl9869SpUylWfXV27dqlMWPGcOIJAMBVOHDggAYNGqQ6derIx8dHQUFBatOmjSZOnKhz5845bWu1WjV16lS1a9dOoaGh8vb2Vu3atdW/f39t2rQpz/3/+9//lsViUatWrUrjcPLEua5r11bS7AG8/ebn56eGDRvq5ZdfVkpKitnluRz76/X333+bXQpQJniYXQCAimHs2LGKiopSVlaWEhIStHz5cg0fPlwffPCB5s2bpyZNmji2ffnll/XPf/6zUPs/evSoXnvtNdWuXVvNmjUr8OMWL15cqOcpivxq+89//iObzVbiNVyNpUuX6uabb9arr75aoO2bNWumZ599NtfyyMjI4i6txOzatUuvvfaa2rVrl6s7pDS+ZwAAKOvmz5+vHj16yNvbW3369NENN9ygzMxMrV69Ws8//7x27typKVOmSJLOnTunBx98UAsXLlTbtm310ksvKTQ0VAcPHtR3332n6dOn6/Dhw7rmmmucnmPGjBmqXbu2NmzYoP3796tu3bpmHKokznXL8rlucZg8ebICAgKUmpqqxYsX680339TSpUu1Zs2aUuuqBlD+ENoCKBWdO3fWjTfe6Lg/atQoLV26VF26dNH999+v33//Xb6+vpIkDw8PeXiU7D9PZ8+elZ+fn7y8vEr0ea7E09PT1OcviOPHj6thw4YF3r569ep67LHHSrAic5n9PQMAgKuLj49Xr169VKtWLS1dulQRERGOdYMHD9b+/fs1f/58x7Lnn39eCxcu1IcffphrDNOrr76qDz/8MM/nWLt2rebMmaNBgwZpxowZBf4Fc0ngXDdvZeFctzg89NBDqlKliiTp//7v/9S9e3fNmTNH69atU+vWrYu8X8MwlJ6e7vjeAVCxMB4BgGnuuOMOvfLKKzp06JD++9//OpbnNecrJiZGt956q0JCQhQQEKD69evrpZdekpQzs6ply5aSpP79+zs+njRt2jRJObO8brjhBm3evFlt27aVn5+f47GXm09qtVr10ksvKTw8XP7+/rr//vt15MgRp21q166tfv365Xrsxfu8Um15zflKS0vTs88+qxo1asjb21v169fXe++9J8MwnLazWCwaMmSI5s6dqxtuuEHe3t5q1KiRFi5cmPcLfonjx49rwIABCgsLk4+Pj5o2barp06c71ttngcXHx2v+/PmO2otrZIC9bh8fH91www364Ycfcm1jr2H58uVOyw8ePOj0Otrt3r1bPXv2VNWqVeXr66v69evrX//6l2P9oUOH9PTTT6t+/fry9fVV5cqV1aNHD6djmjZtmnr06CFJat++veO47TXk9T1zpdfy4prfe+89TZkyRddee628vb3VsmVLbdy4sXAvHgAALuzdd99VamqqvvjiC6fA1q5u3bp65plnJEl//vmnPvvsM9111115zs13d3fXc889l2eXbaVKlXTvvffqoYce0owZMxzrsrKyFBoaqv79++faX0pKinx8fPTcc885lh06dEj333+//P39Va1aNY0YMUKLFi3K8xykMDjXNfdctyDH+eqrr8rT01MnTpzI9diBAwcqJCRE6enpBX4+uzvuuENSzi8XJMlms2nChAlq1KiRfHx8FBYWpkGDBun06dNOj6tdu7a6dOmiRYsW6cYbb5Svr68+++wzSfl/j9gV9znp9u3b1a9fP8eIk/DwcD3++OM6efJkoV+Twli6dKluu+02+fv7KyQkRF27dtXvv//utE1BzuulCyNM1qxZo5EjR6pq1ary9/fXAw88kOf7DrgSOm0BmOof//iHXnrpJS1evFhPPvlkntvs3LlTXbp0UZMmTTR27Fh5e3tr//79WrNmjSSpQYMGGjt2rEaPHq2BAwfqtttukyTdcsstjn2cPHlSnTt3Vq9evfTYY48pLCws37refPNNWSwWvfjiizp+/LgmTJigDh06KC4urlC/6S5IbRczDEP333+/li1bpgEDBqhZs2ZatGiRnn/+ef3111+5Ok1Wr16tOXPm6Omnn1ZgYKA++ugjde/eXYcPH1blypUvW9e5c+fUrl077d+/X0OGDFFUVJS+//579evXT0lJSXrmmWfUoEEDff311xoxYoSuueYax8iDqlWr5nvMWVlZec6p8vf3d7x2ixcvVvfu3dWwYUONGzdOJ0+eVP/+/XP9QFYY27dv12233SZPT08NHDhQtWvX1oEDB/TTTz/pzTfflCRt3LhRa9euVa9evXTNNdfo4MGDmjx5stq1a6ddu3bJz89Pbdu21bBhw/TRRx/ppZdeUoMGDSTJ8WdRXsuLzZw5U2fOnNGgQYNksVj07rvv6sEHH9Qff/xRYbpRAADl208//aQ6depc9nznYgsWLFB2dna+M/PzMmPGDD344IPy8vLSI488osmTJ2vjxo1q2bKlPD099cADD2jOnDn67LPPnLpN586dq4yMDPXq1UtSToB4xx136NixY3rmmWcUHh6umTNnatmyZYU76MvgXNdZaZ3rFvQ4//GPf2js2LH69ttvNWTIEMfjMjMzNXv2bHXv3l0+Pj4Ffj3sDhw4IEmOGgcNGqRp06apf//+GjZsmOLj4/Xxxx9r69atWrNmjdM54J49e/TII49o0KBBevLJJ1W/fv0rfo9IJXNOGhMToz/++EP9+/dXeHi4Y6zJzp07tW7duhIZ/fDrr7+qc+fOqlOnjsaMGaNz585p0qRJatOmjbZs2eL4JUBBzusvNnToUFWqVEmvvvqqDh48qAkTJmjIkCH69ttvi/0YgGJjAEAJmjp1qiHJ2Lhx42W3CQ4ONqKjox33X331VePif54+/PBDQ5Jx4sSJy+5j48aNhiRj6tSpudbdfvvthiTj008/zXPd7bff7ri/bNkyQ5JRvXp1IyUlxbH8u+++MyQZEydOdCyrVauW0bdv3yvuM7/a+vbta9SqVctxf+7cuYYk44033nDa7qGHHjIsFouxf/9+xzJJhpeXl9Oybdu2GZKMSZMm5Xqui02YMMGQZPz3v/91LMvMzDRat25tBAQEOB17rVq1jHvvvTff/V28raQ8b+PGjXNs16xZMyMiIsJISkpyLFu8eLEhyen1sL8fy5Ytc3qe+Pj4XK9p27ZtjcDAQOPQoUNO29psNsfXZ8+ezVVzbGysIcn46quvHMu+//77PJ/XMHK/vwV9Le01V65c2Th16pRj2x9//NGQZPz000+5ngsAgLImOTnZkGR07dq1QNuPGDHCkGRs3bq1wM+xadMmQ5IRExNjGEbO//XXXHON8cwzzzi2WbRoUZ7/v95zzz1GnTp1HPfff/99Q5Ixd+5cx7Jz584Z119//WXPBS7Gua5rnusW5jhbt25ttGrVyunxc+bMKdD7b38v9+zZY5w4ccKIj483PvvsM8Pb29sICwsz0tLSjFWrVhmSjBkzZjg9duHChbmW28+lFy5c6LRtQb5HSuKcNK9z52+++caQZKxcudKxzP73ID4+vkCvV37H0axZM6NatWrGyZMnHcu2bdtmuLm5GX369Mm3trzO6+21dejQwennghEjRhju7u5OP48ArobxCABMFxAQkO+VdUNCQiRJP/74Y5EvZODt7Z3nR+Qup0+fPgoMDHTcf+ihhxQREaFffvmlSM9fUL/88ovc3d01bNgwp+XPPvusDMPQggULnJZ36NBB1157reN+kyZNFBQUpD/++OOKzxMeHq5HHnnEsczT01PDhg1TamqqVqxYUeRjaNWqlWJiYnLd7M917NgxxcXFqW/fvgoODnY87q677irU7NyLnThxQitXrtTjjz+umjVrOq27uAPg4s6RrKwsnTx5UnXr1lVISIi2bNlSpOcu7Gv58MMPq1KlSo779o6UK71nAACUBSkpKZLkdB5VnNtLOV22YWFhat++vaSc/+sffvhhzZo1S1arVVLOx9OrVKni1EV3+vRpxcTE6OGHH3YsW7hwoapXr67777/fsczHx+eyXbFFwbnuBaV1rmtXkOPs06eP1q9f7+iOlXK+x2rUqKHbb7+9QM9Tv359Va1aVVFRURo0aJDq1q2r+fPny8/PT99//72Cg4N111136e+//3bcWrRooYCAgFxd3VFRUerYsaPTsoJ8j5TEOenF587p6en6+++/dfPNN0tSkc+d82P/OaFfv34KDQ11LG/SpInuuusup/etsOf1AwcOdPq54LbbbpPVatWhQ4eK/TiA4kJoC8B0qamp+Z6oP/zww2rTpo2eeOIJhYWFqVevXvruu+8KdVJbvXr1Ql2IoV69ek73LRaL6tatW2zzXC/n0KFDioyMzPV62D+af+lJxaUBpSRVqlQp13ysvJ6nXr16cnNz/m/gcs9TGFWqVFGHDh1y3WrVquW070tfYynnhLco7CeXN9xwQ77bnTt3TqNHj3bMUKtSpYqqVq2qpKQkJScnF+m5C/taXvqe2U+Wr/SeAQBQFgQFBUlSviHl1WxvtVo1a9YstW/fXvHx8dq/f7/279+vVq1aKTExUUuWLJGUc7Gv7t2768cff1RGRoYkac6cOcrKynIKbQ8dOqRrr70218e869atW6B6CoJz3QtK61zXriDH+fDDD8vb29sxFzk5OVk///yzevfuXeCP///vf/9TTEyMli9frv3792vHjh1q0aKFJGnfvn1KTk5WtWrVVLVqVadbamqqjh8/7rSvqKioXPsvyPdISZyTnjp1Ss8884zCwsLk6+vrCKbtr1Nxs9eY188EDRo00N9//620tDRJhT+v5xwcZREzbQGY6s8//1RycnK+J8a+vr5auXKlli1bpvnz52vhwoX69ttvdccdd2jx4sVyd3e/4vOUxBVXL3cSZ7VaC1RTcbjc8xiXXMihrMrvNS6KoUOHaurUqRo+fLhat26t4OBgWSwW9erVq8idLYVV3t8zAEDFFhQUpMjISO3YsaNA219//fWSpN9++03NmjW74vZLly7VsWPHNGvWLM2aNSvX+hkzZujuu++WJPXq1UufffaZFixYoG7duum7777T9ddfr6ZNmxb8gK4S57pXpzTOmypVqqQuXbpoxowZGj16tGbPnq2MjAw99thjBd5H27ZtVaVKlTzX2Ww2VatWzelieRe79HoReb2XxfE9cqmCvLY9e/bU2rVr9fzzz6tZs2YKCAiQzWZTp06dSu3c+XIKe17POTjKIkJbAKb6+uuvJSnXR4Au5ebmpjvvvFN33nmnPvjgA7311lv617/+pWXLlqlDhw7FPgR/3759TvcNw9D+/fvVpEkTx7JKlSopKSkp12MPHTqkOnXqOO4XprZatWrp119/1ZkzZ5w6EHbv3u1YXxxq1aql7du3y2azOf02vrif53LPLeV+jaWcCy9czP4b8Etf50s7Beyv95V+QJw9e7b69u2r999/37EsPT091/4L+56Z9VoCAOCKunTpoilTpig2NlatW7fOd9vOnTvL3d1d//3vfwt0MbIZM2aoWrVq+uSTT3KtmzNnjn744Qd9+umn8vX1Vdu2bRUREaFvv/1Wt956q5YuXap//etfTo+pVauWdu3aJcMwnP7/379/fwGPNn+c6zorrXNdu4Icp5QzIqFr167auHGjZsyYoejoaDVq1KhYarj22mv166+/qk2bNlcVrl/pe6S4z0lPnz6tJUuW6LXXXtPo0aMdy/M6hy8u9hov/ZlAyjmOKlWqyN/fX1LBz+uBsozxCABMs3TpUr3++uuKiopS7969L7vdqVOnci2zd2LYP+5m/8+7uP6T/uqrr5w+pjd79mwdO3ZMnTt3diy79tprtW7dOmVmZjqW/fzzzzpy5IjTvgpT2z333COr1aqPP/7YafmHH34oi8Xi9PxX45577lFCQoLTnLfs7GxNmjRJAQEBBZ7fVRQRERFq1qyZpk+f7vTRpZiYGO3atctp21q1asnd3V0rV650Wv7vf//b6X7VqlXVtm1bffnllzp8+LDTuot/e+7u7p7rt+mTJk3K1blb2PfMrNcSAABX9MILL8jf319PPPGEEhMTc60/cOCAJk6cKEmqUaOGnnzySS1evFiTJk3Kta3NZtP777+vP//8U+fOndOcOXPUpUsXPfTQQ7luQ4YM0ZkzZzRv3jxJOSHXQw89pJ9++klff/21srOznUYjSDlh6l9//eV4jJQT/PznP/+56teBc93cSutc164gxynl/PKgSpUqeuedd7RixYpCddleSc+ePWW1WvX666/nWpednV2g160g3yPFfU5q70y99Nx5woQJhdpPYVz8c8LFr8uOHTu0ePFi3XPPPU71FeS8HijL6LQFUCoWLFig3bt3Kzs7W4mJiVq6dKliYmJUq1YtzZs3Tz4+Ppd97NixY7Vy5Urde++9qlWrlo4fP65///vfuuaaa3TrrbdKyjmpDAkJ0aeffqrAwED5+/urVatWec6EKojQ0FDdeuut6t+/vxITEzVhwgTVrVvX6aIUTzzxhGbPnq1OnTqpZ8+eOnDggP773/86XSyhsLXdd999at++vf71r3/p4MGDatq0qRYvXqwff/xRw4cPz7Xvoho4cKA+++wz9evXT5s3b1bt2rU1e/ZsrVmzRhMmTCjUxUAu9ddff+m///1vruUBAQHq1q2bJGncuHG69957deutt+rxxx/XqVOnNGnSJDVq1EipqamOxwQHB6tHjx6aNGmSLBaLrr32Wv3888+5Zn9J0kcffaRbb71VzZs318CBAxUVFaWDBw9q/vz5iouLk5TT+fP1118rODhYDRs2VGxsrH799VdVrlzZaV/NmjWTu7u73nnnHSUnJ8vb21t33HGHqlWrVqqvJQAAZdG1116rmTNn6uGHH1aDBg3Up08f3XDDDcrMzNTatWv1/fffq1+/fo7t33//fR04cEDDhg1zhLKVKlXS4cOH9f3332v37t3q1auX5s2bpzNnzjhdNOxiN998s6pWraoZM2Y4wtmHH35YkyZN0quvvqrGjRs75nvaDRo0SB9//LEeeeQRPfPMM4qIiNCMGTMc56YF7SLlXNe1znULc5xSzgW7evXqpY8//lju7u5OF/O6WrfffrsGDRqkcePGKS4uTnfffbc8PT21b98+ff/995o4caIeeuihfPdRkO+R4j4nDQoKUtu2bfXuu+8qKytL1atX1+LFixUfH1/k18Lugw8+kJ+fn9MyNzc3vfTSSxo/frw6d+6s1q1ba8CAATp37pwmTZqk4OBgjRkzxrF9Qc/rgTLNAIASNHXqVEOS4+bl5WWEh4cbd911lzFx4kQjJSUl12NeffVV4+J/npYsWWJ07drViIyMNLy8vIzIyEjjkUceMfbu3ev0uB9//NFo2LCh4eHhYUgypk6dahiGYdx+++1Go0aN8qzv9ttvN26//XbH/WXLlhmSjG+++cYYNWqUUa1aNcPX19e49957jUOHDuV6/Pvvv29Ur17d8Pb2Ntq0aWNs2rQp1z7zq61v375GrVq1nLY9c+aMMWLECCMyMtLw9PQ06tWrZ4wfP96w2WxO20kyBg8enKumWrVqGX379s3zeC+WmJho9O/f36hSpYrh5eVlNG7c2FHXpfu79957r7g/+7YXv98X3y49zv/9739GgwYNDG9vb6Nhw4bGnDlz8nw9Tpw4YXTv3t3w8/MzKlWqZAwaNMjYsWOH0+tot2PHDuOBBx4wQkJCDB8fH6N+/frGK6+84lh/+vRpxzEHBAQYHTt2NHbv3p3na/af//zHqFOnjuHu7m5IMpYtW2YYRu7vmYK+lvHx8YYkY/z48bleN0nGq6++eoVXFwCAsmXv3r3Gk08+adSuXdvw8vIyAgMDjTZt2hiTJk0y0tPTnbbNzs42Pv/8c+O2224zgoODDU9PT6NWrVpG//79ja1btxqGYRj33Xef4ePjY6SlpV32Ofv162d4enoaf//9t2EYhmGz2YwaNWoYkow33ngjz8f88ccfxr333mv4+voaVatWNZ599lnjf//7nyHJWLduXb7HyLlu/rWZda5b2OM0DMPYsGGDIcm4++678933xezv5YkTJ6647ZQpU4wWLVoYvr6+RmBgoNG4cWPjhRdeMI4ePep0bHmddxf0e6S4z0n//PNPx7l1cHCw0aNHD+Po0aO5trP/PYiPj8/3NbC/Xnnd3N3dHdv9+uuvRps2bQxfX18jKCjIuO+++4xdu3Y57aug5/X22jZu3Oj0ePv3iP0cH3BFFsNg6jIAAAAAAHYTJkzQiBEj9Oeff6p69epml4NSsG3bNjVr1kxfffVVgeYrA0BJI7QFAAAAAFRY586dc7pAVHp6uqKjo2W1WrV3714TK0NpGjJkiKZPn66EhATHnF4AMBMzbQEAAAAAFdaDDz6omjVrqlmzZkpOTtZ///tf7d69WzNmzDC7NJSCn376Sbt27dKUKVM0ZMgQAlsALoNOWwAAAABAhTVhwgR9/vnnOnjwoKxWqxo2bKgXXnjBcTEzlG+1a9dWYmKiOnbsqK+//pqLyAJwGYS2AAAAAAAAAOBC3MwuAAAAAAAAAABwAaEtAAAAAAAAALgQLkRWADabTUePHlVgYKAsFovZ5QAAAOA8wzB05swZRUZGys2NfoSLcQ4LAADgegp6/kpoWwBHjx5VjRo1zC4DAAAAl3HkyBFdc801ZpfhUjiHBQAAcF1XOn8ltC0A+9Ujjxw5oqCgIJOrAQAAgF1KSopq1KjB1b7zwDksAACA6yno+SuhbQHYP04WFBTECS8AAIAL4uP/uXEOCwAA4LqudP7K4C8AAAAAAAAAcCGEtgAAAAAAAADgQghtAQAAAAAAAMCFMNMWAABUaFarVVlZWWaXgcvw9PSUu7u72WUAAAAApYrQFgAAVEiGYSghIUFJSUlml4IrCAkJUXh4OBcbAwAAQIVBaAsAACoke2BbrVo1+fn5EQi6IMMwdPbsWR0/flySFBERYXJFAAAAQOkgtAUAABWO1Wp1BLaVK1c2uxzkw9fXV5J0/PhxVatWjVEJAAAAqBC4EBkAAKhw7DNs/fz8TK4EBWF/n5g9DAAAgIqC0BYAAFRYjEQoG3ifAAAAUNEQ2gIAAAAAAACACyG0BQAAqED69eunbt26mV0GAAAAgHwQ2gIAAFyiX79+slgsslgs8vLyUt26dTV27FhlZ2ebXVqJW758uSwWi5KSkswuBQAAAKiwPMwuAAAAwBV16tRJU6dOVUZGhn755RcNHjxYnp6eGjVqVKH3ZbVaZbFY5ObG78sBAAAAXBk/OQAAAOTB29tb4eHhqlWrlp566il16NBB8+bNkyRlZGToueeeU/Xq1eXv769WrVpp+fLljsdOmzZNISEhmjdvnho2bChvb28dPnxYy5cv10033SR/f3+FhISoTZs2OnTokONxkydP1rXXXisvLy/Vr19fX3/9tVNNFotFn3/+uR544AH5+fmpXr16jpqknHB4wIABioqKkq+vr+rXr6+JEycW6+ty+vRp9enTR5UqVZKfn586d+6sffv2OdafPHlSjzzyiKpXry4/Pz81btxY33zzjdM+2rVrp2HDhumFF15QaGiowsPDNWbMmGKtEwAAACjLCG0BAAAKwNfXV5mZmZKkIUOGKDY2VrNmzdL27dvVo0cPderUySm8PHv2rN555x19/vnn2rlzp0JDQ9WtWzfdfvvt2r59u2JjYzVw4EBZLBZJ0g8//KBnnnlGzz77rHbs2KFBgwapf//+WrZsmVMdr732mnr27Knt27frnnvuUe/evXXq1ClJks1m0zXXXKPvv/9eu3bt0ujRo/XSSy/pu+++K7bXoV+/ftq0aZPmzZun2NhYGYahe+65R1lZWZKk9PR0tWjRQvPnz9eOHTs0cOBA/eMf/9CGDRuc9jN9+nT5+/tr/fr1evfddzV27FjFxMQUW50AAABAWWYxDMMwuwhXl5KSouDgYCUnJysoKMjscgAAwFVKT09XfHy8oqKi5OPjk2t9v379lJSUpLlz58owDC1ZskRdunTR0KFDNXToUNWpU0eHDx9WZGSk4zEdOnTQTTfdpLfeekvTpk1T//79FRcXp6ZNm0qSTp06pcqVK2v58uW6/fbbcz1nmzZt1KhRI02ZMsWxrGfPnkpLS9P8+fMl5XTavvzyy3r99dclSWlpaQoICNCCBQvUqVOnPI91yJAhSkhI0OzZs3MdW16WL1+u9u3b6/Tp0woJCXFat2/fPl133XVas2aNbrnlFkk5nbU1atTQ9OnT1aNHjzz32aVLF11//fV67733JOV02lqtVq1atcqxzU033aQ77rhDb7/9dq7H5/d+cZ52ebw2AAAArqeg52jMtAUAAMjDzz//rICAAGVlZclms+nRRx/VmDFjtHz5clmtVl133XVO22dkZKhy5cqO+15eXmrSpInjfmhoqPr166eOHTvqrrvuUocOHdSzZ09FRERIkn7//XcNHDjQaZ9t2rTJNd7g4n36+/srKChIx48fdyz75JNP9OWXX+rw4cM6d+6cMjMz1axZs6t+Pew1enh4qFWrVo5llStXVv369fX7779LyhnR8NZbb+m7777TX3/9pczMTGVkZMjPz++yxyFJERERTscBAAAAVGSEtgAAAHlo3769Jk+eLC8vL0VGRsrDI+e0KTU1Ve7u7tq8ebPc3d2dHhMQEOD42tfX1zH6wG7q1KkaNmyYFi5cqG+//VYvv/yyYmJidPPNNxe4Lk9PT6f7FotFNptNkjRr1iw999xzev/999W6dWsFBgZq/PjxWr9+faGO/WqMHz9eEydO1IQJE9S4cWP5+/tr+PDhjtESBTkOAAAAoKIzdabtuHHj1LJlSwUGBqpatWrq1q2b9uzZ47RNenq6Bg8erMqVKysgIEDdu3dXYmKi0zaHDx/WvffeKz8/P1WrVk3PP/+8srOznbZZvny5mjdvLm9vb9WtW1fTpk0r6cMDAABlmL+/v+rWrauaNWs6AltJio6OltVq1fHjx1W3bl2nW3h4+BX3Gx0drVGjRmnt2rW64YYbNHPmTElSgwYNtGbNGqdt16xZo4YNGxa4ZvvYgqefflrR0dGqW7euDhw4UODHX0mDBg2UnZ3tFAKfPHlSe/bscdS5Zs0ade3aVY899piaNm2qOnXqaO/evcVWAwAAAFARmBrarlixQoMHD9a6desUExOjrKws3X333UpLS3NsM2LECP3000/6/vvvtWLFCh09elQPPvigY73VatW9996rzMxMrV27VtOnT9e0adM0evRoxzbx8fG699571b59e8XFxWn48OF64okntGjRolI9XgAAUPZdd9116t27t/r06aM5c+YoPj5eGzZs0Lhx4xyzZ/MSHx+vUaNGKTY2VocOHdLixYu1b98+NWjQQJL0/PPPa9q0aZo8ebL27dunDz74QHPmzNFzzz1X4Nrq1aunTZs2adGiRdq7d69eeeUVbdy4sUjH+dtvvykuLs5x27Ztm+rVq6euXbvqySef1OrVq7Vt2zY99thjql69urp27eqoISYmRmvXrtXvv/+uQYMG5fqFOwAAAID8mToeYeHChU73p02bpmrVqmnz5s1q27atkpOT9cUXX2jmzJm64447JOV8rLBBgwZat26dbr75Zi1evFi7du3Sr7/+qrCwMDVr1kyvv/66XnzxRY0ZM0ZeXl769NNPFRUVpffff19STpfI6tWr9eGHH6pjx46lftwAAKBsmzp1qt544w09++yz+uuvv1SlShXdfPPN6tKly2Uf4+fnp927d2v69Ok6efKkIiIiNHjwYA0aNEiS1K1bN02cOFHvvfeennnmGUVFRWnq1Klq165dgesaNGiQtm7dqocfflgWi0WPPPKInn76aS1YsKDQx9i2bVun++7u7srOztbUqVP1zDPPqEuXLsrMzFTbtm31yy+/OMYdvPzyy/rjjz/UsWNH+fn5aeDAgerWrZuSk5MLXQMAAEBpMQxD48ePV0JCgv71r385XasAMIPFMAzD7CLs9u/fr3r16um3337TDTfcoKVLl+rOO+/MdfXiWrVqafjw4RoxYoRGjx6tefPmKS4uzrE+Pj5ederU0ZYtWxQdHa22bduqefPmmjBhgmObqVOnavjw4QX6AYIr7wIAUL6kp6crPj5eUVFR8vHxMbscXEF+7xfnaZfHawMAQMGdOHFCPXr0kCSNGjWKJj+UmIKeo7nMhchsNpuGDx+uNm3a6IYbbpAkJSQkyMvLyymwlaSwsDAlJCQ4tgkLC8u13r4uv21SUlJ07tw5+fr6Oq3LyMhQRkaG435KSsrVH2AeWjz/VYnst6LZPL6P2SUAAAAAAIAy7OKLpmZlZZlYCZDD1Jm2Fxs8eLB27NihWbNmmV2Kxo0bp+DgYMetRo0aZpcEAAAAAACAEnLxBe0vvbg9YAaXCG2HDBmin3/+WcuWLdM111zjWB4eHq7MzEwlJSU5bZ+YmOi4OnN4eHiui1vY719pm6CgoFxdtlJOG3xycrLjduTIkas+RgAAAAAAALgmq9Xq+JrQFq7A1NDWMAwNGTJEP/zwg5YuXaqoqCin9S1atJCnp6eWLFniWLZnzx4dPnxYrVu3liS1bt1av/32m44fP+7YJiYmRkFBQWrYsKFjm4v3Yd/Gvo9LeXt7KygoyOkGAAAAAACA8olOW7gaU2faDh48WDNnztSPP/6owMBAxwza4OBg+fr6Kjg4WAMGDNDIkSMVGhqqoKAgDR06VK1bt9bNN98sSbr77rvVsGFD/eMf/9C7776rhIQEvfzyyxo8eLC8vb0lSf/3f/+njz/+WC+88IIef/xxLV26VN99953mz59v2rEDAAAAAADANVw8x5aZtnAFpnbaTp48WcnJyWrXrp0iIiIct2+//daxzYcffqguXbqoe/fuatu2rcLDwzVnzhzHend3d/38889yd3dX69at9dhjj6lPnz4aO3asY5uoqCjNnz9fMTExatq0qd5//319/vnnXAkQAAAAAAAAhLZwOaZ22hqGccVtfHx89Mknn+iTTz657Da1atXSL7/8ku9+2rVrp61btxa6RgAAAAAAAJRvF49EILSFK3CJC5EBAAAAAAAAZsnMzHR8TWgLV0BoCwAAAAAAgAqN8QhwNYS2AAAAAAAAqNAu7rS9+GvALKbOtAUAAKhoWjz/Vak+3+bxfYr0uE8++UTjx49XQkKCmjZtqkmTJummm24q5uoAAABcQ0ZGRp5fA2ah0xYAAABOvv32W40cOVKvvvqqtmzZoqZNm6pjx446fvy42aUBAACUCDpt4WoIbQEAAODkgw8+0JNPPqn+/furYcOG+vTTT+Xn56cvv/zS7NIAAABKxMVBLZ22cAWEtgAAAHDIzMzU5s2b1aFDB8cyNzc3dejQQbGxsSZWBgAAUHLotIWrIbQFAACAw99//y2r1aqwsDCn5WFhYUpISDCpKgAAgJJ17tw5x9d02sIVENoCAAAAAACgQrs4qE1PTzexEiAHoS0AAAAcqlSpInd3dyUmJjotT0xMVHh4uElVAQAAlKyLg1pCW7gCQlsAAAA4eHl5qUWLFlqyZIljmc1m05IlS9S6dWsTKwMAACg5Fwe1jEeAK/AwuwAAAAC4lpEjR6pv37668cYbddNNN2nChAlKS0tT//79zS4NAACgRFwc2l483xYwC6EtAAAAnDz88MM6ceKERo8erYSEBDVr1kwLFy7MdXEyAACA8uLSTlubzSY3Nz6gDvMQ2gIAAJSizeP7mF1CgQwZMkRDhgwxuwwAAIBScXF3rWEYysjIkK+vr4kVoaLjVwYAAAAAAACo0C4dicCIBJiN0BYAAAAAAAAVGqEtXA2hLQAAAAAAACo0Qlu4GkJbAAAAAAAAVGj2kNbTzZAknT171sxyAEJbAAAAAAAAVFxZWVnKysqSJAV72STRaQvzEdoCAAAAAACgwro4oA0htIWLILQFAAAAAABAhWUfheDpZsjfk/EIcA2EtgAAAAAAAKiw7AGtj7shH3dCW7gGQlsAAAAAAABUWPZRCL6EtnAhhLYAAAAAAACosNLS0iRJPh6GfD0IbeEaPMwuAAAAoCI5PLZxqT5fzdG/FfoxK1eu1Pjx47V582YdO3ZMP/zwg7p161b8xQEAALgAe0BLpy1cCZ22AAAAcJKWlqamTZvqk08+MbsUAACAEueYaUunLVwInbYAAABw0rlzZ3Xu3NnsMgAAAEoFnbZwRXTaAgAAAAAAoMJyhLYXddra59wCZiG0BQAAAAAAQIXlGI/gbsj3fKftuXPnzCwJILQFAAAAAABAxWXvqvX1MORDpy1cBKEtAAAAAAAAKix7V+3FnbbMtIXZCG0BAAAAAABQYdm7an0ummlLaAuzeZhdAAAAAFxLamqq9u/f77gfHx+vuLg4hYaGqmbNmiZWBgAAUPwcFyJzN+RzvtM2IyND2dnZ8vAgOoM56LQFAACAk02bNik6OlrR0dGSpJEjRyo6OlqjR482ubLyY+XKlbrvvvsUGRkpi8WiuXPnOq03DEOjR49WRESEfH191aFDB+3bt8+cYgEAKOccFyK7aKatxMXIYC5+XQAAAFCKao7+zewSrqhdu3YyDOPKG6LI0tLS1LRpUz3++ON68MEHc61/99139dFHH2n69OmKiorSK6+8oo4dO2rXrl3y8fExoWIAAMovR2jrbsjTTfKwGMo2LEpLS1NgYKDJ1aGiIrQFAAAASlnnzp3VuXPnPNcZhqEJEybo5ZdfVteuXSVJX331lcLCwjR37lz16tWrNEsFAKDcc4xHON9l6+th6EyWhbm2MBXjEQAAAAAXEh8fr4SEBHXo0MGxLDg4WK1atVJsbKyJlQEAUD5dPNP24j8ZjwAz0WkLAAAAuJCEhARJUlhYmNPysLAwx7q8ZGRkKCMjw3E/JSWlZAoEAKAcyc7Odvz/aZ9na/8zLS3NtLoAOm0BAACAcmDcuHEKDg523GrUqGF2SQAAuLyLRyBc2mnLeASYidAWAABUWFxsq2yoaO9TeHi4JCkxMdFpeWJiomNdXkaNGqXk5GTH7ciRIyVaJwAA5YE9mPV0M+RxPiWzd9oS2sJMhLYAAKDC8fT0lMSJeFnh+GHq/PtW3kVFRSk8PFxLlixxLEtJSdH69evVunXryz7O29tbQUFBTjcAAJA/+3mGj/uFXxLTaQtXwExbAABQ4bi7uyskJETHjx+XJPn5+clisZhcFS5lGIbOnj2r48ePKyQkRO7u7maXVGxSU1O1f/9+x/34+HjFxcUpNDRUNWvW1PDhw/XGG2+oXr16ioqK0iuvvKLIyEh169bNvKIBACiH7HNrfT0uCm3ptIULILQFAAAVkv1j5vbgFq4rJCQk37EAZdGmTZvUvn17x/2RI0dKkvr27atp06bphRdeUFpamgYOHKikpCTdeuutWrhwoXx8fMwqGQCAcskezPpe1GnLeAS4AkJbAABQIVksFkVERKhatWrKysoyuxxchqenZ7nqsLVr165dvrN6LRaLxo4dq7Fjx5ZiVQAAVDyO8Qgeuccj2LtwATMQ2gIAgArN3d29XIaCAAAAuDLHeIQ8Om0JbWEmLkQGAAAAAACACskezPpd1Gnrx4XI4AIIbQEAAAAAAFAh5Tke4fzXqampptQESIS2AAAAAAAAqKDy6rT15UJkcAGEtgAAAAAAAKiQLsy0tTmW+XnYnNYBZiC0BQAAAAAAQIWUX6ct4xFgJlND25UrV+q+++5TZGSkLBaL5s6d67TeYrHkeRs/frxjm9q1a+da//bbbzvtZ/v27brtttvk4+OjGjVq6N133y2NwwMAAAAAAIALswezF4e2/heNR7DZbHk+Dihppoa2aWlpatq0qT755JM81x87dszp9uWXX8pisah79+5O240dO9Zpu6FDhzrWpaSk6O6771atWrW0efNmjR8/XmPGjNGUKVNK9NgAAAAAAADg2hyhrWfuTlvDMBiRANN4mPnknTt3VufOnS+7Pjw83On+jz/+qPbt26tOnTpOywMDA3NtazdjxgxlZmbqyy+/lJeXlxo1aqS4uDh98MEHGjhw4NUfBAAAAAAAAMqkvDptPd0kLzdDmTaLUlNTFRgYaFZ5qMDKzEzbxMREzZ8/XwMGDMi17u2331blypUVHR2t8ePHKzs727EuNjZWbdu2lZeXl2NZx44dtWfPHp0+fbpUagcAAAAAAIDrySu0vfg+c21hFlM7bQtj+vTpCgwM1IMPPui0fNiwYWrevLlCQ0O1du1ajRo1SseOHdMHH3wgSUpISFBUVJTTY8LCwhzrKlWqlOu5MjIylJGR4bifkpJS3IcDAAAAAAAAE9lsNp05c0aS5O/hPLvW39OmpEw3x3qgtJWZ0PbLL79U79695ePj47R85MiRjq+bNGkiLy8vDRo0SOPGjZO3t3eRnmvcuHF67bXXrqpeAAAAAAAAuK60tDQZRk5HbYCnc6et/WJkNPLBLGViPMKqVau0Z88ePfHEE1fctlWrVsrOztbBgwcl5czFTUxMdNrGfv9yc3BHjRql5ORkx+3IkSNXdwAAAAAAAABwKfZA1sfdkMclCZn/+RCXTluYpUyEtl988YVatGihpk2bXnHbuLg4ubm5qVq1apKk1q1ba+XKlcrKynJsExMTo/r16+c5GkGSvL29FRQU5HQDAAAAAABA+XG50QiSFHB+GZ22MIupoW1qaqri4uIUFxcnSYqPj1dcXJwOHz7s2CYlJUXff/99nl22sbGxmjBhgrZt26Y//vhDM2bM0IgRI/TYY485AtlHH31UXl5eGjBggHbu3Klvv/1WEydOdBqrAAAAAAAAgIolOTlZ0oWu2ovZlxHawiymzrTdtGmT2rdv77hvD1L79u2radOmSZJmzZolwzD0yCOP5Hq8t7e3Zs2apTFjxigjI0NRUVEaMWKEUyAbHBysxYsXa/DgwWrRooWqVKmi0aNHa+DAgSV7cAAAAAAAAHBZ9tA20DN3p619mX0boLSZGtq2a9fOMfD5cgYOHHjZgLV58+Zat27dFZ+nSZMmWrVqVZFqBAAAAADkbe3atfrll1/0+OOPq06dOmaXAwCF4ghtvXJnU/ZlSUlJpVkS4GBqaAsAAAAAKLtefvll2Ww2ZWZm6t133zW7HAAoFHsgS6ctXBGhLQAAAACgSGy2nFDj4uuSAEBZcSG0NWQYUub57NbLTQo632lLaAuzENoCAAAAAACgwrGHtkFeNmXapCdXVJYk/ef2k45O29OnT5tVHio4N7MLAAAAAACUbVe6VgkAuKJTp05JkoK9co9HsC87d+6czp49W6p1ARKhLQAAAADgKhHaAiiLLoS2uf8N83GXvNxyltNtCzMQ2gIAAAAACu3ioNZisZhYCQAUnmEY+XbaWiwXlhPawgyEtgAAAACAQjt37pzZJQBAkaWmpiorK0tS3qHtxctPnjxZanUBdoS2AAAAAIBCuzi0tVqtJlYCAIX3999/S5L8PGzycs97m0rehLYwD6EtAAAAAKDQzpw54/g6NTXVxEoAoPDsoa09mM2Lfd2JEydKpSbgYoS2AAAAAIBCS0lJcXydnp6uzMxME6sBgMIpTGhr3xYoTYS2AAAAAIBCuzi0lZw7bwHA1dm7Z+m0hasitAUAAAAAFNqloW1ycrJJlQBA4RWk0zaU0BYmIrQFAAAAABRaUlKS031CWwBlyfHjxyVJVXwuH9pWPr/u+PHjMgyjVOoC7AhtAQAAAACFdmloe+l9AHBliYmJkqTKVxiPYJGhrKws/o1DqSO0BQAAAAAUGqEtgLLKMAxHaFvFx3rZ7TzcpBCvnA5b+/ZAaSG0BQAAAAAUmj2kNSxuTvcBwNWlpqbq7NmzkqTQfMYj5KzPCXUJbVHaCG0BAAAAAIVmD2ltviGSmGkLoOxISEiQJAV62uTtnv+29pm39scApYXQFgAAAABQaPaQ1uYTIolOWwBlhz2Arep7+dEIdlV9c0LbY8eOlWhNwKUIbQEAAAAAhXZppy2hLYCy4ujRo5KkqlcYjZCzTU6wS2iL0kZoCwAAAAAolIyMDGVkZEiSbD7BkqSUlBQzSwKAArMHsNUK0Glr34bQFqWN0BYAAAAAUCipqamSJEMW2bwCJElnzpwxsyQAKDB7AFulIJ22vhdm2tpsV94eKC6EtgAAAACAQnEEtO5eMjy8nZcBgIuzj0coSKdtZW+b3C2GMjMz9ffff5d0aYADoS0AAAAAoFAcnbYeXjI8vCRJ6enpys7ONrMsALii7OxsR2gb5nflzll3twsduX/99VeJ1gZcjNAWAAAAAFAoaWlpkiTD3VNy83IsP3v2rFklAUCBHD9+XFarVZ5uhkK9CzbuIOx8Ry6hLUoToS0AAAAAoFDS09MlSYabh+TmJsPi5rQcAFyVPXit5muVm6VgjwnzI7RF6SO0BQAAAAAUSkZGRs4Xbp7n//SQRGgLwPX9+eefkqQw34JfVMy+rf2xQGkgtAUAAAAAFMq5c+ckSYab+/k/CW0BlA1HjhyRJIX7XfkiZHb2be2PBUoDoS0AAAAAoFCysrJyvjgf2tr/dCwHABdlD14jChHaRlw0HsFqLfjjgKtBaAsAAAAAKJTs7OycLyznO23Pz7R1LAcAF3X48GFJheu0rexjk6eboaysLCUkJJRUaYATQlsAAAAAQKHYO2rtYa3O/0mnLQBXlp6ersTEREmF67R1s0jhvoxIQOkitAUAAAAAFMqFTlt7aMt4BACuz34hMX8PmwI9jUI9NsI/J7S1d+oCJY3QFgAAAABQKI7Q1s2505bxCABc2aFDhyRJkf5WWSyFe2zk+c5c+z6AkkZoCwAAAAAoFEdHrX2mrRuhLQDXZw9cq/sX/mJikf6EtihdhLYAAAAAgEKxXz3dsLeq0WkLoAw4ePCgpAtds4VhD20PHjwowyjcaAWgKAhtAQAAAACFkpmZmfPF+U5bLkQGoCy4eDxCYYX7WmWRodTUVJ06daq4SwNyIbQFAAAAABSKPbQ13Dyc/szIyDCtJgDIT1ZWluNCZEUJbb3cpWq+NkkXOnaBkkRoCwAAAAAolPT09Jwv3HPCWhHaAnBxR44ckdVqla+7TZW9bUXaxzUBOSNg/vjjj+IsDcgToS0AAAAAoFDs4eylnbaOMBcAXEx8fLwk6ZoAq+zjuAvrmvMduvZ9ASWJ0BYAAAAAUChnz57N+eJ8WGvvuHUsBwAX4whtizAawY7QFqWJ0BYAAAAAUCgpKSmSJMPDO+dP95w/U1NTTasJAPJzcadtUdkfGx8fL5utaCMWgIIitAUAAAAAFIo9nDXcvXL+PB/e2sNcAHA1+/fvlyRd459d5H2E+1rlYTGUnp6uhISE4ioNyBOhLQAAAACgwAzDyKPTNie8PXPmjGl1AcDlnDlzRomJiZKkmlfRaevuJlU/PyLhwIEDxVIbcDmEtgAAAACAAjt37pwyMzMlSYaHT86fnjl/JiUlmVUWAFyWfTRCqLdV/p7GVe2rZkBOp669cxcoKYS2AAAAAIACO3XqlCTJcPOQ3D1zvvb0c1oHAK7EHrBeTZetXY3AnH388ccfV70vID+EtgAAAACAAjt58qSkC0GtJNk8fSXlfAQ5IyPDlLoA4HLsoW2NgKLPs7Wr6U+nLUoHoS0AAAAAoMDsoa09qJUkuXvJsLhLotsWgOuxB6y1A6++07bW+X0cO3aMOd4oUYS2AAAAAIAC+/vvvyVJhteFTltZLI77J06cMKMsAMhTVlaWY5RBrcCr77T19zRUxScnuKXbFiWJ0BYAAABwMVarVa+88oqioqLk6+ura6+9Vq+//roM4+oungIUh+PHj0uSDC9/p+W28/cJbQG4koMHDyo7O1t+HjZV9bEVyz5rnw9/9+7dWyz7A/LiYXYBAAAAAJy98847mjx5sqZPn65GjRpp06ZN6t+/v4KDgzVs2DCzy0MFZw9lbZeEtoYnoS0A17Nv3z5JUq0AqyyW4tln7UCrNp24sG+gJBDaAgAAAC5m7dq16tq1q+69915JUu3atfXNN99ow4YNJlcGXNRp63lpp62f03oAcAX2btjaxTAawc4+ZmHPnj3Ftk/gUqaOR1i5cqXuu+8+RUZGymKxaO7cuU7r+/XrJ4vF4nTr1KmT0zanTp1S7969FRQUpJCQEA0YMECpqalO22zfvl233XabfHx8VKNGDb377rslfWgAAABAkd1yyy1asmSJ4wfNbdu2afXq1ercubPJlQEXddp6Bzgtt49LILQF4Ep+//13SVJUUPGFtnXOh7ZHjhzhYmQoMaZ22qalpalp06Z6/PHH9eCDD+a5TadOnTR16lTHfW9vb6f1vXv31rFjxxQTE6OsrCz1799fAwcO1MyZMyVJKSkpuvvuu9WhQwd9+umn+u233/T4448rJCREAwcOLLmDAwAAAIron//8p1JSUnT99dfL3d1dVqtVb775pnr37n3Zx2RkZCgjI8NxPyUlpTRKRQWTnZ2tkydPSsprpm1OiEtoC8BVZGZm6sCBA5Kka4sxtA30MlTVx6oT6e7au3evWrRoUWz7BuxMDW07d+58xW4Bb29vhYeH57nu999/18KFC7Vx40bdeOONkqRJkybpnnvu0XvvvafIyEjNmDFDmZmZ+vLLL+Xl5aVGjRopLi5OH3zwAaEtAAAAXNJ3332nGTNmaObMmY7z1+HDhysyMlJ9+/bN8zHjxo3Ta6+9VsqVoqI5ceKEDMOQYXGT4eHjtM7gQmQAXMyBAweUnZ2tQE+bqhTTRcjsooKydSLdXbt37ya0RYkwdTxCQSxfvlzVqlVT/fr19dRTTzl+qytJsbGxCgkJcQS2ktShQwe5ublp/fr1jm3atm0rLy8vxzYdO3bUnj17dPr06dI7EAAAAKCAnn/+ef3zn/9Ur1691LhxY/3jH//QiBEjNG7cuMs+ZtSoUUpOTnbcjhw5UooVo6KwB7KGl78uvaKPPbQ9ffq0MjMzS702ALjU7t27JeUErMV1ETK7Ouc7d+3PARQ3l74QWadOnfTggw8qKipKBw4c0EsvvaTOnTsrNjZW7u7uSkhIULVq1Zwe4+HhodDQUCUkJEiSEhISFBUV5bRNWFiYY12lSpVyPS8fLQMAAICZzp49Kzc35/4Kd3d32WyX7xLy9vbONUoMKG6OebaXjEaQJMPDW4bFXRbDqr///luRkZGlXR4AONm5c6ekCzNoi5N93MLOnTtlGIYsxZ0Ko8Jz6dC2V69ejq8bN26sJk2a6Nprr9Xy5ct15513ltjz8tEyAAAAmOm+++7Tm2++qZo1a6pRo0baunWrPvjgAz3++ONml4YKztFp65k7tJXFIsPLX5aMFJ04cYLQFoDp7KHtdSHFH9pGBWbL3WLo1KlTSkhIUERERLE/Byo2lx+PcLE6deqoSpUq2r9/vyQpPDw815D77OxsnTp1yjEHNzw8XImJiU7b2O9fblYuHy0DAACAmSZNmqSHHnpITz/9tBo0aKDnnntOgwYN0uuvv252aajgLnTa+uW53r6ci5EBMNvJkyd17NgxWWQU60XI7LzcpVqBF7ptgeJWpkLbP//8UydPnnT89qJ169ZKSkrS5s2bHdssXbpUNptNrVq1cmyzcuVKZWVlObaJiYlR/fr18xyNIOV8tCwoKMjpBgAAAJSWwMBATZgwQYcOHdK5c+d04MABvfHGG07XaQDM4DTTNg/2Dty///671GoCgLzYg9RrAqzy9TBK5DnqBeeEtjt27CiR/aNiMzW0TU1NVVxcnOLi4iRJ8fHxiouL0+HDh5Wamqrnn39e69at08GDB7VkyRJ17dpVdevWVceOHSVJDRo0UKdOnfTkk09qw4YNWrNmjYYMGaJevXo5Porz6KOPysvLSwMGDNDOnTv17bffauLEiRo5cqRZhw0AAAAAZZI9jDU88++0JbQFYDZ7kFq3BLps7eyh7W+//VZiz4GKy9TQdtOmTYqOjlZ0dLQkaeTIkYqOjtbo0aPl7u6u7du36/7779d1112nAQMGqEWLFlq1apXTBRZmzJih66+/Xnfeeafuuece3XrrrZoyZYpjfXBwsBYvXqz4+Hi1aNFCzz77rEaPHq2BAweW+vECAAAAQFlmD2MvNx7BILQF4CLsDYL1Q7Ly3/AqXBecs+8//vhDZ86cKbHnQcVk6oXI2rVrJ8O4fIv6okWLrriP0NBQzZw5M99tmjRpolWrVhW6PgAAAABADpvNppMnT0q6fKct4xEAuILU1FTH9ZCur1RynbYh3obC/axKOOuu3377TbfcckuJPRcqnjI10xYAAAAAYI7k5GRZrVYZuvJ4BHu4CwBm2LFjh2w2m8J8rQr1tpXoczU438lr7+wFiguhLQAAAADgihzzbD18JLe8f5S0h7knT57M91OVAFCS7AHq9SU4GsGuPqEtSgihLQAAAADgik6dOiXp8l22Oet8JUlZWVlKSUkplboA4FJbt26VVDqhrX38wv79+5lri2JFaAsAAAAAuCLHPFsv38tv5OYum4e30/YAUJqSk5O1d+9eSVKj0JIPbUO9bYr0y5bNZtOWLVtK/PlQcRDaAgAAAACu6PTp05Ly77SVJMPD12l7AChNW7ZskWEYquGfrRDv0hnTcsP5cHjTpk2l8nyoGAhtAQAAAABXZB+PYPPwyXc7+4gEQlsAZti4caOk0umytbOHths3bmSeN4oNoS0AAAAA4IoudNrmMx5BkuHp47Q9AJQWwzC0efNmSReC1NJwfUiW3C2GEhIS9Ndff5Xa86J8I7QFAAAAAFxRUlKSJMm4Uqft+fEI9u0BoLQcPHhQiYmJ8nQzVL8ULkJm5+MhXRecc0Gy9evXl9rzonwjtAUAAAAAXFFKSoqkC520l2OcvxCZfXsAKC1r166VJDWslCVv99J97mZVMp1qAK4WoS0AAAAA4IrOnDkjSTLcvfPdjtAWgFliY2MlSdHnA9TSZA9tt23bprS0tFJ/fpQ/hLYAAAAAgCtydNp6FCy0tYe8AFAakpKStGvXLklS08qlNxrBLsLPpnA/q7Kzsx0XQwOuBqEtAAAAACBf2dnZOnfuXM4dd698tzXOrye0BVCa1q9fL5vNppoB2arsYzOlhmaVc7pt7R2/wNUgtAUAAAAA5Cs9Pd3xteHumf/G59df/BgAKGkrV66UJDU3YTSCnf2516xZo6ys0u/2RflCaAsAAAAAyJe9y9awWCRL/j9GGm6eTo8BgJJ29uxZbdiwQZLUspp5oe11IdkK9rIpNTVVW7duNa0OlA+EtgAAAACAfDkCWDdPyWLJd1vD3UNSTogCAKUhNjZWWVlZCvez6hp/q2l1uFmkFlVzQmN75y9QVIS2AAAAAIB8ZWRkSJIMN/crb+zm4fQYAChpK1askCS1rJpxpd8rlbiWVXP+7Vu1apWys7PNLQZlGqEtAAAAACBfmZnnP25ckNDWkrON1WqVzWbOxYAAVBxnz57V+vXrJUk3VjVvNILd9SHZCvS0KTk5WXFxcWaXgzKM0BYAAAAAkC/7BXUMy5VD24u7cbkQD4CStnr1amVkZCjM16rageaNRrBzd7sQHi9ZssTkalCWEdoCAAAAAPLlCF8LENpefKEyR4cuAJQQezDaOsz80Qh2t4TnjEhYuXIlo2JQZIS2AAAAAIB8OUJbtwL8CHlRaMs8RwAl6fTp09q4caMkqXW464Sj9YKzFeptVVpammJjY80uB2UUoS0AAAAAIF9Wq/0jxwUJbS0yZLnkcQBQ/JYtWyabzaaowGxF+LnODG03i9Q6LOeTBr/++qvJ1aCsIrQFAAAAAOTLHr4aBem0lRzdtnTaAihJixcvluRaXbZ29hEJ69atU1JSkrnFoEwitAUAAAAA5MsRvhZ0YOT57QhtAZSU+Ph47d69W+4WQ7eEuV5oWyPAqloB2crOzuaCZCgSQlsAAAAAQL4uhLaF67RlPAKAkrJgwQJJUtPKWQryMkyuJm+3ReSEyfZagcIgtAUAAAAA5OtCx2zBfoQ0CG0BlKDs7GzFxMRIkm6LSDe5mstrHZ4hD4uh/fv3a9++fWaXgzKG0BYAAAAAkC/HTNtCdtoyHgFASVi/fr1Onz6tIE+bmlbOMrucywr0NBRdJeeCZAsXLjS5GpQ1hLYAAAAAgHwVdTxCVpbrhikAyq758+dLktqEZ8jDxZOttpE5IxIWL16sjAzXm70L1+Xi39oAAAAAALM5wle3Av4I6cZ4BAAl4/jx41q3bp0kqV2k645GsGscmqXK3ladOXNGK1euNLsclCGEtgAAAACAfNk7bQ2Le4G2t29Hpy2A4rZgwQLZbDZdH5KlCH+b2eVckZtFuv18t+3PP/9scjUoSwhtAQAAAAD5coSvzLQFYCKr1eoYjVAWumzt2kZkyCJD27Zt06FDh8wuB2UEoS0AAAAAIF/MtAXgCjZs2KDjx4/L38OmG6tmml1OgYX62NSsSs6/h3TboqAIbQEAAAAA+SpsaGvQaQugBPz444+SpNsiMuRVsGktLqP9+c7ghQsXKj297HQJwzyEtgAAAACAfDlm2hbyQmSEtgCKy7Fjx7R+/XpJ0h3Vy17o2aRylqr45FyQbNmyZWaXgzKA0BYAAAAAkK+ijkcgtAVQXObNmyfDMHRDaKbC/Vz/AmSXcrNcCJvtHcNAfghtAQAAAAD5stnOByQFDW3P/6jpeBwAXIXMzEz98ssvkqQ7y2CXrV3biAx5WAzt3r1bu3fvNrscuDhCWwAAAABAvgodvlqK+DgAyMPy5cuVnJysUG+rmlUuuxc4DPIydFO1nAuo/fDDDyZXA1dHaAsAAAAAyJdhGOe/shRs+/PbXXgcABSdPeC8o3qG3Mt4ktXhmpxO4aVLlyopKcncYuDSyvi3OgAAAACgpDnC14Jlto4N6bQFcLV2796t33//XR4WQ+0iy+5oBLtrg7JVOzBbWVlZWrBggdnlwIUR2gIAAAAA8mWxnE9rC9w4m7Ohmxs/cgK4OnPnzpUk3VQtU0FeZb9732KROpyfyzt37lxZrVaTK4Kr4n9QAAAAAEC+3N3dz39VsMDEYhDaArh6SUlJWrJkiSTprmvKfpet3c1hGfL3sCkxMVGxsbFmlwMXxf+gAAAAAIB8OcJXo6DjDmzOjwOAIvjll1+UlZWl2oHZqhOUbXY5xcbLXWoXmSHpQicxcCn+BwUAAAAA5MvRaVvQC4ud3+5Chy4AFE52drZ+/PFHSTldtpYCz9QuG+6oni6LDG3atEmHDh0yuxy4IEJbAAAAAEC+PD09JUkWo4CzF20523l5eZVUSQDKudjYWCUmJirA06ZW1TLMLqfYVfW1qVmVLElyhNPAxQhtAQAAAAD5soe2shVsPII93CW0BVBUP/zwg6ScMQJe5bRp3z6nd+HChTp79qzJ1cDVeJhdAAAAKFktnv/K7BLKhc3j+5hdAgCYxhG+GgWcKXm+09YR9gJAIRw6dEhbtmyRRYbuiCw/FyC7VKNKWYrwy9axs2e1aNEiPfDAA2aXBBdCpy0AAAAAIF/20NZiK9h4BDptAVwNe5dt8ypZquJb0Asglj0Wi9ThmgsXJDMKOjccFQKhLQAAAAAgX97e3jlfFDC0tW/neBwAFNDZs2e1ePFiSdKd15TfLlu7W8Mz5ONu6NChQ9q6davZ5cCFENoCAAAAAPJlD18ttsKNRyC0BVBYixcv1tmzZxXhZ1WjSllml1PifD0M3RJ+odsWsCO0BQAAAADk60KnbcFCW3u4S2gLoDAMw3AEl3dWT5fFYm49paVD9ZyO4tWrV+v48eMmVwNXQWgLAAAAAMiXj4+PpALOtDUMR7hLaAugMOLi4nTw4EF5uxu6NSLD7HJKzTUBVl0fkiWbzaaffvrJ7HLgIkwNbVeuXKn77rtPkZGRslgsTm3gWVlZevHFF9W4cWP5+/srMjJSffr00dGjR532Ubt2bVksFqfb22+/7bTN9u3bddttt8nHx0c1atTQu+++WxqHBwAAAADlQqE6bQ2r7M1x9rAXAApi3rx5kqRbwjLk51GxLsp15/lu2/nz5ys7u4CjaFCumRrapqWlqWnTpvrkk09yrTt79qy2bNmiV155RVu2bNGcOXO0Z88e3X///bm2HTt2rI4dO+a4DR061LEuJSVFd999t2rVqqXNmzdr/PjxGjNmjKZMmVKixwYAAAAA5cWFTtsCBAkXdePSaQugoE6ePKmVK1dKuhBgViQtqmYq2MumU6dOafXq1WaXAxfgYeaTd+7cWZ07d85zXXBwsGJiYpyWffzxx7rpppt0+PBh1axZ07E8MDBQ4eHhee5nxowZyszM1JdffikvLy81atRIcXFx+uCDDzRw4MDiOxgAAAAAKKcK02lrD3bd3d3l4WHqj5wAypBffvlFVqtVdYOyVDOwAKNYyhkPN+n2iHTNO+SnefPmqV27dmaXBJOVqZm2ycnJslgsCgkJcVr+9ttvq3LlyoqOjtb48eOd2shjY2PVtm1beXl5OZZ17NhRe/bs0enTp0urdAAAAAAoswrVaWvNdnoMAFyJ1WrVzz//LKlidtnataueIYsMbdmyRYcPHza7HJiszIS26enpevHFF/XII48oKCjIsXzYsGGaNWuWli1bpkGDBumtt97SCy+84FifkJCgsLAwp33Z7yckJOT5XBkZGUpJSXG6AQAAAEBF5Qhgrdk5FxrLh8WWJUny9fUt6bIAlBMbNmxQYmKi/D1salkt0+xyTFPFx6ZmVXL+DeWCZCgToW1WVpZ69uwpwzA0efJkp3UjR45Uu3bt1KRJE/3f//2f3n//fU2aNEkZGUW/yuC4ceMUHBzsuNWoUeNqDwEAAAAAyixHp60MybDlu629G5dOWwAFZe+yvTUiQ17uJhdjsnaROZ3GixYtUmZmxQ2wUQZCW3tge+jQIcXExDh12ealVatWys7O1sGDByVJ4eHhSkxMdNrGfv9yc3BHjRql5ORkx+3IkSNXfyAAAAAAUEY5dc2e76S9LGvOekJbAAVx4sQJxcbGSpLaRRa9Aa+8aBKapVBvq1JSUrRq1Sqzy4GJXDq0tQe2+/bt06+//qrKlStf8TFxcXFyc3NTtWrVJEmtW7fWypUrlZV14cQiJiZG9evXV6VKlfLch7e3t4KCgpxuAAAAAFBReXh4OC5GZrHmH9ra1/v7+5d4XQDKvgULFshms6l+cJaq+1e8C5Bdyt1NahuRE17bO5BRMZka2qampiouLk5xcXGSpPj4eMXFxenw4cPKysrSQw89pE2bNmnGjBmyWq1KSEhQQkKCoz08NjZWEyZM0LZt2/THH39oxowZGjFihB577DFHIPvoo4/Ky8tLAwYM0M6dO/Xtt99q4sSJGjlypFmHDQAAAABljj2EtVjz/7iufX1AQECJ1wSgbLPZbJo/f76kC2MBILWNzLkg2datW/Xnn3+aXQ5MYmpou2nTJkVHRys6OlpSznza6OhojR49Wn/99ZfmzZunP//8U82aNVNERITjtnbtWkk5HbGzZs3S7bffrkaNGunNN9/UiBEjNGXKFMdzBAcHa/HixYqPj1eLFi307LPPavTo0Ro4cKApxwwAAAAAZZEjtM2+woxFOm0BFNCWLVuUmJgovwp+AbJLVfGxqXHlnH9LFyxYYHI1MIuHmU/erl07GflceTS/dZLUvHlzrVu37orP06RJE+aAAAAAAMBVsHfOXrnTNudjvYS2AK7EHki2Dsus8Bcgu9TtERnaftJLixYtUv/+/eXhYWqEBxO49ExbAAAAoKL666+/9Nhjj6ly5cry9fVV48aNtWnTJrPLQgUWEhIiSbJk5/8RZvv6y11DBAAk6cyZM1q5cqUkqW0EoxEuFV0lU4GeNv3999/8/19BEdMDKFNaPP+V2SWUC5vH9zG7BABAPk6fPq02bdqoffv2WrBggapWrap9+/YRgsFUjtA26wqh7fn1wcHBJV0SgDJsyZIlysrKUo2AbNUO5AJkl/Jwk24Jz9CiI7765ZdfdPPNN5tdEkoZoS0AAADgYt555x3VqFFDU6dOdSyLiooysSKg4J22bufX27cHgLz88ssvkqS2ERmyWEwuxkXdHpET2q5du1ZJSUn8u1rBMB4BAAAAcDHz5s3TjTfeqB49eqhatWqKjo7Wf/7zH7PLQgVn7/S2ZJ3NdztL1jmn7QHgUvHx8dq7d6/cLYZah2WYXY7LuibAqtqB2crOztbSpUvNLgeljNAWAAAAcDF//PGHJk+erHr16mnRokV66qmnNGzYME2fPv2yj8nIyFBKSorTDShOVatWlSRZMvMJbQ1Dlsw0p+0B4FKLFy+WJDWtnKUgr/wvQl/R3RqeE2ovWrTI5EpQ2ghtAQAAABdjs9nUvHlzvfXWW4qOjtbAgQP15JNP6tNPP73sY8aNG6fg4GDHrUaNGqVYMSqCatWqSZLczoeyebFkp8ti2GSxWFSlSpXSKg1AGWK1WhUTEyNJahNOl+2V3ByWIXeLoT179ujgwYNml4NSRGgLAAAAuJiIiAg1bNjQaVmDBg10+PDhyz5m1KhRSk5OdtyOHDlS0mWignF02madlYy8O+PsXbaVKlWSp6dnqdUGoOzYunWr/v77b/l72NSsSqbZ5bi8IC9DTSpnSbrQoYyKgdAWAAAAcDFt2rTRnj17nJbt3btXtWrVuuxjvL29FRQU5HQDilNoaKjc3NxyOmnPz629lFtmqqQLXbkAcCl7l22rsEx5kkoViH1EQkxMjGw2m8nVoLTw1wMAAABwMSNGjNC6dev01ltvaf/+/Zo5c6amTJmiwYMHm10aKjAPDw9HGGvJOJPnNpaMnNA2IiKi1OoCUHakp6dr5cqVkhiNUBhNK2fKz8OmEydOaPv27WaXg1JCaAsAAAC4mJYtW+qHH37QN998oxtuuEGvv/66JkyYoN69e5tdGiq48PBwSRc6ai/ldj60tW8HABeLjY3VuXPnVMXHqrpB2WaXU2Z4uUs3Vs0ZJbFkyRKTq0FpIbQFAAAAXFCXLl3022+/KT09Xb///ruefPJJs0sCLoS2l+u0PR/mhoWFlVpNAMqOX3/9VZLUOixDFovJxZQxrcNyOpOXL1+urKwsk6tBaSC0BQAAAAAUiD2MtV9w7FJ02gK4nJSUFK1fv16S1DqMC5AVVoNK2QrxsunMmTOO1xHlG6EtAAAAAKBALnTaXmY8Ap22AC5j5cqVys7OVg3/bF0TYDW7nDLHzSK1Ot9tu3TpUpOrQWkgtAUAAAAAFIjjQmR5ddpaM2Wx5nTPEdoCuNSyZcskSTeHcQGyorr5fIfy2rVrlZ6ebnI1KGmEtgAAAACAArGHsXldiMztfJAbEBAgPz+/Uq0LgGs7ffq0tm7dKklqxWiEIqsTmK2qPlalp6dr3bp1ZpeDEkZoCwAAAAAokNDQUEmSxZYtWZ0vhGPJSnfaBgDsVqxYIZvNpqjAbFXztZldTpllsUg3VcsJvRmRUP4R2gIAAAAACsTX11deXl6SJEu280dzLVnnJEmVKlUq9boAuDb7aIRWjEa4avbXcN26dTp79qzJ1aAkEdoCAAAAAArEYrE4Qll7SOtYl01oCyC3kydPavv27ZIudImi6GoFWBXma1VmZqZiY2PNLgcliNAWAAAAAFBgwcHBkiRLtnPHnP2+fT0ASNKqVatkGIauDcpSFR9GI1ytnBEJOf/erlixwuRqUJIIbQEAAAAABebt7S3p/Fzbi1hsVqf1ACBdCBZb0mVbbOyv5fr163Xu3LkrbI2yitAWAAAAAFBgjlD2fEjrcD7EJbQFYHf69Glt27ZNktSyKqFtcakVYFU1X6syMjK0bt06s8tBCSG0BQAAAAAU2OU6be2hrY+PT2mXBMBFrVq1SjabTVGB2arqy2iE4mKxXAjBGZFQfnmYXQAAAABQFqSkpOS53GKxyNvbW15eXqVcEWAOd3f3818ZTsst9j8tFgGAJK1cuVKSdGPVjCtsicJqWS1D8w/7at26dcrIyOBTDuUQnbYAAABAAYSEhKhSpUq5biEhIfL19VWtWrX06quvymajkwjlW1ZWVs4XFnen5YYl58fL7OzsSx8CoAJKSUnR1q1bJTHPtiREBVpV2duq9PR0bdiwwexyUAIIbQEAAIACmDZtmiIjI/XSSy9p7ty5mjt3rl566SVVr15dkydP1sCBA/XRRx/p7bffNrtUoETZQ1l7SOtAaAvgImvXrpXValUN/2yF+/ELzeJmsUg3ng/DV61aZXI1KAlFGo9wxx13aM6cOQoJCXFanpKSom7dumnp0qXFURsAAADgMqZPn673339fPXv2dCy777771LhxY3322WdasmSJatasqTfffFMvvfSSiZUCJetCp23eoa1jPYAKzTEawcW7bK026VSGmzIvypX/TneTl5sU6m2Tuwu3O95YNVOLjvhqzZo1ysrKkqenp9kloRgV6Vtv+fLlyszM/ZcuPT2ddB8AAADl0tq1axUdHZ1reXR0tGJjYyVJt956qw4fPlzapQGl6syZM5Ikw8N5jrPhnnM/NTW11GsC4FrOnj2rjRs3SsoJFl3ZqQw3PRtbSaPWV3IsG7W+kp6NraRTGS6c2EqqF5ytYC+b0tLStGXLFrPLQTErVKft9u3bHV/v2rVLCQkJjvtWq1ULFy5U9erVi686AAAAwEXUqFFDX3zxRa7xB1988YVq1KghSTp58qQqVaqU18OBciM5OVmSZHj4OC03PHPuJyUllXZJAFzM+vXrlZWVpTBfq67xt5pdTrnlZpFaVM3U0r98tHr1arVq1crsklCMChXaNmvWTBaLRRaLRXfccUeu9b6+vpo0aVKxFQcAAAC4ivfee089evTQggUL1LJlS0nSpk2btHv3bs2ePVuStHHjRj388MNmlgmUKMMwHKFsrtD2/P3Tp0+XdlkAXIxjNELVTFksJhdTzt14UWg7fPhwubu7X/lBKBMKFdrGx8fLMAzVqVNHGzZsUNWqVR3rvLy8VK1aNb45AAAAUC7df//92r17t6ZMmaI9e/ZIkjp37qy5c+eqdu3akqSnnnrKxAqBkpeamnrhQmSel3ba+koitAUquoyMDK1bt06S649GKA+uD8mSn4dNp0+f1s6dO9WkSROzS0IxKVRoW6tWLUmSzcZV/wAAAFDxREVFady4cWaXAZjm2LFjkiSbh6/k5vzjpM0rQJKUmJgoq9VKQw9QQW3evFnnzp1TJW+rooKyzS6n3PNwk6KrZGlNgrdWrFhBaFuOFCq0vdi+ffu0bNkyHT9+PFeIO3r06KsuDAAAAHAldevW1WOPPabevXurXr16ZpcDmOKvv/6SJBk+gbnWGV5+Mixuys7O1vHjxxUREVHa5QFwAfYL1Leomik3RiOUihurZmhNgrdWr16tIUOGyMJMinKhSKHtf/7zHz311FOqUqWKwsPDnb4ZLBYLoS0AAADKncGDB2vmzJkaO3asWrRooccee0wPP/ywwsPDzS4NKDVHjx6VJNm8g3KvtLjJ5h0o9/RkHT16lNAWqICys7O1Zs0aSVJLRiOUmsahWfJyM5SYmKi9e/eqfv36ZpeEYuBWlAe98cYbevPNN5WQkKC4uDht3brVcduyZUtx1wgAAACYbsSIEdq4caN2796te+65R5988olq1Kihu+++W1999ZXZ5QGl4vDhw5Ikm08eoa0k43yYe+TIkVKrCYDr2LZtm1JSUhToadN1wYxGKC1e7lLTyjkhuf0icCj7ihTanj59Wj169CjuWgAAAACXd9111+m1117T3r17tWrVKp04cUL9+/c3uyygVBw4cECSZPOtlOd66/nl9u0AVCz20QjNq2TKvUiJE4qqZbULoa1hGCZXg+JQpL9CPXr00OLFi4u7FgAAAKBM2LBhg4YPH64HHnhAe/fupaEBFUJ2drYOHTokSbL6hea5je388v3795daXQBcg81mc4S2N1ZjNEJpa1o5Sx4WQ0eOHNHBgwfNLgfFoEgzbevWratXXnlF69atU+PGjeXp6em0ftiwYcVSHAAAAOAq9u7dqxkzZuibb75RfHy87rjjDr3zzjt68MEHFRAQYHZ5QIk7fPiwsrKyZLh7yvDK+3veHtrGx8fLarXK3d29NEsEYKIdO3bo5MmT8vOwqWGlLLPLqXB8PQzdEJqluJNeWrlypaKioswuCVepSKHtlClTFBAQoBUrVmjFihVO6ywWC6EtAAAAyp3rr79eLVu21ODBg9WrVy+FhYWZXRJQqvbs2SNJsvpVli5zZXKbT5AMNw+lp6fr8OHDhAZABWLPh6KrZMmT0QimaFktU3EnvbRixQr17dvX7HJwlYoU2sbHxxd3HQAAAIBL27Nnj+rVq+e0zDAMLVy4UF988YVmz55tUmVA6di5c6ckyepf9fIbWdxk9a8ijzMJ2rlzJ6EtUEHYbDbHBbBaVs0wuZqKq3mVTLlbDP3xxx86fPiwatasaXZJuAr87gMAAAAogIsD2/j4eL3yyiuqWbOmHnjgAaWnp5tYGVA67KGtLSCf0FaS1b+aJGnXrl0lXhMA1/D777/rxIkT8nG36YZQRiOYxd/TUKPzoynsITrKriJ12j7++OP5rv/yyy+LVAwAAADgqjIyMjR79mx98cUXWr16taxWq9577z0NGDBAQUFBZpcHlKi0tDTHhW2sAdXy3da+ntAWqDjsoxGaVcmSF6OsTdWyWqa2n/LSsmXL9Nhjj5ldDq5CkTptT58+7XQ7fvy4li5dqjlz5igpKamYSwQAAADMs3nzZj399NMKDw/XhAkT1K1bNx05ckRubm7q2LEjgS0qhB07dsgwDNm8A2R4+uW7rb0T9+DBg/x8CFQANptNy5YtkyS1qsZoBLM1r5ozIuHAgQM6cuSI2eXgKhSp0/aHH37Itcxms+mpp57Stddee9VFAQAAAK6iVatWGjp0qNatW6f69eubXQ5giri4OEmSNTDiitsanr6y+oTIPT1J27dvV9u2bUu4OgBm2rlzp2M0QmNGI5gu8PyIBHu3bZ8+fcwuCUVUbDNt3dzcNHLkSH344YfFtUsAAADAdHfeeae++OILjR07VgsXLpRhGGaXBJQ6e2ibHRheoO2tQTnbbdu2raRKAuAili9fLklqzmgEl3FTtUxJcnRAo2wq1guRHThwQNnZ2cW5SwAAAMBUixYt0s6dO1W/fn099dRTioiI0DPPPCNJslgsJlcHlLyzZ89q7969kiRrQUPb89vZw14A5ZPVanWEtq3CGI3gKlqcH5EQHx/vmEeOsqdI4xFGjhzpdN8wDB07dkzz589X3759i6UwAAAAwFXUqFFDo0eP1ujRoxUTE6OpU6fKw8NDXbt21UMPPaSHHnpIzZs3N7tMoET89ttvslqtsnkFyPAOLNBj7GMUDhw4oKSkJIWEhJRghQDMsn37dp08eVJ+HjbdwGgEl+HvaahxaJbiTnppyZIlGjBggNkloQiK1Gm7detWp9v27dslSe+//74mTJhQnPUBAAAALuWuu+7SzJkzdfToUQ0dOlQLFixQy5YtzS4LKDGbN2+WJGUHRRb4MYanr6y+lSTRbQuUZ0uWLJEktayaKc9i/Sw3rtbN5zuflyxZwminMqpInbbMxAAAAEBFV6lSJQ0dOlRDhw7Vli1bzC4HKDFbt26VJFmDrnwRsotZgyLkfu60Nm/erHbt2pVAZQDMlJWVpRUrVkiSWjMaweU0r5IpLzdDR48e1e7du9WgQQOzS0IhXdXvQU6cOKHVq1dr9erVOnHiRHHVBAAAALiMffv26ZFHHlFKSkqudcnJyXr00Uf56DfKreTkZO3fv19S4UPb7MCczlx+qQGUTxs3btSZM2cU4mXT9ZW4vpGr8fGQmlfNuSDZr7/+anI1KIoihbZpaWl6/PHHFRERobZt26pt27aKjIzUgAEDdPbs2eKuEQAAADDN+PHjVaNGDQUFBeVaFxwcrBo1amj8+PEmVAaUvG3btskwDFl9QmR4+hXqsdbAcBmy6K+//tLx48dLqEIAZrEHga3CMuTGdTldkr0DeunSpcrOJlgva4oU2o4cOVIrVqzQTz/9pKSkJCUlJenHH3/UihUr9OyzzxZ3jQAAAIBpVqxYoR49elx2fc+ePbV06dJSrAgoPfYu2cJ22UqSPLxk868sibm2QHmTlpam1atXS2I0gitrHJolfw+bTp8+zaceyqAihbb/+9//9MUXX6hz584KCgpSUFCQ7rnnHv3nP//R7NmzC7yflStX6r777lNkZKQsFovmzp3rtN4wDI0ePVoRERHy9fVVhw4dtG/fPqdtTp06pd69eysoKEghISEaMGCAUlNTnbbZvn27brvtNvn4+KhGjRp69913i3LYAAAAqIAOHz6satWqXXZ9lSpVdOTIkVKsCCg9RZ1na8eIBKB8WrlypTIzMxXhZ1VUoNXscnAZHm5Sq7CcEQkxMTEmV4PCKlJoe/bsWYWFheVaXq1atUKNR0hLS1PTpk31ySef5Ln+3Xff1UcffaRPP/1U69evl7+/vzp27Kj09HTHNr1799bOnTsVExOjn3/+WStXrtTAgQMd61NSUnT33XerVq1a2rx5s8aPH68xY8ZoypQphThiAAAAVFTBwcE6cODAZdfv378/z9EJQFl3+vRpHTp0SJKUHZhHaGsYkjUr53aZK5Pbw146bYHyxR4AtgnPkIXRCC6tTXhOJ/SqVasYaVrGFCm0bd26tV599VWn8PTcuXN67bXX1Lp16wLvp3PnznrjjTf0wAMP5FpnGIYmTJigl19+WV27dlWTJk301Vdf6ejRo46O3N9//10LFy7U559/rlatWunWW2/VpEmTNGvWLB09elSSNGPGDGVmZurLL79Uo0aN1KtXLw0bNkwffPBBUQ4dAAAAFUzbtm01adKky67/6KOPdNttt5ViRUDp+O233yRJVt9Kkod37g1s2Qrc8rUCt3wt2fKelWgNqCZDFiUkJDDXFignjh8/7ujCZzSC66sblK0wX6vS09MdIy1QNhQptJ0wYYLWrFmja665RnfeeafuvPNO1ahRQ2vWrNHEiROLpbD4+HglJCSoQ4cOjmXBwcFq1aqVYmNjJUmxsbEKCQnRjTfe6NimQ4cOcnNz0/r16x3btG3bVl5eXo5tOnbsqD179uj06dN5PndGRoZSUlKcbgAAAKiYRo0apQULFuihhx7Shg0blJycrOTkZK1fv17du3fXokWLNGrUKLPLBIqdI7QNyP0pywJz95TNL9RpfwDKtl9//VWGYah+SJaq+trMLgdXYLFIt5zvtl20aJHJ1aAwihTaNm7cWPv27dO4cePUrFkzNWvWTG+//bb279+vRo0aFUthCQkJkpRrDENYWJhjXUJCQq75Yh4eHgoNDXXaJq99XPwclxo3bpyCg4Mdtxo1alz9AQEAAKBMio6O1uzZs7Vy5Uq1bt1aoaGhCg0N1S233KJVq1bpu+++U/Pmzc0uEyh227dvlyRZA68itL3o8YS2QNlnGIYj+LN/7B6uz/5ebdmyhU89lCEeRXnQuHHjFBYWpieffNJp+ZdffqkTJ07oxRdfLJbizDJq1CiNHDnScT8lJYXgFgAAoALr0qWLDh06pIULF2r//v0yDEPXXXed7r77bvn5+ZldHlDsMjIytH//fkk5Iw6uhjUgTErcpV27dhVHaQBMtGfPHh06dEieboZuqpZpdjkooGq+NtUPztKeZE/9+uuvevTRR80uCQVQpE7bzz77TNdff32u5Y0aNdKnn3561UVJUnh4uCQpMTHRaXliYqJjXXh4eK7fEGRnZ+vUqVNO2+S1j4uf41Le3t4KCgpyugEAAKBiWrp0qRo2bKisrCw98MADev755/XCCy+oW7duysrKUqNGjbRq1SqzywSKVXx8vKxWq2we3jK8Aq5qX1a/yo59ZmVlFUd5AEyycOFCSVKLqpny88j7AoRwTbdGXBiRYFzm4pFwLUUKbRMSEhQRkfvqoVWrVtWxY8euuihJioqKUnh4uJYsWeJYlpKSovXr1zsudta6dWslJSVp8+bNjm2WLl0qm82mVq1aObZZuXKl08lBTEyM6tevr0qVKhVLrQAAACi/JkyYoCeffDLPX+QHBwdr0KBBXOQW5c6ePXskSTa/KrraS8Mb3oEy3L2UlZWl+Pj44igPgAkyMzO1dOlSSdKtjEYoc1pWy5Snm6FDhw45/o2HaytSaGu/6Nil1qxZo8jIyALvJzU1VXFxcYqLi5OU85vXuLg4HT58WBaLRcOHD9cbb7yhefPm6bffflOfPn0UGRmpbt26SZIaNGigTp066cknn9SGDRu0Zs0aDRkyRL169XLU8eijj8rLy0sDBgzQzp079e2332rixIlO4w8AAACAy9m2bZs6dep02fV33323UxMBUB7s3btXkmT1r3z1O7NYZPWvIkkEBUAZtm7dOqWkpKiSl003hNI1X9b4eRhqUTVnpIW9YxqurUgzbZ988kkNHz5cWVlZuuOOOyRJS5Ys0QsvvKBnn322wPvZtGmT2rdv77hvD1L79u2radOm6YUXXlBaWpoGDhyopKQk3XrrrVq4cKF8fHwcj5kxY4aGDBmiO++8U25uburevbs++ugjx/rg4GAtXrxYgwcPVosWLVSlShWNHj1aAwcOLMqhAwAAoIJJTEyUp6fnZdd7eHjoxIkTpVgRUPLsHbE2v9Bi2Z/NN1RKOaqDBw8Wy/4AlD77BchuCc+Q29U14MMkt4ZnaF2it5YuXaqnn35aXl5eZpeEfBQptH3++ed18uRJPf3008rMzEnpfXx89OKLL2rUqFEF3k+7du3ynaNhsVg0duxYjR079rLbhIaGaubMmfk+T5MmTZgzBgAAgCKpXr26duzYobp16+a5fvv27XmODgPKKsPI+fisJNl8QoplnzbfnP3Y9wugbElKStK6deskXZiNirLnhtAsVfKy6XRKitatW6e2bduaXRLyUaTxCBaLRe+8845OnDihdevWadu2bTp16pRGjx5d3PUBAAAAprrnnnv0yiuvKD09Pde6c+fO6dVXX1WXLl1MqAwoGSdPnlRaWpoMWWTzCS6WfVoJbYEy7ddff5XValVUYLaq+1vNLgdF5GbJ6ZSWLnROw3UVqdPWLiAgQC1btiyuWgAAAACX8/LLL2vOnDm67rrrNGTIENWvX1+StHv3bn3yySeyWq3617/+ZXKVQPGxB6uGd6Dk5l4s+7SHvydOnNDZs2fl5+dXLPsFUDoWL14sSbotIvcvMFG23BqRofmHfbVu3TqdPn1alSpVMrskXMZVhbYAAABAeRcWFqa1a9fqqaee0qhRoxzjvSwWizp27KhPPvlEYWFhJlcJFJ+//vpLkmTzCSq+nXp4y+bhI7fsdP3111+qV69e8e0bQImKj4/X3r175W4x1Cos0+xycJWq+1tVJzBbf5yRli5dqu7du5tdEi6D0BYAAAC4glq1aumXX37R6dOntX//fhmGoXr16tGdgnLp6NGjkiSbdzGGtjrfuZudrqNHjxLaAmWIvcu2WeUsBXpe/rpEKDtuCc/QH2c8tHjxYkJbF1akmbYAAABARVSpUiW1bNlSN910E4Etyi1HaOsTWKz7tXnn7M/eyQvA9dlsNv3666+SLsxCRdl3c1iG3CyG9uzZw6xxF0ZoCwAAAABwcIxHKOZOW/u4BXsoDMD1xcXF6cSJE/LzsKlZFUYjlBdBXoYah2ZJkmJiYkyuBpdDaAsAAAAAkCQZhlFyoe35TltCW6DssAd6raplypMEqVxpc75zOiYmxjGvH66Fv3IAAAAAAEnS6dOnlZ6eLkMWGd4B/8/efcdHUed/HH/N7mY3PZCEEAIBQu9FUARUQBBEBBUFC9JEQAHLIZ7iz1Nsx529nIf1EAunYBcRBEQ8sIMISu81BAKk1935/RF2ZQklSJLZsO/n47EP2NnZmfdMZpLvfvY73ynXZXuLwBoeQaRqKCws5JtvvgGgc00NjXC2OSe+kFC7yb59+1izZo3VceQ4VLQVERERERER4I+CqumMAJu9XJdtHhkeIS0tjcJCXWYtEuh+/PFHcnJyqO5y06RasdVxpJw57SWFW4CvvvrK4jRyPCraioiIiIiICAA7d+4E/hh/tjyZjlBMe4jfEAwiErgWL14MwHkJhdgMi8NIhTj/SA/qr7/+GrfbbXEaOZaKtiIiIiIiIgLAtm3bAPCEViv/hRuGb7m6W7lIYMvPz2fZsmUAnF9TPePPVq1ii4hweEhPT2fVqlVWx5FjqGgrIiIiIiIiwB/FVE9YtQpZvvvIcrdu3VohyxeR8vHDDz+Qn59PjVA3DaI0NMLZymGDjjVKivLentUSOFS0FREREREREeConrYVVLT1Lte7HhEJTEuXLgVKCnqGhkY4q3VMKCnafvvtt3g8HovTyNFUtBURERERERGysrLYt28fAO6w6hWyDk9YLACbN2+ukOWLyJkrLi7m+++/B+CcGhoa4WzXonoRoXaTAwcOsGHDBqvjyFFUtBURERERCXD/+Mc/MAyDO++80+oochbbuHEjAB5XFDhcFbIOT3hJ0XbXrl3k5ORUyDpE5MysXr2arKwsokI8NI7R0AhnuxAbtI4tKc57e1hLYFDRVkREREQkgP3000+8/PLLtGnTxuoocpbz9rByh8dV2DrMkDA8zggANm3aVGHrEZE/z1u4axdXiE1DIwQFb49q783nJDCoaCsiIiIiEqCys7MZMmQIr776KtWrV8zl6iJe3qKtpwKLtvBHUViX4YoEJu/QCO1rFFmcRCpLu7gibIbJ1q1bfcPkiPVUtBURERERCVDjx4+nX79+9OrV65TzFhQUkJmZ6fcQOR2+nrYRFVu09UTEA7B+/foKXY+InL7U1FR2796NzTBpWV1F22AREWKSElUyFMaKFSssTiNeKtqKiIiIiASgd999lxUrVjB16tQyzT916lRiYmJ8j+Tk5ApOKGeTrKwsdu3aBYD7SFG1onh72qpoKxJ4vAW7lKhiwhymxWmkMnmL9MuXL7c4iXipaCsiIiIiEmB27tzJHXfcwTvvvENoaGiZ3jN58mQyMjJ8j507d1ZwSjmb/HETskhwlO2Y+7O8PW137typm5GJBBhv0bZlrHrZBpsWR37mK1aswDRVsA8EKtqKiIiIiASY5cuXk5aWxjnnnIPD4cDhcLBkyRKef/55HA4Hbre71HtcLhfR0dF+D5Gy8vZ6dYdXbC9b8L8Zmca1FQkcpmn+UbTV0AhBp1F0MSE2k4MHD7J9+3ar4wgq2oqIiIiIBJyePXuyevVqVq5c6Xt07NiRIUOGsHLlSux2u9UR5SyzefNmoOJvQublHSLBu14Rsd6ePXs4ePAgDsOkUUyx1XGkkjntJYVbgN9++83iNALgsDqAiIiIiIj4i4qKolWrVn7TIiIiiIuLKzVdpDxs2rQJAHd4bKWszxMeC4d3qGgrEkC8Pd+TI92EqItfUGoQXczawyGsX7+eyy+/3Oo4QU+noYiIiIiISBArKChgx44dwJFiaiXwhJWsR0VbkcDhLdrWj1Iv22CVcqSnrW4UGRjU01ZEREREpAr4+uuvrY4gZ6mdO3fi8Xgw7U7MkPBKWac7vDoA27Ztw+PxYLOpP5GI1byFOm/hToKPt2C/ZcsWCgsLcTqdFicKbvrLKCIiIiIiEsR27twJgCe0GhhGpazTdEVhGjYKCwtJS0urlHWKyImZpqmetsDll1/Om2++yeWXX45hGBwuqJzfiYGiRqiHCIeH4uJitm7danWcoKeirYiIiIiISBDzFW3DYipvpYYNjyvab/0iYp2MjAyys7MBSAp3W5zGOoMHD6Zu3boMHjwY0zQ5kB9cN/40DKgdUfLz3717t8VpREVbERERERGRIPZHT9voSl2vd30q2opYLzU1FYDqTg/O4KpT+pk1axY7duxg1qxZGIZBfGjwFbDjQz3AH8eEWEdj2oqIiIiIiASxXbt2AeBxVWJPW8AMjfFbv4hYx1ugiw8LviLl0T7//HPmzJmDYRiYpkk1l2l1pEpX48gxoKKt9dTTVkREREREJIjt2bMHAE9oVKWu1+OK8lu/iFjHV7Q90ssyWJmm6fdvMPIeA3v37rU4iahoKyIiIiIiEqSys7PJyMgA8I0xW1m8wyNo3EQR6+3btw8gKIcDEH/eY0A3ibSeirYiIiIiIiJBytfL1hEK9pBKXbe3p+3evXtxu1UoErFSXl4eAGGO4O1hKiW8x4D3mBDrqGgrIiIiIiISpLZt2waAJ7Ryx7MFMJ0RmDY7xcXFGiJBxGIFBQUAOFUlCnreY8B7TIh1dDqKiIiIiIgEqa1btwLgCa9e+Ss3bHhCS9a7ZcuWyl+/iPgUFhYCEGJTT9tg5z0GVLS1noq2IiIiIiIiQWrz5s0AeMJiLVm/t1isoq2ItfLz8wFw2lW0DXbeY6CgoCCob8gWCFS0FRERERERCUKmabJp0yYAPGEW9LQF3EfW680hItbweDyAikQCdqPkX9M0VbS1mM5HERERERGRILR582YOHjyIabPjjoizJIM7siYAv/zyC0VFRZZkEBGIjIwEIM9tWJxErJZTXHIMREREYLOpbGgl7X0REREREZEg9P333wPgjkoCm8OSDJ6IeDyOMHJzc1m1apUlGUQEoqKiAMguUpko2OUcOQa8x4RYR2ejiIiIiIhIEPIWbYurJVsXwjBwV6vjl0dEKp+3QJdTpJ62wc7b01ZFW+upaCsiIiIiIhJkdu7cye+//w5AcUwdS7MUx5QUjRcvXqy7lYtYJDo6GoBsFW2Dnrdwr6Kt9VS0FRERERERCTJvvfUWpmlSXC0Z0xVpaZbiasl4nBEcOHCAzz//3NIsIsEqPj4egP35douTiNXS8kqOgRo1alicRFS0FRERERERCSI7d+5k4cKFABQktbc4DWCzU1irLQAzZ85Ub1sRCzRs2BCAHdl2TNPiMGKpHdklRVvvMSHWUdFWREREREQkiMyYMQOPx1PSwzUi3uo4ABTFN/b1tv3000+tjiMSdOrVq4fD4SC32EZ6vkpFwWxHdsmNKVW0tZ7ORBERERERkSAxf/78wOpl63VUb9tXX32VDRs2WBxIJLiEhIRQr1494I+elhJ88ooN3/AIKtpaT0VbERERERGRILBu3TqefPJJAAqS2gVML1uvohpNKI6pQ2FhIX/72984fPiw1ZFEgkqjRo0A2JblsDiJWGV7VknBNj4+nmrVqlkbRlS0FREREREROdsdPHiQv/3tbxQVFVFcLZnCQOpl62XYyGvQDY8rmn379vHQQw9RXFxsdSqRoNGmTRsAfk13WpxErOL92XuPBbGWirYiIiIiIiJnsYyMDO6//37279+POzSGvJRuYBhWxzo+h4u8xj0xbSH88ssvPPnkkyrcilSSzp07YxgGW7McHCxQuSgYrThQUrTt2rWrxUkEVLQVERERERE5a+3atYvx48ezZs0aTLuT/EY9wRHYveg8YdXJb3ARAPPmzePee+8lOzvb4lQiZ7/Y2FhatGgBwC/7QyxOI5Vtb46Nvbl2HA4HnTp1sjqOoKKtiIiIiIjIWenXX3/l1nHj2LVrFx5nJLnN+uEJq2Z1rDIprl6P3Ma9MG0Ofv75ZyZMmMDevXutjiVy1vP2sPT2uJTg4f2Zt2vXjsjISIvTCKhoKyIiIiIictaZP38+d911F1mZmbgj4slt0R9PeHWrY50Wd7W6JYXmkHC2bdvGuHHj+P33362OJXJW8xZt1xwK4XBBgA6jIuXONOG7fS5AQyMEkoAv2tavXx/DMEo9xo8fD0D37t1LvXbLLbf4LWPHjh3069eP8PBwEhISuPvuuzUukoiIiIiInHUyMzP5xz/+wdSpUykuLqaoen1ym16GGRJmdbQ/xRMRR26L/rjDYzl06BB33Hknb775pj7PiVSQevXq0bJlS9ym26d1MwABAABJREFUweI9oVbHkUqyIcPBjmwHTqeTiy++2Oo4ckTAF21/+ukn9u7d63ssWLAAgEGDBvnmGT16tN88jz/+uO81t9tNv379KCws5Ntvv2XGjBm88cYbPPDAA5W+LSIiIiIiIhVlyZIlDB8+nHnz5gFQUKsN+Q17gN1hcbIzYzojyG3Wj6Jq9SguKuI///kPY8eOZd26dVZHEzkrDRw4EICvdodS7LE4jFSKBbtKCvSXXHIJMTExFqcRr4Av2taoUYPExETfY86cOTRs2JBu3br55gkPD/ebJzo62vfal19+yZo1a3j77bdp164dffv25ZFHHuHFF1+ksLDQik0SEREREREpN+np6TzwwAM8+OCDHDp0CHdoDDnN+lFYpyMYZ8nlzfYQ8htdTF6DbngcLjZv3sy4ceN46aWXyM/PtzqdyFmlW7duxMXFkVFo48c0jW17tjuYb+Pn/SU/Z2/BXgJDwBdtj1ZYWMjbb7/NTTfdhHFU4+Odd94hPj6eVq1aMXnyZHJzc32vfffdd7Ru3ZqaNWv6pvXp04fMzMwTjodUUFBAZmam30NERERERCSQeDwe5s6dy/Dhw/nmm28wDYOCWm3JbXkFnqiap15AVWMYFMc1JLfVQIpiG+DxeHj33XcZNWoUK1assDqdyFnD4XBwxRVXAPDlrlBM0+JAUqEW7XbhMQ3atm1Lw4YNrY4jR6lS18l8/PHHHD58mBEjRvim3XDDDdSrV4+kpCRWrVrFPffcw/r16/nwww8BSE1N9SvYAr7nqampx13P1KlTeeihhypmI0RERERERM7Qzz//zMsvv8zGjRsBcIfHkZ9yAZ7wOIuTVTwzJIz8ht0pimtA6LZv2b17NxMnTqRLly6MGTOG+vXrWx1RpMq7/PLLeeutt9iSCavSQ2gbX2R1JKkAmYUGC3aVjHl+zTXXWJxGjlWliravv/46ffv2JSkpyTdtzJgxvv+3bt2aWrVq0bNnTzZv3vynvyGYPHkyEydO9D3PzMwkOTn5zwcXEREREREpB5s2beLll1/mp59+AsC0h1CQ1I6imi3BqFIXUp4xd7W65LRKxLV7OSFp6/j222/5/vvv6du3LyNHjiQ+Pt7qiCJVVmxsLAMHDuS9995j1uZwWsdlYDtLRluRP3y6LYx8t0GTJk3o2rWr1XHkGFXmr/r27dtZuHAhN99880nn69SpE1DSmAFITExk3759fvN4nycmJh53GS6Xi+joaL+HiIiIiIiIVfbt28fUqVMZPXo0P/30E6Zho7BmC3JaD6IosXXQFWx9HE4K6nUmp9VAiqrVw+Px8PnnnzNkyBBef/11cnJyrE4oUmUNGTKEiIgIduY4+C5VY9uebfbn2Vi0u+QGZGPHjsVmC9K/IwGsyvxEpk+fTkJCAv369TvpfCtXrgSgVq1aAHTu3JnVq1eTlpbmm2fBggVER0fTokWLCssrIiIiIiJypjIyMnjppZe48cYbmT9/PqZpUhSbQk6rgRTUPR8zJNTqiAHBDIshv3FPcpv1wx2ZQEFBAW+99RZDhgzhww8/1E2oRf6E6OhobrjhBgDe3xJOodviQFKuPtgSjts06NixIx06dLA6jhxHlSjaejwepk+fzvDhw3E4/hjRYfPmzTzyyCMsX76cbdu28emnnzJs2DAuuugi2rRpA0Dv3r1p0aIFQ4cO5ddff2X+/Pncf//9jB8/HpfLZdUmiYiIiIiInFBWVhavv/461113He+++y5FRUUURyWS07w/+Q17YIbqasDjcUfVJLdZP/IaXYwnNJrDhw/z/PPPM2TIED799FOKijQup8jpuPrqq4mPjye9wM6CXfqS6GyxNdPOt/tKamJHDzsqgaVKFG0XLlzIjh07uOmmm/ymO51OFi5cSO/evWnWrBl33XUXV199NZ999plvHrvdzpw5c7Db7XTu3Jkbb7yRYcOG8fDDD1f2ZoiIiIiIiJxUTk4Ob775Jtdddx1vvfUWeXl5uMPjyG18CXlN++KJrGF1xMBnGBRXr09Oy4Hk1+uCJySc/fv38/TTTzN06FDmzp1LcXGx1SlFqoTQ0FBGjRoFwEdbwzmQVyXKSHISbg9MXx8JQK9evWjSpInFieREqsSNyHr37o1pmqWmJycns2TJklO+v169esydO7cioomIiIiIiJyx3NxcPvroI9577z0yMzMBcIdVpzCpPcXV64GhOwCdNpuNooRmFMU3ImT/epx7VpGamsrjjz/OO++8w/Dhw+nZsyd2u93qpCIBrU+fPnzxxResWrWKGRsimNgmS7+SqrAFu0PZluUgMjKScePGWR1HTkJfkYiIiIiIiFikoKCA2bNnc8MNN/Dqq6+SmZmJOzSGvAbdyW15JcWx9VWwPVM2B0U1W5LTZhD5yeficYSye/du/v73vzNy5Ei+/vrr43YSEpESNpuNiRMn4nA4+DXdyc/7dVOyqio938YHW8IBuOWWW4iNjbU4kZxMlehpKyIiIiIicjYpLi5m/vz5zJgxw3fTZI8rioKk9hTHNQBD/WvKnd1BUWJrimo0w7lvDc7U1ezYsYMpU6bQpEkTRo8eTceOHTFUJBcppX79+lx//fW89dZbvLUhgpaxRYQ79GVHVWKa8OaGCArcBq1ateKyyy6zOpKcgoq2IiIiIiIilcTj8fDNN9/w+uuvs3PnzpJpIeEU1m5PUVxjsKlYW+HsIRQmtaUwoTnOfb/hTP2dDRs2cPfdd9O2bVvGjBlDy5YtrU4pEnBuvPFGvvrqK3bv3s27m8K5qVmO1ZHkNPyQ5uSXA04cDgd33XUXNv29CXgq2oqIiIiIiFQw0zT58ccfef3119mwYQMAHoeLwlptKUpoBjZ9NKt0DieFtc+hKKE5zr2rCElby6+//sr48ePp0qULN998Mw0aNLA6pUjAcLlcTJo0ib/85S98vSeUDvGFtI0vsjqWlMGhAoMZ6yMAGDJkCCkpKRYnkrJQWV1ERERERKQCbdmyhbvuuot77rmHDRs2YNocFCS1I6fNIIoSW6lgazEzJIyCup3IaX0NhfFNMDH49ttvGTVqFP/85z85ePCg1RFFAkb79u255pprAHh9XSTZRRpOJNCZZsnPKqfYRpMmTRg6dKjVkaSMVLQVERERERGpAJmZmTz33HPcfPPNrFixAtOwU1izJTltBlNY+xyw62Y+gcR0RVKQcgE5rQZSVL0+pmnyxRdfMHToUN577z2KitSjUARg9OjR1K1bl8OFNt480ntTAtfXe1ysSncSEhLC5MmTcTj0RWFVoaKtiIiIiIhIOXK73XzyySfceOONfPTRR3g8Hoqq1yOn9UAK6nbCDAm1OqKchBkWQ36ji8lpfjnu8DhycnKYNm0aN910Ez/88IPV8UQs53K5uO+++7DZbHyf5uL7ffoCKlCl5dn476aSwvrNN9+sYRGqGBVtRUREREREysmvv/7KmDFjeOaZZ8jMzMQdVo3cppeS36gnpivK6nhyGjyRCeS2GEBe/QvwOELZuXMn99xzD/feey+7du2yOp6IpZo1a+a7zH7G+ggO5qu8FGjcHnh5TST5boM2bdr4hrWQqkNnlYiIiIiIyBnKzs7mySef5I477mDz5s2Ydif5dc8nt+WVuKOTrI4nf5ZhUFyjScl4tzVbYRoG33//PSNHjuS///0vxcXFVicUsczQoUNp1qwZOcU2Xlkbice0OpEcbc72MDZmhBAeHs7kyZOx2+1WR5LTpKKtiIiIiIjIGfjhhx8YOXIkc+bMAaCwRlNyWl9DUc0WYOgj11nB4aSg7nnktBxIcXRtioqKePnll5kwYQJbt261Op2IJRwOB//3f/9HaGgoaw6FMG+nhn4JFJszHXy0LQyAO++8k1q1almcSP4MtSBERERERET+hKysLP7xj39wzz33sH//fjyuKHKb9qWgfleNW3uWMsNiyGvSm7z6F2Danaxbt47RY8bw1ltvqdetBKXk5GQmTJgAwOzN4WzPUm9Oq+UXw0u/R+IxDXr06MEll1xidST5k1S0FREREREROU3fffcdI0aMYN68eQAU1mxJTsurcEerN9NZzztkQqurKI5JprioiNdff51x48axZcsWq9OJVLp+/frRtWtX3KbBS2siKXRbnSi4zdwUwb48OwkJCUycOBHDMKyOJH+SirYiIiIiIiJlVFBQwLPPPsvkyZNJT0/HExpNbrN+FNTtBHaH1fGkEpnOCPIa9yIv5SJMu5MNGzYwduxYPvzwQ0xTg3tK8DAMg7vvvpvY2Fh25ziYvSXc6khB65cDIXy9JxTDMJg8eTJRUboBZlWmoq2IiIiIiEgZbN26lVtuuYWPP/4Y8PauvRJ3VE1rg4l1DIPi+EbktB5IcUwyRUVFPP/889x3330cPnzY6nQilaZatWrcc889AMzfGcaag1XnS6xYl4enOh9iaqdDvmlTOx3iqc6HiHV5LEx2ejILDV5fGwnAoEGDaN++vcWJ5EypaCsiIiIiInISpmnyySefMHbsWLZu3YrHEUZuk94lvWttVacwIRXHDAknr3Ev8uuej2nY+e677xg1ahQ///yz1dFEKk2nTp3o378/AK+sjSSnqGpclm+3QY0wD/GhfxRo40M91AjzYK8iVTPThOnrIsksspGSksKoUaOsjiTloIocfiIiIiIiIpUvIyOD+++/n2eeeYbCwkKKY+qQ2+pK3DF1rI4mgcYwKKrZgtwW/XGHViM9PZ1Jkybx0ksvUVRUZHU6kUpx6623kpSUxMECO29tiLA6TtBYmupi+QEnDoeD++67D5fLZXUkKQcq2oqIiIiIiBzHypUrGTVqFMuWLcM0bOQndyKv8SWYIWFWR5MA5gmPJbfFAAprNAPg3Xff5bbbbmP37t0WJxOpeOHh4fzf//0fNpuNb/e5+Hm/0+pIZ72D+TZfgXzkyJE0btzY4kRSXlS0FREREREROUpxcTHTp09n4sSJHDhwAHdoDLkt+lOU2BJ0F24wPRgFWRgF2b5JRkE2RkEWmFVn/McKZXdQUL8LeY16YtqdrFu3jtGjR7Nw4UKrk4lUuJYtW3LdddcB8Ob6iCozTEJVZJrwxvoI8t2G336Xs4OKtiIiIiIiIkfs27ePv/zlL8yYMQOPx0NhfGNyWwzAEx5ndbSAYRTmELlqNpG/f+SbFvn7R0Sumo1RmGNhssBTXL0eOS2vpDiyJrm5uTz66KP84x//IDc31+poIhVq+PDhJCcnc7jQxqzN4VbHOWv9mOZkZXrJsAh33303drvd6khSjlS0FRERERERARYvXsyoUaNYvXo1pi2EvAbdKEi5EOwhVkeTKsx0RZLXrC8FSe0xMZg3bx5jxoxh3bp1VkcTqTAul4tJkyYBsHhPKOsO6aaN5S27yPANi3DjjTdSv359awNJuVPRVkREREREglpWVhaPPfYYDz30ENnZ2bgj4slpeQXFcQ2tjiZnC8NGYe325DXriyckgl27djFu3DjefPNNiouLrU4nUiHatm1L//79AXh9XSSFbosDnWX+uzGczCIb9evX54YbbrA6jlQAFW1FRERERCRo/fLLL4waNYoFCxZgYlCQ1I7cZpdjhkZbHU3OQu6oRHJaXUlRbAoej4f//Oc/3H777ezatcvqaCIVYuzYscTHx7Mvz87cHbqJY3nZcNjB/1JDMQyDu+++G6dTN3w7G6loKyIiIiIiQaewsJBp06YxceJE0tLS8LiiyG3ej8La54BNH5OkAjlc5DfoTl6Dbph2J2vWrOHmm29mzpw5mKZpdTqRchUZGcm4ceMAmLM9jEMFuinZmfKYMHNjybAI/fr1o2XLlhYnkoqi1oiIiIiIiASVjRs3csstt/Dee+9hmiaFNZqQ0/JKPJEJVkeTYGEYFMc1LLlJWVQi+fn5PPnkk0yePJn09HSr04mUqx49etCyZUsKPQbvb9FNyc7U9/ucbMlyEBYWxk033WR1HKlAKtqKiIiIiEhQKC4u5o033uCWW25hy5YteByh5DbqRUH9C3SzMbGE6Yokr2lf8pPPxTRsfP/994wYMYKFCxeq162cNQzD8PW2XbrXxbYsu8WJqq4CN8zaXFL4vvHGG4mNjbU4kVQkFW1FREREROSst2XLFsaNG8cbb7yB2+2mqHp9cltdhbt6XaujSbAzDIoSW5Pb8grc4XFkZWXx6KOP8uCDD3Lo0CGr04mUi5YtW9KzZ09MDGZujEDfSfw583aEcbDATs2aNbnmmmusjiMVTEVbERERERE5axUXF/POO+8wZuxYNmzYgGl3kdegO/kNe2CG6KY4Ejg8YdXJbd6fgtrnYBoG33zzDSNGjGDJkiVWRxMpF6NHjyYkJIR1h0NYf9hhdZwqJ6/Y4IudoQCMGTMGl8tlcSKpaCraioiIiIjIWWnPnj3ceeedvPrqqxQXFVEck0xOq6sojmsAhm6GIwHIZqMwqR25zQfgDqtORkYGDz74IFOnTiUnJ8fqdCJnJDExkb59+wIlNyWT07N4j4vcYhvJycn06NHD6jhSCVS0FREREREJMFOnTuXcc88lKiqKhIQErrzyStavX291rCrDNE3mzZvHzTffzG+//YZpCyGv/gXkNe6F6dRNcCTweSLiyG0xgIJabTAxmD9/PqNGjWLVqlVWRxM5I9deey02m41VB53s0Ni2ZVbkgfk7SgrdN9xwAzabynnBQD9lEREREZEAs2TJEsaPH8/333/PggULKCoqonfv3uppVwYZGRlMmTKFf/zjH+Tm5lIcWZOcVldSXKOJetdK1WKzU1inI3nN+uJxRpKamsqdd97Ja6+9RlFRkdXpRP6U2rVr061bNwDm7FBv27L6NtXFoUIb8fHx9OrVy+o4UklUtBURERERCTDz5s1jxIgRtGzZkrZt2/LGG2+wY8cOli9fbnW0gLZixQpGjRrFkiVLMA2DgtodyGvWF9MVZXU0kT/NHZVITqsrKYprhMfj4e2332b8+PHs2rXL6mgif8oNN9wAwA/7nOzPU1nqVEwT5h4pcA8ePJiQkBCLE0ll0dkhIiIiIhLgMjIyAIiNjT3hPAUFBWRmZvo9goVpmnzwwQdMmjSJAwcO4A6NIbd5fwqT2oKhjzxyFrA7yW9wEXkNe2DanWzYsIFbbrmFn3/+2epkIqetcePGnHPOOZgYLE3VzbROZUOGg725dsLCwrj88sutjiOVSC0YEREREZEA5vF4uPPOO+natSutWrU64XxTp04lJibG90hOTq7ElNYpLCzkiSee4IUXXsDj8VAU14jcFlfgiYi3OppIuSuOTSGn1VW4I2qQnZ3NX//6Vz744ANM07Q6mshpufTSSwFYlupCh+/JfXuksN2tWzfCwzUuezBR0VZEREREJICNHz+e3377jXffffek802ePJmMjAzfY+fOnZWU0DqHDh1i4sSJzJ07FzDITz6P/JQLwe6wOppIhTGdEeQ26+sbLuGFF17giSeeoLCw0OpoImV2wQUXEBoaSlqenU2Z+p19IoVu+CHNCUDv3r0tTiOVTUVbEREREZEANWHCBObMmcPixYupU6fOSed1uVxER0f7Pc5mu3bt4pZbbuG3337DtDvJbXIJRYmtdLMxCQ42B/kpF5KffB4mBnPnzuWuu+4iNzfX6mQiZRIeHs6FF14I/NGTVEr7Nd1JbrGNGjVq0K5dO6vjSCVT0VZEREREJMCYpsmECRP46KOP+Oqrr0hJSbE6UkA5dOgQf/3rX9m3bx8eVzQ5zfvjjjl5UVvkrGMYFCW2Iq/JJZh2J6tXr+bBBx+kuLjY6mQiZeLtOfpDmhOPhkg4ru/3lfSy7dWrFzabSnjBRj9xEREREZEAM378eN5++21mzpxJVFQUqamppKamkpeXZ3U0y+Xn53PfffexZ88ePK5Icpv3wwyLsTqWiGXcMXXIbXopps3BTz/9xDPPPKMxbqVKaN++PREREWQX2dieZbc6TsDxmPD7oRAAX69kCS4q2oqIiIiIBJhp06aRkZFB9+7dqVWrlu/x3nvvWR3NUm63m0cffZS1a9di2l3kNu6DGRJmdSwRy3ki4slr2B0w+Pzzz3n77betjiRySg6Hg7Zt2wKw5khxUv6wLctObrGNiIgImjRpYnUcsYCKtiIiIiIiAcY0zeM+RowYYXU0S7355pssXboU07CT17inetiKHMVdrS75dTsB8Prrr/Ptt99anEjk1M455xzgjx6l8gdvIbtdu3Y4HLpZWzBS0VZERERERAJednY2s2bNAiC/flfcUYkWJxIJPEU1W1CY0AKAGTNmaJgECXjeou2GwyEUeSwOE2C8Rdv27dtbnESsoqKtiIiIiIgEvM8//5y8vDzcodUojmtodRyRgFWY1BbTsLN+/XpWr15tdRyRk0pJSaF69eoUegy2Zak3qZfHhI0ZJUVbb2Fbgo+KtiIiIiIiEtCKi4v58MMPAShKbAWGYXEikcBlhoRRFF/yxcbs2bMtTiNycoZh0KhRIwB2ZetmZF4H8m0UuA1CQkKoW7eu1XHEIiraioiIiIhIQPvpp5/Yt28fHkcoRXENrI4jEvCKarYEYOnSpaSnp1ucRuTk6tevD8DuHBVtvbz7om7duhrPNoipaCsiIiIiIgHtwIEDALgjE8CmD68ip+IJq44nJAzTNDl48KDVcUROKiUlBVDR9mjeXsfefSPBSUVbEREREREJaG63u+Q/hj6+iJTZkfPFd/6IBChvT9tdOfpSzmv3kX2hom1wU6tHREREREQC2h9FW41lK1JmR84Xj8djcRCRk0tOTgYgo9BGgb5jAGBfXkm5zrtvJDipaCsiIiIiIlWDR5/mRcrENH3ni2maFocRObnIyEhcLhcAhwtUpoI/9kNcXJzFScRKOhtERERERCSgNW/eHABH5l4VbkXKwJZ3EFtRHk6nkwYNdPM+CWyGYfiKk4cLVaYyzZJex6CibbDT2SAiIiIiIgGtWbNmxMXFYXiKsGfusTqOSMBzHNoOwLnnnktYWJjFaUROLTY2FvijWBnMcooNis2S4U28+0WCk84GEREREREJaDabjQsuuAD4oxglIifmPU+8541IoPP1tNXwCL59EB0djdPptDiNWCmgz4YpU6ZgGIbfo1mzZr7X8/PzGT9+PHFxcURGRnL11Vezb98+v2Xs2LGDfv36ER4eTkJCAnfffTfFxcWVvSkiIiIiInIGLrzwQgBCDm0Dd5G1YUQCmC3nAPa8Q9jtdrp06WJ1HJEyiY6OBiC3WDeczDmyD6KioixOIlYL6KItQMuWLdm7d6/vsXTpUt9rf/nLX/jss8+YPXs2S5YsYc+ePQwcOND3utvtpl+/fhQWFvLtt98yY8YM3njjDR544AErNkVERERERP6kc845hzp16mC4Cwk5sMHqOCIBy5n6GwA9evQgJibG4jQiZeMdxiPfraJtwZF9EB4ebnESsVrAF20dDgeJiYm+R3x8PAAZGRm8/vrrPP3001x88cV06NCB6dOn8+233/L9998D8OWXX7JmzRrefvtt2rVrR9++fXnkkUd48cUXKSwstHKzRERERETkNNhsNgYNGgSAc9/vYHosTiQSeIyCbBwHtwIwePBgi9OIlJ2Ktn/w7gONRy0BX7TduHEjSUlJNGjQgCFDhrBjxw4Ali9fTlFREb169fLN26xZM+rWrct3330HwHfffUfr1q2pWbOmb54+ffqQmZnJ77//fsJ1FhQUkJmZ6fcQERERERFr9enTh+joaGwF2RrbVuQ4nGlrMTBp164dTZo0sTqOSJl5C5QFKtr69oGKthLQRdtOnTrxxhtvMG/ePKZNm8bWrVu58MILycrKIjU1FafTSbVq1fzeU7NmTVJTUwFITU31K9h6X/e+diJTp04lJibG90hOTi7fDRMRERERkdMWGhrKgAEDAAhJ32RxGgG4/PLLefPNN7n88stL7kNSmGt1pOBlmjiOnBfXXHONxWFETs8fPW0tDhIAvD1tQ0NDLU4iVgvoom3fvn0ZNGgQbdq0oU+fPsydO5fDhw8za9asCl3v5MmTycjI8D127txZoesTEREREZGyufjiiwGwZ+wBt4Y8s9rgwYOpW7cugwcPxjRNbIXZVkcKWvbsfdiK8oiIiKBTp05WxxE5LU6nE4Bij3raFh8Z/ce7TyR4BXTR9ljVqlWjSZMmbNq0icTERAoLCzl8+LDfPPv27SMxMRGAxMRE9u3bV+p172sn4nK5iI6O9nuIiIiIiIj1UlJSSE5OxjDdOA6rc4XVZs2axY4dO5g1axaGYeBxRlodKWg5Dm0DoGvXroSEhFgbRuQ0ORwO4I+CZTDz7gOdx1KlirbZ2dls3ryZWrVq0aFDB0JCQli0aJHv9fXr17Njxw46d+4MQOfOnVm9ejVpaWm+eRYsWEB0dDQtWrSo9PwiIiIiInJmDMOgW7duABrXNgB8/vnnDBs2jM8//xzTNDGdutu5VRyHSu7/4j0/RKoSb4Gy2FRPW+8+8BayJXgF9BEwadIk+vfvT7169dizZw8PPvggdrud66+/npiYGEaNGsXEiROJjY0lOjqa2267jc6dO3P++ecD0Lt3b1q0aMHQoUN5/PHHSU1N5f7772f8+PG4XC6Lt05ERERERP6MRo0aAWAUafxUq5mm6fevWMd7PnjPD5GqRD1t/6CetuIV0EXbXbt2cf3115Oenk6NGjW44IIL+P7776lRowYAzzzzDDabjauvvpqCggL69OnDv//9b9/77XY7c+bM4dZbb6Vz585EREQwfPhwHn74Yas2SUREREREzlBRUVHJf2wB/XFGpHLZ7OD2/HF+iFQhvp62GtPW19PWbrdbnESsFtCtnHffffekr4eGhvLiiy/y4osvnnCeevXqMXfu3PKOJiIiIiIiFiksPHIDMkMfaEW8TMOOQdEf54dIFeLraatO+7h1IzI5okqNaSsiIiIiInLw4EEATJuKtiI+R3qee88PkapEPW3/UHRkH2h4BFHRVkREREREqoyCggI+/vhjANzRSdaGEQkgxdG1AHjvvfcsTiJy+ry9SjWmrca0lT+oaCsiIiIiIlXGp59+Snp6Oh5nBEXxja2OIxIwCmu1xTQMfvrpJ1avXm11HJHT8sfwCOpp690HKtqKirYiIiIiIlIl5OXlMXPmTAAKk9qV3HhJRAAwQ6N9X2RMnz4d09TgoFJ1uFwuAArdFgcJAIXukqKtxrQVFW1FRERERCTgFRcX8+ijj3Lo0CE8riiK4tTLVuRYhbXaYRo2VqxYwZtvvml1HJEyCw8PByDfbRDs3zfkHSlcR0REWBtELKeirYiIiIiIBDSPx8M//vEPli1bhmnYya9/Adj0UUbkWKYrkoLk84CS3razZ8+2OJFI2XgLlCYGBUHe2za/uOTvm7eQLcFLLR0REREREQlYpmny7LPPsnDhQkzDIK9RD9xHbrgkIqUV1WxBQe1zAHjxxRf5/PPPLU4kcmoulwvbkS/j8t3BPa6tt6dtWFiYtUHEciraioiIiIhIQPJ4PPz73//m008/BSA/pRvuanUtTiUS+AprtaWwZisAnnzySb788kuLE4mcnGEYvp6lucXBXbRVT1vxUtFWREREREQCTm5uLg888IDv8u78+l0pjmtgcSqRKsIwKEg+l8IaTTBNk7///e+89tpreDweq5OJnFC1atUAyCwM3lKVx4TMopKidfXq1S1OI1YL3jNBREREREQC0t69e7nttttYunQppmEjL+VCimo0tTqWSNViGBTU60JhYmsA3n77bR544AFyc3MtDiZyfPHx8QAcKgjeUlV2kYHbNDAMg9jYWKvjiMWC90wQEREREZGAs2rVKm655RY2b96MxxFGbrPLKI5vbHUskarJsFGQfC55KRdiGjaWLl3Kbbfdxt69e61OJlKKt2h7OIh72h48UrCuVq0aDofD4jRiteA9E0REREREJGCYpslnn33GxIkTycjIwB0eR26L/ngiE6yOJlLlFcc3JrfZZXgcYWzevJlbb72VX375xepYIn7i4uKAPwqXwejwkW2vUaOGxUkkEATvmSAiIiIiIgGhoKCAJ554gqeeeori4mKKqtcnt9llmK5Iq6OJnDU8kQnktuiPOzyOw4cPc9dddzFr1ixM07Q6mgjwR6HyYH7wlqrSj2y7t9exBLfgPRNERERERMRy+/bt4/bbb2fu3LmAQUGdjuQ37AH2EKujiZx1TFckuc36URTXEI/Hw7///W8efvhhjXMrAaFu3boA7M6xW5zEOrtzSoZEqFevnsVJJBCoaCsiIiIiIpb4+eefGT16NOvXr8fjcJHbpDeFtdqAYVgdTeTsZXeQn3IR+XXPxzQMFi9ezLhx49i1a5fVySTIpaSkAJCaZ6fIY3EYi+w6UrD27gsJbiraioiIiIhIpfvoo4/461//SmZm5pHxa6/AHVPb6lgiwcEwKKrZgryml+EJCWPbtm2MHTuW5cuXW51Mglh8fDxRUVF4TIO9Qdjb1jRhZ7aKtvIHFW1FRERERKTSuN1u/vWvf/Hcc8/h8XgoimtEbvN+Gr9WxALuqJolX5hEJpCTk8Nf//rXI0OViFQ+wzB8xcpdQVi0zSg0yCm2YbPZfENFSHBT0VZERERERCpFXl4eDzzwAO+//z4ABXU6kJ9yIdgcFicTCV6mM5zcppdSFNsAt9vN448/zmuvvYbHE6TXp4ulGjVqBMDmzOD7u+Dd5uTkZFwul8VpJBCoaCsiIiIiIhUuPT2dO+64g2XLlmEadvIadqewVluNXysSCGwO8ht0o6BWWwDefvttHnnkEQoKCiwOJsGmbduSY3DNoeC7GeXaI9vcvn17i5NIoFDRVkREREREKtThw4e588472bBhAx5HKLnN+lIc28DqWCJyNMOgsE4H8lIu9N2g7KGHHqK4uNjqZBJE2rVrB8DuHAcZhcH1pd4aFW3lGCraioiIiIhIhcnNzeWvf/0rO3fuxOOMILf55XgiE6yOJSInUBzfmLzGvTENO99++y1PPPGEhkqQShMTE+MbImFtEPW2zSg02JVTMjyCt3AtoqKtiIiIiIhUiIKCAv7v//7P18M2r0kfzNBoq2OJyCm4Y2qT16gHJgbz58/n3//+N6ZpWh1LgsQ555wDwO8Hg6dou+bItjZq1IiYmBiL00igUNFWRERERETKncfj4dFHH+WXX37BtIWQ16Q3nrBqVscSkTJyV6tLfsoFALz//vvMnDnT4kQSLM477zwAlh9wUhwknbx/2u8E4Nxzz7U4iQQSFW1FRERERKTcffXVV/zvf//DNGzkNe6FJyLe6kgicpqK4xuTn9wJgNdff53t27dbnEiCQbt27ahevTrZRTZ+D4IhEnKLDX5NLyna9uzZ0+I0EkhUtBURERERkXJVXFzMG2+8AUBhUjvc0bWsDSQif1pRYkuKqtXF4/EwY8YMq+NIEHA4HPTo0QOA71JdFqepeMv3OynyGNSvX5+GDRtaHUcCiIq2IiIiIiJSrhYsWMCuXbvwOEIprNnS6jgicoYKa5fczX7x4sVs2bLF4jQSDLw9TlcccFLgtjhMBfsu9Y9etoZhWJxGAomKtiIiIiIiUm7cbrevN15hYmuwn/2Xtoqc7TzhcRRVr49pmr5e9CIVqUWLFiQmJpLvNvj5yHivZ6P0/D+GgLj44ostTiOBRkVbEREREREpN5mZmaSmpgJQVKOpxWmkIpjOCLLbDCK75VW+adktryK7zSBMZ4SFyaQiec/n9evXW5xEgoFhGFx22WUAfLkzDNO0OFAFWbgrFBODdu3aUbt2bavjSIBR0VZERERERMpNtWrVCA8PB8BWlGNxGqkQhg3TFYXpivRNMl2RmK4oMPQR82xlFJaczyosSWUZMGAATqeTrVkONmQ4rI5T7vKLYfGekjF7Bw0aZHEaCUT6iyoiIiIiIuXGMAzq1asHgC3vkMVpRKS82PMOA1C/fn1Lc0jwqFatGr179wZg/s5Qi9OUv6WpLnKLbdSuXZvOnTtbHUcCkIq2IiIiIiJSrlJSUgBwHN7JWXtNq0gwcRdhz9oDqGgrleuaa64BYPl+J2l5Z08Jy2PC/J1hAFx99dXYbGfPtkn50VEhIiIiIiLlqmvXrgCEpG8mdPNX4C6yOJGI/FlGQTbhaz/HnnsQp9NJx44drY4kQaR+/fqcd955mBjM2R5mdZxy82Oak315diIjI7n00kutjiMBSkVbEREREREpV127duW+++7DERJCyKHthK+bi1GYa3UsETlNtuz9hK/9DHveQapXr84zzzxDUlKS1bEkyAwbNgyAb/a6SM2t+mWsYg98sKVk7PfBgwf7xoEXOVbVP9pFRERERCTg9O7dm2eefpqYmBjsuemEr/kUW84Bq2OJSFmYJo70LYSvm4utKI8GDRowbdo0WrZsaXUyCUKtWrWic+fOeEyDD7dW/QLn0lQX+/LsVKtWzTf8g8jxqGgrIiIiIiIVonXr1kybNo369etjK8olfM2nhK2fj+PQdjA9VscTkWO5iwhJW1dyrm75GsN0c/755/Ovf/2LxMREq9NJEBs1ahQA3+9zsSPLbnGaP6/QDR9vLRnmYciQIeplKyeloq2IiIiIiFSYpKQk/vWvf9GtWzcMwJG5m7BNi4j4dRbO3SswCrKtjigS9Gy56bi2fUvkyncJ3f4t9tx0QkJCuP7663nsscdUWBLLNWrUiIsvvhiA2Vuq7vH41e5QDhbYqVGjBgMGDLA6jgQ4h9UBRERERETk7BYZGclDDz3E7t27mTNnDl988QWHDx/GtWclzj2/UlwtmaIaTXHH1AZD/UpEKoWnGMfBrTjT1mHP2e+bnJycTP/+/enTpw8xMTEWBhTxN3LkSJYsWcKv6U5WpYfQJq5q3eQys9Dg420lvWyHDx+Oy+WyOJEEOhVtRURERESkUtSuXZuxY8cycuRIli5dyqeffsrKlSsJObyDkMM78DgjKarRhOJqyXjCYsEwrI4scnbxuLHn7MdxaBshBzZhuAsBsNvtXHTRRQwYMIB27dph6NyTAJScnMzAgQOZPXs272yMoEX1wziq0Pd8728JJ7fYRqNGjejbt6/VcaQKUNFWREREREQqldPp5OKLL+biiy9m+/btfPbZZ8ybN4/s7Gxcu1fg2r0CjyMUd3QtiqNr445OwnRFWh1bpOoxTWx5h7Bn7sGRuQd7ViqGp9j3cmJiIv379+fSSy8lLi7OwqAiZTN8+HAWLlzI3kOHWLArlL51862OVCZbM+0s2VPSs/b222/Hbq+64/JK5VHRVkRERERELFOvXj0mTJjA6NGjWbx4MV9//TUrV64kPz8f28GthBzcCoDHFU1xdBLumCSKo2qBQ5eVihyPUZhTUqTN2IM9cw+24jy/16tVq0aHDh3o3bs3HTt2VPFIqpTIyEhGjx7N448/zkdbw+lcs4BqLtPqWCdlmvDWhghMDHr16kWbNm2sjiRVhIq2IiIiIiJiOZfLxaWXXsqll15KUVERa9asYfny5Sxfvpy1a9dCQSbO/Zmwfx0mBp6IuJIibnRt3JEJYFPhSYJUcSGOrL3YM0uKtPb8DL+XXS4Xbdu2pUOHDnTo0IEGDRpgs1Wha8pFjnHppZfyySefsH79et7bHM7YFjlWRzqpZalONmWGEBoaytixY62OI1WIirYiIiIiIhJQQkJCaNu2LW3btuWmm24iOzublStX+oq4O3bswJ5zAHvOAdi7CtNmxx2ZiDsyAXdkDdwRNdQTV85OpolRlIs9ez+2nP04svZhy9mPwR89DW02G02bNvUVaVu2bInT6bQwtEj5stls3HHHHYwfP55lqaFcWKuAFtWLT/1GC2QVGfx3UwQAw4YNo0aNGhYnkqpERVsRERERkQD14osv8sQTT5Camkrbtm154YUXOO+886yOVekiIyO54IILuOCCCwBIS0vzFXCXL1/OoUOHcGTuxpG52/cejysad0QN3JHxuCNq4AmPBZs+/kgV4y4s+YLiSJHWnrMfW1Feqdnq1KlDx44d6dChA+3atSMqKsqCsCKVp0WLFlxxxRV8/PHHvLE+kkfPPYwzAC+4eG9TOFlFNlJSUhg8eLDVcaSKUatFRERERCQAvffee0ycOJGXXnqJTp068eyzz9KnTx/Wr19PQkKC1fEslZCQQN++fenbty+mabJ161Z++eUX1q5dy9q1a9m9eze2gkxsBZmEHNwMgGnY8ITFHumJG487IgEzNBoMw+KtETnC48GWdxB7zv4jRdoD2PIPc+wRarPZaNCgAc2bN6dFixa0b9+exMRESyKLWOnmm2/mm2++IfXgQeZsD2Ngg9JfaFhp3SEH3+wNBWDSpEk4HCrByenRESMiIiIiEoCefvppRo8ezciRIwF46aWX+Pzzz/nPf/7Dvffea3G6wGEYBg0aNKBBgwa+aRkZGaxbt45169b5CrkZGRnYcw9gzz3gm8+0O48UcEuGVPBExmOGhFuxGRJsTBOjIKukQJuzH3v2AWy56Rimu9SsiYmJNG/enObNm9OsWTOaNGlCaGioBaFFAktkZCS33347U6ZMYc72MM6vWUBShMfqWAAUeWD6+pJhEQYMGEDLli0tTiRVkYq2IiIiIiIBprCwkOXLlzN58mTfNJvNRq9evfjuu++O+56CggIKCgp8zzMzMys8Z6CKiYmhU6dOdOrUCQDTNElNTfUVcNeuXcuGDRsoLCzEkbkHR+Ye33s9zgjc4fF4IuJwh8fhiYjHDAmzalPkbGCaGIXZ2HNKCrP2nHRsuQewFReUmjUyMtKvQNusWTNiY2MtCC1SNXTr1o3zzz+f77//nunrI5ncPhNbAFxAMWd7GHtzHVSvXp3Ro0dbHUeqKBVtRUREREQCzIEDB3C73dSsWdNves2aNVm3bt1x3zN16lQeeuihyohX5RiGQa1atahVqxYXX3wxAMXFxWzdutWvkLt9+3ZshTnYCnPg8Hbf+z0h4bgj4vGEx/n+NZ3qkSvH4e1Bm3sAW056Se/unHQMd2GpWUNCQmjUqJGvQNu8eXPq1KmDoSE7RMrMMAzuuOMOVq5cyfrD8M1eF92TSn8hUpl259j5bFvJl3233XabxpiWP01FWxERERGRs8DkyZOZOHGi73lmZibJyckWJgpsDoeDxo0b07hxYwYMGABAbm4u69evZ+PGjWzYsIH169eza9cubEW52A7vgMM7fO/3hIThCY/HHRHn65lrhoQH1xi5NgdZ5wz1/T/omCZGQWbJjcJy048UaY9foHU4HDRo0IAmTZrQuHFjmjZtSoMGDXA6nRYEFzm71KpVi5tuuol///vfvLspnHZxhVRzmae9HKcNXu2W7vv/n+Ex4Y11ERSbBueffz49evT4cwsSQUVbEREREZGAEx8fj91uZ9++fX7T9+3bd8IbDrlcLlwuV2XEO2uFh4fTvn172rdv75uWm5vLpk2b/Iq5O3bsgKI8bBk7cWTs9M3rcYT5DavgDo/DdEacvYVcwwB7iNUpKodpYsvPODK8wR/DHBieolKzhoSE0LBhQ19xtkmTJtSvX18FWpEKNHDgQBYuXMiGDRt4Z2ME41tln/YyDANc9jPLsWSPi/UZIYSGhnLnnXeq57ycERVtRUREREQCjNPppEOHDixatIgrr7wSAI/Hw6JFi5gwYYK14YJMeHg4bdq0oU2bNr5peXl5bN68mQ0bNvge27Ztg+I8bBm7cGTs8s3rcYThifzjZmfuiHhwqLge6IzCHOw5+7FlHzhys7ADxy3QOp1OGjVqRJMmTXy9aFNSUnSXeJFK5nA4mDRpErfccgs/pLnoeqCAdvGlz9mKdLjA4L3NJUPnjBo16oRfsoqUVUD/JZk6dSoffvgh69atIywsjC5duvDPf/6Tpk2b+ubp3r07S5Ys8Xvf2LFjeemll3zPd+zYwa233srixYuJjIxk+PDhTJ06VX9IRURERCRgTZw4keHDh9OxY0fOO+88nn32WXJychg5cqTV0YJeWFgYrVq1olWrVr5pBQUFpQq5W7duLSnkHt6J4/BRPXJDo/2KuJ7w2OAcXiBQFBeWjD2bvR/bkQKtrSi31GyhoaF+BdomTZpQt25dfa4UCRBNmjRh0KBBvPfee7y5IYLm1Q+fcc/Z0zFzUwS5xTaaNGnCwIEDK2/FctYK6L8uS5YsYfz48Zx77rkUFxdz33330bt3b9asWUNERIRvvtGjR/Pwww/7noeH/3FTALfbTb9+/UhMTOTbb79l7969DBs2jJCQEP7+979X6vaIiIiIiJTVtddey/79+3nggQdITU2lXbt2zJs3r9TNySQwuFwuWrRoQYsWLXzTCgoK2LRpE2vXrmXdunWsXbuW3bt3Y8vPxJafSUj6ZgBMw4YnLBb3kR65nogaeEJjzt5hFazkcWPLO1TSezZ7P7acA9jyD3PsnrbZbKSkpPhuEtaiRQsVaEWqgBEjRrB48WLS0tL4dFsYgxrmVcp6fzsYwvf7XNhsNiZNmoTdXonVYjlrBfRfnHnz5vk9f+ONN0hISGD58uVcdNFFvunh4eEn7Hb+5ZdfsmbNGhYuXEjNmjVp164djzzyCPfccw9TpkzRuEIiIiIiErAmTJig4RCqMJfLRcuWLWnZsqVvWkZGBuvWrfMVcdeuXUtGRkZJT8/cA8A6AEx7CO6IP4q4xVGJGlbhTzAKsrFn78Oevb9kuIPcdAzTU2q+xMREmjdv7ivSNm7cmLCwMAsSi8iZCAsL47bbbuNvf/sbc3eE0SWxkNoR7gpdZ5EH3txQ0rHwyiuvpEmTJhW6PgkeAV20PVZGRgYAsbGxftPfeecd3n77bRITE+nfvz9/+9vffL1tv/vuO1q3bu3XI6FPnz7ceuut/P777343GRAREREREalIMTExdOrUiU6dOgFgmiapqal+vXE3bNhAQUEBjsy9ODL3lswHeMLjcEfVoji6Fu6oxOC5CdhpMIrysGfuxZ61B0fmXmwFWaXmiYqK8vWebdasGc2aNaN69eoWpBWRinDBBRfQuXNnvvvuO95cH8G97TMr9MKFz7eHkZprJzY2lptuuqniViRBp8oUbT0eD3feeSddu3b1GzvqhhtuoF69eiQlJbFq1Sruuece1q9fz4cffghAampqqUvIvM9TU1OPu66CggIKCgp8zzMzM8t7c0RERERERDAMg1q1alGrVi0uvvhiAIqLi9m2bZuvJ+5vv/3Gjh07sOemY89Nx7nvN0wMPBHxJQXc6CTckQnBOS5ucUlx2561t6RYm3/Y72WbrWR8yZYtW/p60dauXVt3dBc5ixmGwe23386KFStYexi+3eeka2JhhawrLc/GZ9tLeuWPHz+eyMjIClmPBKcq81d9/Pjx/PbbbyxdutRv+pgxY3z/b926NbVq1aJnz55s3ryZhg0b/ql1TZ06lYceeuiM8oqIiIiIiPwZDoeDRo0a0ahRI/r37w9Aeno6v/zyi++xZ8+eknFZc/bD3lWYhg13ZALuqFq4o2vhjqgBtrNwTEV3Ifasfb5CrS03vdR4tI0aNaJ9+/a0b9+eNm3aqIgiEoRq1arF0KFDee2115i1KYKONQor5KZk720Kp8hjcM455/i+eBMpL1WiaDthwgTmzJnDN998Q506dU46r/cyo02bNtGwYUMSExP58ccf/ebZt28fwAnHwZ08eTITJ070Pc/MzCQ5OflMNkFERERERORPi4uLo1evXvTq1QsouWrQW8BdsWIFBw4cwJGViiMrFfb8gmlz4I6sSXFMEsXVUzBdVbRwaZrY8g7iOLgNR+YebDkHMDD9ZqlXr56vSNu2bVuqVatmTVYRCSiDBg1izpw5pKam8vn2MAY2KN+bkq075OCn/SU3H5swYYJ68Eu5C+iirWma3HbbbXz00Ud8/fXXpKSknPI9K1euBEq+VQHo3Lkzjz32GGlpaSQkJACwYMECoqOj/e7sejSXy4XLpUH+RUREREQkMCUmJtK3b1/69u2LaZrs3r2bFStW+Aq5hw8fxpG5G0fmbtj5E8VRiRTHNqAotj44Qq2Of0pGfiYhB7fgSN9SasiDpKQk2rdvzznnnEO7du2Ii4uzJqSIBDSXy8Utt9zClClTmLsjjO5JBcSGlr4R4Z/hMWHmppKbj11++eU0aNCgXJYrcrSALtqOHz+emTNn8sknnxAVFeUbgzYmJoawsDA2b97MzJkzueyyy4iLi2PVqlX85S9/4aKLLqJNmzYA9O7dmxYtWjB06FAef/xxUlNTuf/++xk/frwKsyIiIiIiUuUZhkGdOnWoU6cOAwYMwDRNtm7dyooVK/jf//7Hr7/+6uuF69rxHe7oOhTFNaC4Wt2AupmZUZSH4+BWQtK3YM9J800PCQnh/PPPp0uXLrRv3/6EV0yKiByrW7dutG7dmtWrVzN7SzhjW2SXy3KXpbrYluUgIiJCNx+TChPQRdtp06YB0L17d7/p06dPZ8SIETidThYuXMizzz5LTk4OycnJXH311dx///2+ee12O3PmzOHWW2+lc+fOREREMHz4cB5++OHK3BQREREREZFKYRgGDRo0oEGDBlxzzTWkpaXx1VdfsWjRIjZu3IgjYyeOjJ2YNgfF1epSFNcQd3RtsNkqP6y7EMeh7SWF2sw9vqEPbDYb7du3p1evXlxwwQVERUVVfjYRqfIMw2D8+PHccsstLEt10Sc5j/pR7jNaZqEb3t9ScvOxoUOHakgWqTABXbQ1TfOkrycnJ7NkyZJTLqdevXrMnTu3vGKJiIiIiIhUGQkJCVx33XVcd911bN++nUWLFrFw4UL27NlDyMEthBzcgsfhoji+CQW12oCj4q9INPIzce3+BcehbRjmHwWU5s2b07NnT3r06KFhD0SkXDRr1oyePXuyaNEiPtkazh1tss5oeV/vCeVQgZ2EhAQGDhxYTilFSgvooq2IiIiIiIiUn3r16nHTTTcxcuRI1q1bx8KFC/nqq684dOgQztTVhOxfT2GtNhTWbAG28v+4aBTl4dyzkpD96zCOdNJJTk7mkksu4eKLLz7ljadFRP6MYcOG8dVXX7H8gJNtWfY/3du20A1ztpf0sh0yZAhOp7M8Y4r4UdFWREREREQkyBiGQfPmzWnevDm33norP/74I6+//jqbN2/GtetnQtLWUlD7HIrjGoJRDsMmuItwpv6GM/U3DE8RAOeffz4jRoygadOmuuu6iFSoevXq0bNnTxYuXHhGvW2/3hPK4UIbCQkJ9O3bt5xTivhT0VZERERERCSIORwOunTpQqdOnVi4cCGvv/46aWlphG39H+7U3yio0xF3TB34M4VVj4eQAxtw7v4FW3EeUHKp8tixY2nfvn05b4mIyIkNHTqURYsW/enetuplK5XNgpHmRUREREREJNDY7Xb69OnDW2+9xS233EJkZCT2vEOEb1xA6KavwFN8WsszCnMIX/MJodu/xVacR1JSEg8++CDTpk1TwVZEKp23ty3A50eKr6djWapLvWylUqloKyIiIiIiIj4ul4vrrruOmTNncu211xISEkLI4e2EbVgA7qIyLcPIzyR83efY8w4RExPD7bffzowZM+jRo4eGQhARy1x77bUA/LzfyeGCsv8uMk1YuDsUgKuvvlq9bKVSaHgEERERkTLY8XBrqyOcFeo+sNrqCCJSRtHR0dx666106dKFyZMnk5u1l/D188ht0hscrhO+z5Z3iLD187AV5VG7dm2efvppatasWYnJRUSOr3HjxrRu3ZrVq1fz1e5QBjbIK9P7NmQ42JntwOVycdlll1VwSpES6mkrIiIiIiIiJ9S2bVuefvppoqKjsefsJ3zdXGzZadhy00s97Bm7Sl4vyiMlJYXnn39eBVsRCShXXXUVAIv3hFLsKdt7Fuwq6WV7ySWXEBUVVVHRRPyop62IiIiIiIicVLNmzXju2WeZNGkSBw8eJGLtnFPO//jjjxMdHV1JCUVEyubCCy8kLi6O9PR0fkpz0jmx8KTzHyowWL6/ZDgEb8FXpDKop62IiIiIiIicUoMGDXjhhRdo3bo1sbGxJ3z06NGDp59+WgVbEQlIISEhXH755QAsTT3xUC9e36a6cJsGrVu3pmHDhhUdT8RHPW1FRERERESkTGrXrs0LL7xgdQwRkTPSq1cvZsyYwe+HQsgqNIhymiec94c0l+89IpVJRVsRkSCkGyqVD91QSURERESk6klOTqZx48Zs3LiRn/Y7ubh2wXHn25drY1uWA5vNRrdu3So5pQQ7DY8gIiIiIiIiIiJB5eKLLwbgh30nHiLB28u2Q4cOVKtWrTJiifioaCsiIiIiIiIiIkGle/fuAKw77OBwgXHceX7YV3IDMm+BV6QyqWgrIiIiIiIiIiJBpVatWjRp0gQTg98PhpR6/WCBjZ05DgzDoEuXLhYklGCnoq2IiIiIiIiIiASdDh06APD7odJF27UHS24D1aRJE2JiYio1lwioaCsiIiIiIiIiIkHo6KKtafq/9tuRQq53HpHKpqKtiIiIiIiIiIgEndatWxMSEsKhAjupuX+UyEwT1hwsGc9WRVuxioq2IiIiIiIiIiISdFwuF61btwZgzVFDJKTm2ThUaCMkJIRWrVpZFU+CnIq2IiIiIiIiIiISlFq0aAHAtiyHb9rWzD/Gs3W5XJbkElHRVkREREREREREglLTpk0B2HpU0XZ71h9FWxGrqGgrIiIiIiIiIiJBqXHjxgDszrFT5CmZtk1FWwkAKtqKiIiIiIiIiEhQqlmzJtHR0bhNg13ZdkwTtmfbgT8KuiJWUNFWRERERERERESCkmEYNGrUCIAd2Q7SC2zkFttwOBzUr1/f2nAS1FS0FRERERERERGRoJWcnAxAWp6NtNySUlmtWrVwOBwne5tIhdLRJyIiIiIiIiIiQSspKQmAfXl24kNLBratXbu2lZFEVLQVEREREREREZHg5S3QpuXZqaGirQQIFW1FRERERERERCRoeQu0+3JtxIeWDI/g7X0rYhWNaSsiIiIiIiIiIkErMTERgDy3jV05Dr9pIlZR0VZERERERERERIJWWFgY4eHhAKTm2gGIi4uzMpKIirYiIiIiIiIiIhLcYmNjT/pcpLKpaCsiIiIiIiIiIkHt2CJt9erVLUoiUkJFWxERERERERERCWpHD4cQHR1NSEiIhWlEwGF1AJEztePh1lZHOGvUfWC11RFEREREREREKt2ll17Kxo0bKSoqol+/flbHEVHRVkREREREREREglunTp3o1KmT1TFEfDQ8goiIiIiIiIiIiEgAUdFWREREREREREREJICoaCsiIiIiIiIiIiISQFS0FREREREREREREQkgKtqKiIiIiIiIiIiIBBAVbUVEREREREREREQCiIq2IiIiIiIiIiIiIgFERVsRERERERERERGRAKKirYiIiIiIiIiIiEgAUdFWREREREREREREJICoaCsiIiIiIiIiIiISQFS0FREREREREREREQkgKtqKiIiIiIiIiIiIBBAVbUVEREREREREREQCiIq2IiIiIiIiIiIiIgFERVsRERERERERERGRABJURdsXX3yR+vXrExoaSqdOnfjxxx+tjiQiIiIiIiIiIiLiJ2iKtu+99x4TJ07kwQcfZMWKFbRt25Y+ffqQlpZmdTQRERERERERERERn6Ap2j799NOMHj2akSNH0qJFC1566SXCw8P5z3/+Y3U0EREREREREREREZ+gKNoWFhayfPlyevXq5Ztms9no1asX3333nYXJRERERERERERERPw5rA5QGQ4cOIDb7aZmzZp+02vWrMm6detKzV9QUEBBQYHveUZGBgCZmZnlmstdkFeuywtWWSFuqyOcNcr7GK8IOm/Kh86b8lEVzhnQeVNedN6Uj/I+b7zLM02zXJd7NvDuk6ryu0pEREQkGJS1/RoURdvTNXXqVB566KFS05OTky1II6fSyuoAZ5OpMVYnkEqi86ac6JwJKjpvykkFnTdZWVnExOicPFpWVhagNqyIiIhIIDpV+zUoirbx8fHY7Xb27dvnN33fvn0kJiaWmn/y5MlMnDjR99zj8XDw4EHi4uIwDKPC80rZZWZmkpyczM6dO4mOjrY6jkiVoPNG5PTpvAlcpmmSlZVFUlKS1VECTlJSEjt37iQqKkptWKkw+v0oImcT/U6TylDW9mtQFG2dTicdOnRg0aJFXHnllUBJIXbRokVMmDCh1PwulwuXy+U3rVq1apWQVP6s6Oho/UIVOU06b0ROn86bwKQetsdns9moU6eO1TEkSOj3o4icTfQ7TSpaWdqvQVG0BZg4cSLDhw+nY8eOnHfeeTz77LPk5OQwcuRIq6OJiIiIiIiIiIiI+ARN0fbaa69l//79PPDAA6SmptKuXTvmzZtX6uZkIiIiIiIiIiIiIlYKmqItwIQJE447HIJUXS6XiwcffLDUcBYicmI6b0ROn84bEZHj0+9HETmb6HeaBBLDNE3T6hAiIiIiIiIiIiIiUsJmdQARERERERERERER+YOKtiIiIiIiIiIiIiIBREVbERERERERERERkQCioq1UaS+++CL169cnNDSUTp068eOPP1odSSRgffPNN/Tv35+kpCQMw+Djjz+2OpJIwJs6dSrnnnsuUVFRJCQkcOWVV7J+/XqrY4mIBAS1xUXkbKHPShKIVLSVKuu9995j4sSJPPjgg6xYsYK2bdvSp08f0tLSrI4mEpBycnJo27YtL774otVRRKqMJUuWMH78eL7//nsWLFhAUVERvXv3Jicnx+poIiKWUltcRM4m+qwkgcgwTdO0OoTIn9GpUyfOPfdc/vWvfwHg8XhITk7mtttu495777U4nUhgMwyDjz76iCuvvNLqKCJVyv79+0lISGDJkiVcdNFFVscREbGM2uIicrbSZyUJFOppK1VSYWEhy5cvp1evXr5pNpuNXr168d1331mYTEREzmYZGRkAxMbGWpxERMQ6aouLiIhUPBVtpUo6cOAAbrebmjVr+k2vWbMmqampFqUSEZGzmcfj4c4776Rr1660atXK6jgiIpZRW1xERKTiOawOICIiIlIVjB8/nt9++42lS5daHUVERERERM5yKtpKlRQfH4/dbmffvn1+0/ft20diYqJFqURE5Gw1YcIE5syZwzfffEOdOnWsjiMiYim1xUVERCqehkeQKsnpdNKhQwcWLVrkm+bxeFi0aBGdO3e2MJmIiJxNTNNkwoQJfPTRR3z11VekpKRYHUlExHJqi4uIiFQ89bSVKmvixIkMHz6cjh07ct555/Hss8+Sk5PDyJEjrY4mEpCys7PZtGmT7/nWrVtZuXIlsbGx1K1b18JkIoFr/PjxzJw5k08++YSoqCjfWI0xMTGEhYVZnE5ExDpqi4vI2USflSQQGaZpmlaHEPmz/vWvf/HEE0+QmppKu3bteP755+nUqZPVsUQC0tdff02PHj1KTR8+fDhvvPFG5QcSqQIMwzju9OnTpzNixIjKDSMiEmDUFheRs4U+K0kgUtFWREREREREREREJIBoTFsRERERERERERGRAKKirYiIiIiIiIiIiEgAUdFWREREREREREREJICoaCsiIiIiIiIiIiISQFS0FREREREREREREQkgKtqKiIiIiIiIiIiIBBAVbUVEREREREREREQCiIq2IiIiIiIiIiIiIgFERVsRkSrAMAw+/vhjq2MwYsQIrrzySqtjiIiIiIj4UTtVRM42KtqKiFSyESNGYBhGqcell15qdTSfbdu2YRgGK1eu9Jv+3HPP8cYbb1iSSURERETOzNHtUKfTSaNGjXj44YcpLi62OlqF+/rrrzEMg8OHD1sdRUSkTBxWBxARCUaXXnop06dP95vmcrksSlN2MTExVkcQERERkTPgbYcWFBQwd+5cxo8fT0hICJMnTz7tZbndbgzDwGZTfzARkfKm36wiIhZwuVwkJib6PapXrw7Axo0bueiiiwgNDaVFixYsWLDA773H6yWwcuVKDMNg27ZtvmnLli2je/fuhIeHU716dfr06cOhQ4cAmDdvHhdccAHVqlUjLi6Oyy+/nM2bN/vem5KSAkD79u0xDIPu3bsDpS87Kygo4PbbbychIYHQ0FAuuOACfvrpp1JZFy1aRMeOHQkPD6dLly6sX7++PHajiIiIiJwmbzu0Xr163HrrrfTq1YtPP/0UKGnbTZo0idq1axMREUGnTp34+uuvfe994403qFatGp9++iktWrTA5XKxY8cOvv76a8477zwiIiKoVq0aXbt2Zfv27b73TZs2jYYNG+J0OmnatClvvfWWXybDMHjttde46qqrCA8Pp3Hjxr5MUFIcHjVqFCkpKYSFhdG0aVOee+65ct0vhw4dYtiwYVSvXp3w8HD69u3Lxo0bfa+np6dz/fXXU7t2bcLDw2ndujX//e9//ZbRvXt3br/9dv76178SGxtLYmIiU6ZMKdecIhI8VLQVEQkgHo+HgQMH4nQ6+eGHH3jppZe45557Tns5K1eupGfPnrRo0YLvvvuOpUuX0r9/f9xuNwA5OTlMnDiRn3/+mUWLFmGz2bjqqqvweDwA/PjjjwAsXLiQvXv38uGHHx53PX/961/54IMPmDFjBitWrKBRo0b06dOHgwcP+s33f//3fzz11FP8/PPPOBwObrrpptPeJhEREREpf2FhYRQWFgIwYcIEvvvuO959911WrVrFoEGDuPTSS/2Kl7m5ufzzn//ktdde4/fffyc2NpYrr7ySbt26sWrVKr777jvGjBmDYRgAfPTRR9xxxx3cdddd/Pbbb4wdO5aRI0eyePFivxwPPfQQgwcPZtWqVVx22WUMGTLE16b0eDzUqVOH2bNns2bNGh544AHuu+8+Zs2aVW77YcSIEfz88898+umnfPfdd5imyWWXXUZRUREA+fn5dOjQgc8//5zffvuNMWPGMHToUF+72WvGjBlERETwww8/8Pjjj/Pwww+X6oQhIlImpoiIVKrhw4ebdrvdjIiI8Hs89thj5vz5802Hw2Hu3r3bN/8XX3xhAuZHH31kmqZpLl682ATMQ4cO+eb55ZdfTMDcunWraZqmef3115tdu3Ytc6b9+/ebgLl69WrTNE1z69atJmD+8ssvpbJfccUVpmmaZnZ2thkSEmK+8847vtcLCwvNpKQk8/HHH/fLunDhQt88n3/+uQmYeXl5Zc4nIiIiImfu6Lacx+MxFyxYYLpcLnPSpEnm9u3bTbvd7tcONU3T7Nmzpzl58mTTNE1z+vTpJmCuXLnS93p6eroJmF9//fVx19mlSxdz9OjRftMGDRpkXnbZZb7ngHn//ff7nmdnZ5uA+cUXX5xwW8aPH29effXVx9224zleG9prw4YNJmAuW7bMN+3AgQNmWFiYOWvWrBMus1+/fuZdd93le96tWzfzggsu8Jvn3HPPNe+5554TLkNE5EQ0pq2IiAV69OjBtGnT/KbFxsby1ltvkZycTFJSkm96586dT3v5K1euZNCgQSd8fePGjTzwwAP88MMPHDhwwNfDdseOHbRq1apM69i8eTNFRUV07drVNy0kJITzzjuPtWvX+s3bpk0b3/9r1aoFQFpaGnXr1i3zNomIiIjImZszZw6RkZEUFRXh8Xi44YYbmDJlCl9//TVut5smTZr4zV9QUEBcXJzvudPp9GvbxcbGMmLECPr06cMll1xCr169GDx4sK/Nt3btWsaMGeO3zK5du5Ya3uDoZUZERBAdHU1aWppv2osvvsh//vMfduzYQV5eHoWFhbRr1+6M94c3o8PhoFOnTr5pcXFxNG3a1Neudbvd/P3vf2fWrFns3r2bwsJCCgoKCA8PP+F2QEnb9+jtEBEpKxVtRUQsEBERQaNGjf7Ue703ejBN0zfNe9mWV1hY2EmX0b9/f+rVq8err75KUlISHo+HVq1a+S6NK28hISG+/3svlfMWikVERESk8ng7DzidTpKSknA4SsoC2dnZ2O12li9fjt1u93tPZGSk7/9hYWG+9pzX9OnTuf3225k3bx7vvfce999/PwsWLOD8888vc66j24tQ0mb0thffffddJk2axFNPPUXnzp2JioriiSee4IcffjitbT8TTzzxBM899xzPPvssrVu3JiIigjvvvLNU+/lk2yEicjo0pq2ISABp3rw5O3fuZO/evb5p33//vd88NWrUAPCbZ+XKlX7ztGnThkWLFh13Henp6axfv57777+fnj170rx5c98NyrycTieAbwzc4/HeTGLZsmW+aUVFRfz000+0aNHiJFspIiIiIlbxdh6oW7eur2ALJTegdbvdpKWl0ahRI79HYmLiKZfbvn17Jk+ezLfffkurVq2YOXMmUNK+Pbq9CCU3zD2d9uKyZcvo0qUL48aNo3379jRq1MjvJrpnqnnz5hQXF/sVgb1tZm/OZcuWccUVV3DjjTfStm1bGjRowIYNG8otg4jIsdTTVkTEAgUFBaSmpvpNczgc9OrViyZNmjB8+HCeeOIJMjMz+b//+z+/+Ro1akRycjJTpkzhscceY8OGDTz11FN+80yePJnWrVszbtw4brnlFpxOJ4sXL2bQoEHExsYSFxfHK6+8Qq1atdixYwf33nuv3/sTEhIICwtj3rx51KlTh9DQUGJiYvzmiYiI4NZbb+Xuu+8mNjaWunXr8vjjj5Obm8uoUaPKcW+JiIiISEVr0qQJQ4YMYdiwYTz11FO0b9+e/fv3s2jRItq0aUO/fv2O+76tW7fyyiuvMGDAAJKSkli/fj0bN25k2LBhANx9990MHjyY9u3b06tXLz777DM+/PBDFi5cWOZsjRs35s0332T+/PmkpKTw1ltv8dNPP5GSknLa27l69WqioqJ8zw3DoG3btlxxxRWMHj2al19+maioKO69915q167NFVdc4cvw/vvv8+2331K9enWefvpp9u3bp84KIlJh1NNWRMQC8+bNo1atWn6PCy64AJvNxkcffUReXh7nnXceN998M4899pjfe0NCQvjvf//LunXraNOmDf/85z959NFH/eZp0qQJX375Jb/++ivnnXcenTt35pNPPsHhcGCz2Xj33XdZvnw5rVq14i9/+QtPPPGE3/sdDgfPP/88L7/8MklJSb7G6rH+8Y9/cPXVVzN06FDOOeccNm3axPz586levXr57jARERERqXDTp09n2LBh3HXXXTRt2pQrr7ySn3766aT3IQgPD2fdunVcffXVNGnShDFjxjB+/HjGjh0LwJVXXslzzz3Hk08+ScuWLXn55ZeZPn063bt3L3OusWPHMnDgQK699lo6depEeno648aN+1PbeNFFF9G+fXvfo0OHDr5t79ChA5dffjmdO3fGNE3mzp3rG+7g/vvv55xzzqFPnz50796dxMRErrzyyj+VQUSkLAzz6EERRURERERERERERMRS6mkrIiIiIiIiIiIiEkBUtBUREREREREREREJICraioiIiIiIiIiIiAQQFW1FREREREREREREAoiKtiIiIiIiIiIiIiIBREVbERERERERERERkQCioq2IiIiIiIiIiIhIAFHRVkRERERERERERCSAqGgrIiIiIiIiIiIiEkBUtBUREREREREREREJICraioiIiIiIiIiIiAQQFW1FREREREREREREAoiKtiIiIiIiIiIiIiIBREVbERERERERERERkQCioq2IiIiIiIiIiIhIAFHRVkRERERERERERCSAqGgrIiIiIiIiIiIiEkBUtBWRoGMYBlOmTKnw9Xz99dcYhsHXX3/tm9a9e3datWpV4esG2LZtG4Zh8MYbb1TK+o5WmdspUL9+fUaMGGF1DBEREctMmTIFwzCsjmGJESNGUL9+/UpZ17FtjjfeeAPDMPj5558rZf3du3ene/fulbKuo1X2dga7YD6fRY6moq1IJfL+sTcMg6VLl5Z63TRNkpOTMQyDyy+/vFzXnZuby5QpU/wKiGeD+vXr+/apzWajWrVqtG7dmjFjxvDDDz+U23pmzpzJs88+W27LK0+BnK2ieX/23p9/UlISvXv3PuuO8/JiGAYTJkywOoaIiASgo9upx3t8//33VkcMCt5ilfcRHh5O3bp16d+/P9OnT6egoKBc1rNmzRqmTJnCtm3bymV55SmQs1W0ESNG+P38o6Ojadu2LU899VS5/ezPJiNGjCAyMtLqGCIVxmF1AJFgFBoaysyZM7ngggv8pi9ZsoRdu3bhcrnKfZ25ubk89NBDAJZ8O12R2rVrx1133QVAVlYWa9euZfbs2bz66qv85S9/4emnn/abPy8vD4fj9H79zZw5k99++40777yzzO+56KKLyMvLw+l0nta6TteJstWrV4+8vDxCQkIqdP1Wu+SSSxg2bBimabJ161b+/e9/c/HFF/P555/Tt29fq+OJiIhUKQ8//DApKSmlpjdq1MiCNGV3//33c++991odo9xMmzaNyMhICgoK2L17N/Pnz+emm27i2WefZc6cOSQnJ/vmffXVV/F4PKe1/DVr1vDQQw/RvXv30+qlu379emy2iu37dbJsX375ZYWuOxC4XC5ee+01AA4fPswHH3zApEmT+Omnn3j33XctTicilUlFWxELXHbZZcyePZvnn3/er3g4c+ZMOnTowIEDB8ptXR6Ph8LCwnJbXiCqXbs2N954o9+0f/7zn9xwww0888wzNG7cmFtvvdX3WmhoaIXmyc/Px+l0YrPZKnxdJ2MYhqXrryxNmjTx+/lfddVVtGnThmefffaMi7Y5OTlEREScaUQREZEqo2/fvnTs2NHqGGXm/VvtcDhO+0v5QHbNNdcQHx/ve/7AAw/wzjvvMGzYMAYNGuTX87miv6A3TZP8/HzCwsIqpHPJ6ajozhCBwOFw+LVtx40bR6dOnXjvvfd4+umnSUpK+tPL9n42DIbPCCJnAw2PIGKB66+/nvT0dBYsWOCbVlhYyPvvv88NN9xw3Pfk5ORw1113kZycjMvlomnTpjz55JOYpuk3n/fy53feeYeWLVvicrl46aWXqFGjBgAPPfSQ73Kbo8d1nT17Ni1atCA0NJRWrVrx0UcfHXd8rCeffJIuXboQFxdHWFgYHTp04P333y+VNy8vj9tvv534+HiioqIYMGAAu3fvPu54srt37+amm26iZs2auFwuWrZsyX/+85/T2KOlhYWF8dZbbxEbG8tjjz3mt5+OzZCVlcWdd95J/fr1cblcJCQkcMkll7BixQqgpGfy559/zvbt2337zrtfvOPWvvvuu9x///3Url2b8PBwMjMzjzumrdfy5cvp0qULYWFhpKSk8NJLL/m97r1E8djLwo5d5smynWhM26+++ooLL7yQiIgIqlWrxhVXXMHatWv95vFemrdp0yZGjBhBtWrViImJYeTIkeTm5pbth3CK7czOziYiIoI77rij1Pt27dqF3W5n6tSpZV6XV+vWrYmPj2fr1q2+aevWreOaa64hNjaW0NBQOnbsyKeffur3Pu8+X7JkCePGjSMhIYE6deoApz5GvGbPnk2HDh0ICwsjPj6eG2+8kd27d/vN472Ma/fu3Vx55ZVERkZSo0YNJk2ahNvt9pu3rOdbeSrr75rp06dz8cUXk5CQgMvlokWLFkybNq3U8urXr8/ll1/O0qVLOe+88wgNDaVBgwa8+eabFbodIiJSMR588EFsNhuLFi3ymz5mzBicTie//vor8Eeb5b333uO+++4jMTGRiIgIBgwYwM6dO0st94cffuDSSy8lJiaG8PBwunXrxrJly/zm8bZP1qxZww033ED16tV9V66daAzMt99+2/e3OTY2luuuu67U+r1j8a9Zs4YePXoQHh5O7dq1efzxx0stLz8/nylTptCkSRNCQ0OpVasWAwcOZPPmzb55PB4Pzz77LC1btiQ0NJSaNWsyduxYDh06VMa9fHxDhgzh5ptv5ocffvD7HHG8Nvu7775Lhw4diIqKIjo6mtatW/Pcc88BJW2eQYMGAdCjRw9fG9LbvvT+7Z4/fz4dO3YkLCyMl19+2ffa8cbRz83NZezYscTFxREdHc2wYcNKbe+J7itx9DJPle14Y9qmpaUxatQoatasSWhoKG3btmXGjBl+83jbxU8++SSvvPIKDRs2xOVyce655/LTTz8dd38fz6m2c/jw4cTHx1NUVFTqvb1796Zp06ZlXpeXzWbzbbP3s0FBQQEPPvggjRo1wuVykZyczF//+tdSQygc77PhvHnzgJMfI15btmxh0KBBxMbGEh4ezvnnn8/nn3/uN4/3XJ81axaPPfYYderUITQ0lJ49e7Jp0ya/ef/3v/8xaNAg6tat68v9l7/8hby8vNPeL6ejLG30VatWMWLECBo0aEBoaCiJiYncdNNNpKen+81XXp+TRMri7PkqUqQKqV+/Pp07d+a///2vryfgF198QUZGBtdddx3PP/+83/ymaTJgwAAWL17MqFGjaNeuHfPnz+fuu+9m9+7dPPPMM37zf/XVV8yaNYsJEyYQHx9P27ZtmTZtGrfeeitXXXUVAwcOBKBNmzYAfP7551x77bW0bt2aqVOncujQIUaNGkXt2rVLZX/uuecYMGAAQ4YMobCwkHfffZdBgwYxZ84c+vXr55tvxIgRzJo1i6FDh3L++eezZMkSv9e99u3bx/nnn+9rUNSoUYMvvviCUaNGkZmZeVrDERwrMjKSq666itdff501a9bQsmXL4853yy238P777zNhwgRatGhBeno6S5cuZe3atZxzzjn83//9HxkZGezatcu3r48dO+mRRx7B6XQyadIkCgoKTtoL4NChQ1x22WUMHjyY66+/nlmzZnHrrbfidDq56aabTmsby5LtaAsXLqRv3740aNCAKVOmkJeXxwsvvEDXrl1ZsWJFqQb/4MGDSUlJYerUqaxYsYLXXnuNhIQE/vnPf54y26m20/vz8fYasNvtvvf+97//xTRNhgwZclr7w7veQ4cO+S7j/P333+natSu1a9fm3nvvJSIiglmzZnHllVfywQcfcNVVV/m9f9y4cdSoUYMHHniAnJwc4NTHCJR8yBg5ciTnnnsuU6dOZd++fTz33HMsW7aMX375hWrVqvnW4Xa76dOnD506deLJJ59k4cKFPPXUUzRs2NCvV3hZz7fycjq/a6ZNm0bLli0ZMGAADoeDzz77jHHjxuHxeBg/frzfcjdt2sQ111zDqFGjGD58OP/5z38YMWIEHTp0OOF5KSIi1sjIyCh11ZdhGMTFxQElwxB89tlnjBo1itWrVxMVFcX8+fN59dVXeeSRR2jbtq3fex977DEMw+Cee+4hLS2NZ599ll69erFy5UrCwsKAkrZr37596dChg68o7P1y8H//+x/nnXee3zIHDRpE48aN+fvf/17qS8Vj1/23v/2NwYMHc/PNN7N//35eeOEFLrroolJ/mw8dOsSll17KwIEDGTx4MO+//z733HMPrVu39rXX3W43l19+OYsWLeK6667jjjvuICsriwULFvDbb7/RsGFDAMaOHetrF9x+++1s3bqVf/3rX/zyyy8sW7bsjHrGDh06lFdeeYUvv/ySSy655LjzLFiwgOuvv56ePXv62mxr165l2bJl3HHHHVx00UXcfvvtPP/889x33300b94cwPcvlAyDcP311zN27FhGjx59ymLjhAkTqFatGlOmTGH9+vVMmzaN7du3+wp6ZVWWbEfLy8uje/fubNq0iQkTJpCSksLs2bMZMWIEhw8fLtU5YObMmWRlZTF27FgMw+Dxxx9n4MCBbNmypUw/l1Nt59ChQ3nzzTeZP3++3z1KUlNT+eqrr3jwwQfLvC+O5v1SIC4uDo/Hw4ABA1i6dCljxoyhefPmrF69mmeeeYYNGzbw8ccf+7332M+G9evXP+UxAiWf07p06UJubi633347cXFxzJgxgwEDBvD++++XakP/4x//wGazMWnSJDIyMnj88ccZMmSI331GZs+eTW5uLrfeeitxcXH8+OOPvPDCC+zatYvZs2f/qX1zKmVtoy9YsIAtW7YwcuRIEhMT+f3333nllVf4/fff+f7770sdx2fyOUmkzEwRqTTTp083AfOnn34y//Wvf5lRUVFmbm6uaZqmOWjQILNHjx6maZpmvXr1zH79+vne9/HHH5uA+eijj/ot75prrjENwzA3bdrkmwaYNpvN/P333/3m3b9/vwmYDz74YKlcrVu3NuvUqWNmZWX5pn399dcmYNarV89vXm9er8LCQrNVq1bmxRdf7Ju2fPlyEzDvvPNOv3lHjBhRKsOoUaPMWrVqmQcOHPCb97rrrjNjYmJKre9Yx+6rYz3zzDMmYH7yySe+acdmiImJMcePH3/S9fTr16/UvjBN01y8eLEJmA0aNCiV1fva4sWLfdO6detmAuZTTz3lm1ZQUGC2a9fOTEhIMAsLC03T/ONY2bp16ymXeaJsW7duNQFz+vTpvmne9aSnp/um/frrr6bNZjOHDRvmm/bggw+agHnTTTf5LfOqq64y4+LiSq3rWGXdzvnz55uA+cUXX/i9v02bNma3bt1OuR7AHDVqlLl//34zLS3N/OGHH8yePXv6rbtnz55m69atzfz8fN/7PB6P2aVLF7Nx48a+ad59fsEFF5jFxcV+6znVMVJYWGgmJCSYrVq1MvPy8nzT58yZYwLmAw884Js2fPhwEzAffvhhv2W0b9/e7NChg9+0spxvpllyHgwfPvyE+byAk27H6fyuOd652adPH7NBgwalsgHmN99845uWlpZmulwu86677jplZhERqRzev4PHe7hcLr95V69ebTqdTvPmm282Dx06ZNauXdvs2LGjWVRU5JvH22apXbu2mZmZ6Zs+a9YsEzCfe+450zRL/iY3btzY7NOnj+nxeHzz5ebmmikpKeYll1zim+Ztn1x//fWl8ntf89q2bZtpt9vNxx57rFR2h8PhN93bbnnzzTd90woKCszExETz6quv9k37z3/+YwLm008/XWr93uz/+9//TMB85513/F6fN2/ecaefaDv2799/3NcPHTpkAuZVV13lmzZ8+HC/tuAdd9xhRkdHl2rPHG327Nml2pRe3r/d8+bNO+5rR7c5vMdNhw4dfO070zTNxx9//JRt8BMt82TZunXr5tdGfPbZZ03AfPvtt33TCgsLzc6dO5uRkZG+Y8/bLo6LizMPHjzom/eTTz4xAfOzzz4rta6jlXU73W63WadOHfPaa6/1e//TTz9tGoZhbtmy5aTrGT58uBkREWHu37/f3L9/v7lp0ybz73//u2kYhtmmTRvTNE3zrbfeMm02m/m///3P770vvfSSCZjLli3zTTvRZ8OyHCN33nmnCfitJysry0xJSTHr169vut1u0zT/ONebN29uFhQU+OZ97rnnTMBcvXq1b9rx2o9Tp041DcMwt2/f7pt27Pl8It79dSKn00Y/Xrb//ve/pdqxZ/o5SeR0aHgEEYsMHjyYvLw85syZQ1ZWFnPmzDnh0Ahz587Fbrdz++23+02/6667ME2TL774wm96t27daNGiRZly7Nmzh9WrVzNs2DC/HprdunWjdevWpeb39oiAkh4JGRkZXHjhhX6XiXsvuRk3bpzfe2+77Ta/56Zp8sEHH9C/f39M0+TAgQO+R58+fcjIyCh1+fnp8m5TVlbWCeepVq0aP/zwA3v27PnT6xk+fLjfvjkZh8PB2LFjfc+dTidjx44lLS2N5cuX/+kMp7J3715WrlzJiBEjiI2N9U1v06YNl1xyCXPnzi31nltuucXv+YUXXkh6ejqZmZmnXF9ZtrNXr14kJSXxzjvv+Ob77bffWLVqValxik/k9ddfp0aNGiQkJNCpUyeWLVvGxIkTufPOOzl48CBfffUVgwcPJisry3d8paen06dPHzZu3Fjq0qjRo0f79fqFUx8jP//8M2lpaYwbN85vjLB+/frRrFmzUpeRwfH37ZYtW/ymleV8K0+n87vm6GzeXlndunVjy5YtZGRk+L2/RYsWXHjhhb7nNWrUoGnTpqW2V0RErPfiiy+yYMECv8exbc1WrVrx0EMP8dprr9GnTx8OHDjAjBkzjjum7LBhw4iKivI9v+aaa6hVq5av3bFy5Uo2btzIDTfcQHp6uu9vdU5ODj179uSbb74pdZOtY/+GHs+HH36Ix+Nh8ODBfm3MxMREGjduzOLFi/3mj4yM9Gt7OJ1OzjvvPL+/VR988AHx8fGl2rSArxfe7NmziYmJ4ZJLLvFbb4cOHYiMjCy13tNV1rZtTk6O3xAKpyslJYU+ffqUef4xY8b49VS99dZbcTgcx21flqe5c+eSmJjI9ddf75sWEhLC7bffTnZ2NkuWLPGb/9prr6V69eq+5972SVnbJKfaTpvNxpAhQ/j000/9fkbvvPMOXbp0Oe5N/o6Vk5NDjRo1qFGjBo0aNeK+++6jc+fOfPTRR0DJMda8eXOaNWvmd4xdfPHFAKWOseN9NizLMTJ37lzOO+88v5tnR0ZGMmbMGLZt28aaNWv85h85cqTf1YbH27dHtx9zcnI4cOAAXbp0wTRNfvnll1Pum9N1Om30o7Pl5+dz4MABzj//fIDjtr3P5HOSSFlpeAQRi9SoUYNevXoxc+ZMcnNzcbvdXHPNNcedd/v27SQlJfk1eOGPy4S2b9/uN70sjYGjlw3HvyNwo0aNSv2BmjNnDo8++igrV670GzPp6MtFtm/fjs1mK5Xj2HXs37+fw4cP88orr/DKK68cN19aWlqZt+V4srOzAUrtu6M9/vjjDB8+nOTkZDp06MBll13GsGHDaNCgQZnXczr7PCkpqdTNrZo0aQKUjFPlbRyUN+/P+niXtzVv3pz58+eXuvFW3bp1/ebzNnIPHTpEdHT0SddXlu30NmynTZtGbm4u4eHhvPPOO4SGhvrGMzuVK664ggkTJmAYBlFRUbRs2dK33k2bNmGaJn/729/429/+dtz3p6Wl+Q0Fcryf5amOkZPt22bNmrF06VK/aaGhob5xpr2qV69eauy3spxv5el0ftcsW7aMBx98kO+++67U+F0ZGRnExMT4nh97HMHxt1dERKx33nnnlelGZHfffTfvvvsuP/74I3//+99P2GGgcePGfs8Nw6BRo0a+sTk3btwIlHwBfiIZGRl+hbaytLs2btyIaZql1u917KXwderUKfX3tXr16qxatcr3fPPmzTRt2vSkNzzbuHEjGRkZJCQkHPf1ymjbjhs3jlmzZtG3b19q165N7969GTx4MJdeemmZ13M6bVso/XOOjIykVq1ape7PUN62b99O48aNsdn8+6Od6HPSydq2ZVGW7Rw2bBj//Oc/+eijjxg2bBjr169n+fLlpe5hcSKhoaF89tlnALhcLlJSUnz3WYCSY2zt2rWl2pJexx5jx/tZluUY2b59O506dSr13qP3batWrXzTy7Jvd+zYwQMPPMCnn35aap8f+6V/eTidNvrBgwd56KGHePfdd0vtw+NlO5PPSSJlpaKtiIVuuOEGRo8eTWpqKn379vUbV+tMlLXH5+n63//+x4ABA7jooov497//Ta1atQgJCWH69OnMnDnztJfn7TVx4403nrCh7h1398/67bffgOMXpb0GDx7MhRdeyEcffcSXX37JE088wT//+U8+/PBD3xhmp1Le+/xERbljb1RV0Y7tceplnmT8uNM1bNgwnnjiCT7++GOuv/56Zs6cyeWXX+5X9DuZOnXq0KtXr+O+5j3GJk2adMLeIsceG8f7WZbHMXK0E+3Xo5X3+VaeNm/eTM+ePWnWrBlPP/00ycnJOJ1O5s6dyzPPPFOqR1RlHEciIlK5tmzZ4iu4rl69+k8vx/s344knnqBdu3bHnefY8frL0u7yeDwYhsEXX3xx3L9Dxy6zvP5WeTweEhIS/K4iOtqJCm1lVZa2bUJCAitXrmT+/Pl88cUXfPHFF0yfPp1hw4aVukHXiVTU54njqcz2bWW0SVq0aEGHDh14++23GTZsGG+//TZOp5PBgweXOeOJ2rZQcoy1bt2ap59++rivJycn+z0/3s+yPI6R4+U+Hu++dbvdXHLJJRw8eJB77rmHZs2aERERwe7duxkxYkSp9mNlGzx4MN9++y1333037dq1IzIyEo/Hw6WXXnrcbGrfSmVQ0VbEQldddRVjx47l+++/57333jvhfPXq1WPhwoVkZWX5fau+bt063+uncqIioPe9x97Z83jTPvjgA0JDQ5k/fz4ul8s3ffr06aWW6fF42Lp1q9+30ccur0aNGkRFReF2u0/aMPmzsrOz+eijj0hOTj7hzQu8atWqxbhx4xg3bhxpaWmcc845PPbYY76CXHn2bNyzZ0+pHq0bNmwA8N0IzPtN7eHDh/3ee2xvgdPJ5v1Zr1+/vtRr69atIz4+vlTP2DNRlu2Ekkss27dvzzvvvEOdOnXYsWMHL7zwQrlk8PaEDQkJOeNj7GTHyNH71ntpmtf69evLdI4eq6znW3kq6++azz77jIKCAj799FO/XgZnesmniIhUDR6PhxEjRhAdHc2dd97J3//+d6655hrfzW6P5i3sepmmyaZNm3xfzHtv3hUdHV2u7cGGDRtimiYpKSm+K33KY5k//PADRUVFJ7xpVcOGDVm4cCFdu3atkMLnW2+9BXDKoQucTif9+/enf//+eDwexo0bx8svv8zf/vY3GjVqVO5X7WzcuJEePXr4nmdnZ7N3714uu+wy37Tq1auXatsWFhayd+9ev2mnk61evXqsWrUKj8fj19v2dD4nnY6ybCeUdEqYOHEie/fuZebMmfTr18+vt/iZaNiwIb/++is9e/Y8o5/jqY6RevXqnfBzA5z+vl29ejUbNmxgxowZDBs2zDf9TIbxOJWyttEPHTrEokWLeOihh3jggQd88xz7+0uksmlMWxELRUZGMm3aNKZMmUL//v1PON9ll12G2+3mX//6l9/0Z555BsMwytTTLzw8HChdBExKSqJVq1a8+eabvsutAJYsWVKq14TdbscwDL9vw7dt21bqDqXeRuS///1vv+nHFuLsdjtXX301H3zwga/XwNH2799/yu06kby8PIYOHcrBgwf5v//7v5P2XD32cpeEhASSkpL8LkePiIgot0t2iouLefnll33PCwsLefnll6lRowYdOnQA/vgA88033/hlPd4wEmXNVqtWLdq1a8eMGTP8joPffvuNL7/8slRj80yVZTu9hg4dypdffsmzzz5LXFzcn+q9ejwJCQl0796dl19+udQHAijbMVaWY6Rjx44kJCTw0ksv+R03X3zxBWvXrqVfv36nnb2s51t5KuvvGm/PgqN7EmRkZFRoQVlERALH008/zbfffssrr7zCI488QpcuXbj11ls5cOBAqXnffPNNv7E933//ffbu3ev7m9KhQwcaNmzIk08+6dcW9fqz7cGBAwdit9t56KGHSvV8M02T9PT0017m1VdfzYEDB0r9nfQuE0p667ndbh555JFS8xQXF5dqi5+O/2fvzuOjqs/+/78PBIiaAEVkUiu4ZBENKjStSrU1Ucq4VpG6VRapVSSRKkoXblesitutWEoAlYKlxQWrta6p2gR/FdwoWAnVLGJdM2hRSNCE7fz+8EtuJpnNZD4znzPn9Xw88rjL55pcn3PNfQ6cXE7OtXTpUt13330aOXKkTjjhhKiv61hbjx492pvku+5Tdv1H9e4cz+7uuecebdu2rf3P8+bN0/bt28Pu6fLz88PubXd9X8dP2n6dYzv55JPV1NQU9gGY7du3a86cOcrJydFxxx3XlXKiSqROSTrvvPPkOI4uu+wyvfPOOwnPakjE2WefrQ8//FD33ntvp9iXX36pLVu2xM2RyDly8skn69VXX9XKlSvbX7dlyxbdc889OuCAAxKeobJLpPtH13V19913f608X0ei9+iRjk2SZs+ebezYgETwSVsgzWI9v2uX0047TWVlZbrqqqv07rvv6ogjjtDf/vY3Pf7447r88svbG3yx7LHHHjr00EP10EMPqaioSAMGDNCwYcM0bNgw3XzzzTr99NN1zDHHaNKkSfrss8/0u9/9TsOGDQu7eT7llFN055136sQTT9RPfvITbdiwQXPnzlVBQUHY875KSko0duxYzZ49W//973919NFHa/ny5e2fsty9gXrLLbeourpaRx11lC666CIdeuih2rhxo/75z3/q+eef18aNG+PW9uGHH+qPf/yjpK/+a/e6deu0bNkyNTU16corrwwbhtVRc3Oz9ttvP/34xz/WEUccoZycHD3//PN67bXX9L//+79hNT300EO64oor9N3vflc5OTkxG+2x7Lvvvrr11lv17rvvqqioSA899JDWrFmje+65p/1TG8XFxTr66KM1Y8YMbdy4UQMGDNCDDz6o7du3d8r3dY7t9ttv10knnaSRI0fqwgsv1Jdffqk5c+aoX79+uv7667tUT3fq3OUnP/mJfvnLX+qxxx7TlClTon56pSvmzp2rY489VocddpguuugiHXTQQQqFQlq5cqU++OADvfHGGzG/P5FzpFevXrr11ls1adIkHXfccTrvvPMUCoV0991364ADDtC0adO+9nEner19Xa+//rpuvPHGTuulpaUJ/10zevTo9k9nTJ48WS0tLbr33ns1aNCgiM1xAIB3PPPMM+2fpNvd9773PR100EH697//rWuuuUYXXHBB+/3G4sWLNXz48PbnZO5uwIABOvbYYzVp0iSFQiHNnj1bBQUFuuiiiyR91Sy67777dNJJJ6m4uFiTJk3St771LX344Yeqrq5W375925/v+XXk5+frxhtv1IwZM/Tuu+/qjDPOUG5urtavX6/HHntMF198saZPn/61ck6YMEF/+MMfdMUVV+jVV1/V97//fW3ZskXPP/+8ysvLdfrpp+u4447T5MmTNWvWLK1Zs0ajR49Wr169VF9fr2XLlunuu++OOsdid4888ohycnK0detWffjhh6qqqtJLL72kI444QsuWLYv5vT/72c+0ceNGHX/88dpvv/30n//8R3PmzNHw4cPbf/ts+PDh6tmzp2699VZt2rRJffr00fHHHx/1WbzxbN26VSeccILOPvtsvf3226qsrNSxxx6rH/3oR2HHdckll2js2LH64Q9/qDfeeENVVVUaOHBgWK6vc2wXX3yxFixYoAsuuECrVq3SAQccoEceeUQvvfSSZs+eHfPZv6bqlL76jcITTzxRy5YtU//+/bv0H/CjGT9+vB5++GFdcsklqq6u1jHHHKMdO3borbfe0sMPP6yqqqq4z6VO5Bz59a9/rQceeEAnnXSSfv7zn2vAgAG6//77tX79ev35z3/u9BzheIYOHar8/HxNnz5dH374ofr27as///nP3Z5xsG3btoj3tgMGDFB5eXlC9+h9+/bVD37wA912223atm2bvvWtb+lvf/ub1q9f361jA7rNBZAyixYtciW5r732WszX7b///u4pp5wSttbc3OxOmzbN3Xfffd1evXq5hYWF7u233+7u3Lkz7HWS3IqKioh5V6xY4ZaUlLi9e/d2JbnXXXdde+zBBx90hw4d6vbp08cdNmyY+9e//tUdO3asO3To0LAcCxcudAsLC90+ffq4Q4cOdRctWuRed911bse/TrZs2eJWVFS4AwYMcHNyctwzzjjDffvtt11J7i233BL22lAo5FZUVLiDBw92e/Xq5ebl5bknnHCCe88998R8n3a9V5JcSa7jOG7fvn3d4uJi96KLLnJfeeWViN+ze+1tbW3uL37xC/eII45wc3Nz3b322ss94ogj3MrKyrDvaWlpcX/yk5+4/fv3dyW5+++/v+u6rltdXe1KcpctW9Zpn12x6urq9rXjjjvOLS4udl9//XV35MiRbnZ2trv//vu7v/vd7zp9f2Njoztq1Ci3T58+biAQcP/nf/7Hfe655zrljHZs69evdyW5ixYtCsv7/PPPu8ccc4y7xx57uH379nVPO+00d926dWGv2fX/008++SRsfdc5vH79+ojvbVfq3OXkk092JbkrVqyImXt3sc733TU2NroTJkxw8/Ly3F69ernf+ta33FNPPdV95JFHOtXW8fpM9BxxXdd96KGH3BEjRrh9+vRxBwwY4J5//vnuBx98EPaaiRMnunvttVen7410HSV6ve2///7uxIkT474Pu66VSF+/+c1vXNdN/O+av/71r+7hhx/uZmdnuwcccIB76623ur///e87nR+R/j5z3a/OkeOOOy7uMQMAUmPXv4PRvhYtWuRu377d/e53v+vut99+7ueffx72/XfffbcryX3ooYdc1/2/+6AHHnjAnTFjhjto0CB3jz32cE855RT3P//5T6f9V69e7Z555pnu3nvv7fbp08fdf//93bPPPtt94YUX2l8T7f5k91hHf/7zn91jjz3W3Wuvvdy99trLHTp0qFtRUeG+/fbb7a/Zdd/S0cSJE9vvq3b54osv3Kuuuso98MAD2+9bf/zjH7uNjY1hr7vnnnvckpISd4899nBzc3Pdww47zP3lL3/pfvTRRxHe/c517PrKzs5299tvP/fUU091f//737utra1xj/ORRx5xR48e7Q4aNMjt3bu3O2TIEHfy5Mnuxx9/HPZ99957r3vQQQe5PXv2DLu/jPZv967Y7vccu86b5cuXuxdffLH7jW98w83JyXHPP/9897///W/Y9+7YscP91a9+5Q4cONDdc8893WAw6DY0NES8j4l2bJHuH0KhkDtp0iR34MCBbu/evd3DDjus0/3vrvvi22+/vVNNHX8uiuTr1LnLww8/7EpyL7744pi5dxftPrGjrVu3urfeeqtbXFzs9unTx/3GN77hlpSUuDNnznQ3bdoUVluke+VEz5HGxkb3xz/+sdu/f383OzvbPfLII90nn3wy7DXRfh6K9LPIunXr3FGjRrk5OTnuwIED3Ysuush94403Or0u2vXc0cSJE6P+nZWfn9/+ukTu0T/44AN3zJgxbv/+/d1+/fq5Z511lvvRRx91Oj+6+3MS8HU4rstTkgFENnz4cO2zzz5Je87QmjVrNGLECP3xj3/U+eefn5ScyBxjxozRm2++GfH5ygAAwFtqampUVlamZcuWJfTJUiDTPP744zrjjDP04osv6vvf/366DweAB/FMWwDatm1bp1+7r6mp0RtvvKHS0tIu5fzyyy87rc2ePVs9evTQD37wgy7lROb6+OOP9dRTT2n8+PHpPhQAAACg2+69914ddNBBOvbYY9N9KAA8imfaAtCHH36oUaNGady4cdp333311ltvaf78+crLy9Mll1zSpZy33XabVq1apbKyMmVlZemZZ57RM888o4svvliDBw9OcgXwqvXr1+ull17Sfffdp169esV8/jAAAABguwcffFD/+te/9NRTT+nuu++OOhAZAOKhaQtA3/jGN1RSUqL77rtPn3zyifbaay+dcsopuuWWW7T33nt3Kef3vvc9Pffcc/rNb36jlpYWDRkyRNdff72uuuqqJB89vGz58uWaNGmShgwZovvvv195eXnpPiQAAACgy8477zzl5OTowgsvVHl5eboPB4CH8UxbAAAAAAAAALAIz7QFAAAAAAAAAIvQtAUAAAAAAAAAi/BM2wTs3LlTH330kXJzc3mIOAAAgEVc11Vzc7P23Xdf9ejB5xF2xz0sAACAfRK9f6Vpm4CPPvqIafcAAAAWe//997Xffvul+zCswj0sAACAveLdv9K0TUBubq6kr97Mvn37pvloAAAAsMvmzZs1ePDg9vs1/B/uYQEAAOyT6P0rTdsE7Pp1sr59+3LDCwAAYCF+/b8z7mEBAADsFe/+lQd/AQAAAAAAAIBFaNoCAAAAAAAAgEVo2gIAAAAAAACARWjaAgAAAAAAAIBFaNoCAAAAAAAAgEVo2gIAAAAAAACARWjaAgAAAAAAAIBFaNoCAAAAAAAAgEVo2gIAAAAAAACARWjaAgAAAAAAAIBFaNoCAAAAAAAAgEVo2gIAAAAAAACARWjaAgAAAAAAAIBFaNoCAAAAAAAAgEVo2gKW2b59e7oPAQAAAAAAAGlE0xawyJo1a3T66afrjTfeSPehAAAAAAAAIE1o2gKW2L59u+644w5t2bJFd9xxB5+4BQAAAAAA8CmatoAlHn30UX3wwQeSpPfff1+PPfZYmo8IAAAAAAAA6ZCV7gMAIH366adauHBh2Np9992nsrIyDRw4ME1HBQAAAL+rqm1SZXWD6kItKgrkqLysQMHivG7FAABAfHzSFrDA3LlztW3btrC1bdu2ad68eWk6IgAAAPhdVW2TJi9ZpTc+2KQvt+3QGx9s0iV/XKWq2qYuxwAAQGL4pC2QZqtXr1Z1dXWn9Z07d+qFF17QqaeeqhEjRqThyAAAAOBnldUNndZcV6qsafzqf3QhxqdtAQBIDJ+0BdKsqqpKjuNEjDmOo6qqqhQfEQAAACDVhVoirteHmrscAwAAiaFpC6RZMBiUG+HTCJLkuq5OPPHEFB8RAAAAIBUFciKuFwZyuxwDAACJoWkLpNmIESN0/PHHq0eP8MuxR48eOuGEEzR8+PD0HBgAAAB8rbysQB1/IcxxpIrS/C7HAABAYmjaAhYoLy9Xr169wtZ69eqlKVOmpOmIAAAA4HfB4jzNH1eiIwb31569e+qIwf21YFyJRhfndTkGAAAS47jRfi8b7TZv3qx+/fpp06ZN6tu3b7oPBxnq4YcfVmVlZfufKyoqdNZZZ6XxiAAAsB/3adHx3gAAANgn0Xs0PmkLWOLMM8/U4MGDJUmDBw/WmDFj0nxEAAAAAAAASAeatoAlsrKydOWVV2qvvfbS9OnTlZWVle5DAoBu2759e7oPAQAAAAA8h6YtYJHhw4fr8ccf1xFHHJHuQwGAbluzZo1OP/10vfHGG+k+FAAAAADwFD7KB1iGT9gCyATbt2/XHXfcoS1btuiOO+7QokWL+PsNAAyqqm1SZXWD6kItKgrkqLysQMH/N/irqzFTebuzJwAAfsEgsgQwxAEAgK+H4YpIFe7TouO98Y+q2iZNXrIqbM1xpPnjSiSpS7FgcZ6RvN3Zk8YtACATJHqPxkdeAABAUn366adauHBh2Np9992nsrIyDRw4ME1HBQCZq7K6odOa60qVNY1f/Y8uxILFeUbydmdPmrYAAD/hmbYAACCp5s6dq23btoWtbdu2TfPmzUvTEQFAZqsLtURcrw81dzlmKm939gQAwE9o2gIAgKRZvXq1qqurtXPnzrD1nTt36oUXXtDq1avTdGQAkLmKAjkR1wsDuV2OmcrbnT0BAPATmrYAACBpqqqq5DhOxJjjOKqqqkrxEQFA5isvK1DHv3odR6ooze9yzFTe7uwJAICf0LQFAABJEwwGFW3Gqeu6OvHEE1N8RACQ+YLFeZo/rkRHDO6vPXv31BGD+2vBuBKNLs7rcsxU3u7sCQCAnzhutJ+s0I7JuwAAJO7ss8/Whg0bOq0HAgE99NBDaTgiZDLu06LjvQEAALBPovdofNIWAAAkzerVqyM2bCUpFArxTFsAAAAASABNWwAAkDQ80xYAAAAAui8r3QcAINz27duVlcWlCcCbgsGgnn322YgxnmkLZL5bn3lLi1e8qy+37dAevXrqgu8doF+dNFSSVFXbpMrqBtWFWlQUyFF5WYGCuz2nNFbcRMxreanFX3ltqyXe9wGplCnXFRAPz7RNAM8DQ6qsWbNGV111lW6++WYdccQR6T4cAOiSG264QTU1Ndq5c2f7Wo8ePVRWVqZrrrkmjUeGTMR9WnSpfm9ufeYtzVve2Gl9ynH5Gj6kvyYvWRW27jjS/HEl7Q2haHFJSY+Z2pNa7NzTa3ltq+WSH+R3urZ3/z4glbx0LcfLy/XjX4neo/FxPsAS27dv1x133KEtW7bojjvu0KJFi/jELQBPKi8v10svvaS2trb2tV69emnKlClpPCoApi1e8W7E9ftXvqsVjTmd1l1XqqxpVLA4T5XVDVHjivAZk+7GTO1JLXbu6bW8ttVyf4Rre/fvA1LJS9dyvLxcP4jH+mfafvjhhxo3bpz23ntv7bHHHjrssMP0+uuvt8dd19W1116rb37zm9pjjz00atQo1dfXh+XYuHGjzj//fPXt21f9+/fXhRdeqJaWllSXAsT06KOP6oMPPpAkvf/++3rsscfSfEQA0DUDBw7UhRdeGLb2s5/9TAMHDkzTEQFIhS+37Yi4/sXWHaoLRb73rg81S1LMuImYqT1N5aUWf+W1rZYvolzbu74PSKVMua64fpAIq5u2n332mY455hj16tVLzzzzjNatW6f//d//1Te+8Y3219x222367W9/q/nz5+uVV17RXnvtpWAwqNbW1vbXnH/++aqtrdVzzz2nJ598Ui+++KIuvvjidJQERPTpp59q4cKFYWv33XefPv300zQdEQB0z5lnnqnBgwdLkgYPHqwxY8ak+YgAmLZHr54R1/fs3VNFgc6ftJWkwkCuJMWMm4iZ2tNUXmrxV17batkzyrW96/uAVMqU64rrB4mwuml76623avDgwVq0aJGOPPJIHXjggRo9erTy8/MlffUp29mzZ+vqq6/W6aefrsMPP1x/+MMf9NFHH+kvf/mLJOnf//63nn32Wd1333066qijdOyxx2rOnDl68MEH9dFHH6WxOuD/zJ07V9u2bQtb27Ztm+bNm5emIwKA7snKytKVV16pvfbaS9OnT+dxL4APXPC9A6Kul5cVyHHC1x1Hqij96r4+VtxEzNSe1GLnnl7La1stE485IOb3AamUKdcV1w8SYfUgskMPPVTBYFAffPCBli9frm9961sqLy/XRRddJEl65513lJ+fr9WrV2v48OHt33fcccdp+PDhuvvuu/X73/9eV155pT777LP2+Pbt25Wdna1ly5ZF/ORPW1tb2HP4Nm/erMGDBzPgAkasXr1a06ZNixq/6667NGLEiBQeEQAkz/bt22nYwigGkUWXjvfm1mfe0v0r39UXW3doz949dcH3DtAvTxwq6f9Nz65pVH2oWYWBXFWU5mt0x+naUeImYl7LSy3+ymtbLfG+D0ilTLmu4F+J3qNZ3bTNzs6WJF1xxRU666yz9Nprr+myyy7T/PnzNXHiRK1YsULHHHOMPvroI33zm99s/76zzz5bjuPooYce0s0336z7779fb7/9dljuQYMGaebMmRGHolx//fWaOXNmp3V+GIAJt9xyi6qqqhTpUnQcR8FgUL/+9a/TcGQAANiPpm10vDcAAAD2SfQezerHI+zcuVPf/va3dfPNN2vEiBG6+OKLddFFF2n+/PlG950xY4Y2bdrU/vX+++8b3Q/+FgwGIzZspa8eAXLiiSem+IgAIHm2b9+e7kMAAAAAAM+xumn7zW9+U4ceemjY2iGHHKL33ntPkpSX99XHyUOhUNhrQqFQeywvL08bNmwIi2/fvl0bN25sf01Hffr0Ud++fcO+AFNGjBih448/Xj16hF+OPXr00AknnBD26A8A8JI1a9bo9NNP1xtvvJHuQwEAAAAAT7G6aXvMMcd0eqxBXV2d9t9/f0nSgQceqLy8PL3wwgvt8c2bN+uVV17RyJEjJUkjR47U559/rlWrVrW/5u9//7t27typo446KgVVAPGVl5erV69eYWu9evWK+PgOAPCC7du366abbtKWLVt000038YlbIIZbbrlFjuPo8ssvb19rbW1VRUWF9t57b+Xk5Gjs2LGdPqgAAACAzGX1ZJBp06bpe9/7nm6++WadffbZevXVV3XPPffonnvukaT2m9sbb7xRhYWFOvDAA3XNNddo33331RlnnCHpq0/mnnjiie2PVdi2bZsuvfRSnXvuudp3333TWB3wfwYOHKgLL7xQlZWV7Ws/+9nPNHDgwDQeFQB03SOPPKJPPvlEkrRhwwY98sgjOvfcc9N8VIB9XnvtNS1YsECHH3542Pq0adP01FNPadmyZerXr58uvfRSnXnmmXrppZfSdKSJKfifp7R95//9OauH1HDzKZL+3yCW6gbVhVpUFMhReVmBgh0HtUSJm4h5LS+1+CuvbbXEurYBm6TjugJMsXoQmSQ9+eSTmjFjhurr63XggQfqiiuu0EUXXdQed11X1113ne655x59/vnnOvbYY1VZWamioqL212zcuFGXXnqpnnjiCfXo0UNjx47Vb3/7W+Xk5CR0DAxxQCps375dkyZN0vvvv6/Bgwdr0aJFTFwH4EmffvqpzjnnHO3YsaN9LSsrSw8++CD/MQpJ5+X7tJaWFn37299WZWWlbrzxRg0fPlyzZ8/Wpk2btM8++2jp0qX68Y9/LEl66623dMghh2jlypU6+uijE8qf6vemY1Nnl6we0tzzSzR5yaqwdceR5o8rUfD/TaaPFpeU9JipPanFzj29lte2WhxJOyN0DWjcwjZdvTa6c13RuEVXJHqPZn1H6NRTT9Wpp54aNe44jm644QbdcMMNUV8zYMAALV261MThAUmTlZWlK6+8UldddZWmT59OwxaAZ911111hDVvpq/8wddddd+mmm25K01EB9qmoqNApp5yiUaNG6cYbb2xfX7VqlbZt26ZRo0a1rw0dOlRDhgyJ2bRta2tTW1tb+583b95s7uAjiNSw3bVeWd3Qad11pcqaRgWL82LGFeEzJt2NmdqTWuzc02t5basl2qe8ol3zQLp09droznVF0xYm0RUCLDJ8+HA9/vjjNGwBeNbq1auj/vr2Sy+9pNWrV2vEiBEpPirAPg8++KD++c9/6rXXXusUa2pqUu/evdW/f/+w9UAgoKampqg5Z82apZkzZyb7UJOiLtQScb0+1Bw3Hu33ArsTM7WnqbzU4q+8ttUCeEVXr43ufi9gitWDyAA/omELwMseeOCBbsUBP3j//fd12WWX6U9/+pOys7OTlnfGjBnatGlT+9f777+ftNzdVRSI/FiywkBu3LiJmKk9TeWlFn/lta0WwCvScV0BJtG0BQAASRPv17FT/evagI1WrVqlDRs26Nvf/raysrKUlZWl5cuX67e//a2ysrIUCAS0detWff7552HfFwqFlJcX/dcw+/Tpo759+4Z9pVJWlJ8ssnpI5WUFcpzwdceRKkrzJcWOm4iZ2pNa7NzTa3ltq6VHh7Vdol3zQLqk47oCTLJ+EJkNvDzgAgCAVPrFL34R8de9dznyyCN12223pfCIkOm8eJ/W3Nys//znP2FrkyZN0tChQ/WrX/1KgwcP1j777KMHHnhAY8eOlSS9/fbbGjp0qNWDyKTOw8h2H1RUVdukyppG1YeaVRjIVUVpvkZ3nNodJW4i5rW81OKvvLbVEuvaBmySjusK+LoSvUejaZsAL/4wAABAOqxevVrTpk2LGp89e7aGDx+eugNCxsuU+7TS0lINHz5cs2fPliRNmTJFTz/9tBYvXqy+fftq6tSpkqQVK1YknDNT3hsAAIBMkug9Gg/PBAAASTNixAj17t1bW7du7RTr3bs3DVsgQXfddZd69OihsWPHqq2tTcFgUJWVlek+LAAAAKQITVsAAJA0Dz/8cMSGrSRt3bpVy5Yt01lnnZXiowLsV1NTE/bn7OxszZ07V3Pnzk3PAQEAACCteHQ4AABImscffzxm/C9/+UtqDgQAAAAAPIxP2gIAgKQ544wzYn4ycMyYMSk8GgCpdsCvn+q09u4tuw0iq25QXahFRYEclZcVKNhxAEyUuImY1/JSi7/y2lZLrGsb6Aovnf/pygswiCwBDHEAACAx8QaR3XXXXRoxYkQKjwiZjvu06FL93kRq6uyyYHyJJi9ZFbbmONL8cSUKFuepqrYpalxS0mOm9qQWO/f0Wl7baonVMaBxi67o6jnstWu5O3lp3GY2BpEBAICUq6qqihunaQv4T2V1Q6c115UqaxoVLM6LGY/UMepuzNSe1GLnnl7La1stQLJ19Rz22rXcnbw0bSHRtAUAAF3kuq5aW1vD1kpLS/Xss89G/Z6ysjJ9+eWXkr4atOQ4jtFjBGCHulBLxPX6UHPceLSmUXdipvY0lZda/JXXtlqAZOvqOdyd7/VaXkBiEBlgne3bt6f7EAAgLtd1NXXqVJ100klhX7/+9a9jft+vfvWr9tdOnTpVPKUJ8IeiQE7E9cJAbty4iZipPU3lpRZ/5bWtFiDZvHT+pysvING0BayyZs0anX766XrjjTfSfSgAEFNra6vWrl3brRxr167t9EldAJmpvKxAHT9Y7zhSRWl+3LiJmKk9qcXOPb2W17ZagGTz0vmfrryAxCCyhDDgAqmwfft2XXDBBfrggw80ePBgLVq0SFlZPMEEgJ2+/PJLnXTSSZKkZb+fo+w+fRL+3ta2Np3106mSpGeeeUZ77LGHkWOEP3CfFl063ptYE+araptUWdOo+lCzCgO5qijN1+iO07WjxE3EvJaXWvyV17ZaYl3bQFd46fxPV15krkTv0WjaJoAfBpAKDz/8sCorK9v/XFFRobPOOiuNRwQA0e3etH3iT/doj+zEm7ZftrbptPMvlkTTFt3HfVp0vDcAAAD2SfQejccjABb49NNPtXDhwrC1++67T59++mmajggAAAAAAADpQtMWsMDcuXO1bdu2sLVt27Zp3rx5aToiAAAAAAAApAtNWyDNVq9ererqau3cuTNsfefOnXrhhRe0evXqNB0ZAAAAAAAA0oEpR0CaVVVVyXEcRXq8tOM4qqqq0ogRI9JwZAAAAF9P3EFk1Q2qC7WoKJCj8rICBTsOaokSNxHzWl5q8Vde22phEBlSybbz32ReIBYGkSWAIQ4wafXq1Zo2bVrU+OzZszV8+PDUHRAAJIBBZLAF92nRpfq9idTU2WXB+BJNXrIqbM1xpPnjShQszlNVbVPUuKSkx0ztSS127um1vLbVEqtjQOMWyRbr/PbatRwvL41b/0r0Ho1P2gJpNmLECB1//PGqqakJe0RCjx49VFZWRsMWAAB4XmV1Q6c115UqaxoVLM6LGY/UMepuzNSe1GLnnl7La1stQCql49+LdOWlaYt4aNoCFigvL9dLL72ktra29rVevXppypQpaTwqAACA5KgLtURcrw81x41Haxp1J2ZqT1N5qcVfeW2rBUildPx7ka68QDwMIgMsMHDgQF1wwQVha5MmTdLAgQPTc0AAAABJVBTIibheGMiNGzcRM7WnqbzU4q+8ttUCpJJt57/JvEA8NG0BSziOk+5DAAAAMKK8rEAdb3UcR6oozY8bNxEztSe12Lmn1/LaVguQSrad/ybzAvEwiCwBDLiAaZ9++ql+8pOfaOvWre1rvXv31tKlS/m0LQArMYgMtuA+Lbp0vDexJsxX1TapsqZR9aFmFQZyVVGar9Edp2tHiZuIeS0vtfgrr221xLq2gWSz7fw3mRf+lOg9Gk3bBPDDAEybOXOmampqtPvl6DiOjj/+eF1zzTVpPDIAiIymLWzBfVp0vDcAAAD2SfQejccjAGm2evVqVVdXq+N/P3FdVy+88IJWr16dpiMDAAAAAABAOtC0BdKsqqqqW3EAAAAAAABkFpq2QJoddNBBMeP5+TygHAAAAAAAwE+y0n0AgN+98847MeONjY0pOhIAAIDuiTuIrLpBdaEWFQVyVF5WoGDHQS1R4iZiXstLLf7Ka1stDCJDV2TK+W9j3nh7IjMwiCwBDHGASatXr9a0adOixmfPnq3hw4en7oAAIAEMIoMtuE+LLtXvTaSmzi4Lxpdo8pJVYWuOI80fV6JgcZ6qapuixiUlPWZqT2qxc0+v5bWtllgdAxq3iMZL15zX8sbbE/ZL9B6NT9oCaTZixAgdf/zxnYaROY6j448/noYtAADwvMrqhk5rritV1jQqWJwXMx6pY9TdmKk9qcXOPb2W17ZagK7w0jXntbzx9kTmoGkLWKC8vFwvvfSS2tra2td69+6tKVOmpPGoAAAAkqMu1BJxvT7UHDcerWnUnZipPU3lpRZ/5bWtFqArvHTNeS1vvD2RORhEBlhg4MCBuvDCC8PWfvazn2ngwIFpOiIAAIDkKQrkRFwvDOTGjZuImdrTVF5q8Vde22oBuiJTzn8b88bbE5mDpi1giTPPPFODBw+WJA0ePFhjxoxJ8xEBAAAkR3lZgRwnfM1xpIrS/LhxEzFTe1KLnXt6La9ttQBdkSnnv4154+2JzMEgsgQw4AKp4LquXn31Vc2cOVOzZs3SEUccke5DAoCoGEQGW3CfFl063ptYE+araptUWdOo+lCzCgO5qijN1+iO07WjxE3EvJaXWvyV17ZaYl3bQDSZcv7bmDfenrBbovdoNG0TwA8DMM11XU2dOlVr165VcXGxfve738nhP2sDsBhNW9iC+7ToeG8AAADsk+g9Go9HACzQ2tqqtWvXSpJqa2vV2tqa5iMCAAAAAABAutC0BQAAAAAAAACL0LQFAAAAAAAAAItkpfsAAAAAAGSGuIPIqhtUF2pRUSBH5WUFCnYc1BIlbiLmtbzU4q+8ttXCIDJ0Raac/7bmReZjEFkCGOIA03Yf6CMxmAeA/RhEBltwnxZdqt+bSE2dXRaML9HkJavC1hxHmj+uRMHiPFXVNkWNS0p6zNSe1GLnnl7La1stsToGNG4RjZeuOS/mhbcleo/GJ20BAAAAGFVZ3dBpzXWlyppGBYvzYsYjdYy6GzO1J7XYuafX8tpWC9AVXrrmvJgX/kDTFgAAAIBRdaGWiOv1oea48WhNo+7ETO1pKi+1+CuvbbUAXeGla86LeeEPDCIDAAAAYFRRICfiemEgN27cRMzUnqbyUou/8tpWC9AVmXL+25oX/kDTFgAAAIBR5WUFcpzwNceRKkrz48ZNxEztSS127um1vLbVAnRFppz/tuaFPzCILAEMuIBpDCID4DUMIoMtuE+LLh3vTawJ81W1TaqsaVR9qFmFgVxVlOZrdMfp2lHiJmJey0st/sprWy2xrm0gmkw5/23NC+9K9B6Npm0C+GEAptG0BeA1NG1hC+7TouO9AQAAsE+i92gMIgMAABG5rqvW1taIsd3XW1vbvlbe3V8fLb8kZWdny+H3MgEAAAD4EE1bAADQieu6mjp1qtauXRv3tWddOLXL+4wZMyZqbNiwYZozZw6NWwAAAAC+wyAyAADQSWtra0INW5PWrl0b85O4AAAAAJCp+KQtAACI6U83T1F2714p26916zad/z/zUrYfgOSJO4isukF1oRYVBXJUXlagYMdBLVHiJmJey0st/sprWy0MIkNXZMr5b2PeeHsiMzCILAEMcYBpDCIDYJvd/1768x0/V3af3inbu7Vtq8ZO/60k/j5EfNynRZfq9yZSU2eXBeNLNHnJqrA1x5HmjytRsDhPVbVNUeOSkh4ztSe12Lmn1/LaVkusjgGNW0TjpWvOa3nj7Qn7MYgMAAAAgBUqqxs6rbmuVFnTqGBxXsx4pI5Rd2Om9qQWO/f0Wl7bagG6wkvXnNfyxtsTmYOmLQAAAACj6kItEdfrQ81x49GaRt2JmdrTVF5q8Vde22oBusJL15zX8sbbE5mDQWQAAAAAjCoK5ERcLwzkxo2biJna01ReavFXXttqAboiU85/G/PG2xOZg6YtAAAAAKPKywrkOOFrjiNVlObHjZuImdqTWuzc02t5basF6IpMOf9tzBtvT2QOBpElgAEXMI1BZABswyAyeAX3adGl472JNWG+qrZJlTWNqg81qzCQq4rSfI3uOF07StxEzGt5qcVfeW2rJda1DUSTKee/jXnj7Qm7JXqPRtM2AfwwANNo2gKwDU1beAX3adHx3gAAANgn0Xs0Ho8AAAAAAAAAABahaQsAAAAAAAAAFqFpCwAAAAAAAAAWyUr3AcRy/fXXa+bMmWFrBx98sN566y1JUmtrq6688ko9+OCDamtrUzAYVGVlpQKBQPvr33vvPU2ZMkXV1dXKycnRxIkTNWvWLGVlWV06AAAA4DlxB5FVN6gu1KKiQI7KywoU7DioJUrcRMxreanFX3ltq4VBZEg2L53/6coLWD2I7Prrr9cjjzyi559/vn0tKytLAwcOlCRNmTJFTz31lBYvXqx+/frp0ksvVY8ePfTSSy9Jknbs2KHhw4crLy9Pt99+uz7++GNNmDBBF110kW6++eaEj4MhDjCt4yCyp59+WnvuuWcajwiA3zGIDF7BfVp0qX5vIjV1dlkwvkSTl6wKW3Mcaf64EgWL81RV2xQ1LinpMVN7Uoude3otr221xOoY0LhFV3T1HPbatdydvDRuM1ui92jWf9w0KytLeXmdT9ZNmzZp4cKFWrp0qY4//nhJ0qJFi3TIIYfo5Zdf1tFHH62//e1vWrdunZ5//nkFAgENHz5cv/nNb/SrX/1K119/vXr3Tt0PoEAsHf/byfTp0zV37lw5jpOmIwIAAEieyuqGTmuuK1XWNCpYnBczHqlj1N2YqT2pxc49vZbXtlqAZOvqOey1a7k7eWnaQvJA07a+vl777ruvsrOzNXLkSM2aNUtDhgzRqlWrtG3bNo0aNar9tUOHDtWQIUO0cuVKHX300Vq5cqUOO+ywsMclBINBTZkyRbW1tRoxYkTEPdva2tTW1tb+582bN5srEJDCzjdJWrdunVpbW/l0GQAAyAh1oZaI6/Wh5rjxaE2j7sRM7WkqL7X4K69ttQDJ1tVzuDvf67W8gGT5ILKjjjpKixcv1rPPPqt58+Zp/fr1+v73v6/m5mY1NTWpd+/e6t+/f9j3BAIBNTU1SZKamprCGra74rti0cyaNUv9+vVr/xo8eHByCwMAAAB8pCiQE3G9MJAbN24iZmpPU3mpxV95basFSDYvnf/pygtIljdtTzrpJJ111lk6/PDDFQwG9fTTT+vzzz/Xww8/bHTfGTNmaNOmTe1f77//vtH9AAAAgExWXlagjk99chypojQ/btxEzNSe1GLnnl7La1stQLJ56fxPV15AsnwQWSTf/e53NWrUKP3whz/UCSecoM8++yzs07b777+/Lr/8ck2bNk3XXnut/vrXv2rNmjXt8fXr1+uggw7SP//5z6iPR+iIARcw7bPPPtOYMWPC1hi+AyCdGEQGr+A+Lbp0vDexJsxX1TapsqZR9aFmFQZyVVGar9Edp2tHiZuIeS0vtfgrr221xLq2ga7w0vmfrrzIXIneo3mqadvS0qIhQ4bo+uuv18SJE7XPPvvogQce0NixYyVJb7/9toYOHdr+TNtnnnlGp556qj7++GMNGjRIknTPPffoF7/4hTZs2KA+ffoktC8/DMA0mrYAbEPTFl7BfVp0vDcAAAD2SfQezepBZNOnT9dpp52m/fffXx999JGuu+469ezZU+edd5769eunCy+8UFdccYUGDBigvn37aurUqRo5cqSOPvpoSdLo0aN16KGHavz48brtttvU1NSkq6++WhUVFQk3bAEAAAAAAAAglaxu2n7wwQc677zz9N///lf77LOPjj32WL388svaZ599JEl33XWXevToobFjx6qtrU3BYFCVlZXt39+zZ089+eSTmjJlikaOHKm99tpLEydO1A033JCukgAAAAAAAAAgJqubtg8++GDMeHZ2tubOnau5c+dGfc3++++vp59+OtmHBgAAAKCDuM+0rW5QXahFRYEclZcVKNjxmX9R4iZiXstLLf7Ka1stPNMWNsmU6wqIx1PPtE0XngcG03imLQDb8ExbeAX3adGl+r2J1NTZZcH4Ek1esipszXGk+eNKFCzOU1VtU9S4pKTHTO1JLXbu6bW8ttUSq2NA4xap5qVrOV5eGrf+lRHPtAUAAADgfZXVDZ3WXFeqrGlUsDgvZjxSx6i7MVN7Uoude3otr221ADbx0rUcLy9NW8RD0xYAAACAUXWhlojr9aHmuPFoTaPuxEztaSovtfgrr221ADbx0rUcLy8QT490HwAAAACAzFYUyIm4XhjIjRs3ETO1p6m81OKvvLbVAtgkU66rXXEgFpq2AAAAAIwqLyuQ44SvOY5UUZofN24iZmpParFzT6/lta0WwCaZcl3tigOxMIgsAQy4gGkMIgNgGwaRwSu4T4suHe9NrAnzVbVNqqxpVH2oWYWBXFWU5mt0x+naUeImYl7LSy3+ymtbLbGubSDVMuW6gn8leo9G0zYB/DAA02jaArANTVt4Bfdp0fHeAAAA2CfRezQejwAAAAAAAAAAFqFpCwAAAAAAAAAWoWkLAAAAAAAAABbJSvcBAAAAAMgMcQeRVTeoLtSiokCOyssKFOw4qCVK3ETMa3mpxV95bauFQWSIxg/nv4154+2JzMAgsgQwxAGmMYgMgG0YRAav4D4tulS/N5GaOrssGF+iyUtWha05jjR/XImCxXmqqm2KGpeU9JipPanFzj29lte2WmJ1DGjc+psfzn8b88bbE/ZL9B6NT9oCAAAAMKqyuqHTmutKlTWNChbnxYxH6hh1N2ZqT2qxc0+v5bWtFiAaP5z/NuaNtycyB01bAAAAAEbVhVoirteHmuPGozWNuhMztaepvNTir7y21QJE44fz38a88fZE5mAQGQAAAACjigI5EdcLA7lx4yZipvY0lZda/JXXtlqAaPxw/tuYN96eyBw0bQEAAAAYVV5WIMcJX3McqaI0P27cRMzUntRi555ey2tbLUA0fjj/bcwbb09kDgaRJYABFzCNQWQAbMMgMngF92nRpeO9iTVhvqq2SZU1jaoPNaswkKuK0nyN7jhdO0rcRMxreanFX3ltqyXWtQ1/88P5b2PeeHvCboneo9G0TQA/DMA0mrYAbEPTFl7BfVp0vDcAAAD2SfQejccjAAAAAAAAAIBFaNoCAAAAAAAAgEVo2gIAAAAAAACARbLSfQAAAAAAMkPcQWTVDaoLtagokKPysgIFOw5qiRI3EfNaXmrxV17bamEQGboiU85/W/Mi8zGILAEMcYBpDCIDYBsGkcEruE+LLtXvTaSmzi4Lxpdo8pJVYWuOI80fV6JgcZ6qapuixiUlPWZqT2qxc0+v5bWtllgdAxq3iMZL15wX88LbEr1H45O2AAAAAIyqrG7otOa6UmVNo4LFeTHjkTpG3Y2Z2pNa7NzTa3ltqwXoCi9dc17MC3+gaQtYINIH3vkQPAAAyBR1oZaI6/Wh5rjxaLdE3YmZ2tNUXmrxV17bagG6wkvXnBfzwh8YRAakmeu6+p//+Z9O69OnT6dxCwAAMkJRICfiemEgN27cRMzUnqbyUou/8tpWC9AVmXL+25oX/kDTFkiz1tZWvfXWW53W161bp9bW1jQcEQAAQHKVlxXIccLXHEeqKM2PGzcRM7Untdi5p9fy2lYL0BWZcv7bmhf+wCCyBDDgAibtPuynYuZsSdLc6y6XxAAeAOnDIDJ4Bfdp0aXjvYk1Yb6qtkmVNY2qDzWrMJCritJ8je44XTtK3ETMa3mpxV95basl1rUNRJMp57+teeFdid6j0bRNAD8MwKTdGyOXz5onSZo9Y4okmhUA0oemLbyC+7ToeG8AAADsk+g9Go9HAAAAAAAAAACL0LQFAAAAAAAAAIvQtAUAAABSaN68eTr88MPVt29f9e3bVyNHjtQzzzzTHm9tbVVFRYX23ntv5eTkaOzYsQqFQmk8YgAAAKRaVroPAAAAAPCT/fbbT7fccosKCwvluq7uv/9+nX766Vq9erWKi4s1bdo0PfXUU1q2bJn69eunSy+9VGeeeaZeeumldB96XHEHkVU3qC7UoqJAjsrLChTsOKglStxEzGt5qcVfeW2rhUFk6IpMOf9tzBtvT2QGBpElgCEOMIlBZABsxCAyeEWm3KcNGDBAt99+u3784x9rn3320dKlS/XjH/9YkvTWW2/pkEMO0cqVK3X00UcnnDPV702kps4uC8aXaPKSVWFrjiPNH1eiYHGeqmqbosYlJT1mak9qsXNPr+W1rZZYHQMat4jGS9ec1/LG2xP2S/QejU/aAgAAAGmyY8cOLVu2TFu2bNHIkSO1atUqbdu2TaNGjWp/zdChQzVkyJC4Tdu2tja1tbW1/3nz5s1Gj/3rqKxu6LTmulJlTaOCxXkx45E6Rt2NmdqTWuzc02t5basF6AovXXNeyxtvT2QOmrYAAABAir355psaOXKkWltblZOTo8cee0yHHnqo1qxZo969e6t///5hrw8EAmpqaoqZc9asWZo5c6bBo+66ulBLxPX6UHPceLSmUXdipvY0lZda/JXXtlqArvDSNee1vPH2ROZgEBkAAACQYgcffLDWrFmjV155RVOmTNHEiRO1bt26buWcMWOGNm3a1P71/vvvJ+lou68okBNxvTCQGzduImZqT1N5qcVfeW2rBeiKTDn/bcwbb09kDpq2AAAAQIr17t1bBQUFKikp0axZs3TEEUfo7rvvVl5enrZu3arPP/887PWhUEh5ebF/5bFPnz7q27dv2JctyssK5Djha44jVZTmx42biJnak1rs3NNreW2rBeiKTDn/bcwbb09kDgaRJSBTBlzATgwiA2AjBpHBKzLlPu3444/XkCFDdPfdd2ufffbRAw88oLFjx0qS3n77bQ0dOtT6QWRS5GFkuwYVVdU2qbKmUfWhZhUGclVRmq/RHadrR4mbiHktL7X4K69ttcS6toFoMuX8tzFvvD1ht0Tv0WjaJiBTfhiAnWjaArARTVt4hRfv02bMmKGTTjpJQ4YMUXNzs5YuXapbb71VVVVV+uEPf6gpU6bo6aef1uLFi9W3b19NnTpVkrRixYqvtY8X3xsAAIBMl+g9GoPIAAAAgBTasGGDJkyYoI8//lj9+vXT4Ycf3t6wlaS77rpLPXr00NixY9XW1qZgMKjKyso0HzUAAABSiaYtAAAAkEILFy6MGc/OztbcuXM1d+7cFB0RAAAAbMMgMgAAAAAAAACwCJ+0BQAAAJAUcQeRVTeoLtSiokCOyssKFOw4qCVK3ETMa3mpxV95bauFQWToikw5/23Ni8zHILIEMMQBJjGIDICNGEQGr+A+LbpUvzeRmjq7LBhfoslLVoWtOY40f1yJgsV5qqptihqXlPSYqT2pxc49vZbXtlpidQxo3CIaL11zXswLb2MQGQAAAAArVFY3dFpzXamyplHB4ryY8Ugdo+7GTO1JLXbu6bW8ttUCdIWXrjkv5oU/0LQFAAAAYFRdqCXien2oOW48WtOoOzFTe5rKSy3+ymtbLUBXeOma82Je+AODyAAAAAAYVRTIibheGMiNGzcRM7WnqbzU4q+8ttUCdEWmnP+25oU/0LQFACCDua6rL7/88mt/tba2tudobdum1ratKfza9n97t7Z26fh5ZD9gl/KyAjlO+JrjSBWl+XHjJmKm9qQWO/f0Wl7bagG6IlPOf1vzwh8YRJYABlzAJAaRATDFdV1NnTpVa9euTfehpNywYcM0Z84cOfy0mfG4T4suHe9NrAnzVbVNqqxpVH2oWYWBXFWU5mt0x+naUeImYl7LSy3+ymtbLbGubSCaTDn/bc0L70r0Ho2mbQL4YQAm0bQFYMruf7/4EX+H+gP3adHx3gAAANgn0Xs0BpEBAOADi6aWKrtXz3QfhnGt23Zo0pyadB8GAAAAAHQLTVsAAHwgu1dPZffmn30AAAAA8AIGkQEAAAAAAACARfjIDQAAAICkiDuIrLpBdaEWFQVyVF5WoGDHQS1R4iZiXstLLf7Ka1stDCJDsnnp/Lc1LzIfg8gSwBAHmMQgMgCm7P73ywNXnOCLxyO0bt2u8+58QRJ/h/oF92nRpfq9idTU2WXB+BJNXrIqbM1xpPnjShQszlNVbVPUuKSkx0ztSS127um1vLbVEqtjQOMWXdHVc9hr17LJvPA2BpEBAAAAsEJldUOnNdeVKmsaFSzOixmP1DHqbszUntRi555ey2tbLUCydfUc9tq1bDIv/IGmLQAAAACj6kItEdfrQ81x49GaRt2JmdrTVF5q8Vde22oBkq2r53B3vjfT8sIfGEQGAAAAwKiiQE7E9cJAbty4iZipPU3lpRZ/5bWtFiDZvHT+25oX/kDTFgAAAIBR5WUFcpzwNceRKkrz48ZNxEztSS127um1vLbVAiSbl85/W/PCHxhElgAGXMAkBpEBMIVBZPwd6gfcp0WXjvcm1oT5qtomVdY0qj7UrMJAripK8zW643TtKHETMa/lpRZ/5bWtlljXNtAVXjr/bc0L70r0Ho2mbQL4YQAm0bQFYApNW/4O9QPu06LjvQEAALBPovdonno8wi233CLHcXT55Ze3r7W2tqqiokJ77723cnJyNHbsWIVCobDve++993TKKadozz331KBBg/SLX/xC27dvT/HRAwAAAAAAAEB8nmnavvbaa1qwYIEOP/zwsPVp06bpiSee0LJly7R8+XJ99NFHOvPMM9vjO3bs0CmnnKKtW7dqxYoVuv/++7V48WJde+21qS4B6MR1XbW2trb/edvWNm3b2tb+59bWVvFheAAAAAAAAH/xRNO2paVF559/vu6991594xvfaF/ftGmTFi5cqDvvvFPHH3+8SkpKtGjRIq1YsUIvv/yyJOlvf/ub1q1bpz/+8Y8aPny4TjrpJP3mN7/R3LlztXXr1nSVBMh1XU2dOlVjxoxpX5t73eWae93l7X8eM2aMpk6dSuMWAAAAAADARzzxcLuKigqdcsopGjVqlG688cb29VWrVmnbtm0aNWpU+9rQoUM1ZMgQrVy5UkcffbRWrlypww47TIFAoP01wWBQU6ZMUW1trUaMGJHSWoBdWltbtXbt2rivW7t2rVpbW3kuIwAAsF7cQWTVDaoLtagokKPysgIFOw5qiRI3EfNaXmrxV17bamEQGZLNS+d/uvIC1g8ie/DBB3XTTTfptddeU3Z2tkpLSzV8+HDNnj1bS5cu1aRJk9TW1hb2PUceeaTKysp066236uKLL9Z//vMfVVVVtce/+OIL7bXXXnr66afbB7Tsrq2tLSzn5s2bNXjwYIY4IKl2HxB0zvRZyurVOyy+fdtWPXTHDEkM0wHQNQwi4+9OP2DYVnSpfm8iNXV2WTC+RJOXrApbcxxp/rgSBYvzVFXbFDUuKekxU3tSi517ei2vbbXE6hjQuEVXdPUc9tq13J28NG4zW6L3aFb/9Pb+++/rsssu03PPPafs7OyU7Ttr1izNnDkzZfsBWb16q1fvPuk+DAAAACMqqxs6rbmuVFnTqGBxXsx4pI5Rd2Om9qQWO/f0Wl7bagGSravnsNeu5e7kpWkLyfKm7apVq7RhwwZ9+9vfbl/bsWOHXnzxRf3ud79TVVWVtm7dqs8//1z9+/dvf00oFFJe3lcneF5enl599dWwvKFQqD0WyYwZM3TFFVe0/3nXJ20BAAAAfH11oZaI6/Wh5rjxaE2j7sRM7WkqL7X4K69ttQDJ1tVzuDvf67W8gGT5ILITTjhBb775ptasWdP+9Z3vfEfnn39++//u1auXXnjhhfbvefvtt/Xee+9p5MiRkqSRI0fqzTff1IYNG9pf89xzz6lv37469NBDI+7bp08f9e3bN+wLAAAAQNcUBXIirhcGcuPGTcRM7WkqL7X4K69ttQDJ5qXzP115Acnypm1ubq6GDRsW9rXXXntp77331rBhw9SvXz9deOGFuuKKK1RdXa1Vq1Zp0qRJGjlypI4++mhJ0ujRo3XooYdq/PjxeuONN1RVVaWrr75aFRUV6tOHX0cHAAAATCsvK5DjhK85jlRRmh83biJmak9qsXNPr+W1rRYg2bx0/qcrLyB5YBBZR6Wl/zeITJJaW1t15ZVX6oEHHlBbW5uCwaAqKyvDHn3wn//8R1OmTFFNTY322msvTZw4UbfccouyshJ7OgQDLmDC7gOCzp/xv52eabtta5v+NOtKSQzTAdA1DCLj704/4D4tunS8N7EmzFfVNqmyplH1oWYVBnJVUZqv0R2na0eJm4h5LS+1+CuvbbXEuraBrvDS+Z+uvMhcid6jea5pmw78MAATaNoCMI2mLX93+gH3adHx3gAAANgn0Xs0qx+PAAAAAAAAAAB+Q9MWAAAAAAAAACxC0xYAAAAAAAAALJL5D7cDAAAAkBJxB5FVN6gu1KKiQI7KywoU7DioJUrcRMxreanFX3ltq4VBZIjGD+e/jXnj7YnMwCCyBDDEASYwiAyAaQwi4+9OP+A+LbpUvzeRmjq7LBhfoslLVoWtOY40f1yJgsV5qqptihqXlPSYqT2pxc49vZbXtlpidQxo3PqbH85/G/PG2xP2S/QeLfN/egMAAACQVpXVDZ3WXFeqrGlUsDgvZjxSx6i7MVN7Uoude3otr221ANH44fy3MW+8PZE5aNoCAAAAMKou1BJxvT7UHDcerWnUnZipPU3lpRZ/5bWtFiAaP5z/NuaNtycyB4PIAAAAABhVFMiJuF4YyI0bNxEztaepvNTir7y21QJE44fz38a88fZE5qBpCwAAAMCo8rICOU74muNIFaX5ceMmYqb2pBY79/RaXttqAaLxw/lvY954eyJzMIgsAQy4gAkMIgNgGoPI+LvTD7hPiy4d702sCfNVtU2qrGlUfahZhYFcVZTma3TH6dpR4iZiXstLLf7Ka1stsa5t+Jsfzn8b88bbE3ZL9B6Npm0C+GEAJtC0BWAaTVv+7vQD7tOi470BAACwT6L3aDweAQAAAAAAAAAsQtMWAAAAAAAAACyS+b8nCQAAACAl4j7TtrpBdaEWFQVyVF5WoGDHZ/5FiZuIeS0vtfgrr2218ExbROOH89/GvPH2RGbgmbYJ4HlgMIFn2gIwjWfa8nenH3CfFl2q35tITZ1dFowv0eQlq8LWHEeaP65EweI8VdU2RY1LSnrM1J7UYueeXstrWy2xOgY0bv3ND+e/jXnj7Qn7JXqPlvk/vQEAAABIq8rqhk5rritV1jQqWJwXMx6pY9TdmKk9qcXOPb2W17ZagGj8cP7bmDfensgcNG0BAAAAGFUXaom4Xh9qjhuP1jTqTszUnqbyUou/8tpWCxCNH85/G/PG2xOZg0FkAAAAAIwqCuREXC8M5MaNm4iZ2tNUXmrxV17bagGi8cP5b2PeeHsic9C0BQAAAGBUeVmBHCd8zXGkitL8uHETMVN7Uoude3otr221ANH44fy3MW+8PZE5GESWAAZcwAQGkQEwjUFk/N3pB+m4T2tsbNSiRYvU2Niou+++W4MGDdIzzzyjIUOGqLi4OCXHkIh0vDexJsxX1TapsqZR9aFmFQZyVVGar9Edp2tHiZuIeS0vtfgrr221xLq24W9+OP9tzBtvT9gt0Xs0mrYJoGkLE2jaAjCNpi1/d/pBqu/Tli9frpNOOknHHHOMXnzxRf373//WQQcdpFtuuUWvv/66HnnkEePHkCjuYQEAAOyT6D0aj0cAAAAAEvTrX/9aN954o5577jn17t27ff3444/Xyy+/nMYjAwAAQCahaQsAAAAk6M0339SYMWM6rQ8aNEiffvppGo4IAAAAmYimLQAAAJCg/v376+OPP+60vnr1an3rW99KwxEBAAAgE2X+w+0AAACAJDn33HP1q1/9SsuWLZPjONq5c6deeuklTZ8+XRMmTEj34aVd3EFk1Q2qC7WoKJCj8rICBTsOaokSNxHzWl5q8Vde22phEBlSybbz32ReIBajg8iWLFmi+fPna/369Vq5cqX2339/zZ49WwceeKBOP/10U9smHUMcYAKDyACYxiAy/u70g1Tfp23dulUVFRVavHixduzYoaysLO3YsUM/+clPtHjxYvXs2dP4MSQq1e9NpKbOLgvGl2jyklVha44jzR9XomBxnqpqm6LGJSU9ZmpParFzT6/lta2WWB0DGrdItljnt9eu5Xh5adz6V6L3aMZ+eps3b56uvfZaXX755brpppu0Y8cOSV/9Stns2bM91bQFAAAAJKl379669957de211+rNN99US0uLRowYocLCwnQfmtUqqxs6rbmuVFnTqGBxXsx4pI5Rd2Om9qQWO/f0Wl7bagFSKR3/XqQrL01bxGOsaTtnzhzde++9OuOMM3TLLbe0r3/nO9/R9OnTTW0LAAAAGDd48GANHjw43YfhGXWhlojr9aHmuPFoTaPuxEztaSovtfgrr221AKmUjn8v0pUXiMfYILL169drxIgRndb79OmjLVu2mNoWAAAAMGbs2LG69dZbO63fdtttOuuss9JwRN5QFMiJuF4YyI0bNxEztaepvNTir7y21QKkkm3nv8m8QDzGmrYHHnig1qxZ02n92Wef1SGHHGJqWwAAAMCYF198USeffHKn9ZNOOkkvvvhiGo7IG8rLCuQ44WuOI1WU5seNm4iZ2pNa7NzTa3ltqwVIJdvOf5N5gXiMDSK77777dP311+t///d/deGFF+q+++5TY2OjZs2apfvuu0/nnnuuiW2NYBAZTGAQGQDTGETG351+kOr7tD322ENr1qzRwQcfHLb+1ltvacSIEfryyy+NH0Oi0nEPG2vCfFVtkyprGlUfalZhIFcVpfka3XG6dpS4iZjX8lKLv/LaVkusaxtINtvOf5N54U+J3qMZa9pK0p/+9Cddf/31amxslCTtu+++mjlzpi688EJTWxpB0xYm0LQFYBpNW/7u9INU36cdeeSROvXUU3XttdeGrV9//fV64okntGrVqijfmXrcwwIAANgn0Xs0oz+9nX/++Tr//PP1xRdfqKWlRYMGDTK5HQAAAGDUNddcozPPPFONjY06/vjjJUkvvPCCHnjgAS1btizNRwcAAIBMkZKP3Oy5557ac889U7EVAAAAYMxpp52mv/zlL7r55pv1yCOPaI899tDhhx+u559/Xscdd1y6Dw8AAAAZwljTdsSIEXIiPLXccRxlZ2eroKBAF1xwgcrKykwdAgAAAJB0p5xyik45hWc5AgAAwBxjTdsTTzxR8+bN02GHHaYjjzxSkvTaa6/pX//6ly644AKtW7dOo0aN0qOPPqrTTz/d1GEAVnFdV62trZLU/n8lafvWtk6v3X1t12uzs7Mj/scQAACQWlu3btWGDRu0c+fOsPUhQ4ak6YjsEHcQWXWD6kItKgrkqLysQMGOg1qixE3EvJaXWvyV17ZaGESGrsiU89/GvPH2RGYwNojsoosu0pAhQ3TNNdeErd944436z3/+o3vvvVfXXXednnrqKb3++usmDiFpGOKAZHBdV1OnTtXatWu7nGPYsGGaM2cOjVsACWEQGYPI/CDV92n19fX66U9/qhUrVoStu64rx3G0Y8cO48eQqFS/N5GaOrssGF+iyUvCh7Q5jjR/XImCxXmqqm2KGpeU9JipPanFzj29lte2WmJ1DGjcIhovXXNeyxtvT9gv7YPIHn744YjTc88991yVlJTo3nvv1Xnnnac777zT1CEAVmltbe1Ww1aS1q5dq9bWVpoQAACkyQUXXKCsrCw9+eST+uY3v8l/SE1QZXVDpzXXlSprGhUszosZj9Qx6m7M1J7UYueeXstrWy1AV3jpmvNa3nh7InMYa9pmZ2drxYoVKigoCFtfsWKFsrOzJUk7d+5s/9+An4y6+Fr17NU74dfv2LZVz99zg8EjAgAAiVizZo1WrVqloUOHpvtQPKUu1BJxvT7UHDcerWnUnZipPU3lpRZ/5bWtFqArvHTNeS1vvD2ROXqYSjx16lRdcskluuyyy/THP/5Rf/zjH3XZZZdpypQp+vnPfy5Jqqqq0vDhw00dAmCtnr16K+trfH2dBi8AADDn0EMP1aeffpruw/CcokBOxPXCQG7cuImYqT1N5aUWf+W1rRagKzLl/Lcxb7w9kTmMNW2vvvpq3XvvvXr11Vf185//XD//+c/16quv6t5779VVV10lSbrkkkv0xBNPmDoEAAAAIKluvfVW/fKXv1RNTY3++9//avPmzWFfiKy8rEAdnyThOFJFaX7cuImYqT2pxc49vZbXtlqArsiU89/GvPH2ROYwNogskzCIDMmw+0CgYMWNyvoan57dvm2rquZeLYnBOgASxyAy/r70g1Tfp/Xo8dVnHjo+y5ZBZF+JNWG+qrZJlTWNqg81qzCQq4rSfI3uOF07StxEzGt5qcVfeW2rJda1DUSTKee/jXnj7Qm7JXqPRtM2ATRtkQw0bQGkGk1b/r70g1Tfpy1fvjxm/LjjjjN+DIniHhYAAMA+id6jGfvpbceOHbrrrrv08MMP67333tPWrVvD4hs3bjS1NQAAAGCETU1ZAAAAZC5jz7SdOXOm7rzzTp1zzjnatGmTrrjiCp155pnq0aOHrr/+elPbAgAAAEb9f//f/6dx48bpe9/7nj788ENJ0pIlS/SPf/wjzUcGAACATGGsafunP/1J9957r6688kplZWXpvPPO03333adrr71WL7/8sqltAQAAAGP+/Oc/KxgMao899tA///lPtbW1SZI2bdqkm2++Oc1HBwAAgExh7PEITU1NOuywwyRJOTk52rRpkyTp1FNP1TXXXGNqWwAAAMCYG2+8UfPnz9eECRP04IMPtq8fc8wxuvHGG9N4ZHaIO4isukF1oRYVBXJUXlagYMdBLVHiJmJey0st/sprWy0MIkNXZMr5b2PeeHsiMxgbRHbwwQfrD3/4g4466igde+yxOvXUU/XrX/9aDz30kKZOnaoNGzaY2NYIhjggGRhEBviX67pqbW1N+b6tra0aM2aMJGnR1FJl9+qZ8mNItdZtOzRpTo0k6bHHHlN2dnbKjyE7O1uO46R8X79K9X3annvuqXXr1umAAw5Qbm6u3njjDR100EF65513dOihh6blWo8m1e9NpKbOLgvGl2jyklVha44jzR9XomBxnqpqm6LGJSU9ZmpParFzT6/lta2WWB0DGreIxkvXnNfyxtsT9kv7ILIxY8bohRde0FFHHaWpU6dq3LhxWrhwod577z1NmzbN1LYAAFjFdV1NnTpVa9euTetx7Gpk+smuhnWqDRs2THPmzKFxm6Hy8vLU0NCgAw44IGz9H//4hw466KD0HJQHVFY3dFpzXamyplHB4ryY8Ugdo+7GTO1JLXbu6bW8ttUCdIWXrjmv5Y23JzKHsabtLbfc0v6/zznnHA0ZMkQrV65UYWGhTjvtNFPbAgBgldbW1rQ3bJFaa9euVWtrK78VkaEuuugiXXbZZfr9738vx3H00UcfaeXKlZo+fTqPAIuhLtQScb0+1Bw3Hq1p1J2YqT1N5aUWf+W1rRagK7x0zXktb7w9kTmMNW07GjlypEaOHJmq7QAAsM6CHwfUJ4tPX2aqtu2uJj8SSvdhwLBf//rX2rlzp0444QR98cUX+sEPfqA+ffpo+vTpmjp1aroPz1pFgRy98cGmTuuFgdz4cddNfszUntRi555ey2tZLUBXeOqa81reOHsic/Qwlfivf/1rxK8nnnhCzz33nNavX29qawAArNQny1F2rx58ZegXDXl/cBxHV111lTZu3Ki1a9fq5Zdf1ieffKLf/OY36T40q5WXFajjE0McR6oozY8bNxEztSe12Lmn1/LaVgvQFZly/tuYN96eyBzGBpH16NFDjuOoY/pda47j6Nhjj9Vf/vIXfeMb3zBxCEnDIDIkA4PIAH/a/dpffG6esnsZ+++lSLPWbTt1wYNNkvi7OpW4T4suHe9NrAnzVbVNqqxpVH2oWYWBXFWU5mt0x+naUeImYl7LSy3+ymtbLbGubSCaTDn/bcwbb0/YLdF7NGNN2xdeeEFXXXWVbrrpJh155JGSpFdffVXXXHONrr76avXr10+TJ0/WUUcdpYULF5o4hKThhwEkA01bwJ9o2voHTdv0SMV92plnnqnFixerb9++OvPMM2O+9tFHHzVyDF3BPSwAAIB9Er1HM/ZM28suu0z33HOPvve977WvnXDCCcrOztbFF1+s2tpazZ49Wz/96U9NHQIAAADQbf369ZPz/34PsV+/fmk+GgAAAPiBsaZtY2NjxG5x37599c4770iSCgsL9emnn5o6BAAAAKDbFi1aJElyXVczZ87UPvvswyepAQAAYJSx39EsKSnRL37xC33yySfta5988ol++ctf6rvf/a4kqb6+XoMHDzZ1CAAAAEDSuK6rgoICffDBB+k+FAAAAGQ4Y5+0ve+++3TGGWdov/32a2/Mvv/++zrooIP0+OOPS5JaWlp09dVXmzoEAAAAIGl69OihwsJC/fe//1VhYWG6D8dKcQeRVTeoLtSiokCOyssKFOw4qCVK3ETMa3mpxV95bauFQWRINi+d/7bmReYzNohMknbu3Km//e1vqqurkyQdfPDB+uEPf6gePbw1hIUhDkgGBpEB/sQgMv9gEFl6pPo+7YknntBtt92mefPmadiwYcb3645UvzeRmjq7LBhfoslLVoWtOY40f1yJgsV5qqptihqXlPSYqT2pxc49vZbXtlpidQxo3KIrunoOe+1aNpkX3pb2QWR/+MMfdM455+jEE0/UiSee2L6+detWPfjgg5owYYKprQEAAAAjJkyYoC+++EJHHHGEevfu3ak5v3HjxjQdmd0qqxs6rbmuVFnTqGBxXsx4pI5Rd2Om9qQWO/f0Wl7bagGSravnsNeuZZN54Q/GmraTJk3SiSeeqEGDBoWtNzc3a9KkSTRtAQAA4DmzZ89O9yF4Ul2oJeJ6fag5bjxa06g7MVN7mspLLf7Ka1stQLJ19RzuzvdmWl74g7Gmreu6chyn0/oHH3ygfv36mdoWAAAAMGbixInpPgRPKgrk6I0PNnVaLwzkxo+7bvJjpvakFjv39Fpey2oBkq3L53B3vjfD8sIfkv5gvREjRujb3/62HMfRCSecoG9/+9vtX0cccYS+//3va9SoUcneFgAAAEiJxsZGXX311TrvvPO0YcMGSV89x7i2tjbNR2av8rICdfw8h+NIFaX5ceMmYqb2pBY79/RaXttqAZLNS+e/rXnhD0kfRDZz5sz2/3vllVcqJyenPda7d28dcMABGjt2rHr3jj+Ead68eZo3b57effddSVJxcbGuvfba9oEura2tuvLKK/Xggw+qra1NwWBQlZWVCgQC7Tnee+89TZkyRdXV1crJydHEiRM1a9YsZWUl/iFjBpEhGRhEBvgTg8j8g0Fk6ZHq+7Tly5frpJNO0jHHHKMXX3xR//73v3XQQQfplltu0euvv65HHnnE+DEkKh33sLEmzFfVNqmyplH1oWYVBnJVUZqv0R2na0eJm4h5LS+1+CuvbbXEuraBrvDS+W9rXnhXovdoSW/aStKOHTv0xz/+UaNHj9Y3v/nNLud54okn1LNnTxUWFsp1Xd1///26/fbbtXr1ahUXF2vKlCl66qmntHjxYvXr10+XXnqpevTooZdeeqn9OIYPH668vDzdfvvt+vjjjzVhwgRddNFFuvnmmxM+Dpq2SAaatoA/0bT1D5q26ZHq+7SRI0fqrLPO0hVXXKHc3Fy98cYbOuigg/Tqq6/qzDPP1AcffGD8GBLFPSwAAIB9Er1HM/KTY8+ePTV58mS1trZ2K89pp52mk08+WYWFhSoqKtJNN92knJwcvfzyy9q0aZMWLlyoO++8U8cff7xKSkq0aNEirVixQi+//LIk6W9/+5vWrVunP/7xjxo+fLhOOukk/eY3v9HcuXO1devWZJQKAAAAH3nzzTc1ZsyYTuuDBg3Sp59+moYjAgAAQCYy9nGfYcOG6Z133klavh07dujBBx/Uli1bNHLkSK1atUrbtm0Lez7u0KFDNWTIEK1cuVKStHLlSh122GFhj0sIBoPavHlzzGeOtbW1afPmzWFfAAAAQP/+/fXxxx93Wl+9erW+9a1vJZRj1qxZ+u53v6vc3FwNGjRIZ5xxht5+++2w17S2tqqiokJ77723cnJyNHbsWIVCoaTUAAAAAPsZa9reeOONmj59up588kl9/PHHXW6Cvvnmm8rJyVGfPn10ySWX6LHHHtOhhx6qpqYm9e7dW/379w97fSAQUFPTV7+a2NTUFNaw3RXfFYtm1qxZ6tevX/vX4MGDEz5eAAAAZK5zzz1Xv/rVr9TU1CTHcbRz50699NJLmj59uiZMmJBQjuXLl6uiokIvv/yynnvuOW3btk2jR4/Wli1b2l8zbdo0PfHEE1q2bJmWL1+ujz76SGeeeaapsgAAAGCZxKdxfU0nn3yyJOlHP/qRnN1G3rmuK8dxtGPHjoTyHHzwwVqzZo02bdqkRx55RBMnTtTy5cuNHPMuM2bM0BVXXNH+582bN9O4BQAAgG6++WZVVFRo8ODB2rFjhw499FDt2LFDP/nJT3T11VcnlOPZZ58N+/PixYs1aNAgrVq1Sj/4wQ/aHwO2dOlSHX/88ZKkRYsW6ZBDDtHLL7+so48+Oul1JUvcQWTVDaoLtagokKPysgIFOw5qiRI3EfNaXmrxV17bamEQmX9x/tuZ19SesIuRQWSS4jZWjzvuuC7lHTVqlPLz83XOOefohBNO0GeffRb2adv9999fl19+uaZNm6Zrr71Wf/3rX7VmzZr2+Pr163XQQQfpn//8p0aMGJHQngxxQDIwiAzwJwaR+QeDyNIjXfdp7733ntauXauWlhaNGDFChYWFXc7V0NCgwsJCvfnmmxo2bJj+/ve/x73PTUSq35tITZ1dFowv0eQlq8LWHEeaP65EweI8VdU2RY1LSnrM1J7UYueeXstrWy2xOgY0bjNbrHPNL+e/jXlN7UnjNnUSvUcz9knbrjZl49m5c6fa2tpUUlKiXr166YUXXtDYsWMlSW+//bbee+89jRw5UtJX031vuukmbdiwQYMGDZIkPffcc+rbt68OPfRQI8cHAACAzDdkyJD238Ta/bfKvq6dO3fq8ssv1zHHHKNhw4ZJUkKPAYukra1NbW1t7X+2aS5DZXVDpzXXlSprGhUszosZj9Qx6m7M1J7UYueeXstrWy3wL/7utjOvqT1p2trHWNNWkj7//HMtXLhQ//73vyVJxcXF+ulPf6p+/fol9P0zZszQSSedpCFDhqi5uVlLly5VTU2Nqqqq1K9fP1144YW64oorNGDAAPXt21dTp07VyJEj239lbPTo0Tr00EM1fvx43XbbbWpqatLVV1+tiooK9enTx1jdAAAAyFwLFy7UXXfdpfr6eklSYWGhLr/8cv3sZz/72rkqKiq0du1a/eMf/+j2cc2aNUszZ87sdh4T6kItEdfrQ81x49GaRt2JmdrTVF5q8Vde22qBf/F3t515Te0J+xj7Hc3XX39d+fn5uuuuu7Rx40Zt3LhRd955p/Lz8/XPf/4zoRwbNmzQhAkTdPDBB+uEE07Qa6+9pqqqKv3whz+UJN1111069dRTNXbsWP3gBz9QXl6eHn300fbv79mzp5588kn17NlTI0eO1Lhx4zRhwgTdcMMNRmoGAABAZrv22mt12WWX6bTTTtOyZcu0bNkynXbaae2P5vo6Lr30Uj355JOqrq7Wfvvt176el5enrVu36vPPPw97fSgUUl5e9E/BzJgxQ5s2bWr/ev/997/W8ZhUFMiJuF4YyI0bNxEztaepvNTir7y21QL/4vy3M6+pPWEfY03badOm6Uc/+pHeffddPfroo3r00Ue1fv16nXrqqbr88ssTyrFw4UK9++67amtr04YNG/T888+3N2wlKTs7W3PnztXGjRu1ZcsWPfroo51uZPfff389/fTT+uKLL/TJJ5/ojjvuUFaW0Q8YAwAAIEPNmzdP9957r2bNmqUf/ehH+tGPfqRZs2bpnnvuUWVlZUI5XNfVpZdeqscee0x///vfdeCBB4bFd38M2C4dHwMWSZ8+fdS3b9+wL1uUlxWo41MkHEeqKM2PGzcRM7Untdi5p9fy2lYL/Ivz3868pvaEfYwNIttjjz20evVqDR06NGx93bp1+s53vqMvvvjCxLZGMIgMycAgMsCfGETmHwwiS49U36f1799fr732WqfBY3V1dTryyCM7fTo2kvLyci1dulSPP/64Dj744Pb1fv36tZ83U6ZM0dNPP63Fixe3PwZMklasWJHwsabjHjbWhPmq2iZV1jSqPtSswkCuKkrzNbrjpOsocRMxr+WlFn/lta2WWNc2Mhvnv515Te2J1Ej0Hs1Y0zYQCGjJkiUaPXp02HpVVZUmTJigUChkYlsjaNoiUa7rqrW1NWKstbVVY8aMkSSdcPG1X7tp+8I9Xz3W47HHHlN2dnbE12VnZ3drGAqA5KNp6x80bdMj1fdpU6dOVa9evXTnnXeGrU+fPl1ffvml5s6dGzdHtH+rFy1apAsuuEDSV/cNV155pR544AG1tbUpGAyqsrIy5uMROuIeFgAAwD6J3qMZe07AOeecowsvvFB33HGHvve970mSXnrpJf3iF7/QeeedZ2pbIG1c19XUqVO1du3auK/d1YDtil2N30iGDRumOXPm0LgFAMCghQsX6m9/+1v78NtXXnlF7733niZMmKArrrii/XUdG7u7JPKZiV2PAUukCQwAAIDMY6xpe8cdd8hxHE2YMEHbt2+X67rq3bu3pkyZoltuucXUtkDatLa2JtSwNWnt2rVqbW3l010AABiydu1affvb35YkNTY2SpIGDhyogQMHht0H8B9QAQAA0B3Gmra9e/fW3XffrVmzZrXf0Obn52vPPfc0tSVgjeHnTVePrMQff9BdO7dv1ZoH7kjZfgAA+FV1dXW6DwEAAAA+kPSm7U9/+tOEXvf73/8+2VsD1uiR1Vs9v8YzawEAgDd88skn2meffSLG3nzzTR122GEpPiK7xB1EVt2gulCLigI5Ki8rULDj0JQocRMxr+WlFn/lta0WBpEhGj+c/zbmjbcnMkPSB5H16NFD+++/v0aMGBHzeV2PPfZYMrc1iiEOSMTuw4a+Pf5/Utq03bFtq/655GZJDL8BbMMgMv9gEFl6pPo+LS8vTwsXLtQpp4Q3K+644w5dc801+vLLL40fQ6JS/d5EaurssmB8iSYvWRW25jjS/HElChbnqaq2KWpcUtJjpvakFjv39Fpe22qJ1TGgcetvfjj/bcwbb0/YL22DyKZMmaIHHnhA69ev16RJkzRu3DgNGDAg2dsAAAAAKXfFFVdo7NixmjRpku68805t3LhREyZM0JtvvqmlS5em+/CsVVnd0GnNdaXKmkYFi/NixiN1jLobM7Untdi5p9fy2lYLEI0fzn8b88bbE5kj6U3buXPn6s4779Sjjz6q3//+95oxY4ZOOeUUXXjhhRo9ejRDGQAAAOBZv/zlL/XDH/5Q48eP1+GHH66NGzfqqKOO0r/+9S/l5fGDUjR1oZaI6/Wh5rjxaE2j7sRM7WkqL7X4K69ttQDR+OH8tzFvvD2ROYz8jmafPn103nnn6bnnntO6detUXFys8vJyHXDAAWpp4R8CAAAAeFdBQYGGDRumd999V5s3b9Y555xDwzaOokBOxPXCQG7cuImYqT1N5aUWf+W1rRYgGj+c/zbmjbcnMofxB+v16NFDjuPIdV3t2LHD9HYAAACAMS+99JIOP/xw1dfX61//+pfmzZunqVOn6pxzztFnn32W7sOzVnlZgTr+wp3jSBWl+XHjJmKm9qQWO/f0Wl7bagGi8cP5b2PeeHsicyR9EJkktbW1tT8e4R//+IdOPfVUTZo0SSeeeKJ69PDeABYGkSERDCIDEAmDyPyDQWTpker7tD59+mjatGn6zW9+o169ekmSGhsbNW7cOL3//vv64IMPjB9DotJxDxtrwnxVbZMqaxpVH2pWYSBXFaX5Gt1xunaUuImY1/JSi7/y2lZLrGsb/uaH89/GvPH2hN0SvUdLetO2vLxcDz74oAYPHqyf/vSnOv/88zVw4MBkbpFyNG2RCJq2ACKhaesfNG3TI9X3acuXL9dxxx3XaX3nzp266aabdM011xg/hkRxDwsAAGCfRO/Rkj6IbP78+RoyZIgOOuggLV++XMuXL4/4ukcffTTZWwMAAABGnHzyyXrggQfaG7a33HKLLrnkEvXv31+S9Nlnn+mBBx6wqmkLAAAA70p603bChAlyePANAAAAMkhVVZXa2tra/3zzzTfr7LPPbm/abt++XW+//Xaajg4AAACZJulN28WLFyc7JQAAAJBWHZ8oZmAsBAAAANAu6U1bAAAAAP4UdxBZdYPqQi0qCuSovKxAwY6DWqLETcS8lpda/JXXtloYRIauyJTz39a8yHxJH0SWiRjigEQwiAxAJAwi8w8GkaVHqu7TevbsqaamJu2zzz6SpNzcXP3rX//SgQceKEkKhULad999tWPHDmPH8HWl+h42UlNnlwXjSzR5yaqwNceR5o8rUbA4T1W1TVHjkpIeM7Untdi5p9fy2lZLrI4BjVtE46Vrzot54W1pG0QGAAAAZBrXdXXBBReoT58+kqTW1lZdcskl2muvvSQp7Hm36KyyuqHTmutKlTWNChbnxYxH6hh1N2ZqT2qxc0+v5bWtFqArvHTNeTEv/IGmLQAAABDHxIkTw/48bty4Tq+ZMGFCqg7Hc+pCLRHX60PNcePRmkbdiZna01ReavFXXttqAbrCS9ecF/PCH2jaAgAAAHEsWrQo3YfgaUWBHL3xwaZO64WB3Phx101+zNSe1GLnnl7La1ktQFd46przYF74Aw/WAwAAAGBUeVmBHCd8zXGkitL8uHETMVN7Uoude3otr221AF2RKee/rXnhDwwiSwCDyJAIBpEBiIRBZP7BILL04D4tunS8N7EmzFfVNqmyplH1oWYVBnJVUZqv0R2na0eJm4h5LS+1+CuvbbXEuraBaDLl/Lc1L7wr0Xs0mrYJ4IcBJIKmLYBIaNr6B03b9OA+LTreGwAAAPskeo/GT44AAAAAAAAAYBGatgAAAAAAAABgkax0HwAAAACAzBD3mbbVDaoLtagokKPysgIFOz7zL0rcRMxreanFX3ltq4Vn2iLZvHT+25oXmY9n2iaA54EhETzTFkAkPNPWP3imbXpwnxZdqt+bSE2dXRaML9HkJavC1hxHmj+uRMHiPFXVNkWNS0p6zNSe1GLnnl7La1stsToGNG7RFV09h712LZvMC29L9B6NT9oCAAAAMKqyuqHTmutKlTWNChbnxYxH6hh1N2ZqT2qxc0+v5bWtFiDZunoOe+1aNpkX/kDTFgAAAIBRdaGWiOv1oea48WhNo+7ETO1pKi+1+CuvbbUAydbVc7g735tpeeEP/I4mAAAAAKOKAjkR1wsDuXHjJmKm9jSVl1r8lde2WoBk89L5b2te+ANNWwAAAABGlZcVyHHC1xxHqijNjxs3ETO1J7XYuafX8tpWC5BsXjr/bc0Lf2AQWQIYcIFEMIgMQCQMIvMPBpGlB/dp0aXjvYk1Yb6qtkmVNY2qDzWrMJCritJ8je44XTtK3ETMa3mpxV95basl1rUNdIWXzn9b88K7Er1Ho2mbAH4YQCJo2gKIhKatf9C0TQ/u06LjvQEAALBPovdo/OQIAAAAAAAAABahaQsAAAAAAAAAFqFpCwAAAAAAAAAWyUr3AQAAAADIDHEHkVU3qC7UoqJAjsrLChTsOKglStxEzGt5qcVfeW2rhUFk6IpMOf9tzBtvT2QGBpElgCEOSASDyABEwiAy/2AQWXpwnxZdqt+bSE2dXRaML9HkJavC1hxHmj+uRMHiPFXVNkWNS0p6zNSe1GLnnl7La1stsToGNG4RjZeuOa/ljbcn7JfoPRqftAUAAABgVGV1Q6c115UqaxoVLM6LGY/UMepuzNSe1GLnnl7La1stQFd46ZrzWt54eyJz0LQFAAAAYFRdqCXien2oOW48WtOoOzFTe5rKSy3+ymtbLUBXeOma81reeHsic/A7mgAAAACMKgrkRFwvDOTGjZuImdrTVF5q8Vde22oBuiJTzn8b88bbE5mDpi0AAAAAo8rLCuQ44WuOI1WU5seNm4iZ2pNa7NzTa3ltqwXoikw5/23MG29PZA4GkSWAARdIBIPIAETCIDL/YBBZenCfFl063ptYE+araptUWdOo+lCzCgO5qijN1+iO07WjxE3EvJaXWvyV17ZaYl3bQDSZcv7bmDfenrBbovdoNG0TwA8DSARNWwCR0LT1D5q26cF9WnS8NwAAAPZJ9B6NQWRAB67rqrW19Wt/3+7fs2Pb1mQeUly779eVY98lOztbDr8DBQAAAAAAkFY0bYHduK6rqVOnau3atd3K88aDdyTpiL6+MWPGdPl7hw0bpjlz5tC4BQAAAAAASCN+RxPYTWtra7cbtl62du3abn1SFwAAAAAAAN3HJ22BKPY7pUJOVq90H0ZKuNu36YOn5qb7MAAAgMfFHURW3aC6UIuKAjkqLytQsOOglihxEzGv5aUWf+W1rRYGkcErbLyugK5iEFkCGOLgH7sPDBp8+uXqkZW6YWLptHP7Vr3/+GxJDM8Bko1BZP7BILL04D4tulS/N5GaOrssGF+iyUtWha05jjR/XImCxXmqqm2KGpeU9JipPanFzj29lte2WmJ1DGjcwiZdvTZMXldAJAwiAwAAAGCFyuqGTmuuK1XWNCpYnBczHqlj1N2YqT2pxc49vZbXtloAr+jqtWHyugK6g6YtAAAAAKPqQi0R1+tDzXHj0ZpG3YmZ2tNUXmrxV17bagG8oqvXRne+N15eoDv4HU0AAAAARhUFciKuFwZy48ZNxEztaSovtfgrr221AF5h43UFdAdNWwAAAABGlZcVyHHC1xxHqijNjxs3ETO1J7XYuafX8tpWC+AVNl5XQHcwiCwBDLjwDwaRMTwHSDYGkfkHg8jSg/u06NLx3sSaMF9V26TKmkbVh5pVGMhVRWm+Rnec2h0lbiLmtbzU4q+8ttUS69oGbGLjdQV0lOg9Gk3bBPDDgH/QtKXRACQbTVv/oGmbHtynRcd7AwAAYJ9E79H4yREAAAAAAAAALELTFgAAAAAAAAAsQtMWAAAAAAAAACySle4DAAAAAJAZ4g4iq25QXahFRYEclZcVKNhxAEyUuImY1/JSi7/y2lYLg8hgE69dV0BXMYgsAQxx8A8GkTE8B0g2BpH5B4PI0oP7tOhS/d5EaurssmB8iSYvWRW25jjS/HElChbnqaq2KWpcUtJjpvakFjv39Fpe22qJ1TGgcYtU89K1TOMW0SR6j8YnbQEAAAAYVVnd0GnNdaXKmkYFi/NixiN1jLobM7Untdi5p9fy2lYLYBMvXcs0bdFdNG0BAAAAGFUXaom4Xh9qjhuP1jTqTszUnqbyUou/8tpWC2ATL13LQHdZ/Tuas2bN0ne/+13l5uZq0KBBOuOMM/T222+Hvaa1tVUVFRXae++9lZOTo7FjxyoUCoW95r333tMpp5yiPffcU4MGDdIvfvELbd++PZWlAAAAAL5VFMiJuF4YyI0bNxEztaepvNTir7y21QLYxGvXFdAdVjdtly9froqKCr388st67rnntG3bNo0ePVpbtmxpf820adP0xBNPaNmyZVq+fLk++ugjnXnmme3xHTt26JRTTtHWrVu1YsUK3X///Vq8eLGuvfbadJQEAAAA+E55WYEcJ3zNcaSK0vy4cRMxU3tSi517ei2vbbUANvHadQV0h6cGkX3yyScaNGiQli9frh/84AfatGmT9tlnHy1dulQ//vGPJUlvvfWWDjnkEK1cuVJHH320nnnmGZ166qn66KOPFAgEJEnz58/Xr371K33yySfq3Tv+oCkGXPgHg8gYngMkG4PI/INBZOnBfVp06XhvYk2Yr6ptUmVNo+pDzSoM5KqiNF+jO07tjhI3EfNaXmrxV17baol1bQOp5rXrCugo0Xs0TzVtGxoaVFhYqDfffFPDhg3T3//+d51wwgn67LPP1L9///bX7b///rr88ss1bdo0XXvttfrrX/+qNWvWtMfXr1+vgw46SP/85z81YsSITvu0tbWpra2t/c+bN2/W4MGD+WHAB2ja0mgAko2mrX/QtE0PmrbR8d4AAADYJ9F7NM/85Lhz505dfvnlOuaYYzRs2DBJUlNTk3r37h3WsJWkQCCgpqam9tfs+oTt7vFdsUhmzZqlfv36tX8NHjw4ydUAAAAAAAAAQGSeadpWVFRo7dq1evDBB43vNWPGDG3atKn96/333ze+JwAAAAAAAABIUla6DyARl156qZ588km9+OKL2m+//drX8/LytHXrVn3++edhn7YNhULKy8trf82rr74ali8UCrXHIunTp4/69OmT5CoAAAAAAAAAID6rm7au62rq1Kl67LHHVFNTowMPPDAsXlJSol69eumFF17Q2LFjJUlvv/223nvvPY0cOVKSNHLkSN10003asGGDBg0aJEl67rnn1LdvXx166KGpLQgAAADIYHEHkVU3qC7UoqJAjsrLChTsOAAmStxEzGt5qcVfeW2rhUFkSDYvnf+25kXms3oQWXl5uZYuXarHH39cBx98cPt6v3792od7TJkyRU8//bQWL16svn37aurUqZKkFStWSJJ27Nih4cOHa99999Vtt92mpqYmjR8/Xj/72c908803J3QcDHHwDwaRMTwHZrmuq9bW1nQfRkq1trZqzJgxkqQFPx6kPlmeeTIRvqa27Ts1+ZENkqTHHntM2dnZaT6i1MrOzpbjOCnfl/u06FL93kRq6uyyYHyJJi9ZFbbmONL8cSUKFuepqrYpalxS0mOm9qQWO/f0Wl7baonVMaBxi67o6jnstWvZZF54W6L3aFZ/0nbevHmSpNLS0rD1RYsW6YILLpAk3XXXXerRo4fGjh2rtrY2BYNBVVZWtr+2Z8+eevLJJzVlyhSNHDlSe+21lyZOnKgbbrghVWUAAPR/vz2xdu3adB9K2uxq6CHz7WrU+8mwYcM0Z86ctDRuYb/K6oZOa64rVdY0KlicFzMeqWPU3ZipPanFzj29lte2WoBk6+o57LVr2WRe+IPVTdtEPgScnZ2tuXPnau7cuVFfs//+++vpp59O5qEBAL6m1tZWXzdsgUy3du1atba28tsaiKgu1BJxvT7UHDce7UeC7sRM7WkqL7X4K69ttQDJ1tVzuDvfm2l54Q9WN20BAJnpd8duVJ+efHQDyARtOxxd+o8B6T4MWK4okKM3PtjUab0wkBs/7rrJj5nak1rs3NNreS2rBUi2Lp/D3fneDMsLf+DBegCAlOvT01WfnuKLL74y4ov/AIP4yssK1PHJGY4jVZTmx42biJnak1rs3NNreW2rBUg2L53/tuaFP1g9iMwWDLjwDwaRMYgM5ux+fd173H/Vp2eaDwhAUrTtkC5avrek9Pwbwn1adOl4b2JNmK+qbVJlTaPqQ80qDOSqojRfoztO144SNxHzWl5q8Vde22qJdW0DXeGl89/WvPCuRO/RaNomgB8G/IOmLU1bmEPTFshMNG3txXsDAABgn0Tv0Xg8AgAAAAAAAABYhKYtAAAAAAAAAFiEpi0AAAAAAAAAWCQr3QcAAAAAIDPEHURW3aC6UIuKAjkqLytQsOOglihxEzGv5aUWf+W1rRYGkfkX57+debuzJ7yDQWQJYIiDfzCIjEFkMIdBZEBmYhCZvVL93kRq6uyyYHyJJi9ZFbbmONL8cSUKFuepqrYpalxS0mOm9qQWO/f0Wl7baonVMaBxm9linWt+Of9tzNudPWnc2iHRezQ+aQsAAADAqMrqhk5rritV1jQqWJwXMx6pY9TdmKk9qcXOPb2W17Za4F/83W1n3u7sSdPWW2jaAgAAADCqLtQScb0+1Bw3Hq1p1J2YqT1N5aUWf+W1rRb4F39325m3O3vCWxhEBgAAAMCookBOxPXCQG7cuImYqT1N5aUWf+W1rRb4F+e/nXm7sye8haYtAAAAAKPKywrkOOFrjiNVlObHjZuImdqTWuzc02t5basF/sX5b2fe7uwJb2EQWQIYcOEfDCJjEBnMYRAZkJkYRGavdLw3sSbMV9U2qbKmUfWhZhUGclVRmq/RHSddR4mbiHktL7X4K69ttcS6tpHZOP/tzNudPZF+id6j0bRNAD8M+AdNW5q2MIemLZCZaNrai/cGAADAPoneo/F4BAAAAAAAAACwCE1bAAAAAAAAALAITVsAAAAAAAAAsEhWug8AiMR1XbW2tqZ839333Ll9W8r3T5fda03H+y5J2dnZchhPCwCAp8UdRFbdoLpQi4oCOSovK1Cw49CUKHETMa/lpRZ/5bWtFgaRoSsy5fy3MW+8PZEZGESWAIY4pJbrupo6darWrl2b7kNBCg0bNkxz5syhcZvBGEQGZCYGkdkr1e9NpKbOLgvGl2jyklVha44jzR9XomBxnqpqm6LGJSU9ZmpParFzT6/lta2WWB0DGreIxkvXnNfyxtsT9kv0Ho1P2sI6ra2tNGx9aO3atWptbU35D/sAAMC8yuqGTmuuK1XWNCpYnBczHqlj1N2YqT2pxc49vZbXtlqArvDSNee1vPH2ROagaQurZf/gp1LPXuk+DJi0Y5taX/x9uo8CAAAYVBdqibheH2qOG4/WNOpOzNSepvJSi7/y2lYL0BVeuua8ljfensgcDCKD3Xr2ksNXRn/RlAcAIPMVBXIirhcGcuPGTcRM7WkqL7X4K69ttQBdkSnnv4154+2JzEHTFgAAAIBR5WUF6vjYeseRKkrz48ZNxEztSS127um1vLbVAnRFppz/NuaNtycyB4PIEsCAi9TafVhRdtnkrz6NiYzl7tim1uoFktIzwAapwyAyIDMxiMxe6XhvYk2Yr6ptUmVNo+pDzSoM5KqiNF+jO07XjhI3EfNaXmrxV17baol1bQPRZMr5b2PeeHvCboneo9G0TQA/DKQWTVt/oWnrHzRtgcxE09ZevDcAAAD2SfQejccjAAAAAAAAAIBFaNoCAAAAKfbiiy/qtNNO07777ivHcfSXv/wlLO66rq699lp985vf1B577KFRo0apvr4+PQcLAACAlKNpCwAAAKTYli1bdMQRR2ju3LkR47fddpt++9vfav78+XrllVe01157KRgMqrW1NcVHCgAAgHTISvcBAAAAAH5z0kkntT/nuyPXdTV79mxdffXVOv300yVJf/jDHxQIBPSXv/xF5557bioP9WuJO4isukF1oRYVBXJUXlagYMdBLVHiJmJey0st/sprWy0MIoNNMuW6AuJhEFkCGOKQWgwi8xcGkfkHg8iAzMQgsu5zHEePPfaYzjjjDEnSO++8o/z8fK1evVrDhw9vf91xxx2n4cOH6+67704ob6rfm0hNnV0WjC/R5CWrwtYcR5o/rkTB4jxV1TZFjUtKeszUntRi555ey2tbLbE6BjRukWpeupbj5aVx61+J3qPxSVsAAADAIk1NTZKkQCAQth4IBNpjkbS1tamtra39z5s3bzZzgF1QWd3Qac11pcqaRgWL82LGI3WMuhsztSe12Lmn1/LaVgtgEy9dy/Hy0rRFPDRtAQAAgAwwa9YszZw5M92HEVFdqCXien2oOW48WtOoOzFTe5rKSy3+ymtbLYBNvHQtx8sLxMMgMgAAAMAieXlfffImFAqFrYdCofZYJDNmzNCmTZvav95//32jx/l1FAVyIq4XBnLjxk3ETO1pKi+1+CuvbbUANsmU62pXHIiFpi0AAABgkQMPPFB5eXl64YUX2tc2b96sV155RSNHjoz6fX369FHfvn3DvmxRXlYgxwlfcxypojQ/btxEzNSe1GLnnl7La1stgE0y5braFQdiYRBZAjJhwIWXMIjMXxhE5h8MIgMyE4PIuqalpUUNDV89527EiBG68847VVZWpgEDBmjIkCG69dZbdcstt+j+++/XgQceqGuuuUb/+te/tG7dOmVnZye0Rzrem1gT5qtqm1RZ06j6ULMKA7mqKM3X6I7TtaPETcS8lpda/JXXtlpiXdtAqmXKdQX/SvQejaZtArz6w4BX0bT1F5q2/kHTFshMNG27pqamRmVlZZ3WJ06cqMWLF8t1XV133XW655579Pnnn+vYY49VZWWlioqKEt7Dq+8NAABAJkv0Ho1BZAAAAECKlZaWKtZnJxzH0Q033KAbbrghhUcFAAAAW/BMWwAAAAAAAACwCJ+0BQAAAJAUcZ9pW92gulCLigI5Ki8rULDjM/+ixE3EvJaXWvyV17ZaeKat93npXLTt/Lcxb7pqQWrxTNsE8Dyw1OKZtv7CM239g2faApmJZ9raK9XvTaSmzi4Lxpdo8pJVYWuOI80fV6JgcZ6qapuixiUlPWZqT2qxc0+v5bWtllgdAxq33sD5n1l501ULkodn2gIAAACwQmV1Q6c115UqaxoVLM6LGY/UMepuzNSe1GLnnl7La1st8D7O/8zKm65akHo0bQEAAAAYVRdqibheH2qOG4/WNOpOzNSepvJSi7/y2lYLvI/zP7PypqsWpB6DyAAAAAAYVRTIibheGMiNGzcRM7WnqbzU4q+8ttUC7/PSuWjb+W9j3nTVgtSjaQsAAADAqPKyAjlO+JrjSBWl+XHjJmKm9qQWO/f0Wl7baoH3eelctO38tzFvumpB6jGILAEMuEgtBpH5C4PI/INBZEBmYhCZvdLx3sSaMF9V26TKmkbVh5pVGMhVRWm+RnecdB0lbiLmtbzU4q+8ttUS69qGN3jpXLTt/Lcxb7pqQXIkeo9G0zYB/DCQWjRt/YWmrX/QtAUyE01be/HeAAAA2CfRezQejwAAAAAAAAAAFqFpCwAAAAAAAAAWoWkLAAAAAAAAABbJSvcBAAAAAMgMcQeRVTeoLtSiokCOyssKFOw4NCVK3ETMa3mpxV95bauFQWSZzbZz0bbz38a8pvaEXRhElgCGOKQWg8j8hUFk/sEgMiAzMYjMXql+byI1dXZZML5Ek5esCltzHGn+uBIFi/NUVdsUNS4p6TFTe1KLnXt6La9ttcTqGNC49b6unk9+Of9tzGtqTxq3qZPoPRqftAUAAABgVGV1Q6c115UqaxoVLM6LGY/UMepuzNSe1GLnnl7La1styGxdPZ/8cv7bmNfUnjRt7UPTFgAAAIBRdaGWiOv1oea48WhNo+7ETO1pKi+1+CuvbbUgs3X1fOrO93rp/Lcxr6k9YR8GkQEAAAAwqiiQE3G9MJAbN24iZmpPU3mpxV95basFmc22c9G289/GvKb2hH1o2gIAAAAwqrysQI4TvuY4UkVpfty4iZipPanFzj29lte2WpDZbDsXbTv/bcxrak/Yh0FkCWDARWoxiMxfGETmHwwiAzITg8jslY73JtaE+araJlXWNKo+1KzCQK4qSvM1uuOk6yhxEzGv5aUWf+W1rZZY1za8z7Zz0bbz38a8pvZEaiR6j0bTNgH8MJBaNG39haatf9C0BTITTVt78d4AAADYJ9F7NB6PAAAAAAAAAAAWoWkLAAAAAAAAABahaQsAAAAAAAAAFslK9wEAAAAAyAxxB5FVN6gu1KKiQI7KywoU7Dg0JUrcRMxreanFX3ltq4VBZOiKTDn/bc2LzGf9ILIXX3xRt99+u1atWqWPP/5Yjz32mM4444z2uOu6uu6663Tvvffq888/1zHHHKN58+apsLCw/TUbN27U1KlT9cQTT6hHjx4aO3as7r77buXk5CR0DAxxSC0GkfkLg8j8g0FkQGZiEJm9Uv3eRGrq7LJgfIkmL1kVtuY40vxxJQoW56mqtilqXFLSY6b2pBY79/RaXttqidUxoHGLaLx0zXkxL7wt0Xs06z9pu2XLFh1xxBH66U9/qjPPPLNT/LbbbtNvf/tb3X///TrwwAN1zTXXKBgMat26dcrOzpYknX/++fr444/13HPPadu2bZo0aZIuvvhiLV26NNXlAAAAAL5TWd3Qac11pcqaRgWL82LGI3WMuhsztSe12Lmn1/LaVgvQFV665ryYF/5gfdP2pJNOav9kVkeu62r27Nm6+uqrdfrpp0uS/vCHPygQCOgvf/mLzj33XP373//Ws88+q9dee03f+c53JElz5szRySefrDvuuEP77rtvymoBAAAA/Kgu1BJxvT7UHDcerWnUnZipPU3lpRZ/5bWtFqArvHTNeTEv/MHTg8jWr1+vpqYmjRo1qn2tX79+Ouqoo7Ry5UpJ0sqVK9W/f//2hq0kjRo1Sj169NArr7yS8mMGAAAA/KYoEPmxZIWB3LhxEzFTe5rKSy3+ymtbLUBXZMr5b2te+IOnm7ZNTU2SpEAgELYeCATaY01NTRo0aFBYPCsrSwMGDGh/TUdtbW3avHlz2Fe6uK6rL7/80ldfra2t/1f/jm18+eBrl9bW1rSff6n8svyR4gAAJE15WYEcJ3zNcaSK0vy4cRMxU3tSi517ei2vbbUAXZEp57+teeEP1g8i253jOGGDyFasWKFjjjlGH330kb75zW+2v+7ss8+W4zh66KGHdPPNN+v+++/X22+/HZZr0KBBmjlzpqZMmdJpn+uvv14zZ87stJ7qAReu62rq1Klau3ZtyvYEkDrDhg3TnDlz5PjkbphBZEBmYhCZvdLx3sSaMF9V26TKmkbVh5pVGMhVRWm+Rnecrh0lbiLmtbzU4q+8ttUS69oGosmU89/WvPCuRO/RPN20feedd5Sfn6/Vq1dr+PDh7a877rjjNHz4cN199936/e9/ryuvvFKfffZZe3z79u3Kzs7WsmXLNGbMmE77tLW1qa2trf3Pmzdv1uDBg1P+w8DuDQ4AmSkdDY50oWkLZCaatvbivQEAALBPovdo1g8ii+XAAw9UXl6eXnjhhfam7ebNm/XKK6+0f4J25MiR+vzzz7Vq1SqVlJRIkv7+979r586dOuqooyLm7dOnj/r06ZOSGhLVMvw8uT08/f8uAP+Ps3O7ctY8kO7DAAAAAAAAlrK+C9jS0qKGhob2P69fv15r1qzRgAEDNGTIEF1++eW68cYbVVhYqAMPPFDXXHON9t133/ZP4x5yyCE68cQTddFFF2n+/Pnatm2bLr30Up177rnad99901TV1+f2yJJ69kr3YQBIAs/8egMAAAAAAEgL65u2r7/+usrKytr/fMUVV0iSJk6cqMWLF+uXv/yltmzZoosvvliff/65jj32WD377LPKzs5u/54//elPuvTSS3XCCSeoR48eGjt2rH7729+mvBYAAAAAAAAAiMf6pm1paWnMCeuO4+iGG27QDTfcEPU1AwYM0NKlS00cHgAAAID/J+4gsuoG1YVaVBTIUXlZgYIdB7VEiZuIeS0vtfgrr221MIgMXZEp57+teZH5PDWILF3SNcRh96E9zd8ez+MRgEyxY5ty/7lEEoPIAHgfg8jsler3JlJTZ5cF40s0ecmqsDXHkeaPK1GwOE9VtU1R45KSHjO1J7XYuafX8tpWS6yOAY1bROOla86LeeFtvhhEBgAAAMB+ldUNndZcV6qsaVSwOC9mPFLHqLsxU3tSi517ei2vbbUAXeGla86LeeEPNG0BAAAAGFUXaom4Xh9qjhuP1jTqTszUnqbyUou/8tpWC9AVXrrmvJgX/tAj3QcAAAAAILMVBXIirhcGcuPGTcRM7WkqL7X4K69ttQBdkSnnv6154Q80bQEAAAAYVV5WIMcJX3McqaI0P27cRMzUntRi555ey2tbLUBXZMr5b2te+AODyBLAIDIAScUgMgaRARmEQWT2Ssd7E2vCfFVtkyprGlUfalZhIFcVpfka3XG6dpS4iZjX8lKLv/LaVkusaxuIJlPOf1vzwrsSvUejaZsAmrYAkoqmLU1bIIPQtLUX7w0AAIB9Er1H4/EIAAAAAAAAAGARmrYAAAAAAAAAYBGatgAAAAAAAABgkax0HwAAAACAzBB3EFl1g+pCLSoK5Ki8rEDBjoNaosRNxLyWl1r8lde2WhhEhmj8cP7bmDfensgMDCJLAIPIACQVg8gYRAZkEAaR2SvV702kps4uC8aXaPKSVWFrjiPNH1eiYHGeqmqbosYlJT1mak9qsXNPr+W1rZZYHQMat/7mh/Pfxrzx9oT9Er1H45O2AAAAAIyqrG7otOa6UmVNo4LFeTHjkTpG3Y2Z2pNa7NzTa3ltqwWIxg/nv4154+2JzEHTFgAAAIBRdaGWiOv1oea48WhNo+7ETO1pKi+1+CuvbbUA0fjh/Lcxb7w9kTkYRAYAAADAqKJATsT1wkBu3LiJmKk9TeWlFn/lta0WIBo/nP825o23JzIHTVsAAAAARpWXFchxwtccR6oozY8bNxEztSe12Lmn1/LaVgsQjR/OfxvzxtsTmYNBZAlgEBmApGIQGYPIgAzCIDJ7peO9iTVhvqq2SZU1jaoPNaswkKuK0nyN7jhdO0rcRMxreanFX3ltqyXWtQ1/88P5b2PeeHvCboneo9G0TQBNWwBJRdOWpi2QQWja2ov3BgAAwD6J3qPxeAQAAAAAAAAAsAhNWwAAAAAAAACwCE1bAAAAAAAAALBIVroPAAAAAEBmiDuIrLpBdaEWFQVyVF5WoGDHQS1R4iZiXstLLf7Ka1stDCJDKtl2/qcrL8AgsgQwiAxAUjGIjEFkQAZhEJm9Uv3eRGrq7LJgfIkmL1kVtuY40vxxJQoW56mqtilqXFLSY6b2pBY79/RaXttqidUxoHGLZIt1fnvtWu5OXhq3mS3RezQ+aQsAAADAqMrqhk5rritV1jQqWJwXMx6pY9TdmKk9qcXOPb2W17ZagFRKx78XNualaQuJpi0AAAAAw+pCLRHX60PNcePRmkbdiZna01ReavFXXttqAVIpHf9e2JgXkBhEBgAAAMCwokBOxPXCQG7cuImYqT1N5aUWf+W1rRYglWw7/9OVF5Bo2gIAAAAwrLysQI4TvuY4UkVpfty4iZipPanFzj29lte2WoBUsu38T1deQGIQWUIYRAYgqRhExiAyIIMwiMxe6XhvYk2Yr6ptUmVNo+pDzSoM5KqiNF+jO07XjhI3EfNaXmrxV17baol1bQPJZtv5n668yFyJ3qPRtE0ATVsASUXTlqYtkEFo2tqL9wYAAMA+id6j8XgEAAAAAAAAALAITVsAAAAAAAAAsAhNWwAAAAAAAACwSFa6DwAAAABAZog7iKy6QXWhFhUFclReVqBgx0EtUeImYl7LSy3+ymtbLQwi8y/OfzvzmtoTdmEQWQIYRAYgqRhExiAyIIMwiMxeqX5vIjV1dlkwvkSTl6wKW3Mcaf64EgWL81RV2xQ1LinpMVN7Uoude3otr221xOoY0LjNbLHONb+c/zbmNbUnjdvUSfQejU/aAgAAADCqsrqh05rrSpU1jQoW58WMR+oYdTdmak9qsXNPr+W1rRb4F39325nX1J40be1D0xYAAACAUXWhlojr9aHmuPFoTaPuxEztaSovtfgrr221wL/4u9vOvKb2hH0YRAYAAADAqKJATsT1wkBu3LiJmKk9TeWlFn/lta0W+Bfnv515Te0J+9C0BQAAAGBUeVmBHCd8zXGkitL8uHETMVN7Uoude3otr221wL84/+3Ma2pP2IdBZAlgEBmApGIQGYPIgAzCIDJ7peO9iTVhvqq2SZU1jaoPNaswkKuK0nyN7jjpOkrcRMxreanFX3ltqyXWtY3MxvlvZ15TeyI1Er1Ho2mbAJq2AJKKpi1NWyCD0LS1F+8NAACAfRK9R+PxCAAAAAAAAABgEZq2AAAAAAAAAGARmrYAAAAAAAAAYJGsdB8AAAAAgMwQdxBZdYPqQi0qCuSovKxAwY5DU6LETcS8lpda/JXXtloYRIZUsu38T1degEFkCWAQGYCkYhAZg8iADMIgMnul+r2J1NTZZcH4Ek1esipszXGk+eNKFCzOU1VtU9S4pKTHTO1JLXbu6bW8ttUSq2NA4xbJFuv89tq13J28NG4zW6L3aHzSFgAAAIBRldUNndZcV6qsaVSwOC9mPFLHqLsxU/yk5w4AABMCSURBVHtSi517ei2vbbUAqZSOfy9szEvTFhJNWwAAAACG1YVaIq7Xh5rjxqM1jboTM7WnqbzU4q+8ttUCpFI6/r2wMS8gMYgMAAAAgGFFgZyI64WB3LhxEzFTe5rKSy3+ymtbLUAq2Xb+pysvING0BQAAAGBYeVmBHCd8zXGkitL8uHETMVN7Uoude3otr221AKlk2/mfrryAxCCyhDCIDEBSMYiMQWRABmEQmb3S8d7EmjBfVdukyppG1YeaVRjIVUVpvkZ3nK4dJW4i5rW81OKvvLbVEuvaBpLNtvM/XXmRuRK9R6NpmwCatgCSiqYtTVsgg9C0tRfvDQAAgH0SvUfj8QgAAAAAAAAAYBGatgAAAAAAAABgkax0HwAAAACAzBD3mbbVDaoLtagokKPysgIFOz7zL0rcRMxreanFX3ltq4Vn2iKVbDv/TeYFYuGZtgngmbYAkopn2vJMWyCD8Exbe6X6vYnU1NllwfgSTV6yKmzNcaT540oULM5TVW1T1LikpMdM7Uktdu7ptby21RKrY0DjFskW6/z22rUcLy+NW/9K9B6NT9oCAAAAMKqyuqHTmutKlTWNChbnxYxH6hh1N2ZqT2qxc0+v5bWtFiCV0vHvRbry0rRFPDRtAQAAABhVF2qJuF4fao4bj9Y06k7M1J6m8lKLv/LaVguQSun49yJdeYF4GEQGAAAAwKiiQE7E9cJAbty4iZipPU3lpRZ/5bWtFiCVbDv/TeYF4qFpCwAAAMCo8rICOU74muNIFaX5ceMmYqb2pBY79/RaXttqAVLJtvPfZF4gHgaRJYBBZACSikFkDCIDMgiDyOyVjvcm1oT5qtomVdY0qj7UrMJAripK8zW643TtKHETMa/lpRZ/5bWtlljXNpBstp3/JvPCnxK9R6NpmwCatgCSiqYtTVsgg9C0tRfvDQAAgH0SvUfj8QgAAAAAAAAAYBGatgAAAAAAAABgEV81befOnasDDjhA2dnZOuqoo/Tqq6+m+5AAAACAqLh/BQAA8KesdB9Aqjz00EO64oorNH/+fB111FGaPXu2gsGg3n77bQ0aNCjdhwcAAACE8eL9a9xBZNUNqgu1qCiQo/KyAgU7DmqJEjcR81peavFXXttqYRAZbJIp1xUQj28GkR111FH67ne/q9/97neSpJ07d2rw4MGaOnWqfv3rX8f83nQPInNdVy1HnCO3h2967EBGc3ZuV84bD8lxHF8OInPd/7+9e4+NqtzXOP6stszQliIUkpZC0YZbYHNrkJaLcol1FwFtjQGCKC1xU44UwQAqNYRbjEYRAwJyMMSCnChUIwaVy0ZCY1IraJWDIDeRgAfTchFtqdCBzjp/EGZT29KWdrreznw/f7HeNfOu3zvJvDz8WDNja9Xw3+UODYq/foCAV1FpaU5BtGN7WiD/2FZj8qvU/K9NTU2dW9Y/PUgzNhdVGbMs6b+fGqTUf8Rq95HiWs9LavJz/romazHzmi1tXtPWcqeOAY1bNLeW9F6ua14at8GrvhktKLqAHo9HRUVFysnJ8Y2FhIQoJSVFhYWF1R5fUVGhiooK33FpaWmz1Fmb8vJyWV+/J8vRKgA0pXJJbdq0cboMR5SXl+tf/3Y7XQaAJlUetHuavzQ0v0rmZdjbvbPv52pjti29k39Kqf+IveP5mjpGjT3nr2uyFjOv2dLmNW0tgEla0nu5rnlp2qIuQdG0vXjxoiorKxUTE1NlPCYmRseOHav2+Ndee01Lly5trvJq1bp1a/Xt21fffPON06UA8IO+ffuqdevWTpfRbNjTgMAWbHuavzU0v0rmZNianCi5UuP4yZKyOs/X1jRqzDl/XdNf87KW4JrXtLUAJmlJ7+W65gXqEhRN24bKycnR3LlzfcelpaWKj49v9josy9Lq1atVVhZ8b2bbtuXxeBy79u13qTTlc/++rlvHtm3r2rVrunr1qsLCwuRyueR2u2VZllwulyzr5n3Wt/+5Jreec7ca+/zGqGttgSgqKiqo1syeFvh7WkP5c09jP2t+wbanmciUDFuTnjFt9L//92e18R4xUXWft+2mP+eva7IWM6/Z0uY1bC2ASVrUe7mueYE6BEXTtmPHjgoNDVVJSUmV8ZKSEsXGVr8d3e12y+0246O7lmUF3PezAQhe7GkAUD8Nza+SWRn272aO7q7/+p+iKnckWZaUPapbnedtqcnP+euarMXMa7a0eU1bC1+RAJO0pPdyXfMCdQmqHyJLSkrS6tWrJd38IYeuXbtq1qxZxv4QGQAAAO4skHNaY/Kr5Mxrc6dfmN99pFjv5J/SyZIy9YiJUvaobvrn339du5bz/jjX0uZlLcE1r2lrudN7G2hugfK+QvCqb0YLmqbt1q1blZGRofXr1yspKUkrV65UXl6ejh07Vu27wv4ukP8xAAAA0JIFck5rTH6VAvu1AQAAaKnqm9GC4usRJGnSpEm6cOGCFi1apOLiYg0cOFC7du2qV+AFAAAAmhv5FQAAIHgFzZ22jcFdCgAAAGYip9WO1wYAAMA89c1oIc1YEwAAAAAAAACgDjRtAQAAAAAAAMAgNG0BAAAAAAAAwCA0bQEAAAAAAADAIDRtAQAAAAAAAMAgNG0BAAAAAAAAwCA0bQEAAAAAAADAIDRtAQAAAAAAAMAgNG0BAAAAAAAAwCA0bQEAAAAAAADAIDRtAQAAAAAAAMAgNG0BAAAAAAAAwCA0bQEAAAAAAADAIDRtAQAAAAAAAMAgNG0BAAAAAAAAwCA0bQEAAAAAAADAIGFOF9AS2LYtSSotLXW4EgAAANzuVj67ldfwH2RYAAAA89Q3v9K0rYeysjJJUnx8vMOVAAAAoCZlZWW65557nC7DKGRYAAAAc9WVXy2b2xLq5PV69dtvvykqKkqWZTldDgJYaWmp4uPj9euvv6pt27ZOlwMAjcKehuZg27bKysoUFxenkBC++et2ZFg0B/Z6AIGEPQ3Nob75lTtt6yEkJERdunRxugwEkbZt2/IXBICAwZ4Gf+MO25qRYdGc2OsBBBL2NPhbffIrtyMAAAAAAAAAgEFo2gIAAAAAAACAQWjaAgZxu91avHix3G6306UAQKOxpwFA4GOvBxBI2NNgEn6IDAAAAAAAAAAMwp22AAAAAAAAAGAQmrYAAAAAAAAAYBCatgAAAAAAAABgEJq2gCHWrl2r++67T61bt1ZycrIOHDjgdEkAcFe++uorPfroo4qLi5NlWfr000+dLgkA4AfkVwCBgvwKE9G0BQywdetWzZ07V4sXL9b333+vAQMGKDU1VefPn3e6NABosPLycg0YMEBr1651uhQAgJ+QXwEEEvIrTGTZtm07XQQQ7JKTkzV48GCtWbNGkuT1ehUfH6/nnntOCxYscLg6ALh7lmVp27ZtSk9Pd7oUAEATIr8CCFTkV5iCO20Bh3k8HhUVFSklJcU3FhISopSUFBUWFjpYGQAAAFAd+RUAAP+jaQs47OLFi6qsrFRMTEyV8ZiYGBUXFztUFQAAAFAz8isAAP5H0xYAAAAAAAAADELTFnBYx44dFRoaqpKSkirjJSUlio2NdagqAAAAoGbkVwAA/I+mLeAwl8ulQYMGae/evb4xr9ervXv3aujQoQ5WBgAAAFRHfgUAwP/CnC4AgDR37lxlZGTo/vvvV1JSklauXKny8nJNmzbN6dIAoMGuXLmin3/+2Xd8+vRpHTx4UNHR0eratauDlQEAmgr5FUAgIb/CRJZt27bTRQCQ1qxZo+XLl6u4uFgDBw7U22+/reTkZKfLAoAGy8/P1+jRo6uNZ2RkaOPGjc1fEADAL8ivAAIF+RUmomkLAAAAAAAAAAbhO20BAAAAAAAAwCA0bQEAAAAAAADAIDRtAQAAAAAAAMAgNG0BAAAAAAAAwCA0bQEAAAAAAADAIDRtAQAAAAAAAMAgNG0BAAAAAAAAwCA0bQEAAAAAAADAIDRtAQDVZGZmKj093ekyAAAAgHohvwIINDRtAeAuZWZmyrIsWZYll8ul7t27a9myZbpx44bTpfldfn6+LMvSH3/84XQpAAAAqCfyK/kVQMsR5nQBANCSjRkzRrm5uaqoqNCOHTuUnZ2tVq1aKScnp8FzVVZWyrIshYTw/2kAAADwD/IrALQM7KwA0Ahut1uxsbG699579eyzzyolJUXbt2+XJFVUVGj+/Pnq3LmzIiMjlZycrPz8fN9zN27cqHbt2mn79u3q06eP3G63zp49q/z8fCUlJSkyMlLt2rXT8OHDdebMGd/z1q1bp27dusnlcqlXr17avHlzlZosy9KGDRv0+OOPKyIiQj169PDVJN0M188884wSEhIUHh6uXr16adWqVU36uly+fFlTp05V+/btFRERoUceeUQnT570nb906ZImT56szp07KyIiQv369dOHH35YZY5Ro0Zp9uzZevHFFxUdHa3Y2FgtWbKkSesEAAAINuTXmpFfAZiGpi0ANKHw8HB5PB5J0qxZs1RYWKgtW7bo0KFDmjBhgsaMGVMl/P311196/fXXtWHDBh05ckTR0dFKT0/XyJEjdejQIRUWFiorK0uWZUmStm3bpjlz5mjevHk6fPiwZsyYoWnTpmnfvn1V6li6dKkmTpyoQ4cOaezYsZoyZYp+//13SZLX61WXLl300Ucf6aefftKiRYv08ssvKy8vr8leh8zMTH333Xfavn27CgsLZdu2xo4dq+vXr0uSrl27pkGDBumLL77Q4cOHlZWVpaeffloHDhyoMs+mTZsUGRmp/fv364033tCyZcu0Z8+eJqsTAAAg2JFfbyK/AjCODQC4KxkZGXZaWppt27bt9XrtPXv22G63254/f7595swZOzQ01D537lyV5zz00EN2Tk6Obdu2nZuba0uyDx486Dt/6dIlW5Kdn59f4zWHDRtmT58+vcrYhAkT7LFjx/qOJdkLFy70HV+5csWWZO/cubPWtWRnZ9tPPPFEjWuryb59+2xJ9uXLl6udO3HihC3JLigo8I1dvHjRDg8Pt/Py8mqdc9y4cfa8efN8xyNHjrQfeOCBKo8ZPHiw/dJLL9U6BwAAAGpHfiW/Amg5+E5bAGiEzz//XG3atNH169fl9Xr15JNPasmSJcrPz1dlZaV69uxZ5fEVFRXq0KGD79jlcql///6+4+joaGVmZio1NVUPP/ywUlJSNHHiRHXq1EmSdPToUWVlZVWZc/jw4dU+Hnb7nJGRkWrbtq3Onz/vG1u7dq3ee+89nT17VlevXpXH49HAgQMb/XrcqjEsLEzJycm+sQ4dOqhXr146evSopJsfcXv11VeVl5enc+fOyePxqKKiQhEREbWuQ5I6depUZR0AAABoGPJrdeRXACaiaQsAjTB69GitW7dOLpdLcXFxCgu7ua1euXJFoaGhKioqUmhoaJXntGnTxvfn8PBw30fHbsnNzdXs2bO1a9cubd26VQsXLtSePXs0ZMiQetfVqlWrKseWZcnr9UqStmzZovnz52vFihUaOnSooqKitHz5cu3fv79Ba2+M5cuXa9WqVVq5cqX69eunyMhIPf/8876P5tVnHQAAAGg48uvdIb8CaG40bQGgESIjI9W9e/dq44mJiaqsrNT58+f14IMPNnjexMREJSYmKicnR0OHDtUHH3ygIUOGqHfv3iooKFBGRobvsQUFBerTp0+95y4oKNCwYcM0c+ZM39ipU6caXGNtevfurRs3bmj//v0aNmyYpJs/3HD8+HFfnQUFBUpLS9NTTz0l6eb3lJ04caJB6wAAAEDDkV+rI78CMBFNWwDwg549e2rKlCmaOnWqVqxYocTERF24cEF79+5V//79NW7cuBqfd/r0ab377rt67LHHFBcXp+PHj+vkyZOaOnWqJOmFF17QxIkTlZiYqJSUFH322Wf65JNP9OWXX9a7th49euj999/X7t27lZCQoM2bN+vbb79VQkJCg9f5448/KioqyndsWZYGDBigtLQ0TZ8+XevXr1dUVJQWLFigzp07Ky0tzVfDxx9/rK+//lrt27fXW2+9pZKSEkIvAACAQ8iv5FcAZqFpCwB+kpubq1deeUXz5s3TuXPn1LFjRw0ZMkTjx4+v9TkRERE6duyYNm3apEuXLqlTp07Kzs7WjBkzJEnp6elatWqV3nzzTc2ZM0cJCQnKzc3VqFGj6l3XjBkz9MMPP2jSpEmyLEuTJ0/WzJkztXPnzgavccSIEVWOQ0NDdePGDeXm5mrOnDkaP368PB6PRowYoR07dvg+LrZw4UL98ssvSk1NVUREhLKyspSenq4///yzwTUAAACgaZBfya8AzGHZtm07XQQAAAAAAAAA4KYQpwsAAAAAAAAAAPwHTVsAAAAAAAAAMAhNWwAAAAAAAAAwCE1bAAAAAAAAADAITVsAAAAAAAAAMAhNWwAAAAAAAAAwCE1bAAAAAAAAADAITVsAAAAAAAAAMAhNWwAAAAAAAAAwCE1bAAAAAAAAADAITVsAAAAAAAAAMAhNWwAAAAAAAAAwyP8DhBHMqqYB73sAAAAASUVORK5CYII="},"metadata":{}}]},{"cell_type":"code","source":"X = train.drop(['ID', 'Personal Loan'], axis=1) # Features\ny = train['Personal Loan'] # Target","metadata":{"id":"k2K1KHWd9jw1","execution":{"iopub.status.busy":"2024-05-22T12:18:10.179991Z","iopub.execute_input":"2024-05-22T12:18:10.180353Z","iopub.status.idle":"2024-05-22T12:18:10.188571Z","shell.execute_reply.started":"2024-05-22T12:18:10.180316Z","shell.execute_reply":"2024-05-22T12:18:10.187218Z"},"trusted":true},"execution_count":16,"outputs":[]},{"cell_type":"code","source":"from sklearn.model_selection import train_test_split\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)","metadata":{"id":"9VNoR3Kx9jw2","execution":{"iopub.status.busy":"2024-05-22T12:18:10.190375Z","iopub.execute_input":"2024-05-22T12:18:10.190762Z","iopub.status.idle":"2024-05-22T12:18:10.294957Z","shell.execute_reply.started":"2024-05-22T12:18:10.190729Z","shell.execute_reply":"2024-05-22T12:18:10.293650Z"},"trusted":true},"execution_count":17,"outputs":[]},{"cell_type":"code","source":"# converting to numpy arrays\n\nX = X.to_numpy()\ny = y.to_numpy()","metadata":{"execution":{"iopub.status.busy":"2024-05-22T12:18:30.237376Z","iopub.execute_input":"2024-05-22T12:18:30.237867Z","iopub.status.idle":"2024-05-22T12:18:30.244769Z","shell.execute_reply.started":"2024-05-22T12:18:30.237836Z","shell.execute_reply":"2024-05-22T12:18:30.243713Z"},"trusted":true},"execution_count":20,"outputs":[]},{"cell_type":"code","source":"# import necessary modules\nfrom pytorch_tabnet.tab_model import TabNetClassifier\n \nimport os\nimport torch\n \nfrom sklearn.model_selection import KFold\nfrom sklearn.metrics import accuracy_score","metadata":{"execution":{"iopub.status.busy":"2024-05-22T12:18:26.987268Z","iopub.execute_input":"2024-05-22T12:18:26.987637Z","iopub.status.idle":"2024-05-22T12:18:30.235738Z","shell.execute_reply.started":"2024-05-22T12:18:26.987594Z","shell.execute_reply":"2024-05-22T12:18:30.234655Z"},"trusted":true},"execution_count":19,"outputs":[]},{"cell_type":"markdown","source":"# Feedforward Neural Network\n\nA Feedforward Neural Network (FNN) is a type of artificial neural network where connections between the nodes do not form a cycle. It is the simplest form of neural networks where the information moves in only one direction—forward—from the input nodes, through the hidden nodes (if any), and to the output nodes. There are no loops or cycles in the network.\n\n#### Key Components:\n- Input Layer: This layer receives the input data.\n- Hidden Layers: Intermediate layers where computations are performed. These layers apply transformations to the input data and pass it to the next layer.\n- Output Layer: Produces the final output of the network. For binary classification, a single neuron with a sigmoid activation function is typically used.\n- Activation Functions: Non-linear functions applied to each layer's output to introduce non-linearity into the network, allowing it to learn complex patterns.\n\nHere we implement a feedforward neural network for binary classification using TensorFlow and Keras. It uses K-Fold Cross-Validation to evaluate the model's performance, ensuring that the results are robust and generalize well to unseen data. Each fold involves training a new model and applying early stopping to prevent overfitting, with the best epoch's weights restored for evaluation.\n\n#### Layers:\n- The first dense layer has 64 neurons and uses the ReLU activation function.\n- The second dense layer has 32 neurons and also uses the ReLU activation function.\n- The output layer has 1 neuron and uses the sigmoid activation function to output a probability for binary classification.\n\n#### Compilation:\n- The loss function is binary_crossentropy, suitable for binary classification.\n- The optimizer is adam, an adaptive learning rate optimizer.\n- The metric is accuracy.\n\n#### K-Fold Cross-Validation:\n- The dataset is split into 5 parts (folds).\n\n
","image/png":"iVBORw0KGgoAAAANSUhEUgAAA04AAAIjCAYAAAA0vUuxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADEWklEQVR4nOzdd3xTZfvH8U+SznRCW1pG2RvZe6OyRHErKirgehRxPPxcPC7E9YjjQXHgBLe4RUWmoAgoCILsvUcpo3sn+f1xmrS1pTNt0vb7fr36ysnJyTl3ygF69bru6zY5HA4HIiIiIiIiclZmTw9ARERERETE2ylwEhERERERKYECJxERERERkRIocBIRERERESmBAicREREREZESKHASEREREREpgQInERERERGREihwEhERERERKYECJxERERERkRIocBIRqWLjx4+nadOm5Xrv1KlTMZlM7h1QLbJ8+XJMJhPLly937Svtn8f+/fsxmUzMmTPHrWNq2rQp48ePd+s5vdmQIUMYMmSIp4chIlJmCpxERHKZTKZSfeX/oVsqT6dOnWjcuDEOh+Osx/Tv35/o6GhycnKqcGRlt2rVKqZOnUpCQoKnh+IyZ84cTCYTf/75p6eHIiJSLfh4egAiIt7iww8/LPD8gw8+YPHixYX2t2vXrkLXefvtt7Hb7eV67yOPPMJDDz1UoetXF2PHjuWhhx5ixYoVDBo0qNDr+/fvZ/Xq1UyaNAkfn/L/d1aRP4/SWrVqFU888QTjx48nPDy8wGs7duzAbNbvMUVEvJ0CJxGRXNdff32B57///juLFy8utP+f0tLSsFqtpb6Or69vucYH4OPjU6EgoTq57rrrmDJlCp988kmRgdOnn36Kw+Fg7NixFbpORf483MHf39+j1xcRkdLRr7hERMpgyJAhnHPOOaxbt45BgwZhtVr5z3/+A8B3333HhRdeSIMGDfD396dFixY8+eST2Gy2Auf455wa59yZF154gbfeeosWLVrg7+9Pz549Wbt2bYH3FjXHyWQyMWnSJL799lvOOecc/P396dChAwsWLCg0/uXLl9OjRw8CAgJo0aIFb775ZqnmTU2aNIng4GDS0tIKvXbttdcSExPj+px//vknI0aMIDIyksDAQJo1a8ZNN91U7PmLEhsby6BBg/jyyy/Jzs4u9Ponn3xCixYt6N27NwcOHGDixIm0adOGwMBAIiIiuOqqq9i/f3+J1ylqjlNCQgLjx48nLCyM8PBwxo0bV2SZ3d9//8348eNp3rw5AQEBxMTEcNNNN3Hq1CnXMVOnTuX+++8HoFmzZq6ST+fYiprjtHfvXq666irq1q2L1WqlT58+/PjjjwWOcc7X+vzzz3n66adp1KgRAQEBnH/++ezevbvEz11af/31FxdccAGhoaEEBwdz/vnn8/vvvxf5vRg8eDCBgYE0atSIp556itmzZxf4rGdz4sQJbr75ZqKjowkICKBz5868//77hY777LPP6N69OyEhIYSGhtKxY0defvll1+vZ2dk88cQTtGrVioCAACIiIhgwYACLFy+u8PdBRKR2/NpSRMSNTp06xQUXXMA111zD9ddfT3R0NGDMGQkODmby5MkEBwfz888/89hjj5GUlMTzzz9f4nk/+eQTkpOT+de//oXJZGL69Olcfvnl7N27t8SsyG+//cbXX3/NxIkTCQkJ4ZVXXuGKK67g4MGDREREAMYPwCNHjqR+/fo88cQT2Gw2pk2bRlRUVIljGzNmDK+99ho//vgjV111lWt/Wloa33//PePHj8disXDixAmGDx9OVFQUDz30EOHh4ezfv5+vv/66xGsUZezYsdx2220sXLiQiy66yLV/06ZNbN68mcceewyAtWvXsmrVKq655hoaNWrE/v37eeONNxgyZAhbt24tU0bQ4XBwySWX8Ntvv3H77bfTrl07vvnmG8aNG1fo2MWLF7N3714mTJhATEwMW7Zs4a233mLLli38/vvvmEwmLr/8cnbu3Mmnn37K//73PyIjIwHO+n2Pi4ujX79+pKWlcffddxMREcH777/PxRdfzJdffslll11W4Pj//ve/mM1m7rvvPhITE5k+fTpjx47ljz/+KPVnPpstW7YwcOBAQkNDeeCBB/D19eXNN99kyJAh/PLLL/Tu3RuAI0eOcO6552IymZgyZQpBQUG88847pcqmpaenM2TIEHbv3s2kSZNo1qwZX3zxBePHjychIYF77rkHML7X1157Leeffz7PPfccANu2bWPlypWuY6ZOncqzzz7LLbfcQq9evUhKSuLPP/9k/fr1DBs2rMLfDxGp5RwiIlKkO++80/HPfyYHDx7sAByzZs0qdHxaWlqhff/6178cVqvVkZGR4do3btw4R5MmTVzP9+3b5wAcERERjtOnT7v2f/fddw7A8f3337v2Pf7444XGBDj8/Pwcu3fvdu3buHGjA3DMnDnTtW/06NEOq9XqOHLkiGvfrl27HD4+PoXO+U92u93RsGFDxxVXXFFg/+eff+4AHL/++qvD4XA4vvnmGwfgWLt2bbHnK63Tp087/P39Hddee22B/Q899JADcOzYscPhcBT9vV+9erUDcHzwwQeufcuWLXMAjmXLlrn2/fPP49tvv3UAjunTp7v25eTkOAYOHOgAHLNnz3btL+q6n376aYHvicPhcDz//PMOwLFv375Cxzdp0sQxbtw41/N7773XAThWrFjh2pecnOxo1qyZo2nTpg6bzVbgs7Rr186RmZnpOvbll192AI5NmzYVulZ+s2fPLvHP6tJLL3X4+fk59uzZ49p39OhRR0hIiGPQoEGufXfddZfDZDI5/vrrL9e+U6dOOerWrVvocw8ePNgxePBg1/MZM2Y4AMdHH33k2peVleXo27evIzg42JGUlORwOByOe+65xxEaGurIyck563g7d+7suPDCC4v93CIi5aVSPRGRMvL392fChAmF9gcGBrq2k5OTOXnyJAMHDiQtLY3t27eXeN4xY8ZQp04d1/OBAwcCRtlWSYYOHUqLFi1czzt16kRoaKjrvTabjSVLlnDppZfSoEED13EtW7bkggsuKPH8JpOJq666ivnz55OSkuLaP3fuXBo2bMiAAQMAXI0PfvjhhyLL68qqTp06jBo1innz5pGamgoYGaHPPvuMHj160Lp1a6Dg9z47O5tTp07RsmVLwsPDWb9+fZmuOX/+fHx8fLjjjjtc+ywWC3fddVehY/NfNyMjg5MnT9KnTx+AMl83//V79erl+p4CBAcHc9ttt7F//362bt1a4PgJEybg5+fnel6W+6Y4NpuNRYsWcemll9K8eXPX/vr163Pdddfx22+/kZSUBMCCBQvo27cvXbp0cR1Xt27dUs0/mz9/PjExMVx77bWufb6+vtx9992kpKTwyy+/AMa9lZqaWmzZXXh4OFu2bGHXrl1l/bgiIiVS4CQiUkYNGzYs8IOq05YtW7jssssICwsjNDSUqKgoV2OJxMTEEs/buHHjAs+dQdSZM2fK/F7n+53vPXHiBOnp6bRs2bLQcUXtK8qYMWNIT09n3rx5AKSkpDB//nyuuuoq1xypwYMHc8UVV/DEE08QGRnJJZdcwuzZs8nMzCzVNYoyduxYUlNT+e677wCjQ93+/fsL/FCenp7OY489RmxsLP7+/kRGRhIVFUVCQkKpvvf5HThwgPr16xMcHFxgf5s2bQode/r0ae655x6io6MJDAwkKiqKZs2aAaX7Mz/b9Yu6lrOb44EDBwrsr8h9U5z4+HjS0tLOOha73c6hQ4dcYyrvvXXgwAFatWpVqLPgPz/vxIkTad26NRdccAGNGjXipptuKjSPb9q0aSQkJNC6dWs6duzI/fffz99//126DywiUgIFTiIiZZQ/y+CUkJDA4MGD2bhxI9OmTeP7779n8eLFrrkYpWl3bbFYitzvKGYdI3e8t7T69OlD06ZN+fzzzwH4/vvvSU9PZ8yYMa5jTCYTX375patN+JEjR7jpppvo3r17gUxVWVx00UWEhYXxySefAMZcMIvFwjXXXOM65q677uLpp5/m6quv5vPPP2fRokUsXryYiIiISm01fvXVV/P2229z++238/XXX7No0SLXD/OV3eLcqSr+7L1BvXr12LBhA/PmzePiiy9m2bJlXHDBBQXmng0aNIg9e/bw3nvvcc455/DOO+/QrVs33nnnHQ+OXERqCjWHEBFxg+XLl3Pq1Cm+/vrrAq2z9+3b58FR5alXrx4BAQFFdlsrSwe2q6++mpdffpmkpCTmzp1L06ZNXaVp+fXp04c+ffrw9NNP88knnzB27Fg+++wzbrnlljKP3d/fnyuvvJIPPviAuLg4vvjiC8477zxiYmJcx3z55ZeMGzeOF1980bUvIyOjXAvONmnShKVLl5KSklIg67Rjx44Cx505c4alS5fyxBNPuJpUAEWWiZXUtfCf1//ntQBXuWeTJk1Kfa6KiIqKwmq1nnUsZrOZ2NhY15jKe281adKEv//+G7vdXiDrVNTn9fPzY/To0YwePRq73c7EiRN58803efTRR13Zrbp16zJhwgQmTJhASkoKgwYNYurUqeW690RE8lPGSUTEDZy/9c//W/6srCxef/11Tw2pAIvFwtChQ/n22285evSoa//u3bv56aefSn2eMWPGkJmZyfvvv8+CBQu4+uqrC7x+5syZQpkO57yX/OV6e/bsYc+ePaW+7tixY8nOzuZf//oX8fHxhebOWCyWQtedOXNmoVbwpTFq1ChycnJ44403XPtsNhszZ84sdE0onNmZMWNGoXMGBQUBlCqQGzVqFGvWrGH16tWufampqbz11ls0bdqU9u3bl/ajVIjFYmH48OF89913BdqJx8XF8cknnzBgwABCQ0MBGDFiBKtXr2bDhg2u406fPs3HH39c4nVGjRrF8ePHmTt3rmtfTk4OM2fOJDg4mMGDBwMUaPEOYDab6dSpE5B3b/3zmODgYFq2bFmhUlERESdlnERE3KBfv37UqVOHcePGcffdd2Mymfjwww+9qlxq6tSpLFq0iP79+3PHHXdgs9l49dVXOeeccwr8wFucbt260bJlSx5++GEyMzMLlOkBvP/++7z++utcdtlltGjRguTkZN5++21CQ0MZNWqU67jzzz8foFTrLIExd6pRo0Z89913BAYGcvnllxd4/aKLLuLDDz8kLCyM9u3bs3r1apYsWeJqxV4Wo0ePpn///jz00EPs37+f9u3b8/XXXxeasxQaGsqgQYOYPn062dnZNGzYkEWLFhWZZezevTsADz/8MNdccw2+vr6MHj3aFVDl99BDD/Hpp59ywQUXcPfdd1O3bl3ef/999u3bx1dffVVoLlBFvffee0Wu+XXPPffw1FNPsXjxYgYMGMDEiRPx8fHhzTffJDMzk+nTp7uOfeCBB/joo48YNmwYd911l6sdeePGjTl9+nSxGbfbbruNN998k/Hjx7Nu3TqaNm3Kl19+ycqVK5kxYwYhISEA3HLLLZw+fZrzzjuPRo0aceDAAWbOnEmXLl1c86Hat2/PkCFD6N69O3Xr1uXPP//kyy+/ZNKkSW79nolI7aTASUTEDSIiIvjhhx/4v//7Px555BHq1KnD9ddfz/nnn8+IESM8PTzA+OH9p59+4r777uPRRx8lNjaWadOmsW3btlJ1/XMaM2YMTz/9NC1btqRbt24FXhs8eDBr1qzhs88+Iy4ujrCwMHr16sXHH3/sappQHmazmWuvvZbnn3+e0aNHu36Ydnr55ZexWCx8/PHHZGRk0L9/f5YsWVKu773ZbGbevHnce++9fPTRR5hMJi6++GJefPFFunbtWuDYTz75hLvuuovXXnsNh8PB8OHD+emnnwp0LgTo2bMnTz75JLNmzWLBggXY7Xb27dtXZOAUHR3NqlWrePDBB5k5cyYZGRl06tSJ77//ngsvvLDMn6ck+TNr+Y0fP54OHTqwYsUKpkyZwrPPPovdbqd379589NFHrjWcwFiseNmyZdx9990888wzREVFceeddxIUFMTdd99NQEDAWa8fGBjI8uXLeeihh3j//fdJSkqiTZs2zJ49u8DCwNdffz1vvfUWr7/+OgkJCcTExDBmzBimTp3qCibvvvtu5s2bx6JFi8jMzKRJkyY89dRTrgWIRUQqwuTwpl+HiohIlbv00kvVwlkqxb333subb75JSkrKWZtYiIhUF5rjJCJSi6Snpxd4vmvXLubPn8+QIUM8MyCpMf55b506dYoPP/yQAQMGKGgSkRpBGScRkVqkfv36jB8/nubNm3PgwAHeeOMNMjMz+euvv2jVqpWnhyfVWJcuXRgyZAjt2rUjLi6Od999l6NHj7J06dICnSZFRKorzXESEalFRo4cyaeffsrx48fx9/enb9++PPPMMwqapMJGjRrFl19+yVtvvYXJZKJbt268++67CppEpMZQxklERERERKQEmuMkIiIiIiJSAgVOIiIiIiIiJah1c5zsdjtHjx4lJCSk2AX5RERERESkZnM4HCQnJ9OgQYMSFxivdYHT0aNHiY2N9fQwRERERETESxw6dIhGjRoVe0ytC5ycq80fOnSI0NBQD48GsrOzWbRoEcOHD8fX19fTw5FqRPeOVITuH6kI3T9SEbp/pLwq495JSkoiNjbWFSMUp9YFTs7yvNDQUK8JnKxWK6GhofrHQ8pE945UhO4fqQjdP1IRun+kvCrz3inNFB41hxARERERESmBAicREREREZESKHASEREREREpQa2b4yQiIiIiFWOz2cjOzi7Xe7Ozs/Hx8SEjIwObzebmkUlNVt57x9fXF4vFUuHre0Xg9Nprr/H8889z/PhxOnfuzMyZM+nVq1eRx86ZM4cJEyYU2Ofv709GRkZVDFVERESkVktJSeHw4cM4HI5yvd/hcBATE8OhQ4e0pqaUSXnvHZPJRKNGjQgODq7Q9T0eOM2dO5fJkycza9YsevfuzYwZMxgxYgQ7duygXr16Rb4nNDSUHTt2uJ7rL52IiIhI5bPZbBw+fBir1UpUVFS5fgaz2+2kpKQQHBxc4oKjIvmV595xOBzEx8dz+PBhWrVqVaHMk8cDp5deeolbb73VlUWaNWsWP/74I++99x4PPfRQke8xmUzExMRU5TBFREREar3s7GwcDgdRUVEEBgaW6xx2u52srCwCAgIUOEmZlPfeiYqKYv/+/WRnZ1ffwCkrK4t169YxZcoU1z6z2czQoUNZvXr1Wd+XkpJCkyZNsNvtdOvWjWeeeYYOHToUeWxmZiaZmZmu50lJSYDxF7+8tbnu5ByDN4xFqhfdO1IRun+kInT/1F7OwMnhcGC328t1DmeJX0XOIbVTee8d5z1bVOBUln/HPBo4nTx5EpvNRnR0dIH90dHRbN++vcj3tGnThvfee49OnTqRmJjICy+8QL9+/diyZQuNGjUqdPyzzz7LE088UWj/okWLsFqt7vkgbrB48WJPD0GqKd07UhG6f6QidP/UPj4+PsTExJCSkkJWVlaFzpWcnOymUUltU9Z7Jysri/T0dH799VdycnIKvJaWllbq83i8VK+s+vbtS9++fV3P+/XrR7t27XjzzTd58sknCx0/ZcoUJk+e7HqelJREbGwsw4cPJzQ0tErGXJzs7GwWL17MsGHDtHq2lInuHakI3T9SEbp/aq+MjAwOHTpEcHAwAQEB5TqHw+EgOTmZkJAQzVOXMinvvZORkUFgYCCDBg0qdN86q9FKw6OBU2RkJBaLhbi4uAL74+LiSj2HydfXl65du7J79+4iX/f398ff37/I93nTP/beNh6pPnTvSEXo/pGK0P1T+9hsNkwmE2azudzzk5wlVs7zVFdNmzbl3nvv5d577y3V8cuXL+fcc8/lzJkzhIeHV+rYKtvUqVP59ttv2bBhQ5Vet7z3jtlsxmQyFflvVln+DfPo3ern50f37t1ZunSpa5/dbmfp0qUFskrFsdlsbNq0ifr161fWMEVERESkmjKZTMV+TZ06tVznXbt2Lbfddlupj+/Xrx/Hjh0jLCysXNcrreXLl2MymUhISKjU69RGHi/Vmzx5MuPGjaNHjx706tWLGTNmkJqa6uqyd+ONN9KwYUOeffZZAKZNm0afPn1o2bIlCQkJPP/88xw4cIBbbrnFkx9DRERERLzQsWPHXNtz587lscceK7CsTf61fRwOBzabDR+fkn9EjoqKKtM4/Pz81BW6mvN4fnTMmDG88MILPPbYY3Tp0oUNGzawYMECV8OIgwcPFrjhz5w5w6233kq7du0YNWoUSUlJrFq1ivbt23vqI4iIiIjUSg6Hg7SsnDJ/pWfZyvW+/F+lXYA3JibG9RUWFuZa1iYmJobt27cTEhLCTz/9RPfu3fH39+e3335jz549XHLJJURHRxMcHEzPnj1ZsmRJgfM2bdqUGTNmuJ6bTCbeeecdLrvsMqxWK61atWLevHmu1/+ZCZozZw7h4eEsXLiQdu3aERwczMiRIwv83JuTk8Pdd99NeHg4ERERPPjgg4wbN45LL7203H9mZ86c4cYbb6ROnTpYrVYuuOACdu3aVeCYt99+m9jYWKxWK5dddhkvvfRSseWFdrudadOm0ahRI/z9/enSpQsLFixwvZ6VlcWkSZOoX78+AQEBNGnSxJUUcTgcTJ06lcaNG+Pv70+DBg24++67y/35KpPHM04AkyZNYtKkSUW+tnz58gLP//e///G///2vCkYlIiIiIsVJz7bR/rGFHrn21mkjsPq550fZhx56iBdeeIHmzZtTp04dDh06xKhRo3j66afx9/fngw8+YPTo0ezYsYPGjRuf9TxPPPEE06dP5/nnn2fmzJmMHTuWAwcOULdu3SKPT0tL44UXXuDDDz/EbDZz/fXXc9999/Hxxx8D8Nxzz/Hxxx8ze/Zs2rVrx8svv8y3337LueeeW+7POn78eHbt2sW8efMIDQ3lwQcfZNSoUWzduhVfX19WrlzJ7bffznPPPcfFF1/MkiVLePTRR4s958svv8yLL77Im2++SdeuXXnvvfe4+OKL2bJlC61ateKVV15h3rx5fP755zRu3JhDhw5x6NAhAL766iv+97//8dlnn9GhQweOHz/Oxo0by/35KpNXBE4iIiIiIp4ybdo0hg0b5npet25dOnfu7Hr+5JNP8s033zBv3ryz/rIfjKDk2muvBeCZZ57hlVdeYc2aNYwcObLI47Ozs5k1axYtWrQAjGTCtGnTXK/PnDmTKVOmcNlllwHw6quvMn/+/HJ/TmfAtHLlSvr16wfAxx9/TGxsLN9++y1XXXUVM2fO5IILLuC+++4DoHXr1qxatYoffvjhrOd94YUXePDBB7nmmmsAI+BbtmwZM2bM4LXXXuPgwYO0atWKAQMGYDKZaNKkieu9Bw8eJCYmhqFDh+Lr60vjxo3p1atXuT9jZVLg5EG7TySz7WgiR1I9PRIRERGRsgv0tbB12ogyvcdut5OclExIaEiFuuoF+lpKPqiUevToUeB5SkoKU6dO5ccff+TYsWPk5OSQnp7OwYMHiz1Pp06dXNtBQUGEhoZy4sSJsx5vtVpdQRNA/fr1XccnJiYSFxdXIIiwWCx079693AsHb9u2DR8fH3r37u3aFxERQZs2bdi2bRsAO3bscAVqTr169Tpr4JSUlMTRo0fp379/gf39+/d3ZY7Gjx/PsGHDaNOmDSNHjuSiiy5i+PDhAFx11VXMmDGD5s2bM3LkSEaNGsXo0aNLNc+sqnl8jlNt9umaQ9z12UbWndQfg4iIiFQ/JpMJq59Pmb8C/Szlel/+L3euARUUFFTg+X333cc333zDM888w4oVK9iwYQMdO3YscdHff7a2NplMxQY5RR1f2rlb1Um3bt3Yt28fTz75JOnp6Vx99dVceeWVAMTGxrJjxw5ef/11AgMDmThxIoMGDSI7O9vDoy5MP7F7UFig8ZclLaeEA0VERESkyqxcuZLx48dz2WWX0bFjR2JiYti/f3+VjiEsLIzo6GjWrl3r2mez2Vi/fn25z9muXTtycnL4448/XPtOnTrFjh07XI3W2rRpU+CaQKHn+YWGhtKgQQNWrlxZYP/KlSsLNG8LDQ1lzJgxvP3228ydO5evvvqK06dPAxAYGMjo0aN55ZVXWL58OatXr2bTpk3l/pyVxftyYLVIuFWBk4iIiIi3adWqFV9//TWjR4/GZDLx6KOPlrs8riLuuusunn32WVq2bEnbtm2ZOXMmZ86cKVW2bdOmTYSEhLiem0wmOnfuzCWXXMKtt97Km2++SUhICA899BANGzbkkksucV1z0KBBvPTSS4wePZqff/6Zn376qdhr3n///Tz++OO0aNGCLl26MHv2bDZs2OBqcvHSSy9Rv359unbtitls5osvviAmJobw8HDmzJmDzWajd+/eWK1WPvroIwIDAwvMg/IWCpw8SBknEREREe/z0ksvcdNNN9GvXz8iIyN58MEHSUpKqvJxPPjggxw/fpwbb7wRi8XCbbfdxogRI7BYSp7fNWjQoALPLRYLOTk5zJ49m3vuuYeLLrqIrKwsBg0axPz5811lg/3792fWrFk88cQTPPLII4wYMYJ///vfvPrqq2e91t13301iYiL/93//x4kTJ2jfvj3z5s2jVatWAISEhDB9+nR27dqFxWKhZ8+ezJ8/H7PZTHh4OP/973+ZPHkyNpuNjh078v333xMREVGB71zlMDlqYiFlMZKSkggLCyMxMZHQ0FCPjmX5jhOMn72WhlYHy6eMKFTnKlKc7Oxs5s+fz6hRo3TvSJnp/pGK0P1Te2VkZLBv3z6aNWtGQEBAuc5ht9tJSkoiNDS0Qs0haiO73U67du24+uqrefLJJ6vsurfeeivbt29nxYoVVXbNopT33inuvi1LbKCMkweFW/0AZZxEREREpLADBw6waNEiBg8eTGZmJq+++ir79u3juuuuq9TrvvDCCwwbNoygoCB++ukn3n//fV5//fVKvWZ1oMDJg8JVqiciIiIiZ2E2m5kzZw733XcfDoeDc845hyVLltCuXbtKve6aNWuYPn06ycnJNG/enFdeeYVbbrmlUq9ZHShw8iDnHKdMu4lsmx1VO4iIiIiIU2xsbKFudVXh888/r/JrVgcqLPWg0MC8SCkp3ft61YuIiIiIiEGBkwdZzCZCA4ykX0K66vVERERERLyVAicPc5brKeMkIiIiIuK9FDh5mDNwSlDgJCIiIiLitRQ4eZgzcEpU4CQiIiIi4rUUOHlYuDJOIiIiIiJeT4GTh4UGGs0hNMdJRERExHsNGTKEe++91/W8adOmzJgxo9j3mEwmvv322wpf213n8bTx48dz6aWXenoY5abAycPyMk7qqiciIiLibqNHj2bkyJFFvrZixQpMJhN///13mc+7du1abrvttooOr4CpU6fSpUuXQvuPHTvGBRdc4NZr/dOcOXMIDw+v1GtUdwqcPCzMmjvHKU0ZJxERERF3u/nmm1m8eDGHDx8u9Nrs2bPp0aMHnTp1KvN5o6KisFqt7hhiiWJiYvD396+Sa8nZKXDysNCA3MApQ4GTiIiIVDMOB2Sllv0rO61878v/5XCUaogXXXQRUVFRzJkzp8D+lJQUvvjiC26++WZOnTrFtddeS8OGDbFarXTs2JFPP/202PP+s1Rv165dDBo0iICAANq3b8/ixYsLvefBBx+kdevWWK1WmjdvzqOPPkp2tvEz4Jw5c3jiiSfYuHEjJpMJk8nkGvM/S/U2bdrEeeedR2BgIBEREdx2222kpKS4XneWxL3wwgvUr1+fiIgI7rzzTte1yuPgwYNccsklBAcHExoaytVXX01cXFyBY5566inq1atHSEgIt9xyCw899FCRGTSnzMxM7r77burVq0dAQAADBgxg7dq1rtfPnDnD2LFjiYqKIjAwkDZt2vDxxx8DkJWVxaRJk6hfvz4BAQE0adKEZ599ttyfrzR8KvXsUqJwddUTERGR6io7DZ5pUKa3mIFwd1z7P0fBL6jEw3x8fLjxxhuZM2cODz/8MCaTCYAvvvgCm83GtddeS0pKCt27d+fBBx8kNDSUH3/8kRtuuIEWLVrQq1evEq9ht9u5/PLLiY6O5o8//iAxMbHAfCinkJAQ5syZQ4MGDdi0aRO33norISEhPPDAA4wZM4bNmzezYMEClixZAkBYWFihc6SmpjJixAj69u3L2rVrOXHiBLfccguTJk0qEBwuW7aM+vXrs2zZMnbv3s2YMWPo0qULt956a4mfp6jP5wyafvnlF3JycrjzzjsZM2YMy5cvB+Djjz/m6aef5vXXX6d///589tlnvPjiizRr1uys533ggQf46quveP/992nSpAnTp09nxIgR7N69m7p16/Loo4+ydetWfvrpJyIjI9m5cyenTp0C4JVXXmHevHl8/vnnNG7cmEOHDnHo0KEyf7ayUODkYWFW449ApXoiIiIileOmm27i+eef55dffmHIkCGAUaZ3xRVXEBYWRlhYGPfdd5/r+LvuuouFCxfy+eeflypwWrJkCdu3b2fhwoU0aGAEks8880yheUmPPPKIa7tp06bcd999fPbZZzzwwAMEBgYSHByMj48PMTExZ73WJ598QkZGBh988AFBQUbg+OqrrzJ69Giee+45oqOjAahTpw6vvvoqFouFtm3bcuGFF7J06dJyBU5Lly5l06ZN7Nu3j9jYWAA++OADOnTowNq1a+nZsyczZ87k5ptvZsKECQA89thjLFq0qEAmLL/U1FTeeOMN5syZ4/o+vf322yxevJh3332X+++/n4MHD9K1a1d69OgBQOPGjUlKSgKMDFirVq0YMGAAJpOJJk2alPlzlZUCJw8LU6meiIiIVFe+ViPzUwZ2u52k5GRCQ0Iwmyswa8S39POL2rZtS79+/XjvvfcYMmQIu3fvZsWKFUybNg0Am83GM888w+eff86RI0fIysoiMzOz1HOYtm3bRmxsrCtoAujbt2+h4+bOncsrr7zCnj17SElJIScnh9DQ0FJ/Due1Onfu7AqaAPr374/dbmfHjh2uwKlDhw5YLBbXMfXr12fTpk1lulb+a8bGxrqCJoD27dsTHh7Otm3b6NmzJzt27GDixIkF3terVy9+/vnnIs+5Z88esrOz6d+/v2ufr68vvXr1Ytu2bQDccccdXHHFFaxfv57hw4dz8cUXc8455wBGOeKwYcNo06YNI0eO5KKLLmL48OHl+nylpTlOHuZqDpGeg6OUtboiIiIiXsFkMsrlyvrlay3f+/J/5ZbcldbNN9/MV199RXJyMrNnz6ZFixYMHjwYgOeff56XX36ZBx98kGXLlrFhwwZGjBhBVlaW275Vq1evZuzYsYwaNYoffviBv/76i4cfftit18jP19e3wHOTyYTdbq+Ua1WWCy64gAMHDvDvf/+bo0ePMmzYMB599FEAunXrxr59+3jyySdJT0/n6quv5sorr6zU8Shw8jDnHCeb3UFKplqSi4iIiFSGq6++GrPZzCeffMIHH3zATTfd5JrvtHLlSi655BKuv/56OnfuTPPmzdm5c2epz92uXTsOHTrEsWPHXPt+//33AsesWrWKJk2a8PDDD9OjRw9atWrFgQMHChzj5+eHzWYr8VobN24kNTXVtW/lypWYzWbatGlT6jGXhfPz5Z9DtHXrVhISEmjfvj0Abdq0KdDYASj0PL8WLVrg5+fHypUrXfuys7NZu3at65xgdC8cN24cH330ES+99BLvv/++67XQ0FDGjBnD22+/zdy5c/nqq684ffp0hT/v2ahUz8MCfC34mhxkO0wkpGUTEuBb8ptEREREpEyCg4MZM2YMU6ZMISkpifHjx7tea9WqFV9++SWrVq2iTp06vPTSS8TFxRX4Ab44Q4cOpXXr1owbN47nn3+epKQkHn744QLHtGrVioMHD/LZZ5/Rs2dPfvzxR7755psCxzRt2pR9+/axYcMGGjVqREhISKE25GPHjuXxxx9n3LhxTJ06lfj4eO666y5uuOEGV5leedlsNjZs2FBgn7+/P0OHDqVjx46MHTuWGTNmkJOTw8SJExk8eLBr/tFdd93FrbfeSo8ePejXrx9z587l77//pnnz5kVeKygoiDvuuIP777+funXr0rhxY6ZPn05aWho333wzYMyT6t69Ox06dCAzM5Mff/yR1q1bA/DSSy9Rv359unbtitls5osvviAmJqZS16JSxskLBOaGr+qsJyIiIlJ5br75Zs6cOcOIESMKzEd65JFH6NatGyNGjGDIkCHExMRw6aWXlvq8ZrOZb775hvT0dHr16sUtt9zC008/XeCYiy++mH//+99MmjSJLl26sGrVKlfZmdMVV1zByJEjOffcc4mKiiqyJbrVamXhwoWcPn2anj17cuWVV3L++efz6quvlu2bUYSUlBS6du1a4Gv06NGYTCa+++476tSpw6BBgxg6dCjNmzdn7ty5rveOHTuWKVOmcN9997nK6MaPH09AQMBZr/ff//6XK664ghtuuIFu3bqxe/duFi5cSJ06dQAjAzdlyhQ6derEoEGDsFgsvPvuu4DRoXD69On06NGDnj17sn//fubPn1+xeXMlMDlq2cSapKQkwsLCSExMLPNkvMqQnZ3NwGcWcjzdxMe39KZ/y0hPD0mqiezsbObPn8+oUaMK1TGLlET3j1SE7p/aKyMjg3379tGsWbNifyAujt1uJykpidDQ0Er9IVc8b9iwYcTExPDhhx+65XzlvXeKu2/LEhuoVM8LBOX+KSSoJbmIiIiIVENpaWnMmjWLESNGYLFY+PTTT1myZEmRCwFXVwqcvECgjwMwqVRPRERERKolk8nE/Pnzefrpp8nIyKBNmzZ89dVXDB061NNDcxsFTl7A6sw4pVdOO0oRERERkcoUGBjIkiVLPD2MSqXCUi/gDJwSVaonIiIiIuKVFDh5AauP0Z9DpXoiIiJSHdSy3mJSzbnrflXg5AWsag4hIiIi1YDFYgEgK0vTC6T6cN6vzvu3vDTHyQsEaY6TiIiIVAM+Pj5YrVbi4+Px9fUtVztxu91OVlYWGRkZakcuZVKee8dutxMfH4/VasXHp2KhjwInL6CMk4iIiFQHJpOJ+vXrs2/fPg4cOFCuczgcDtLT0wkMDMRkMrl5hFKTlffeMZvNNG7cuML3mwInLxCYO8cpSXOcRERExMv5+fnRqlWrcpfrZWdn8+uvvzJo0CAtoCxlUt57x8/Pzy3ZTQVOXiCvVE+Bk4iIiHg/s9lMQEBAud5rsVjIyckhICBAgZOUiafvHRWWegFnqV5alo2sHLtnByMiIiIiIoUocPICARZwllyqJbmIiIiIiPdR4OQFzCYIDTDSTonqrCciIiIi4nUUOHmJsECjTlOd9UREREREvI8CJy/hDJxUqiciIiIi4n0UOHkJZZxERERERLyXAicv4QqclHESEREREfE6Cpy8RLizVC9NzSFERERERLyNAicvERro7KqnjJOIiIiIiLdR4OQlwlWqJyIiIiLitRQ4eQk1hxARERER8V4KnLyE2pGLiIiIiHgvBU5eQoGTiIiIiIj3UuDkJVxznNRVT0RERETE6yhw8hL5u+rZ7Q4Pj0ZERERERPJT4OQlnKV6dgekZOV4eDQiIiIiIpKfAicvEeBrIcDX+ONIVGc9ERERERGvosDJi4QH+gFqSS4iIiIi4m0UOHkRddYTEREREfFOCpy8SJg1t7NeujrriYiIiIh4EwVOXiSvJbkyTiIiIiIi3kSBkxdRqZ6IiIiIiHdS4ORFwq0KnEREREREvJECJy8SbnV21dMcJxERERERb6LAyYuEqlRPRERERMQrKXDyImoOISIiIiLinRQ4eRHNcRIRERER8U4KnLyIuuqJiIiIiHgnBU5eJDzQ2RxCgZOIiIiIiDdR4ORFwnJL9dKzbWRk2zw8GhERERERcVLg5EVC/H0wm4ztJJXriYiIiIh4DQVOXsRsNqkluYiIiIiIF1Lg5GVcLckVOImIiIiIeA0FTl4mzKoGESIiIiIi3kaBk5dRS3IREREREe+jwMnLuEr10rI8PBIREREREXFS4ORlwq3KOImIiIiIeBsFTl5GpXoiIiIiIt5HgZOXCXOV6ilwEhERERHxFgqcvEy4s6ueMk4iIiIiIl5DgZOXcTaHSFRzCBERERERr6HAycuEqTmEiIiIiIjXUeDkZVztyBU4iYiIiIh4DQVOXiZ/xslud3h4NCIiIiIiAgqcvI6zq57DAcmZOR4ejYiIiIiIgAInr+PvYyHQ1wJAolqSi4iIiIh4BQVOXijc6pznpM56IiIiIiLeQIGTF3KW66mznoiIiIiId1Dg5IWcgVOCSvVERERERLyCAicvlFeqp8BJRERERMQbKHDyQuGBfgAkpmmOk4iIiIiIN1Dg5IXyr+UkIiIiIiKep8DJC2mOk4iIiIiId/GKwOm1116jadOmBAQE0Lt3b9asWVOq93322WeYTCYuvfTSyh1gFdMcJxERERER7+LxwGnu3LlMnjyZxx9/nPXr19O5c2dGjBjBiRMnin3f/v37ue+++xg4cGAVjbTqqB25iIiIiIh38Xjg9NJLL3HrrbcyYcIE2rdvz6xZs7Barbz33ntnfY/NZmPs2LE88cQTNG/evApHWzXymkMocBIRERER8QY+nrx4VlYW69atY8qUKa59ZrOZoUOHsnr16rO+b9q0adSrV4+bb76ZFStWFHuNzMxMMjMzXc+TkpIAyM7OJjvb84GJcwz5xxLsZwIgIS3LK8Yo3qmoe0ektHT/SEXo/pGK0P0j5VUZ905ZzuXRwOnkyZPYbDaio6ML7I+Ojmb79u1Fvue3337j3XffZcOGDaW6xrPPPssTTzxRaP+iRYuwWq1lHnNlWbx4sWv7VAaAD6dTM5g/f77HxiTVQ/57R6SsdP9IRej+kYrQ/SPl5c57Jy0trdTHejRwKqvk5GRuuOEG3n77bSIjI0v1nilTpjB58mTX86SkJGJjYxk+fDihoaGVNdRSy87OZvHixQwbNgxfX2NuU3JGNtP+Wka23cR5w0YQ4Gvx8CjFGxV174iUlu4fqQjdP1IRun+kvCrj3nFWo5WGRwOnyMhILBYLcXFxBfbHxcURExNT6Pg9e/awf/9+Ro8e7dpnt9sB8PHxYceOHbRo0aLAe/z9/fH39y90Ll9fX6/6y5p/PHV8fLCYTdjsDtJyIMTqPeMU7+Nt97JUL7p/pCJ0/0hF6P6R8nLnvVOW83i0OYSfnx/du3dn6dKlrn12u52lS5fSt2/fQse3bduWTZs2sWHDBtfXxRdfzLnnnsuGDRuIjY2tyuFXGpPJRGiAEdNqLScREREREc/zeKne5MmTGTduHD169KBXr17MmDGD1NRUJkyYAMCNN95Iw4YNefbZZwkICOCcc84p8P7w8HCAQvuru3CrH2fSstWSXERERETEC3g8cBozZgzx8fE89thjHD9+nC5durBgwQJXw4iDBw9iNnu8a3qVc67llJCW5eGRiIiIiIiIxwMngEmTJjFp0qQiX1u+fHmx750zZ477B+QFwnPnNSUo4yQiIiIi4nG1L5VTTTgzTkkKnEREREREPE6Bk5cKd5XqKXASEREREfE0BU5eKszqB0BCuuY4iYiIiIh4mgInL+Us1UtMz/HwSERERERERIGTlwpXVz0REREREa+hwMlLObvqaR0nERERERHPU+DkpcLUHEJERERExGsocPJSyjiJiIiIiHgPBU5eKizQ6KqXlJGNze7w8GhERERERGo3BU5eylmq53BAcoayTiIiIiIinqTAyUv5+Zix+lkAleuJiIiIiHiaAicvFq4GESIiIiIiXkGBkxcLsxrznBKUcRIRERER8SgFTl4sLNAHUKmeiIiIiIinKXDyYuG5nfUS07I8PBIRERERkdpNgZMXc67lpDlOIiIiIiKepcDJizlbkmuOk4iIiIiIZylw8mJhuRknzXESEREREfEsBU5ezDnHSaV6IiIiIiKepcDJi4W7Mk5qDiEiIiIi4kkKnLyYc46TSvVERERERDxLgZMXczWHUKmeiIiIiIhHKXDyYq525Mo4iYiIiIh4lAInL+bMOGXl2MnItnl4NCIiIiIitZcCJy8W7O+DxWwCVK4nIiIiIuJJCpy8mMlkIty1CK4664mIiIiIeIoCJy+nBhEiIiIiIp6nwMnLhVnVklxERERExNMUOHk5Z6leojJOIiIiIiIeo8DJy4VpjpOIiIiIiMcpcPJy4VY/QKV6IiIiIiKepMDJy6k5hIiIiIiI5ylw8nLhVmepngInERERERFPUeDk5ZwZpyQFTiIiIiIiHqPAycu5Mk4q1RMRERER8RgFTl4uLNBoDqGueiIiIiIinqPAycupOYSIiIiIiOcpcPJyzlK95IwcbHaHh0cjIiIiIlI7KXDycs6ME6hBhIiIiIiIpyhw8nK+FjNBfhZALclFRERERDxFgVM1EG41GkQkKnASEREREfEIBU7VQF6DCHXWExERERHxBAVO1YCzQYQyTiIiIiIinqHAqRpwZpwUOImIiIiIeIYCp2rAmXHSWk4iIiIiIp6hwKkaCAs0mkMocBIRERER8QwFTtWAqzlEuppDiIiIiIh4ggKnasBZqqcFcEVEREREPEOBUzUQHqg5TiIiIiIinqTAqRrIK9VT4CQiIiIi4gkKnKqBMK3jJCIiIiLiUQqcqoFwq9FVLzEtG4fD4eHRiIiIiIjUPgqcqgHnHKcsm530bJuHRyMiIiIiUvsocKoGrH4WfMwmQOV6IiIiIiKeoMCpGjCZTK6W5OqsJyIiIiJS9RQ4VRNhakkuIiIiIuIxCpyqCWfglJie5eGRiIiIiIjUPgqcqglXZz3NcRIRERERqXIKnKqJcJXqiYiIiIh4jAKnaiLUGTgp4yQiIiIiUuUUOFUTzq56KtUTEREREal6CpyqCWepXqJK9UREREREqpwCp2rC2RwiQV31RERERESqnAKnaiKvHbkyTiIiIiIiVU2BUzURZlVXPRERERERT1HgVE1ojpOIiIiIiOcocKomnKV6yZk55NjsHh6NiIiIiEjtosCpmnAGTgBJGTkeHImIiIiISO2jwKma8LGYCfH3ASAhTZ31RERERESqkgKnaiQ0N+uUoM56IiIiIiJVSoFTNRJuVUtyERERERFPUOBUjbgCJ3XWExERERGpUgqcqhFngwjNcRIRERERqVoKnKqRsEA/ABLT1VVPRERERKQqKXCqRpylegnpyjiJiIiIiFQlBU7VSHig5jiJiIiIiHiCAqdqJEztyEVEREREPEKBUzWiduQiIiIiIp6hwKkacTaHUFc9EREREZGqpcCpGnGW6injJCIiIiJStRQ4VSP5S/UcDoeHRyMiIiIiUnsocKpGnIFTts1BWpbNw6MREREREak9FDhVI4G+FnwtJkCd9UREREREqpICp2rEZDK5GkRoLScRERERkaqjwKmacZbrJaSrs56IiIiISFVR4FTNhDs76ynjJCIiIiJSZRQ4VTPOluSa4yQiIiIiUnUUOFUzYVat5SQiIiIiUtUUOFUz4bnNIRJUqicinmC3w6k9oLXkRESkllHgVM04S/US1RxCRDxh1cswsxts/MzTIxEREalSCpyqmXCV6omIJx3dYDzGbfboMERERKqaVwROr732Gk2bNiUgIIDevXuzZs2asx779ddf06NHD8LDwwkKCqJLly58+OGHVThaz3K1I1epnoh4QvJx4zH1pGfHISIiUsU8HjjNnTuXyZMn8/jjj7N+/Xo6d+7MiBEjOHHiRJHH161bl4cffpjVq1fz999/M2HCBCZMmMDChQureOSeERqowElEPCglN3BKO+XZcYiIiFQxjwdOL730ErfeeisTJkygffv2zJo1C6vVynvvvVfk8UOGDOGyyy6jXbt2tGjRgnvuuYdOnTrx22+/VfHIPcO1jpNK9USkqjkckBxnbCtwEhGRWsbHkxfPyspi3bp1TJkyxbXPbDYzdOhQVq9eXeL7HQ4HP//8Mzt27OC5554r8pjMzEwyMzNdz5OSkgDIzs4mO9vzwYdzDKUdS7CfCYCE9CyvGL94TlnvHZH8ynX/ZCTim5MOgCP1JDm692ot/fsjFaH7R8qrMu6dspzLo4HTyZMnsdlsREdHF9gfHR3N9u3bz/q+xMREGjZsSGZmJhaLhddff51hw4YVeeyzzz7LE088UWj/okWLsFqtFfsAbrR48eJSHZeaDeBDaqaN73+Yj8XjOUPxtNLeOyJFKcv9E5xxhPNzt23JJ5g/f37lDEqqDf37IxWh+0fKy533TlpaWqmP9WjgVF4hISFs2LCBlJQUli5dyuTJk2nevDlDhgwpdOyUKVOYPHmy63lSUhKxsbEMHz6c0NDQKhx10bKzs1m8eDHDhg3D19e3xONtdgf/+dO4WfoNOZ+IYP/KHqJ4qbLeOyL5lef+Me37FbYZ2z72DEYNPw98AipxlOKt9O+PVITuHymvyrh3nNVopeHRwCkyMhKLxUJcXFyB/XFxccTExJz1fWazmZYtWwLQpUsXtm3bxrPPPltk4OTv74+/f+HgwtfX16v+spZ2PL5ASIAPyRk5pOZAjBd9BvEMb7uXpXop0/2TXrCTnm9WEgSGVMKopLrQvz9SEbp/pLzcee+U5TweLfTy8/Oje/fuLF261LXPbrezdOlS+vbtW+rz2O32AvOYajq1JBcRj0g+VvC5GkSIiEgtUq6M06FDhzCZTDRq1AiANWvW8Mknn9C+fXtuu+22Mp1r8uTJjBs3jh49etCrVy9mzJhBamoqEyZMAODGG2+kYcOGPPvss4AxZ6lHjx60aNGCzMxM5s+fz4cffsgbb7xRno9SLYUF+nKIdBLTszw9FBGpTVIKVgcocBIRkdqkXIHTddddx2233cYNN9zA8ePHGTZsGB06dODjjz/m+PHjPPbYY6U+15gxY4iPj+exxx7j+PHjdOnShQULFrgaRhw8eBCzOS8xlpqaysSJEzl8+DCBgYG0bduWjz76iDFjxpTno1RL4YF+gFqSi0gVU8ZJRERqsXIFTps3b6ZXr14AfP7555xzzjmsXLmSRYsWcfvtt5cpcAKYNGkSkyZNKvK15cuXF3j+1FNP8dRTT5Vn2DVGmNWXlqbDZJ2OABp5ejgiUls413Ay+4A9R4GTiIjUKuWa45Sdne1quLBkyRIuvvhiANq2bcuxY8eKe6u4QazlDD/4PczQP2/39FBEpDZxZpwi2xiPCpxERKQWKVfg1KFDB2bNmsWKFStYvHgxI0eOBODo0aNERES4dYBSWBvbLgJM2USk74OUE54ejojUBg5H3hyn6PbGY+rJsx8vIiJSw5QrcHruued48803GTJkCNdeey2dO3cGYN68ea4SPqk8jbL35z2J2+yxcYhILZKZBNm5iwRGdzAelXESEZFapFxznIYMGcLJkydJSkqiTp06rv233XYbVqvVbYOTokVn7M17ErcFWpznucGISO3gnN/kHwZhsca2AicREalFypVxSk9PJzMz0xU0HThwgBkzZrBjxw7q1avn1gFKYXVS9+Q9Oa6Mk4hUAef8ppAYsNY1thU4iYhILVKuwOmSSy7hgw8+ACAhIYHevXvz4osvcumll9aq9ZQ8IieToOT9ec/jtnhsKCJSizjnN4VEgzV3LqsCJxERqUXKFTitX7+egQMHAvDll18SHR3NgQMH+OCDD3jllVfcOkD5h1O7MTtyyHEYf3SO+O1g03pOIlLJXBmn+mCNNLbTThlNI0RERGqBcgVOaWlphISEALBo0SIuv/xyzGYzffr04cCBA24doPzDiW0AbDO3ItkRiMmeDSd3eXhQIlLjOec4BUfnlerZcyAj0XNjEhERqULlCpxatmzJt99+y6FDh1i4cCHDhw8H4MSJE4SGhrp1gPIPJ7YC4N/wHLY7jAnaOcf+9uSIRKQ2yJ9x8g0E3yDjucr1RESklihX4PTYY49x33330bRpU3r16kXfvn0BI/vUtWtXtw5Q/iE349SsfU/2WZoBsGfTH54ckYjUBvnnOAEEOec5nfbMeERERKpYudqRX3nllQwYMIBjx4651nACOP/887nsssvcNjgpQm7Gybd+B+q1SoKdC0ncvwG73YHZbPLw4ESkxsqfcQKjQUTCQUjTIrgiIlI7lCtwAoiJiSEmJobDhw8D0KhRIy1+W9myUuHMfmO7Xnt69vaBndAkZy+LtsYx8pwYjw5PRGqw/HOcQJ31RESk1ilXqZ7dbmfatGmEhYXRpEkTmjRpQnh4OE8++SR2u93dYxSn+O3GY1AUBEUS1KgjANGmBD7+eR2OyuxulZEI398Lh9dV3jVExDtlJkN2qrEdkvsLmvyd9URERGqBcmWcHn74Yd59913++9//0r9/fwB+++03pk6dSkZGBk8//bRbBym5cuc3Ua+d8egfgi28KZaE/eQc38LK3b0Z0Cqycq7953uwbjYkHobrv6yca4iId0o+bjz6h4JfblMIZZxERKSWKVfg9P777/POO+9w8cUXu/Z16tSJhg0bMnHiRAVOlcUVOLV37bLEnAMJ+2lnOsjry3dXXuB0+E/j8ZRan4vUOs7AyVmmB3ktyVMVOImISO1QrlK906dP07Zt20L727Zty+nT6rBUaXIbQ7gyTgDR5wDQ3nyQVXtO8dfBM+6/rsORFzglHIScLPdfQ0S8lzNwCsk3jzJIpXoiIlK7lCtw6ty5M6+++mqh/a+++iqdOnWq8KDkLIrIOBFjBE69g4yOV68v3+P+6yYdgZTcH5wcdiN4EpHaI6WIwEmleiIiUsuUq1Rv+vTpXHjhhSxZssS1htPq1as5dOgQ8+fPd+sAJVfa6bx2wFH5sn3RHQBomH0AH5ONxVvj2BmXTOvoEPdd25ltcjq9FyJbuu/8IuLdiso4uQIntSMXEZHaoVwZp8GDB7Nz504uu+wyEhISSEhI4PLLL2fLli18+OGH7h6jQF5HvbBYCAjN2x/eFHyDMNsyuaFlNgBvuDvrdOSfgVMlZLVExHu55jjlD5xUqiciIrVLuQIngAYNGvD000/z1Vdf8dVXX/HUU09x5swZ3n33XXeOT5yKmt8EYDZDtFG6N76l0S543sajHDqd5r5rO1uQOxe+PKXASaRWKS7jlJEItuyqH5OIiEgVK3fgJFXsn63I88ttENEkex8DW0Viszt469e97rmuLQeObTC2z7nCeDztpnOLSPVQ1BynwHDAZGynqSmQiIjUfAqcqouiGkM45c5zIm4LdwxpAcDcPw9xIjnDDdfdCtlp4B8GrUcY+1SqJ1K7uDJO9fP2mS15LclVriciIrWAAqfqwOE4e6keuDJOxG2mb/MIujYOJyvHznu/7a/4tZ3zmxp2hYhWxrZakovUHpnJkJVibOdfxwnUWU9ERGqVMnXVu/zyy4t9PSEhoSJjkbNJiYP0M2AyQ2Trwq/nznEi6Qim9DNMHNKSWz/4k49+P8AdQ1oQFuhb/ms75zc17GGU6fhajQxUwkF11hOpDZLjjEe/EPAPLviaOuuJiEgtUqaMU1hYWLFfTZo04cYbb6yssdZezmxT3ebgG1j49YAwCG/sOvb8tvVoEx1CSmYOH67eX7FrOzNOjXqAyWSMAVSuJ1JbuOY3RRd+TRknERGpRcqUcZo9e3ZljUOKU1xjCKfoc4ws0PHNmJsO4I4hLbh37gbeW7mfmwc0J9DPUvbrZiRB/A5ju2EP47Fuc4jbrM56IrVFUfObnFyBk5pDiIhIzac5TtWBa35TEY0hnFwNIjYDcFGn+sTWDeR0ahafrT1YvuseXQ84jGxWcJSxz5VxUmc9kVrBtYZTMRmnVJXqiYhIzafAqToobcYJIG4LAD4WM/8aZHTYe/vXvWTl2Mt+3cPOxhA98vZFGOdUqZ5ILZF8zHjM34rcSaV6IiJSiyhw8nZ2O5zYbmwXm3HKDZxObAO7DYAruzciKsSfo4kZfLvhSNmvfSS3MUSjfIFTXWfgpIyTSK2QktscoqjAKSjSeFTgJCIitYACJ2+XeBCyU8Hil1cmV5S6zcAnEHLSXUFNgK+FWwY0A2DWL3uw2R2lv67DUXTGyTkGtSQXqR1KNcdJpXoiIlLzKXDyds4yvcjWYCmmrbjZkteWPHeeE8DYPk0IDfBhb3wqC7ccL/11Ew9B6gkw+0D9Tnn7nS3JHXZIOFCGDyIi1VKxc5ycC+CqOYSIiNR8Cpy8XXEL3/6Tq0HEFteuYH8fxvVrCsDry3fjcJQy6+TMNkWfU7AFeoGW5CrXE6nxis045SvVK+2/LSIiItWUAidvV5rGEE7OeU7HNxfYPaF/MwJ9LWw+ksSKXaUsqSlqfpOTM3BSS3KRmi0rFbKSje3i1nHKyTCOFRERqcEUOHk7V+BUTGMIpyIyTgB1g/y4plcsAK8t21266xY1v8lJnfVEagdntsk3CPxDCr/uFwQWf2NbDSJERKSGU+DkzWzZcHKnsV2WUr3Eg5CRWOClWwc2x9di4o99p1l3oIT5CLZsOLbB2C4u46RSPZGazVWmV0RHPTBKd9VZT0REagkFTt7s9F6wZRm/7Q1rXPLxgXUgtJGxHbe1wEsNwgO5rGtDAF5fVkKmKG6LUXoTEJbXfjw/5z6V6onUbCklBE6Qr0GEAicREanZFDh5M1djiLZgLuUflatcb3Ohl/41uAUmEyzdfoIdx5PPfo4jzjK97kVf11mql3hILclFarKSMk6gRXBFRKTWUODkzcrSGMIpJrdBRBGBU4uoYEa0N34A+uSPYlqJH85tDFHU/CYw2hL7BqkluUhN52pFXlzgpFI9ERGpHRQ4eTNXxqkUjSGcztIgwmlsH6Pk7+u/jpCeZSv6HM6MU1Hzm6BgS3KV64nUXGXJOKVqEVwREanZFDh5s/JknJwtyeO2gt1e6OX+LSKJrRtIckYOP246Vvj96Ql5DSkadj/7dSLUIEKkxivVHCeV6omISO2gwMlbZafnBSVlyTjVbWG0B85OhTP7Cr1sNpu4pqeRdfp0zcHC7z+63nis0zSvW1aR13EGTso4idRYpck4BSlwEhGR2kGBk7c6udOYQxRYx5hTVFoWn7wM1VnK9a7q3giL2cS6A2cKN4koaX6TkzrridR8yXHGY7FznJyBUwnLHIiIiFRzCpy8Vf6Fb02msr3XVa5XdOBULzSAoe3qAUVknUqa3+SktZxEarasNMjMXQ+uVKV6muMkIiI1mwInb+VqDFGG+U1OxbQkd7q2V26TiPWHycjObRLhcMBhZyvyEgIntSQXqdmc85t8reAfcvbj1FVPRERqCQVO3qo8jSGcimlJ7jSwVRQNwwNJyshhvrNJxJn9xm+Nzb4Q07H4a+RvSX5mf9nHKCLeLf/8puKy3s6MU/oZsJ+lU6eIiEgNoMDJW+Uv1SurerkZpzP7IbPohW4tZhPX9IwF8pXrHcmd3xTTEXwDir9G/pbkKtcTqXlKs4YTgLWu8eiwG105RUREaigFTt4oI8kogQOIalv29wdFQEh9Yztu61kPu6pHLBazibX7z7ArLjmvTK+k+U1OEeqsJ1JjlaajHoDFFwLCjG2V64mISA2mwMkbxW83HkPq5/02t6xKMc8pJiyA89oaTSI+W3sorzFESfObnJyd9ZRxEql5SrOGk5PWchIRkVpAgZM3qkhjCKcSOus5XZfbJOK7dftwHPvb2FnajJOzVE8tyUVqntJmnECd9UREpFZQ4OSNKjK/yamUgdOg1lE0CAugQcYeTLZMY90oZ0BUEmdnPZXqidQ8pZ3jBOqsJyIitYICJ2/kloyTs1RvC9jtZz3MYjZxdc9Yuph3Gzsadi/9ulHOACvxMORkln+sIuJ9ypVxUuAkIiI1lwInb1SRVuROka3A4gdZyZB4sNhDr+4RS1ezkTU6XadT6a8RHA1+wbktyQ+Uf6wi4n3KNMcpdy5mqgInERGpuRQ4eZuUeEiNN7bL01HPyeILUW2M7RLK9RqEB9LXfx8AixIalf4aJhPUbWZsq1xPpObIToeMRGM7OLrk44NUqiciIjWfAidvE5+bbarTFPyCKnYu5zyn42fvrAdA2mlico4AMGt3OJk5ZVjEUms5idQ8zjI9n8C8VuPFUameiIjUAgqcvI07GkM4laIlOQBH1gNwiPrsTw9g4Za40l/D2ZJcnfVEao6U3H8DQqJLN+dRXfVERKQWUODkbdzRGMKplJ31nOs3pUR1BuDTP4qfE1VAhNZyEqlxko8Zj86FtEuirnoiIlILKHDyNm7NOOUGTqf3Qlbq2Y87bARO9TsMwGSC1XtPse9kMcfn5yrVU8ZJpMZIzs04lWZ+E+Q1h0g7XTnjERER8QIKnLyJw+GejnpOwVEQVA/Id96irnlkHQDhLfsxpHUUAJ+tLWXWyVmqp5bkIjVHmTNOuaV6WSmQnVE5YxIREfEwBU7eJOkIZCaB2QciWrnnnDHOcr2zzHM6vRfSTxuty2PO4dpejQH48s/DZOWcff0nl+B6akkuUtPkn+NUGgFhxr9boHI9ERGpsRQ4eRNnViiiJfj4ueec+RfCLUputomYTuDjz3lt61EvxJ9TqVks3lqKJhFqSS5S85Q142QyqbOeiIjUeAqcvIk7G0M4ldSSPHd+E416AOBjMTOmZywAn64pY7meOuuJ1AxlneME6qwnIiI1ngInb+LOxhBO+TNODkfh13M76tGwh2vX1T1iMZngt90nOXCqFE0itJaTSM1S1owT5Auc1CBCRERqJgVO3qQyMk6RbYy5B5mJRgOH/HIy4fgmY7tRd9fu2LpWBrZyNok4VPI1XC3JlXESqfayMyAjwdgu7RwnUKmeiIjUeAqcvIXdBvE7jG13Zpx8/IzgCQrPczq+CWxZxg88dZoVeOm6Xka53hd/Hiq5SURdreUkUmOkHDcefQIgILz073MGTqkq1RMRkZpJgZO3SNgPORnGDyt1mrr33K5yvU0F9zvnNzXsbkzuzuf8dtFEBvtzMiWLpdtKaBLhLNVTS3KR6i///KZ//LtQLGWcRESkhlPg5CVMJ7YbG1FtwGxx78ldLcn/kXEqYn6Tk6/FzNU9GgHwaUnlegVaku+v4GBFxKPKM78JICjSeFTgJCIiNZQCJy9hiq+ExhBOZ2tJ7uqo152iXNPTWNNpxa54Dp1OO/v5TSY1iBCpKcq6hpOTMk4iIlLDKXDyEnmBkxsbQzg5W5Kf2g3Z6cZ26ik4s8/Yblh04NQ4wsrAVpE4HDC3pKyTM3BSS3KR6q28GSdrXeNRgZOIiNRQCpy8hCk+t1SvMjJOwdHGb4Md9ryW586FbyNaQmCds7712l5G1unzPw+RbSumSYQ664nUDOVZwwnAqlI9ERGp2RQ4eQGzPTsv4KiMjJPJlJd1cpbrFTO/Kb+h7aKJDPbjRHImP28/cfYDVaonUjOUO+OUr1SvqDXjREREqjkFTl4gKPM4JnsO+IdCaMPKucg/AyfX/KbiAyc/HzNXdjdak3+65uDZD3S2JD+lwEmkWqvoHCd7DmQkundMIiIiXkCBkxcITc9dmLZeu7K1/y0LV4OIzcZvg52leiUETgDX9DQCp192xnP4zFmaRDhL9RIPGQtoikj15Mw4BceU7X2+AUZ3TVC5noiI1EgKnLxAaEa+wKmyuFqSbzYaOGQkGGtGOTNRxWgaGUT/lhHFN4kIisr9ockBCQfcNmwRqUI5mZB+xtgOKWPgBPkaRJx235hERES8hAInLxDiCpwqoTGEU2QbMFmMH4q2zTP21e8MFt9SvX1s7yYAfPj7AVIycwofkL8luTrriVRPyceNR4t/sU1jzso1z+mk+8YkIiLiJRQ4eYHQ9CPGRmVmnHwDILKVsb3+A+OxhMYQ+Y3oEEPzqCAS0rL5cPVZMkquznqa5yRSLeWf31SesmF11hMRkRpMgZOnZaUSlJXbra4yM06QN8/JuX7TWRa+LYrFbOLOIS0BeHvFXtKyisg6uTrrKeMkUi05M05lnd/kpEVwRUSkBlPg5GGmkzsAcARFQVBk5V7sn/OZypBxArikSwMa17VyOjWLT/4oosOeq7OeAieRaskZOJVnfhPkBU6pKtUTEZGaR4GTp+UufOuIalv518ofOAVFQXjjMr3dx2LmznON4OjNX/eSkW0reIAr47SvIqMUEU9JqWDgFOTMOKk5hIiI1DwKnDzMFL8NAEdUJc5vcnKW6oGRbSrHHIbLujaiYXgg8cmZhTvsqSW5SPXmroyTSvVERKQGUuDkYaaqzDiFNsjrlFWG+U35+fmYuX2IESDN+mUPmTn5sk5BUeAXAjjgzP6KjVVEqp7b5jipVE9ERGoeBU4eZjphZJyoioyTyQQtzjfakrcaXu7TXNW9EdGh/hxLzODLdYcLnr9uM2NbnfVEqp8KZ5zUVU9ERGouBU6elHYaU+6cgirJOAFcPBPu2Wis4VROAb4W/jXIyDq9sXwP2TZ73ouuluRqECFS7VR0jpNK9UREpAZT4ORJuWV6ab4R4B9SNdf0s0J4bIVPc22vxkQG+3P4TDrf/HUk74W6WstJpFrKycoLeELql+8czsApIxFs2e4Zl4iIiJdQ4ORJJ7YCkBTYyMMDKbtAPwu3DTLK8l5ftpscZ9bJ2VlPLclFqhfn4rcWv7y5kGUVGA6m3P9W1FlPRERqGAVOnpQ7vyk5oPoFTgBjezehjtWX/afS+OHvY8bOCGWcRKql/I0hytFxEwCzJS/oUrmeiIjUMAqcPKnHTdgueIGj4WVbiNZbBPn7cMtAI8M08+dd2OyOvFK9xMNqSS5SnbjmN0VX7DzqrCciIjWUAidPiu6Avdt4EoJaeHok5XZj3yaEBviwJz6VnzYfg6BItSQXqY4q2lHPSZ31RESkhlLgJBUSEuDLTQOMuU6v/rwbuwOIyJ3npM56lSsjkbC0fZ4ehdQUFV3Dycla13hU4CQiIjWMAiepsAn9mhHs78P248ks3haX1yBC85wqleXHfzNkx+OYDq729FCkJnBbxim3VC9VgZOIiNQsCpykwsKsvozr1wQw5jo5nPOc1Fmv8tjtmPYtA8B06A8PD0ZqhIqu4eSktZxERKSGUuAkbnHzgOZY/SxsPpLEtqzcOQ7KOFWeU7sxZSYDYDq108ODkRrBXRmnIM1xEhGRmskrAqfXXnuNpk2bEhAQQO/evVmzZs1Zj3377bcZOHAgderUoU6dOgwdOrTY46Vq1A3y4/o+Rtbpgx0WY6cCp8pzdH3e9kkFTuIGbpvjpK56IiJSM3k8cJo7dy6TJ0/m8ccfZ/369XTu3JkRI0Zw4sSJIo9fvnw51157LcuWLWP16tXExsYyfPhwjhw5UsUjl3+6dWBz/H3MLD4ebOxQS/LKc2Sda9N0chfY7R4cjFR7OVl5gY5K9URERIrk8cDppZde4tZbb2XChAm0b9+eWbNmYbVaee+994o8/uOPP2bixIl06dKFtm3b8s4772C321m6dGkVj1z+KSrEn+t6N+YUoaSZrKgleSXKHzhlp0KSfnEgFZCa+4sqsy8E1q3YuVyB0+mKnUdERMTL+Hjy4llZWaxbt44pU6a49pnNZoYOHcrq1aXrFJaWlkZ2djZ16xb9n31mZiaZmZmu50lJSQBkZ2eTnZ1dgdG7h3MM3jAWd7ipX2M++v0Ae2z16GjeT86JHTjqVN91qrySLQuf45swAdkWK762NHKOb8ERVMFMgdQq+f/tMZ05jA/gCK5Hjs0GNlv5T+wXhi/gSDtFTlYWmExuGa94l5r2f5dULd0/Ul6Vce+U5VweDZxOnjyJzWYjOrrgSvXR0dFs3769VOd48MEHadCgAUOHDi3y9WeffZYnnnii0P5FixZhtVrLPuhKsnjxYk8PwW16RZrZfzqGjuxn+6r57FFzPbcKT9vLYFsWWZYgTga3o0Hin2xb8R17d2SW/GaRf1i8eDExCevoDZzJCWDF/PkVOp/FlsFFgCkng4U/fIPNEuCWcYp3qkn/d0nV0/0j5eXOeyctLa3Ux3o0cKqo//73v3z22WcsX76cgICi/3OeMmUKkydPdj1PSkpyzYsKDQ2tqqGeVXZ2NosXL2bYsGH4+vp6ejhu0TkhnR9f+RKAqCATbUaN8vCIahbzuvdgB1ga9yQ5PQwS/6RDlIW2+j5LGeT/t8f/7+OwD8IbtWFURe8jhwPH1rsx5WQwYmAPCG/sngGLV6mJ/3dJ1dH9I+VVGfeOsxqtNDwaOEVGRmKxWIiLiyuwPy4ujpiY4suOXnjhBf773/+yZMkSOnXqdNbj/P398ff3L7Tf19fXq/6yett4KqJplC+RjdvDkW85eXAb0TXkc3mN4xuNx4bdST5k/JbEfGoXZn2fpRx8fX2xpMUDYA5r4J77yBoBSUfwzUoE3Zc1Wk36v0uqnu4fKS933jtlOY9Hm0P4+fnRvXv3Ao0dnI0e+vbte9b3TZ8+nSeffJIFCxbQo0ePqhiqlNHgvr0BCM84xMZDCZ4dTE2T2xjC0aAbyQENjH0nd4DD4cFBSbXmrlbkTtbcOafqrCciIjWIx7vqTZ48mbfffpv333+fbdu2cccdd5CamsqECRMAuPHGGws0j3juued49NFHee+992jatCnHjx/n+PHjpKSkeOojSBFimnYAoKHpFLOWbPbwaGqQzGSI3wGAo35XUgLq48AE6WcgVevmSDm5a/FbJ6sWwRURkZrH43OcxowZQ3x8PI899hjHjx+nS5cuLFiwwNUw4uDBg5jNefHdG2+8QVZWFldeeWWB8zz++ONMnTq1KocuxQmKxOYXgiUrmd07t7DlaEc6NAjz9Kiqv6MbAAeExUJwPexmPwhvAgn7IX47BEd5eIBSLaW4O3DSWk4iIlLzeDxwApg0aRKTJk0q8rXly5cXeL5///7KH5BUnMmEJaIFHNtAU9NxZi7dzawbunt6VNWfc/2mBl1duxyRrTAl7DfK9ZoN9My4pHpze8YpN3BSFlRERGoQj5fqSQ1WtzkATU3HWbDlOFPnbcFm1zycCjm63nhsmBeEOiLbGBu5JXwiZWLLzgtw3DXHKUileiIiUvMocJLKE2EsfHt5E2N9oTmr9nPbB3+SmpnjyVFVb0eKCpxaGxsKnKQ8UuMBB5h98jJFFaXmECIiUgMpcJLKk5txaucfz+tju+HvY2bp9hNc/eZqjidmeHhw1VDKCUg8BJigQZe8/c6M08mdnhiVVHMm5/ym4Ggwu+m/BM1xEhGRGkiBk1SeukbGiVN7GdWxPp/e1ofIYD+2HE3i0tdWsvVo6RccE/KyTVFtwD/EtdsR0crYSD4GGYkeGJhUa+6e3wTqqiciIjWSAiepPLmleiQdhux0ujWuwzcT+9OyXjDHkzK4atYqlm0/4dkxVifOxhAN/9FkIyAUQuob2/HKOknZmFJyFyB31/wmUMZJRERqJAVOUnmsEeAfamyf2Q9AbF0rX93Rj34tIkjNsnHz+2v5YPV+jw2xWvlHR73TqVnsSDDhcDiMLBQYnfVEysLdrcghX+B0Guw2951XRETEgxQ4SeUxmVzznDi1x7U7LNCXORN6cXWPRtgd8Nh3W5j2/VZ13CuOw1Ggo15iejZj3l7D69ssLN52Im+eU/x2z41RqiVXxsmtgVNucwgckJ7gvvOKiIh4kAInqVzOcr3Tewvs9vMx89wVnXhgpPED/3sr9/GvD9eRlqWOe0U6sw/Sz4DFD1u9Dtzz2V/sP5UGwOd/HoEoZ2c9lepJGVXGHCeLLwTkLnitcj0REakhFDhJ5XJmnE7vKfSSyWRi4pCWvHpdV/x8zCzZFsfVb64mLkkd9wpxNoaI6cgLS/exfEc8/j7GX98Vu09y2pr7fVbGScqoUuY4Qb5yPS2CKyIiNYMCJ6lcrs56hQMnp4s6NeDTW/sQEeTH5iNGx71tx9Rxr4DcwGmff1veWG58L/97WQeahTiwO2De0dwuewkHITvdU6OU6shVqhft3vOqs56IiNQwCpykcrlK9fYVe1j3JkbHvRZRQRxLzODKN1axfIc67rnkNoaYtTscgH8Nbs5FnerTO8oOwEd/p+IIrAs44OQuDw1SqhuTw5a7AC55nRndRZ31RESkhlHgJJXLWaqXdDhvLsVZNI6w8vUd/enb3Oi4d9OctXy4er/RNa42s+XgOLYRgD+zmzKodRQPjGgLQJcIBwG+ZnbHp5IamhukxquznpSOf3YiJhxgsuRliNzFGTilqlRPRERqBgVOUrmCIqFhD2N76ZMlHh5m9eX9m3pxZXej496j323hvBd/4YWFO9h+PKlWBlE5x7dgykknyRGIrU4LZl7TFYvZBECgDwxvZ5RYbcvJnaOiluRSSgE5CcZGcDSY3fzfQVC+luQiIiI1gAInqXwjnzUeN3yUtxZRMfx8zDx/ZSceHNmWAF8z+06m8uqy3YycsYJh//uVGUt2svtEciUP2nv8tHA+AFtpwVvjehFm9S3w+uXdGgCw7FRuC2hlnKSUArITjA13z28CleqJiEiNo8BJKl9sL+g0xtj+6SFjTaISmEwm7hjSgnWPDOPla7owrH00fhYzu0+kMGPJLoa+9CsjZ/zKqz/vYv/J1Er+AJ7z1brDJO/9A4B6bfvROjqk0DF9mtWlQVgAm7NyM04KnKSU/F2Bk5vnN4G66omISI3j4+kBSC0xdCps+x4Or4FNX0Knq0r1tiB/Hy7p0pBLujQkKSObJVvj+OHvY6zYFc/248lsP57MC4t2ck7DUC7s2ICLOtUntq61cj9LFdl4KIEp32ziW7OxBlbzLoOKPM5iNnF5t0Z8teyIseP0HrBlG2vpiBTDlXEKroyMk7rqiYhIzaKMk1SN0AYwcLKxveRxyCp7lig0wJfLuzXivfE9+fPhYUy/ohMDW0ViMZvYfCSJ5xZsZ+D0ZVzy2kreWbGXzUcSScmsngvqnkjO4F8frsOck04b8yFjZ4NuZz3+iu6NOEZdUhwBYM8ptOCwSFECqiTjpMBJRERqBmWcpOr0nQTrPzDWGlr5Mpz7n3KfKszqy9U9Y7m6ZyynUjJZsOU4P2w8xh/7TrHxUAIbDyW4jo0O9ad5ZDDNooJoHhlEi6hgmkUG0ahOID4W7/vdQVaOnYkfred4UgYX14nDkm43FicNbXDW9zSLDKJHk7rsOdaAzqa9RrleVJsqHLVUR5U7xyl3zl2qAicREakZFDhJ1fENhGFPwhfjjMCp6/UQ3rjCp40I9mds7yaM7d2EE8kZLNh8nAWbj7PjeDKnUrOIS8okLimT1XsL/gDnazHRuK6V5lHBNM8NqppHBdO6XkihBgxVaer3W/jzwBlCAnx4vFs6rAQadgeTqdj3Xdm9Ebu/b0hn9uKI30HxR4tUcsYpKLdULzvVWJTZN9D91xAREalCCpykarW/BJoMgAO/weLH4Ko5bj19vZAAbuzblBv7NgUgMS2bvSdT2Bufyr6TqQW2M3Ps7IlPZU98wbJBi9lEn+Z1ubBjA0Z0iCYi2N+tYyzOx38c4JM/DmIywSvXdCVi81zjhYZdS3zvqE71efuHRgCcObiJupU5UKkRKnWOk38omH2M0tG00xDW0P3XEBERqUIKnKRqmUxGe/K3BsOWb6DnrdC0f6VdLszqS9fGdejauE6B/Xa7g6OJ6XkBVXwKe0+msjc+lSMJ6azcfYqVu0/x6HebqyyI+nP/aabO2wLAfcPbcG7berBwvfFiw+4lvj80wJew2A5wBDKObqu0cUoNYbfhn5NobFdGxslkMuY5pcQZ85wUOImISDWnwEmqXv1O0G0crJsNCx6E234Bs6VKh2A2m2hUx0qjOlYGtY4q8NqBU6n8uOkY8zcdY/ORpCoJoo4lpnP7R+vJtjm4sGN9Jg5pYfyW/sw+44AGJWecALp06wNHoE76fjKysgnwU2c9OYvUeEw4cJjMmJxlde7mCpzUklxERKo/75sZL7XDeY+Afxgc3wR/feTp0RTQJCKIiUNa8sNdA/nl/iE8MLIN5zQMxWZ3sHL3Kf7zzSZ6PbOUse/8zid/HORUSmaFrpeRbeP2D9dxMiWTtjEhPH9VJ0wmExzJzTbVbQGBdYo/Sa6unbuQhQ+BZLFy3V8VGpfUcCnHjcegepX3iwtXZ73TlXN+ERGRKqSMk3hGUCQMeQgWToGl06DDpRAQ5ulRFeIMoiYOacmBU6nM33ScHzcdLTITNaJDDGGBvtgdDnJsDmx2Bzl249H5ZTy3k2N3YM99vulIIhsPJxJu9eXtG3tg9cv9a3m09GV6ThYfX05bmxKVtpuNf/3B+X17VcJ3RWoCU0ocAI7g6MprJKKW5CIiUoMocBLP6XWrUa53cif8Mh1GPO3pERWrSUQQdwxpwR1DWpw1iCovswleu65bwcV7j6wzHssQOAEENmgHu3eTcXQrcUkZRIcGlHtcUoMl52acQmIq7xrOwClVpXoiIlL9KXASz7H4wohn4eMr4I9Z0H08RLby9KhKpaggatWek9jsDixmEz5mExazGYsZfMzmfPvyvvIfc367aPo0j8i7gMORV6rX8OwL3xYluGEH2P09LTjKN38d4fbBLdz4yaWmyJ9xqjTOuVPKOImISA2gwEk8q9VQaDUCdi2EhQ/D2M89PaIyyx9EuU3iYUg9YbRzjulYtvfmLnzb0nyEB9cd5l+DmhtzpkTyc85xCq6CjJMCJxERqQHUHEI8b8TTRoCwayHsWuLp0XgHZ5levfZlXzg0N3BqZTrC7hPJbDyc6ObBSU1QJRknBU4iIlKDKHASz4tsBb1vN7YXTgFbtmfH4w3K0RjCJaIlmMyEmtKIIoEv1x1y79ikZnDOcVLgJCIiUioKnMQ7DLofrJFGo4i173h6NJ53pAKBk48/1GkGQCvzEb7feIyMbJsbByc1gSvjVBXNIRQ4iYhIDaDASbxDYDic/6ixvezZ2t2Fy26Do7lrMJWxMYRLbrled+sJEtOzWbrthJsGJzVCwiFMzjlOYbGVd538gZPDUXnXERERqQIKnMR7dL3BaISQmQjLvLs1eaU6uQuyUsA3CKLalu8cuYHTeREJACrXk4L+/gyA+OB2ecFNZXCe254DGZprJyIi1ZsCJ/EeZguMfM7YXjcHjm/y6HDKJDMZ/v7CeKwoZ2OIBl2M70l5RBqBU1ufowD8sjOeE0kZFR+bVH8OB2w0AqdDdQdU7rV8A8Av2NhWuZ54gsNhdGxd/JiyniJSYQqcxLs07Q8dLgOHHRZMqR7/0WWlwYeXw9e3wNzrKz5mV+DUtfzniGoNQGDCbno0qYPdAd/8daRi45Ka4fCfcGo3Dl8rx8J7VP71rHWNRwVO4gkntsHqV2Hly5CozLuIVIwCJ/E+w6aBTwDsXwHb5nl6NMWz5cCXE+DwGuP53uWw/v2KnbMiHfWcIo3AidQTXNcxBIAv1x3GUR0CUalcGz8BwNHmQnIsZWx1Xx5WLYIrHrRrYd724bWeG4eI1AgKnMT7hDeG/vcY24segWwvLTFzOOCHe2DnAiPQ63K9sX/hI5BQzt9sZmfA8c3GdkUCJ/8QCG0EwIiYRAJ8zew6kcLfWtOpdsvJhM1fAWDvdE3VXFOd9cSTdi3O2z78p+fGISI1ggIn8U7974GQBpBwEH6cDHa7p0dU2M9Pwl8fgckMV86Gi1+BRr0gKxm+v6d8JXtxm8GebfywGd64YuPLbRARlLiHkR2MltNfrjtcsXNK9bbjJ6NJQ2hDHE0qeX6TkzNwqs2dMsUz0hPg4O95z5VxEpEKUuAk3skvCEa/bAQlGz42Mk/eVGb2x5uw4kVj+6IZ0HaU0cjhktfA4g97lhrjLqv86zeZTBUbY27gRPwOruxutJyet/Go1nSqzXKbQtDp6vI3HimrIJXqiYfsXQYOGwTWMZ4f+9vIuoqIlJMCJ/FerYfDxa8a27+/Bite8Ox4nDZ/DT89aGyf+wh0H5f3WlRrOPc/xvaC/0DS0bKd29kYoiJlek7OeU4nd9C3RQQNwgK0plNtlhIPu3PLljpfV3XXdTWHOF111xQB2LnIeOwyFgLrgi0zrxRaRKQcFDiJd+s6FkY8a2z//BSseduz49n7C3zzL8ABPW+FQfcVPqbvJCPwyUyE7+8tW6bM2RiiQTkXvs3PuQZU/E4sZhOXdzPmPGlNp1pq0xfGekoNu7u6LlYJ1xwnlepJFbLb835R0HoENOppbKtcT0QqQIGTeL++E2HQA8b2/PuN9ZI84dhG+Gws2LKg/SVwwXNFl9NZfOCS18HiZ3R0+ntu6c6fkQgndxrbDd0ROOWW6iUehMwULu/WENCaTrXWxk+Nx87XVu111VVPPOHYBkiNB78QiO2jwElE3EKBk1QP5/7HyPDggG9vh50LS3yLW53eBx9daTR+aDoQLnur+Dki9drC4Nxyvp8ehOTjJV/j6F/GY3jjvHkhFWGtm/dD66ldNI8KprvWdKqd4rbA8b/B7AvnXFG111ZXPfGEXbllei3OBR8/aJS7ZpkCJxGpAAVOUj2YTHDBdOh4tVFu9PmNsH9l1Vw7JR4+uhxST0B0R7jmY/ANKPl9/e+B+p0hIwF+/L+SS/aOuGH9pn/KV64HcGV3Z7leLVjT6dAaWPsu2NUMgw3G2k20HpE356iquLrqKXCSKuQMnFoNNx4bdgNMkHAAUjTPU0TKR4GTVB9mM1z6OrQeCTkZ8Ok1cHRD5V4zMxk+vhJO7zUyQdd/CQFhpXuvxdco2TP7wvYfXOvnnJU7G0M4OeeyxG8H4MJO9fH3qQVrOmWlwSdjjFb28+/3ro6MVc2WY8xvAuhShU0hnJzZ08xEsGVX/fWl9kmJz/tFVMuhxmNAWN4vkrSek4iUk4+nByBSJhZfuGoOfHQFHFhpPN60ACJbuf9aOVkw9wajVt4aAdd/AyExZTtHzDkw6H5Y/ozxA3yzwRAcVfSxR9zYGMLJ+YNC7typ0ABfRp4Tw3cbjnLNW78TExZAVLA/USFFfAX7Uy/En7pBfvhYqtnvWDZ9Dum5Xdz+fNf4cxv8gGfH5Cl7l0FKnHEPtxxW9dcPCDOWFXDYjc56IdFVPwapXfYsBRwQ0wlC6+ftb9QD4rcZ5XptR3lseCJSfSlwkurHNxCu/RTeH200bPjgUrh5IYQ1ct817Hb49g7jh07fIBj7BUS2LN+5Bk6Gbd9D3CaY/39w9QeFj0k6BslHjR8w63eu2NjziyyYcQIY368pP20+Tnq2jX0nU9l3MrXYU5hMEBHkR1RIAFEh/nRqGMatg5oTFujrvnG6k8MBv88ythv3g4OrYNnTEBQFPSZ4dmye4GwKcc6VxlyPqma2GOvopJ0yOuspcJLK5pwD23pEwf2NesJfH8IRZZxEpHwUOEn1FBAG138N742EU7uM4OmmBe5pquBwGAvubv4SzD4w5sOKlc9ZfOHS1+Dt82Drd7DlW+hwacFjnG3Io9qBf3D5r/VPzs56p/cZGTQfP7o2rsPGx4ZzPCmD+ORMTiQbj86vE87tlExOpWRid8DJlCxOpmSx7Rj8ujOeT9cc5IGRbbiqeyxmcwUX6nW3vcuN3yr7BhkB9upX4dfnjbK9oChod5GnR1h1MhJh+4/Gdpcq7qaXnzUyN3DSPCepZLac3IwTefObnJwNIo6sN+Y+VtUi0CJSYyhwkuorKBJu+CYveProchj3AwSEVuy8q14xFtwFuPQNaHl+xcdavzMMmAy/TjcaRTQdCEERea+75jd1rfi18gupD/6hkJkEp/dAvXYABPpZaBYZRLPIoGLfbrM7OJWaF1QdTcjg3d/2sic+lQe/2sTHfxxk6sUd6Na4jnvHXRF/5Gabuo6FwHA492GjVG39B/DlTXDjt9CknydHWHW2fGPMB4xqC/W7eG4c6qwnVeXwWuMXBoF1Cv/CK6ot+AVDVoqRhY/u4Jkxiki1Vc0mLoj8Q3is8YOwNcIo2/v0WshOL/t5Uk/CnmWw5AlY/Jixb/jT0Olq94110P1Qr71RrvTTP+bbVEZHPTDq7Ioo1ysti9lEvZAAOjQIY0ibelzn9yuL+mzmkVFtCfb34e/DiVz++ir+7/ONnEj2grWhTu2BnQuM7V7/Mh5NJrjwf9BmFNgyjaYicVs9N8aqtPEz47HztUWvOVZVnJ38FDhJZduVW6bXcmjhjJLZkrdGntqSi0g5KHCS6i+ylVG25xcCB36DLyacvXuX3W78cL3lG1g6DT6+Cl5sC8+3gA8vhd9eMo7rdxf0m+Tecfr4wSWvgclilAFu+yFvTEcrKXCCQi3Jy+3IOvjuTiyLH+aW4JX8fN9gV3vzr9Yf5rwXfuHtX/eSlWOv4IAr4I83jcdWIwrOSbP4wJXvQeO+xm+jP7ocEg669dIpmTlc8tpKJsxeg83uBV38Tu+Fg6uNeXOdxnh2LM4SWrUkl8q2a7Hx2GpE0a9rIVwRqQAFTlIzNOgC130GPgGw8yf47k7ISoXD6+DP2fDDZHhnGDzbCGZ2gy/Gw4oXjbU+ko8Z56jbHNpfAhf9D4ZOq5xxNuwG/e82tn/4t9Fl7PRe44d5nwAjI+VuzpbkJ3eU/xwOByx6LO/5Tw9RL+sIL1zVmW8m9qNzozBSMnN4ev42Lnj5V37dGV+xMZdHRiJs+NjY7nN74dedTUWi2hl/5h9ebnz/3eS1ZbvZeCiBZTvi+fzPQ247b7k5s03NhxTsLOYJKtWTqpB4BOI2A6azl1i7Aic1iBCRstMcJ6k5mg6Aq96Hz66Dv+caX0VxBigxHXO/OkF0e/APqZpxDn4Its83ApkFU/L+g4/pZDSScLfI3AYR8RUInHYtMrJ5Fn+jxfqRdfD1bXDTQro2rsM3E/vz5brDPLdgO3viU7nxvTUMax/Noxe2p3GE1T2foyR/fWTMXYhqC83PLfqYwDpw/Vfw7nBjXtzHV8G4eeBX/Fyvkuw/mcq7K/a5nr+wcAcXdqpPaICHOg/a7Xnd9Dp7YO2mf1LgJFXBuehto55nX+i5YW6DiPjtkJ5gzIMUESklZZykZmkzEi6bZZQngdFFrcV50P8euOJduHMNTDkCty2Di1+BXrdC495VFzQB+AbkluyZ4e/PYOUrxv7KKNODvM56J3cZnaTKypaTN++rz+1GcOofZrT0XfECAGaziat7xvLzfUO4eUAzLGYTi7fGMfR/v/Dioh2kZ5XjumVht+U1heh9e/HzecIawg1fG0HUkT+N7GMFF2Z9ev42smx2BrSMpHlUEKdSs3j1590VOmeFHFxtlCL6hUDbCz03DidX4HTSs+OQms1Vpjf87McER0Gdpsa2s0RaRKSUFDhJzdPparhnI/zfTrh/t9F5b9g06HilEURYvCDRGtsT+t5pbMdtMh6dk5bdLbyxkWWzZcKZ/WV//8ZPjN/OBtYxOgOGx8JFuXPBfpkOh/LmCoQF+vLoRe1ZcM9A+reMICvHzsyfd3P+i8v5fuNRcmyVNP9px09GoBBYp3TzeaLawHWfg0+g8VvqeXcb5YjlsGJXPIu3xmExm5h6cXsevdAot5y9ch/7S1gjq9I4s00dLgG/Ksr4FceaO8dJGSepLDmZxlIEAK2LCZwgX7neukodkojUPAqcpGYKb+z9C22e+zBE5GtgUFkZJ7MFIloZ2yfL2CAiKxV+ftrYHnR/XllLxyuh41XgsMHXt0JmSoG3tYoO4aObezPr+u40qhPI0cQM7vr0L7o+uZiJH6/j87WHOJ7oxi58v79hPHYfX/pAIbYXXDXHaNax8RNYMrXMl8222Xnie6ND3419m9CyXgjntq3H4NZRZNscPD1/W5nPWWFZacZaYXDWMj2Hw8HLS3fz5jYzU7/fxlu/7mHB5mNsPpJIYnrFsm9FcnXVc9+cMpECDqyC7FQIjjHKnovjLNdTgwgRKSMv+NW7SC3lG2iU7M2+AEIaGM0pKktUGyOzFb8D2lxQ+vetfh1SjkN4E+h5S8HXRr0AB1bDmX2w8D9G6WM+JpOJkefEMKRNFG/+spfZq/aRkJbN/E3Hmb/pOABtY0IY3CaKIa3r0b1JHfx8yvG7nGN/G/OvTBboeWvZ3ttmpDHu7+6ElTMgOBr6Tiz12z/6/QC7T6RQN8iPe4e2du1/9KJ2/DbjJIu3xrFy90n6t3TDwsyltf1HyEo2fnnQuG+Rh/xvyS5eXb4XMLN1TeFGFqEBPjSOsBJbx0psXSuxdQKNx7pWGoYHEuBbxoVDnaV6qSeNzJ4nW6NLzeSc39RqaMn3V/7OerofRaQMFDiJeFLjPvCvFeAfXLn/eUeVo0FESrwRTACc/xj4+Bd8PTDcmE/2/mhY/z60HlHkfJoAXwv3DG3FpPNasvFwAr/siGf5znj+PpzA9uPJbD+ezJu/7CXIz0L/lpEMbhPF4NZRNKpTysyRc25T+0uM+Utl1fV6SDkBS5+AhVMguJ6RUSvBqZRM/rfYyODdN7wNYYF5jSBa1gvhhj5NmLNqP9O+38qPdw/Ax1JFCX5XU4hrwVz4mp+tOcgrS3cBcF59O61bteBIYiaHTqdx+EwaJ1OySMrIYfORJDYfSSryEo3qBDJjTBd6ND3LBPx/crYjt2UaWUz/4DJ/LJFiuQKns7Qhzy+mo9HoJj23q2lEi8odm4jUGAqcRDwt5pzKv4arQUQZAqdfnjO61DXoCh0uL/qYZgONNa9WvQLz7jJKYM5SImkxm+jWuA7dGtfh38Naczo1ixW74vllRzy/7IznVGoWi7bGsWhrHAAt6wUzuHUUQ9pE0atZXfx9ishypMTDpi+M7T6lzxQVMuDfkBJnBGHf3G6UlrU4r9i3vLh4J0kZObSvH8qYnrGFXr93aCu+3XCEHXHJfLb2ENf3aVL+8ZVW0jHYu8zY7nxNoZeX7TjBw99uBuDOIc1pnbmTUcNa4eubF/SlZuZw+Ew6h06ncehMGodOp+c+Gl+pWTYOn0nnqR+38c3EfphKE/D7Wo15djkZxjwnBU7iTqf2wKndYPYx2u+XxMcP6neGw2uMtuQKnESklBQ4idQGrpbkO0tXmnJyN6ybbWwPm1Zk5sLlvEdgzzKjFPC7O2HsF6XKntUN8uOSLg25pEtD7HYHW44msXzHCX7ZGc/6g2fYfSKF3SdSePe3fdSx+nJZ10aM6RlLm5h8HRDXzQZbljE/LLZnidc8K5MJRjxrZJ62fA1zb4AJ840froqw5Wgin64xFtCdenEHLObCnzfc6se/h7bm8XlbeGnxTkZ3blAgK1Up/p4LDjvE9ilU+rnpcCJ3frwem93BFd0acc95Lfjpp8Jz3oL8fWgTE1Lw+5zL4XBw6HQ6w2f8woZDCazYdZJBraNKHpfJZJTrJR0xOuvVqYIgUmoPZze9xn0hILR072nUMzdwWgudPbxAtIhUG2oOIVIb1G1uzAHKSoakoyUfv/QJsOcYZS/NBhV/rI8/XPG2UfqyezGsfafMwzObTXRsFMZd57fiyzv68dejw3ntum5c3aMRUSH+nEnL5r2V+xgx41cue30lc9ceJDUtLe9aFck25Q3CKD1sPsTItP14X5Gd9hwOB098vxWHAy7qVJ9ezc5ernZd78a0rBfM6dQsV3lcpXE48sr0ulxb4KVDp9OYMGctaVk2BraK5NnLO5YuU/QPJpOJxhFWxvY2Ap9Xlu7CUdpuhK6W5GoQIW7mKtMroZtefo3UIEJEyk6Bk0ht4OOXV45SUrneoTWwbZ6xztTQqaU7f712RmYKYNEjFVtsFwiz+nJhp/pMv7Izv085n9njezKiQzQ+ZhN/HUzgwa82Me2/T0NKHFnWaBztLq7Q9Vx8/OGyN40g8PAa2PdLoUN+3HSMNftOE+BrZsqodsWeztdi5tGLjPbk76/az974lGKPr5BjG4y28RZ/6HCZa3dCWhbjZq/hZEom7eqH8vrYbuVrwpHPvwY1x8/HzJ8HzrB6bylbjGsRXKkMWamw/zdju3Up5jc5ORtExG2G7HT3j0u8y74V8NGVcOaAp0ci1ZwCJ5HaIjK361txQY3DYQQ+AF3GQnT70p+/123GvKCcDKNFeU5W+ceaj8Vs4ty29Xjzhh6smnIeD13QluYRVsbyIwAzEgczYuZq3v1tH6dT3XDNkBijrTkY61Tlk55l49n52wG4fXALGoYHlni6wa2jOK9tPXLsDp7+sRLbk2/8zHhseyEEhAGQkW3jlvf/ZG98Kg3CApg9vichARUvF6wXGsB1vRoDlD6Tlr+znoi77FthNB0Jb5z3b1xphDUyWpfbc+DYxsobn3iHZU8bFRGrXin5WJFiKHASqS1K01lv+w9w6A9jYdhzHy7b+c1muOR1YxHaYxvhl/+Wf6xnUS8kgNsHt2Dp1QF0Mu8j2+TH1+ah7IxL4ckfttLnmaVM+mQ9v+06id1evgVtAeh/D1j84MDKvN9mA2/+uocjCek0DA/kX4NKP6H84Qvb4WM2sXT7CX7dGV/+cZ1NTlZek4wuxtpNdruDyZ9v4M8DZwgJ8GHOTb2ICQtw2yX/Nbg5fhYzv+89zR+lyToFaRFcqQS7FhqPrYaXrTOpyaRyvdoiPcGopABjuQZ7JS3ELrWCAieR2iKqrfF4tkVwbdl5i8D2mwSh9ct+jdD6cNEMY3vFS8ailJXA9Iex4K1v12tY+J/LefLSc+jYMIwsm50f/j7G9e/+waDnl/H68t1k5tjKfoGwhtD1BmM7N+t0JCGdWb/sAWDKqLYE+pV+LaMWUcHc2LcpAE/+sJUcm5v/49692AhIgqOh+bkAPD1/G/M3HcfPYuatG3rQOrpws4eKqB8WyFU9GgEw8+fdJb9BpXribg5HXmOIssxvclLgVDvsXW4s1g6QfAyOrvfocKR6U+AkUlu4SvW2F/36+veNlr7WSOh3d/mv0+FSo8wPB3z9L8hILP+5ipJwELZ9b2z3vp2wQF9u6NOE7+8awA93DeDGvk0ICfDh8Jl0pi/YwWWvrWL3iXLMLRrwbzD7GvOcDv7Os/O3kZFtp3ezulzYsexB5T3nt6KO1ZddJ1L4JLcjn9s4m0J0vAosPrz72z7e/W0fAM9f1Ym+LSLce71cdwxpgY/ZxG+7T7LuQAlNH6y5TTQUOIm7xG+HxENGq/umA8v+ftdCuH+6d1ziXXYvKfh82zzPjENqBAVOIrVFZGvAZPzgmvqPH14zk2F5bmndkIdK39L3bEb+F8KbQOJB+OnBip3rn9a8bbTcbjYYojsUeOmchmFMu+Qc1j48lOev7EQdqy9bjyVx0cwVfPLHwdJ3gAMIj3WVvSUseJof/j6G2QSPjW5fro50YVZfJg83yiVfWryThDT3zAEj7TTsWGBsd7mO+ZuO8dSPWwF46IK2XNKlHIsCl1KjOlau7G5knV5ZWkLWyapSPXGznbllek0Hgl8pF8zOr0FXowlO0hFIPOLesYl3cDhg91Jj21lFsO2HIjumipSGAieR2sLPagQDULiz3qqZkBoPdVvkNUaoiIBQuPwt44eSjZ/C5q8rfk4wOmitf9/Y7nPH2S/va+GqHrEsuHcQA1pGkpFt5z/fbOL2j9ZxpiwNJAZOxmGyEH70V7qYdnNNr8Z0aBBW7uFf2zOWNtEhJKRlM2OJm9qTb/4K7NkQ05G16fW5d+4GHA64sW8T/jWoecnvr6CJQ1piMZv4ZWc8Gw4lnP1AZ6newd/h5c7wyRhY/Bhs+AQOrzOCd5GyqEiZHoBfUN4vX44o61QjndgKyUeNebtDpxpdR0/vOXvlhUgJFDiJ1CauhXDz/aeRfNwInACGPg4WNy3S2rgPDPw/Y/uHf7vnN7obPzVK/+o0M9aYKkF0aAAf3NSLh0e1w9diYuGWOC54eQWrdpeys1udpuxtMBqAf/t/y/8NK0PXriL45GtP/uHvB9h9wg3BQm6ZXnyLK7j1gz/JyrEzrH00j4/uUK7MWFk1jrByWVcjq/Xqz8UEgw265GY9HXBmP+xcACtfhm/vgHfOg2cbwUsd4MPLYMEUWDcHDqzWuk9StIxEOLja2G41rPzncZXraZ5TjeQs02s6wGhQ08KYA+oq9xYpIwVOIrWJq7NevgYRy5+F7DRo1AvctR6S0+AHjXKYjATjB+SKdDOy2+GPN43t3rcbXfxKwWw2ceug5nwzsT/No4I4npTB2Hf/4L8/bScrp/jxJKZlM/nY+dgcJgaznoikreUff64BrSIZ2i4am93BUxVtT35iGxxZh8NkYcK6JiSkZdMlNpxXrumKxVz5QZPTnee2xGyCJdtOsPnIWea0+YfAnWvgvl0w7gcY9QL0vNUoswqONo5JOgx7fobfX4fv74HZI2F6M3i+FXx9m7JSkmfPMmPCf2RrqNus/OdxBU7r3DMu8S7OwMkZXLe9yHhU4CTlpMBJpDaJ+kfG6cR2WP+BsT38ybK18y0Niy9c/rZRJrHvF3jnfNj6HdjL0eluz89GR0D/UOg6tsxvP6dhGD/cNYBre8XicMCsX/Zw5axV7DuZetb3zFi6k41pESzzG2zs+OX5so+7CA9faGTAlu+IZ9mOE+U7iS3HCC6A3316sTnBn6YRVt4d16NMHf/coVlkEBd3bgDAzOKyTiYTBNeDZgOh161w4Qsw/ge4byc8sA9uWgijX4Y+d0KL8yHUmD9F6gn4ey78NqPyP4xUD7sWGY/lLdNzcgZOR/8yOotKzZGZbGStAVoONR7bXGCUkB//W4vhSrkocBKpTf7ZknzJVKPRQtuLjNK6yhDZCi5+xeh8dXQ9fH4jvNoT/pwN2RmlP09uC3K6Xm9kL8rB6ufDs5d3Ytb13QgL9OXvw4lc+MoKPv/zUKHGEbvikvlgtfEfa/iIKYAJdvwIxzeV69r5NYsMYny/pgA89cNWssvRnty+4iU49AfpJiv3p1xD3SA/5kzoRUSwf4XHVx6TzmuJyQQLt8Sx7VhS2U9grWvcg93Hw8hn4IavYfIWmHIYRucuWrn6NaO0VGo3uz3f/KYKlOmBMa8zIAxy0iFuS8XHJt5j3wpj/medplA3d75nUCQ06W9sb//BY0OT6kuBk0ht4mxJnnTE6MS28ycwWYxJs5Wp09Vw72YYdD8EhBuTc3+4F2Z0hBUvGgsUFid+Z27JhQl63Vbh4Yw8pz4L7h1In+Z1Scuy8cCXfzPp079ITDN+4+xwOJj2w1ZsdgdD20XTo0cfOOdy482/uifrdNf5rYgI8mNPfCof/V7ybz5tdgebjyTy7m/7ePqtj7DldkH8T+Y4TvpE8+64HjSNDHLL2MqjZb0QV5v2V0uzrlNp+YdAtxuNUtKcdKO0VGq34xuNLKRfMDTuV7Fzmc3QUOs51UjOMr2WwwpWU7jK9RQ4SdkpcBKpTQLD8+aTfHen8dh9vJEVqmzBUXDeI/DvLTDiWaMMK/UELJ0G/+sACx8+ewOJP2YZj21GVWw+Qz71wwL5+JY+PDCyDT5mEz/+fYwLXv6VNftOs2TbCVbsOomfxcyjF7Uz3jDofuNx63cQV/G5TqEBvvxfbnvyGUt2Fer2l2Ozs/FQAm/9uoeb56yly7RFXDTzN174YT3XHH4KX2z8ZO/DyeaXMnt8L7o2rlPhMVXUXecZ99H8zcfYGee++Ugrdp/k68jcgHn9hwXn6EntszO3TK/5EPDxq/j5tJ5TzeNwGAuDQ16ZnlPbC43Hg6shpZyl0lJrKXASqW2c85zSToJvkLFuU1XyD4a+E+GeDXDZm1CvPWSlwOpX4eVO8M0dxtwrp/QzeQu89rndrUOxmE1MHNKSr+7oR9MIK0cTM7jmrdXc/+VGAG4e2IwmEblZnHrtoP0lxvaKF9xy/TE9Y2kbE0JiejYvLNrBugNneH35bsa9t4Yu0xZzyWsreWb+dpZuP0FyRg7B/j68GvkNLczHyLJGM/SBT/jwlj6VtsBtWbWJCWFkhxgcDvdlnT5YvZ8b31vD5N+trPbpbTQE+HmaW84t1ZS75jc5qbNezXNqt7FYusXPmFOZX3is0bQIB+yY75HhSfWlwEmktnG2JAfof48xWd8TLL7Q+Rq4YxVc9wU0GQD2HNj4Cbze21jn58Bqo3lFdhpEn2N0YKsEnWPD+eHugVzZvRF2BySkZVMvxJ87z21Z8EBn1mnz127JeljMJh4bbbQn//iPg1zxxiqmL9jBLzvjScnMITTAh6Ht6vHwqHbMm9Sfjdc6OD/F6Abld8Wb+AZ7R8CU313nG9+zH/4+yp74lHKfx+Fw8MLCHTz23RYcDgj0tfBY6hXYHCajI9ahNe4aslQnqSfhSG4HvIrOb3Jq2M14PL1H7e/LylsXknXOgWvSz1iv659Urifl5OPpAYhIFauX2yAiOBr63unZsYBRe956uPF1+E9YOcP4z2znAuPLnPvPVO/b3d/1L59gfx9euKozg1pH8dHvB7jrvJYE+//jn8iYjsZ/uNt/MLJOl79V4ev2axHJxZ0bMG/jUepYfenVrC69m0XQu3ld2saE5rUVTz0Jn95lbPeZmLceiZfp0CCMoe2iWbItjteW7ealq7uU+Rw5NmPB4s//PAzA5GGtuaZnLJM++YsvDw9mjM9yDn5+Pw3u+Rkfn6rtICgetnsJ4DD+LoY2cM85rXUhohWc2mX8G9TaTZmsmsDhMP7tOb234NeZfcajyQwTFkBUxda4czvX/KahRb/ebjT8/KTR7TUj0WgQIlIKCpxEaptOY4zOcJ2uMcrmvEmjHjDmIzi5G1a9YpTo2bLAGgkdr6qSIVzcuYGrtXaRBt1vBE6bvjDWqYpoUeFrvnR1Zx4Y2YYGYYGYi1p/yeGAeXcbc8Ki2sH5j1f4mpXp7vNbsmRbHN9tOMrd57UqU9OK9Cwbkz5Zz9LtJzCb4OnLOnJtr8YAfHxrb1777t9kbFxJ4+QNTH99JhMm3EFUiGc6CYoHuLtMz6lRTyNwOlILAye7HVKO5wuM9hXcziphvuLyZ+CqOVUy1FLJTocDK43tswVOUW2MZkkndxrZqY5XVt34pFpTqZ5IbeMfYqyV06Svp0dydpEtjRbm926CEc/AdXPBN8DTozI06AKtRhht3Fe86JZT+ljMNKpjLTpoAqNcccePRr3+FW97z/fiLDo1CufcNlHY7A5eX176uU5nUrMY+87vLN1+An8fM7Ou7+4KmgB8LWbuvXwIh9uMB+CSk29z8SvLWXdA5VW1gi0Hdi81tt0eONXSznppp2FmN3ipHcy5EObdBb+9BFu/NdY6ykoGTBAWC80GGc2Ehk0zfsF1Te7c0y3fFpyX6mn7f4OcDKMBkXMJjqJoMVwpB2WcRMR7hcR4RznhPw1+AHYthI2fGdt1mlbetU7tgQVTjO3zHjFKlKqBu85vxbId8Xy9/gh3ndeK2LrWYo8/kpDOje/+wZ74VMICfXl3XA96NK1b5LEtL3sY24zPaZN5mAFpSxjzpo1HLmzHuH5NMVViOad42JE/ISMBAuvkNXRwF1fgtM7IwJhrye+VV71ilN2ZLBDe2FjvyPXVzHgMb3L2X9a0G20EHitegCveqdqxn42rTO/84su7211kBIm7FhtrCnr5L6TEO9SSfxlERNyoUQ9ocb7R4W3FS5V3HVsOfH0bZKcazTP6Tqq8a7lZt8Z1GNgqkhy7g9eX7yn22O3Hk7j89ZXsiU+lflgAX9ze96xBEwCBdbAMug+A/wR+g+X/27vv8Ciqr4Hj39nsphdSIJUSWuih9yK9iaKgqKAIKiKgInZ/KvjaUOwNUCkqIE1RkSYdpRNICBBCJ4EQEkhCKim78/5xSSASSELKJng+z7PPzu7Mztwhl905c+8915LJlOWHeHZhKOlZOaV5GqIiObJGPdfpCYZSHttWrTEYHSDzkuqy91+QGgc7Z6rlYfNUptOHf4WBH6nMp0H9VZe2mwUUXV9Szwd+gQsV5N+tsPFNufxagqu/+n49sbHsyyVuCxI4CSHErej2snoOXaDS3paFvz9Wd9nt3OCeGaV/sVjGnump5nVaGhLN2aSMArfZeeIi983YzvnkTOpVc+aXpzpS39ul8J23HQOuAbjnxPNTk1CMBo0/wmIY/PVWTpQgm19lo+s63/99grf/PERWjsXaxSlbuZnSSrubHoCN8Wp2vf9Kd71/PlUZS/1aqiDpVvg2U/PrlWLX5RJJOKlSkRuMULvbzbfVNMmuJ4pNAichhLgVNdpBYDewZMM/n5X+/s+EwOYP1PLAj9TcI5VMm1oedKjtSbZZZ+bm61udVh+I5eHZu0i5nEPrmu4sGdsBvyoORdu5yR56/A+AtmfmsHhkA6q62HHkfCp3fbWV1QfOleapVFhfbTjGOysimPXPSaauqkDjTEpbcgycDwc01QWrLPyXxjklx8DuWWq5x+sly1iaO03D/sWqa7E15bY2VW9XtEx5Da8ETpErVQu/EIWQwEkIIW5VbqvTvp/g0tnS229WGvz6hOoK2GRIuWUULAu5rU4Ld0UTe+ly3vvzdpxm3PwQsnIs9GrozbzH21HF0bZ4O282THWxunyJlqfnsOKZzrQN9CA1M4ex8/by/soIcsy3byvM4j3RfLz26nxis7eeZM3BWCuWqIzEHYYlo9RyQGtw8iqb4+RNhLunbPZfkWz5CMyZUKMj1OlRsn35t1StgLpZjRmyptzkIUUNrmt0BAcPyEiAqG1lVy5x25DASQghblWtTmrskTkLtn5eevtd8z81GaerPwz8uEznrypr7Wt70LaWB1lmCzO3HEfXdT5Ze4TXfzuARYcH21ZnxoiW2JtuoRuiwQZ6TVHLO2dSzXKB+Y+344kugQDM3HKC4d/v5OddUfwScoY/98fw18FYNkXGse34BUJOJ3Lg7CWOnE/h1IU0zl3K4GJqJimXs8nMMaNX1Mk9gY2H43j113AAxt1RJ++cX1wSRnRCujWLVnqyM2D92zCjM0TvAJMTdHul7I7nf6XFKe4QZN7G3T0TT6lMnVDy1qZcuTeRwhaq/VtDTiac3KKW6xZxcmQbo+pqCNJdTxSJZNUTQoiS6PYS/PgPhMyFLpNUJsCSiFwFIXPU8uDpKoNYJaZpGs/0rMeIWTtZsDOKpPRslu1TrXPP9KzHc73qlSwTXr3eKng9/Q9sfA/T4G/438BGtKjhzotLwth5MoGdJ4ufrlzDgq3Rhqou9lRzsaOqix3VXOyvPOd/7eVsi9Gm/O5DhkUnMW7+XswWnXtb+vNi3yByLDq7TyUSGp3EhJ/3seTJDtgaK/G90eMb4M9JKuMbQP3+MGBa2XZZdfVVabcvRUPMPgjsUnbHsqbN01QX49rd1c2f0pCbMOf4epUw564vSme/xRG1XSV6cPYuXvbRhndC6Dw1P1//Dyr1jSpR9iRwEkKIkgjsCtXbqzviW7+Afu/d+r5S4+D3K5nzOkwofHBzJdGprictalRhX1QSy/adRdPg7bubMKJ9zZLvXNOg91vwfU+VqKPDePBuzICmvtT3dmHm5uMkpmeRmWMhK8dCllk9572+5r3c5Y6GA3xg/A47LZsVKe34I6kja/S6QMEXVJoGHo62VL0SUAV6OTHujrr4uJV+euNTF9IYPXc3GdlmutavygdDmqFpGiYbja8easGAz/8mLDqJD1Yf5o07G5X68ctcajyseQ3CF6vXLn4w4EM1iL88LmgDWqvA6czu2zNwunAMwhao5R6vl+6+u72sAqfQBdD1BZXevDxdm02vOHWldnfVmpl8FmL2gn+rsimfuC1I4CSEECWhadDtRZg3BPbMhs7PgXPV4u9H19Xkk+kX1LidHm+UflmtRNM0nu1Zj0fn7MbWaOCLB5rTr4lv6R0goDU0uhsO/Q7r/09NmAzUrebMtPuCi76frHT0dVPQds3Me2uUcQ2jjGtIcfDnoEdvtjt2Jzzbn/iUTOJSLnMhNQuzRediWhYX07I4HJvC30cvsGL/OT5/oAWd65XeeJz4lEwemb2Li2lZNPV345vhLTFd09IV4O7Ix/c354kf9zDrn5O0C/SgT+MStoCWF4tFjRVc+6aaq0kzQNsnVQIQuyJkWSwtAW3g4LLbd5zTpvdVBrz6/a8mwygtuQlzTm5WCXPuLOfxTkevmb+pOEz2quX60G+qu54ETuImJHASQoiSqtNT/dieDVF3y5sOBUdP1c3O0UOlEy9sQs2QuXBkNdjYwpDvbrvJGO8Iqsb8x9vh7WpP3WrOpX+AHm+qi54jq+HU1uJ3QToTAsueRMudw6f1Y+pi6sCvcHgFLhlnaX92Lu2ZqwLb5kOgyRDMbjVJTM8iLjmT+NRM4pIvM2frKQ6dS+bh2TuZ2LM+T/eoi8FQstaStMwcHvthN1EJ6VT3cGD2o21wtrv+J7x3I28e6xzIrH9O8sKSMFb6uRLgfvPJh60uLgKWT1SttgC+wXDnZ1fTg5cn/2sy6+n67dVt6/xBNd8SQPfXyuYY3V5WgdO+n6DL8+DmXzbH+bdLZyA+QgXctbsX//MNB6nA6fCf0GtyqRevwkuKVmP76vb+70z+fIskcBJCiJLSNHXBsOB+1cUot5tR3nqbq0GUo6fK4uTofnXZ1kndaQfoORm8G5f/OZSDTnXLKBsagFddaDVStfqtmwyPrS3aRa85GzZ/qOag0c3g4gt3f3V18syg/irL4ZHVEL5UzSUUdxDWH4T1/4dNQFu8mg7Fq/E94FcNgEHBfry1/CA/74rm03VHCIlK5LNhzfFwKmbWwCuyzRaemr+X/Wcu4eFky4+j21HVxe6G27/crwF7TicSFp3EhAX7WFxRxztlZ8CWaSqxiiVHdZfq8bqao8vGSpcnvs3AYIK0ODU/m3spdCetKDa+B+jQaLA6z7KQmzDn9D/q7zrgw7I5zr/lZtPzb62+Z4urXm/1d79wBOIj1cS//wW6DvvmwaqX1fiwjs9An7etXaoKrQJ+kwohRCVUr4/K+FWnh7pj7lYDbK+0rOhm1QXvwhE1gDlyhfqx2vq5ushf+YKaiDKwK7QfZ93zqMy6vQwmR9VaELG88O3jDquxUVs+VH+jpvfBuO1Xg6Zctk4qLfyDP8OLR+GuL9XfCg3O7IJVL8HHQfDjYNg3D3tzKu/f24yP7wvG3mRgy5F4Bn7xNyGnE4t9Srqu88ov4Ww5Eo+DyYbZj7Yh0Mvppp+xNRr46sEWuNobCY1OYtqaCji/07H18E17FbBaclRms/E7ocM46wVNACaHq4kFbqf5nGL2qdYUzVB2rU25ur2knkPmQko5pcc/dmVy5H//3y0qezeofYdaLsp3x+0gPQEWPwx/TFBBE8C2L9Rvk7ghaXESQojSoGnQ/dXr38/JVD9QGQmQfvFfy4lXlw0mNdGtdJO4dS4+KqnGlg9h/VvqYrygi3CLBXZ8o8ZDmTNVa+DAT6DJvYUfw8EdWj6iHimxajxM+BLVTfPERvX48zmo14chTYbQZEwnnloUwYkLaQybuZ3XBjRkVKdaRc4k+NFfkfyy9ww2Bo2vh7egefUqRfpcdQ9Hpt0XzJM/hfDd3ydpF+hJr0beRfpsqTPnQEbilTp/QV1Qhy9R61z8VLa83IlIb0DXdY6cT6V2Vad847rKREAblSTgzB7V7fZ2sOFd9dz0/rJvTSnNhDlFYc6GE5vV8q0GTqDq4LG1KsDs+kLplK2iOr4Blj0FqbHqt6fH/1TL+pZpqtuse2DpZVy8zVg9cPr666+ZNm0asbGxBAcH8+WXX9K2bdsCtz148CBvvvkmISEhnD59mk8//ZSJEyeWb4GFEKI4jHYqzbFrKSZDEDfW8WnYMwsuHoN9P0Lr0fnXJ56G38aprkSg+vTf9eWt/X1cfKD9U+qRcEKNHwlfCvGH1cXX4T8JsnVmTb1+fOfakk9PBPB/fx5i96kEPhzaDBd70013/9P2U3y98TgA79/TlB4Nihf49G3sw+hOgczeepLnl4Sx8tku+FdxKP55FiT9Ih6pkWiRQGZS/hsD6ReveSSoZA//VozkD+eTL/PS0v1sPhJPixpVmD2yDe632O2xSALawK6Zt9biZLFA5EqVWa7hndD8odIvX3FF7VABgWZztTWoLGka3PEy/HTPlYQ5E8G5Wtkd78xuyExWXZ/9Wtz6foIGqKAhZp8a81OWqe+tJfuyuqm04xv12qs+3Psd+DVXdffCUTXWa9EIeGIDeARas7QVklVvbS5atIhJkyYxefJk9u7dS3BwMH379iUuLq7A7dPT06lduzZTp07Fx6eSZAoSQghRfuxdoeuVi8NNU9VdVFB9+ff+BNM7qaDJ5KQSEAxfUjpBrUdt6PoijNsBY7eq7IpVakBWKqaDSxkX8xrhLk8z1fZ7kg6tZ/CXW4g4l3zD3a0+EMubfxwEYFLv+tzf5tYu4l7p34DgADcuZWQzYcFess2WW9pPPkfWYPyyOV2Ovotx6SOw/BlYNwW2fQmh89V4sDO7VTB5bdBkXwU86qhg9fH10H9qoUHT8rAY+ny6hc1H4gHYF5XEfTO3E5OUUfLzuJHcbHOx+1WLcVGYcyBsEUzvAIuGq+64y59V/wbWtuEd9dxiOHjWKZ9j1u6uAtCcDNX9qywdvdJNr06PkrXYO1eDGu3V8uEVJS9XRXP+IHzX/WrQ1OZxGLNZBU2g/u0GT1fBZ0YCLBgGly+VWXEsFr1CTzJ+I1Ztcfrkk0944oknGDVqFAAzZsxgxYoVzJ49m1deuX528DZt2tCmTRuAAtcXJDMzk8zMq198ycnqhyo7O5vs7OySnkKJ5ZahIpRFVC5Sd0RJ3Nb1p/nDGHd8g5Z0GvPWr7A0H4HNyucwHF0DgCWgHea7vlLdUXJySv/4nkHQ7X/Q9TW0mBC0g79iOPQb9mlxPGDYwAO2GzifWoVV0zsQ1Wk4Pbr3zZfIYs/pRJ5ZuA9dh2GtAxjbpeYt/5004NP7m3L3NzvYF5XEB6sieLlv/Vs+NS1yJTa/PoZmySbD5IFt1UA0R09w9EB3UMlPcp9xcEfPTYDiUAUM/7rkuMk5JaVnM+XPCFaEqzEyTfxcGX9Hbd76M4Jjcanc+81WZo9sRb2yyNDo7I/R0Qst/QI5Z/ah3yw9dc5lDGELMGz/Cu1SFAC6nQs4VUNLOI5l1auY77femBHt1BaMp/5Gt7Elp+Okm/6bl/qxOz2PcdED6LtnkdN2PDhdTQ5Tmt8/xqNr0YCcwO7oJdyfof4AbKK2Y4n4A3Orx0pctgpBt2DYNRPDxrfRzFnoTlUxD/wcvV4ftf7afzPNBEN/xDi7N9qFSCyLH8U8bMH1/3dLWiRd552VkaRl5fD2XY2K1f22LH67irMvTbdSuJeVlYWjoyNLly5l8ODBee+PHDmSpKQkfv/995t+vlatWkycOLHQrnpTpkzhrbfeuu79BQsW4OhYwVO0CiGEuCX+CdtpfXo6OQZ7zAYTdjkpmDUjh32HcKxaf9VVrDzpFrxSIwhI3IFv4m5sLel5q2K1aiRWbcc5jw4c1QP4/IAN6WaNJu4WRgdZsCmFjNhhFzVmH7EB4IkGZpq4F/+n3zdpN61PfoMBM2ertCWk1lh0rfTvv0Ykaiw4biA5W8OATp8AnT7+FmwMkJgJ0yNsOJ+h4WijM6ahmcAymOap7fFP8U3eR7j/cE5U63vdeqM5g1oXNlAnbjX2OequfKbRheNV+3Gyak/ssxPpHvE6Bsxsr/MCca5llMXuZnSdzkffwTPtKCe8ehFe/ZFyP37XI1NwTz/JEe87ifC7v9QPYZedRL8DzwCwqslXZJlcS7Q/h8x4+hx6Hh2N1U2+LPH+rM0+K4EWUd9RLUW1Xse6NmdfjccLPS+39JN0PvIuRj2L41X7cCBgRKmWa91ZjeVR6vtoXCMzQW7WbXlKT0/noYce4tKlS7i63vzfxmotThcuXMBsNuPtnb/Ptre3N4cPl14GoFdffZVJkyblvU5OTqZ69er06dOn0H+c8pCdnc3atWvp3bs3JtPN+7sLcS2pO6Ikbvv6o/dDn70VY+x+jJbL6NUaY7nrG+p7N+bW21tK6koCBHMW2cc2cGLTj1SP34wPcfjELadh3HLsDK1wND9OUPUa/PBoaxxsbUrlyAOAnBWH+XFHFEtO2/PwnR3wdSv6XGHaoWXY/PYNGmYsTYbi3u9T9PUbS7X+pGXmMHXNERYePgNAbS9Hpg1pSrMAt/zn0jeLMfP2ERp9iRmRtnwxLJjuQbcw6fRNGP45DJv30dgtnQYDBlxdkX4Rw+5vMez5Hu1KNybd1R9L+wkYmg+nnsmRelc21ddFwc7ptE9cRs59k9QcbeVIO7YOY+hRdKM91R/6jOou5T/EQatnA0tGUC9xI4EPfZKXKry0vn+0/QvhAFh8gul19wOlUmb94ly08+H0rmlGbz6A2OTLuDvaYlcRU/rfhHZ4OTYr30LLSEQ3OmDp/TaeLUbSq6hzkx2uAb+Mok78X9Rq3QdLy0dLpVy/7jvL8u0qkHutfxCjOhYv5X9Z/Hbl9kYrCqsnhyhrdnZ22NldP9+FyWSqUBcLFa08ovKQuiNK4rauP4M+gz+egfp90bq9jMl447mPypXJBE0GEdRkEDsOR/HH4lnckf03dxhC6WQJ4S+HY5i6zsDFqXQnQf7fnY0IPXOJ/Wcu8dyScBaOaV+0LjJhi+C3saBboPlwDHd9ienKWKnSqj97TiUwaXEYUQmqJW5Up1q83K8B9qbrA8dqbiYWPNGecfP3sikynqcWhPLhkGYMaRVQ4nLkqdkOAENMCAaTCZJjYNtXEDJHTR0A4FkPOj+H1vQ+bIy2XFfS7q/CgV/QEo5jCpkFnZ4pvfIVRtdhy/sAaG2fwORhpUQHje4En6ZoseGYQr5T83Rdo8T15+RGAAz1equ/U2lodBecD0eLXMm7sW2Yu+0U/lUc+OqhlkXOamlVmSlqXqbQ+eq1b3O0Id9j41Xv+jqK6jb3R1gMu08l8EyPelRzvfK90/ReSDwOG97BZvXL2FStD7W7lahoGyPjeO23QwCM6VqbMd3q3vK+SvO3qzj7sVr47OXlhY2NDefPn8/3/vnz5yXxgxBCiJLzbwVPbYWeb6rshhVQ+wY1eHbiq3zv/y53Zr3HMWrgoV/C5ZcHYdUrKgtWKbEz2vDVgy1xsTcScjqRj/6KLPxD++bDsidV0NTyEbjrKzCUTisYQGaOmamrDnP/zO1EJaTj52bPgsfbMXlQ4wKDplyOtka+e6Q197bwx2zReX5JGN9uOV5q5cKvJaCpSXB/fRI+awY7vlZBk08zuO8HNe9Ui+FgvEFLkr0b9Jqiljd/UH5zGoHK6nguTM0l12li+R3333InBwfYOVOlpS8tFrNKqw1qAtvS0kC1DJuPrWfx1gh0Hc4kZjB0+ja+23ICi6UCJzSI3gUzOl8JmjToPElNBu5Vr8DNE9KyGDd/L88uDGXejijunb6NkxfSrm7Q5QWVwl43w+JH4MKxWy5aaHQS4+btxWzRuaeFP6/0a3DL+7ImqwVOtra2tGrVivXr1+e9Z7FYWL9+PR06dLBWsYQQQohy5e1qz4In2jHxobtxnLAF2o1VK3ZOVxP0xkWU2rFqeDoybagabzNz8wk2HD5/441D5sLv4wAdWj8Gd35eqvOMHYpJ5u6vtjJj83EsOgxpGcDq57rSsa5X4R8GTDYGProvmDFdawPw3srDvLcyonQubO1doVpDtbx/IViyoWYnGPELPLkFGg8uWgAZ/KAK4LNSVebB8mAxX523qf1T+ZIyWEXQQKjWWKUM3zmz9PZ7dq8KxOzcwL91qezycraZd3frnLR4Y0sOg50OMX14SwY09SHHovPuygge/3EPCWlZpXK8UnViM8wZAImn1ATso1ZCr8k3DOw3RcbR97MtrDoQi9Gg4e1qlxcg7j+TpDbSNDVdQ0AblSHz52G3FPyeiE9l9NzdZGSb6VLPiw+GNMNgKIXBm1Zg1a56kyZNYuTIkbRu3Zq2bdvy2WefkZaWlpdl75FHHsHf35/331fNzVlZWRw6dChv+ezZs4SGhuLs7Ezdurfe3CeEEEJYk9HGwICmV9Ki9/8A6vSE356C8wfg2zug77sqeCnq+ISb6NfEl0c71mLutlNMWhzG/a2r8++9toxbSt9THwGwx/s+1hoeR1tzJG+9xWLm7BmNS7ujqerigIeTbd6jiqMtNje5KDJbdGZuOc6na4+QbdbxdLLlvXub0rdx8XubGAwarw1oiKeTLe+vOsy3W05wITWTD4Y0K/lEuU2HqkmS6/WFLpOupqouXgGh/zT4vgeE/QytRkGNdiUrV2EOLoP4CNXi1WFC2R6rKAwGNX/UkpEqFXb7p8CmFJJzHVunnuvcUfBE18W0NyqRF5aEcSI+DU9jW8YaljO5/glsm/rSr4kP83dG8X9/HmLD4TgGfP43nz/QnHa1PUt83FIRe0DNvWTJhvr94d6Z6u9fgIwsM++tjOCnHacBqFvNmc+GNcfb1Z5Rc3dx4GwyD3y7gxkjWtG1flUw2cMDC+Db7mp+vMUj1Q0Em6J1b4tLucwjs3eRkJZFU383po9ohW0lGy92LasGTsOGDSM+Pp4333yT2NhYmjdvzurVq/MSRkRFRWG45u5WTEwMLVpcndzso48+4qOPPqJbt25s2rSpvIsvhBBClI36feCpbarF59g6WPE8HFuvuso5lfxi7dUBDQg5nUj42Ut8uyX/XEOjbFbR1/QTAN/lDODd04Ph9MkC9mLDiujrW8M0Dao4mHB3ssXTyRZ3R1s8ndWzh5Mtqw7EEnJa3bXu3cib9+9tipdzybpSPtmtDp7Odrz8y35+3XuWxLQsvh7eEkfbElzmdJ6kAo+SdvMMaAUtRsC+ebDqJTWxaCl2d8zHnAMb31PLHZ9WaeArgoZ3QdUGanLoXd9Ch4kl32du4FS3ZN30Lmeb+XTdEdUNT4dqLna07vYwrFuO7fF1kJOJZrRjRPuatKzhzoSf93IiPo0Hv9vBsz3rM6FH3ZveKChzSdEwf6hq0avZCe6bq4KdAoRFJ/HcolBOXOmO92jHWrzS/+pYwoVjOjD2pxD+OXaB0XN38/H9wdzd3F/NcfXQIpjVB05uVvV44CeF3shJuZzNo7N3cyYxg5qejswZ1QZnu8qdXsFq6citJTk5GTc3tyKlHCwP2dnZrFy5kgEDBty+A7RFmZC6I0pC6k8lYbHAzhmwbjKYs8DZB+6ZAXW6l3jXF1Mzmb8zitTMq3NZtTs3n57RXwKw1edhNgU8BZrGv68UzBYLEcdO4uzhTWJGDolpWVxMy+JSRtHmQ3GxMzL5rsYMaemPVgqtaLk2HD7PuPl7uZxtoUWNKsx5tA1VHMs3m12BUuPgy1bq4nbQF9BqZNkcZ988+H28mkfr2bBCJxgGdTF9PD6VbLOFLLNOjtlCttlCtlm/8qyWs3Is5FgsZOdced+i42Ay0KuhN92CqmJnLCQYDF8KvzwGDu5kj9/LyvV/3/r3T9pFmFYH0GFSBLj6FX8fV879+SVhHItLBeDeFv5MHtQYN3sb+KQhpMbCQ0vUjYzcQ2fm8ObvB/llr8r+2KG2J58/0PxqUoXylJEIs/upgLRqQxi9Chzcr9ssx2zh643H+WLDUcwWHW9XOz66L5gu9a7PRpmVY+H5JWEsD4sB4PWBDXm8i+oOy+GVsPAhQIf+H0K7J29YtMwcM6Pm7Gbb8Yt4Odvyy1MdqenpVOJTLovfruLEBpU77BNCCCFuZwYDdBgHgV1g6WNwIRJ+GqxaE3q8eePEBEXg6WzHMz2vGTT+98ewSwVNdH2JTt1fo9MNghp18XKcAQNa5Lt4yTFbSEzPJjE9i4upWeo5LYvEtCwSrjyc7GwY370uAe6lP5dijwbezH+8HaPn7mFfVBJDZ2znx9Ft8aviUOrHKhbnanDHq7DmVVj/lsrcVsAFbonkZMGmD9Ry5+cKDZqyzRY+WHWY7/8pqDWx6BbvOYOLvZF+jX0YFOxHxzqeGAvqJtn4Htg0FS4exRAyGyg4YUGRnNgI6Grs1C0ETZk5Zr5Yf5QZm09gtuh4Odvx3j1N6HNtd9EGA2HPLDi8PF/g5GRn5OP7g+lYx5M3fj/A9hMX6f/533wyrDnd6pduWvybyr4MC4eroMnFF0YsLbBOnbyQxnOLQgmNTgJgYDNf3h3c5IY3FGyNBj4f1hwvZ1vmbD3FOysiiE/N5JV+DdAaDIDeb8HaN2H1K+BRB+r1um4fFovO84vD2Hb8Ik62Nswd1bZUgqaKQAInIYQQoqLzaQpjNsFf/4M9s2Hbl2ow+NDZN8yYVSybPoBNV7p43fEa3PHyLe3GaGOgqosdVV3swLvw7ctCq5oeLBnbgUdm7eJYXCpDpm9j2tBg7EwGMrLMXM42k5Gtni9nW/KWM7LNZGZb1DY5ZjKyzFh08KtiT3V3R6p7OFDdw5HqHo642t/Cne62T8DeH9SF7qapaixbadr3I1yKUq2SrR+76aZxyZeZsGAfu04lANC+tgdOtkZMNgZMRgMmGw2TwYDJqKn3bK6896/l6IQMVoTHcD45kyUhZ1gScgZPJ1v6N/VhUDM/2tTyuJoEwGADXV+EZWMw7PwGm7rv3/q55nbTK+CivTAHzl7i+cVhRJ5PAeCuYD/euqsx7k7/CiQaDroSOK2EOz+7rnvlkFYBNK9RhfHz93I4NoWRs3cxtlsdnu9Tv+Tj6wpjsagpAk5vBTtXGL4U3PKn49d1nZ93RfP2n4fIyDbjYm/kncFNuCvYr9BWXoNB4807G1HNxZ4PVh9m5uYTxKdcGTvY8RmIPwKh82DpKHh8HVQNynfct1cc4s/95zDZaMx8uDVN/Aseb1UZSeAkhBBCVAa2jnDnpypxxB8TIHY/zOwK/aaqVOG30uVN12Hju7Blmnrd803o8nzpltsK6nu78Mu4jjwyayfH49MYMWtnqe7fzcGkAil3R2p4OBLg4Uh1dxVY+VdxKDiVuo1J/a1+Ggy7voOWI8G7UekUKDsDtqhkHnR5XtWVG9h54iITft5HfEomLnZGPro/+JYSc+R6fWBDdp9KYPn+GFaGx3IxLYt5O6KYtyMKH1d7BjbzZVCwH8EBbmhNhsDmqWgJJ2h25gdI7QTuxZx/y2K5ZnxT0QOnrBwLX204ytebjmO2qKQk797ThH5NfAv+QK3OYF8F0i9A1A6o1em6TepUdea38Z14d4VKtjBj83F2nbzIFw+2KJMW1Tx/va6SgBhMMGwe+DTJtzo+JZNXftnP+sNxgOpO+NH9wfgXo+VV0zSeuqMOXs62vPJrOL/uPUtCWhbfDG+J452fQMIJiNoGC+6He79TyShMjszdE8eCrVGAiY/ua07nelbO6ljKZIyTlck4A3GrpO6IkpD6U8klx6j5lU5uUa8D2oKbP5ic1EWzyRFsndQjd9nkeGXdlfdtHSHkB9j6mdpH77eLPElrZak/CWlZvPzLfsLPXMLB1gZ7kw32JgMOJrXsYLLB7l+v7U2GK9up4OdsUgbRCelEJ2ZwJiGdi0VIRe3jak89b2ca+brSyM+VRr6uBHo5qS5si0ZAxHKo1QVGLi95psSsdPhzIuxfBK4B8MzeAhNa6LrO93+fZOrqw5gtOkHeLsx4uBWBXqXXhSrHbGHb8Yv8ERbDmgOxpFwzfq6GhyODgn15yHEX/uufVmUy2qO1eBg6PQtVijhJb0wofNtNzVH10skidVfdG5XI/5YdIOJcMqC6q/3fXY3xLCwpya9PqnT0dXurObvcA8EjsMCMdavCz/HSL/tJuZyDq72RD4cG069JGcxLuu0r1fIMMGSWyv54jb8OxvLKr+EkpGVha2PgpX5BjO4UWKL039eOHWxevQqzH22DB8nwXQ9IOl3gZyyaDYbrvncK+G7q+SY4ehS5LNYe4ySBk5VVlh8fUfFI3RElIfXnNmCxwPYvVcpsS07h299Mv6kqTXQR/ZfrT1pmDtGJ6UQn5AZU+ZfTs8wFfs7OaCDIx4VOnmk8f/RhjJZMMu6Zg0PwvbdemPgjKs133CFAU103m1y/v5TL2by0dD+rDqhJeO9p4c+79zQpWdbBQmTmmNkcGc/y/edYd+g8GdlX/10eco9gTM7P1Mq+MqGqwQjNHlBjs7wKmV5my0ew4W01P9SDC266acS5ZD7+K5J1Earlxd3RxNuDm3BnsyKOizq84koyhH9x8FABVG4g5R4IHrU5a/Bh3O9nCTtzCYCBTX2p5mqHQdMwaKoLXO6yjaahaeq1jUG18NgYrmynaZgtOjkWnRyzjtliIceiUz/+LwYffwOA1X7j2Oz14JX1atvE9Cz+PnoBgAY+Lnz+QAuCfApPEFIUIacTeeyH3SSlZ1O7qhM/jm5LQE40/PkcJJ4i+3IqemYatloxv4teOKrGABaRtQMn6aonhBBCVEYGg7pTHzRAdSXKToestKvPecvpkH3ldd5yulpnMKpJMluPtvbZVBpOdkYa+LjSwOf6Cyxd10lIyyIqIZ3I2BQOnUvmUEwyEeeSScsys//MJfafATvjQCYaf+Xiry/y2BpH6vhXzWudahZQpWjp2cMWqYvW7DRwqgZDvofa3a7b7Mj5FMbOC+FEfBomGzV2ZUT7mqWazbAgdkYb+jT2oU9jH9KzclgfEcfysBg2RcazILEhC3iL3vaRvOG2khqX9qgxM2ELoNFg1d3wX93P8uR10+t5w2OfiE/l03VH8zLDGTQY2iqAF/s2UOPviqp+f3VTIWYfJJyExJOQFg8ZCXA2Ac6G5NvcH/jN5Ei8uy+hqVU4FFGTn3N6cJ6it6jcSHvDIZ41TQUN5uT05a0TneBE9HXbaRqM6VqbSb3rF57psBha1XRn6ZWxgyfi0xgyfRs/jG5Lg1ErCY1O4sFvd5CRbWZIc2+m3VUXQ07Gle+gAr53slKvLttZvxGjOCRwEkIIISozr3qlkyBClJimaXg62+HpbEeLGlcznFksOlEJ6XmB1OGzozkXtYUA7QIDkhfxacJQVobHXtkHtA/0ZFCwH/2b+FyftCArXc2js0/NtUVgV7j3e3C5PhvH76FneeWXcDKyzfi62fP18Ja0vKZc5cXR1sigYD8GBfuRfDmbZSHRfPnXIdZebsDayw1oZzrO/7mvJih5Kxz8VT3q91cBVPU2V3eUkQTRu9RyAeObziZl8MW6oyzdewazRXWourOZL8/1rk+dqs7FL7jBcH1LbGbK1SDq38+XzqBlp1Mt+zh9bKAPITxt+oNDnn3Z6fMgsfZ1sOhg0fVrHirgNlv0vHW6rlqdjAYNGxsNv8yTPH70M+zMOUR63EFi0BQm2hjVeoPhyrN6tKrpXmbJGOpWU2MHR87exZHzqdw3YzuTBzXmvZURZGSb6VLPi/eHtsRgNABVyqQM1iaBkxBCCCFEGTIYNGp5OVHLy4kBTX2BIDj0CSx+hKdt/6Ral1HsTHThYEwyR+NS2X7iIttPXOTN3w/QpZ4Xg4L96N3IG5eUk/m75t3xKnR94bqMb1k5Ft5bGcHcbacA6FzXi88faF74mJ5y4Gpv4qG21XGND8emZku+++c0O8/WoW/ceBrbDOL/PNbQMmUT2pFVcGSVCgy7vKCeT24G3Qxe9cG9Zt4+41My+XrjMRbsjCLLbAGgZ4NqTOpTn8Z+pRxE2LmAbzP1+LecLLgUrQKphBNw6DdsTm+l6YUVNL2wQiV26fg01L6j6GPbLp2FWcPAnArV2xP0yEKCTNZLr+/r5sCSJzvy2A+72XM6kReWhAHQLMCNGSNaYWss44yCViaBkxBCCCFEeWt4FwR2xXByCw8mzuTBB+YDEJ2Qzorwc/wRGsOhc8lsjIxnY2Q895m28rZxFvb6ZXSnamg36Jp37lIG4+fvZW9UEgATutflud71sSlBcoCyYNCgfxMfBjUPYPvxi0zffJy/j8KQ+CcI1O5kisdfdElfj+HkFpUEJaAN2FwJ/K60Nl1Kz2bmluPM2XoqbwxV+9oevNi3Aa1qln/LGkZb8KyjHgDtxsCZPWr6gIg/4Ph69fBpCh2fUXNb2dxknE5GEswfCslnVbD44M9gxaApl5ujiXmPt2PCgn2sizhPLU9HZj/aBie72z+suP3PUAghhBCiotE06P8hTO8Eh/+E4xugTg+qezgytlsdxnarw7G4VFbvO0HgnrcYmL0OdPjH3Jj/pTxDi12u3JV1ns51q+bd5d927AJP/7yPi2lZuNgb+fT+5vRqZKUJtYpI0zQ61vWiY10vDpy9xMwtJ1ixH0ZeHIk/A3itylr6Zf2FzZndeZ+5XLMHszYeY8bm46RcVskIgqtX4cU+QXSq61nm47eKJaA13P+DaoXaMV11sYwNh1+fgHVTVFfAliPB/l9jfXIyVQbGuENqbq4RvxQr+1xZszfZMGNES/4+doHmAVWu71J6m5LASQghhBDCGqo1hLZjYOd0WPUKPLU1XwtEXS2GCcefhOxD6Gj84/84r13oS/SlLE6HxvBbaAxuDib6N/HB09mW6ZuOY9Ghoa8rM0a0pKZn6aUaLw9N/N348sEWvNgniO//OcGi3QbGJz1EVQYwyeUvhlr+It3Wk/5Ls4hJiwQgyNuFF/oG0athtYoVMP2bRyAM+BDueEVNrLvzW9WS9NfrsPlDaPUotBurphWwWOC3p+DU32DrAsOXQJUa1j6D6xhtDHQPKnpGvNuBBE5CCCGEENZyxysQvgQuRMKub6HDePX+v7LmaUO+p0vtbmzRdfZGJbE8LIYV4eeIT8lk4e6r2dWGtgrgncFNCp6Et5Ko4enI/93dhGd71uOHbaf4YftpXk25n8ncg5amkwnU8nTkud71GdTMr0RzFJU7Rw/o+iJ0eBrCF6tufBeOwLYvYMc30PQ+NQ/XgV9U1sthPxY8nkpYhQROQgghhBDW4lBFpYT/42nYNBUaDFRzFeVlzesG936XlzVP01TmtFY13XnjzkbsPHmR5WEx7DmVyOjOgTzQpnrFbnkpBk9nOyb1CeLJbnVYtDuaH7efAmBstzoMaRWAyaYSJyIw2UPLR6D5CDj6lwqgTv8DYT9f3ebur6FOD+uVUVxHAichhBBCCGtqPgL2zFbzBX3VFsyZ3CxrXi4bg0bHOl50rONVvuUtZ052RkZ3DmR050BrF6X0GQwQ1E89zobAtq/gyBro/hoEP2Dt0ol/kcBJCCGEEMKaDAboPw1m9VJB000mtBW3Mf9WcN8c0PWipysX5UoCJyGEEEIIa6veBgZ8BOcPwB2vFTihrfiPkKCpwpLASQghhBCiImj7hLVLIIS4iUo8qk4IIYQQQgghyocETkIIIYQQQghRCAmchBBCCCGEEKIQEjgJIYQQQgghRCEkcBJCCCGEEEKIQkjgJIQQQgghhBCFkMBJCCGEEEIIIQohgZMQQgghhBBCFEICJyGEEEIIIYQohAROQgghhBBCCFEICZyEEEIIIYQQohASOAkhhBBCCCFEISRwEkIIIYQQQohCSOAkhBBCCCGEEIWQwEkIIYQQQgghCiGBkxBCCCGEEEIUQgInIYQQQgghhCiEBE5CCCGEEEIIUQijtQtQ3nRdByA5OdnKJVGys7NJT08nOTkZk8lk7eKISkTqjigJqT+iJKT+iJKQ+iNuVVnUndyYIDdGuJn/XOCUkpICQPXq1a1cEiGEEEIIIURFkJKSgpub20230fSihFe3EYvFQkxMDC4uLmiaZu3ikJycTPXq1YmOjsbV1dXaxRGViNQdURJSf0RJSP0RJSH1R9yqsqg7uq6TkpKCn58fBsPNRzH951qcDAYDAQEB1i7GdVxdXeXLQ9wSqTuiJKT+iJKQ+iNKQuqPuFWlXXcKa2nKJckhhBBCCCGEEKIQEjgJIYQQQgghRCEkcLIyOzs7Jk+ejJ2dnbWLIioZqTuiJKT+iJKQ+iNKQuqPuFXWrjv/ueQQQgghhBBCCFFc0uIkhBBCCCGEEIWQwEkIIYQQQgghCiGBkxBCCCGEEEIUQgInIYQQQgghhCiEBE5W9PXXX1OrVi3s7e1p164du3btsnaRRAW0ZcsWBg0ahJ+fH5qm8dtvv+Vbr+s6b775Jr6+vjg4ONCrVy+OHj1qncKKCuX999+nTZs2uLi4UK1aNQYPHkxkZGS+bS5fvsz48ePx9PTE2dmZIUOGcP78eSuVWFQk06dPp1mzZnkTTXbo0IFVq1blrZe6I4pj6tSpaJrGxIkT896TOiRuZMqUKWialu/RoEGDvPXWqjsSOFnJokWLmDRpEpMnT2bv3r0EBwfTt29f4uLirF00UcGkpaURHBzM119/XeD6Dz/8kC+++IIZM2awc+dOnJyc6Nu3L5cvXy7nkoqKZvPmzYwfP54dO3awdu1asrOz6dOnD2lpaXnbPPfccyxfvpwlS5awefNmYmJiuPfee61YalFRBAQEMHXqVEJCQtizZw89evTg7rvv5uDBg4DUHVF0u3fvZubMmTRr1izf+1KHxM00btyYc+fO5T3++eefvHVWqzu6sIq2bdvq48ePz3ttNpt1Pz8//f3337diqURFB+jLli3Le22xWHQfHx992rRpee8lJSXpdnZ2+s8//2yFEoqKLC4uTgf0zZs367qu6orJZNKXLFmSt01ERIQO6Nu3b7dWMUUF5u7urn///fdSd0SRpaSk6PXq1dPXrl2rd+vWTX/22Wd1XZfvH3FzkydP1oODgwtcZ826Iy1OVpCVlUVISAi9evXKe89gMNCrVy+2b99uxZKJyubkyZPExsbmq0tubm60a9dO6pK4zqVLlwDw8PAAICQkhOzs7Hz1p0GDBtSoUUPqj8jHbDazcOFC0tLS6NChg9QdUWTjx49n4MCB+eoKyPePKNzRo0fx8/Ojdu3aDB8+nKioKMC6dcdYpnsXBbpw4QJmsxlvb+9873t7e3P48GErlUpURrGxsQAF1qXcdUIAWCwWJk6cSKdOnWjSpAmg6o+trS1VqlTJt63UH5ErPDycDh06cPnyZZydnVm2bBmNGjUiNDRU6o4o1MKFC9m7dy+7d+++bp18/4ibadeuHXPnziUoKIhz587x1ltv0aVLFw4cOGDVuiOBkxBC/AeMHz+eAwcO5OsjLkRhgoKCCA0N5dKlSyxdupSRI0eyefNmaxdLVALR0dE8++yzrF27Fnt7e2sXR1Qy/fv3z1tu1qwZ7dq1o2bNmixevBgHBwerlUu66lmBl5cXNjY212X/OH/+PD4+PlYqlaiMcuuL1CVxMxMmTODPP/9k48aNBAQE5L3v4+NDVlYWSUlJ+baX+iNy2draUrduXVq1asX7779PcHAwn3/+udQdUaiQkBDi4uJo2bIlRqMRo9HI5s2b+eKLLzAajXh7e0sdEkVWpUoV6tevz7Fjx6z6/SOBkxXY2trSqlUr1q9fn/eexWJh/fr1dOjQwYolE5VNYGAgPj4++epScnIyO3fulLok0HWdCRMmsGzZMjZs2EBgYGC+9a1atcJkMuWrP5GRkURFRUn9EQWyWCxkZmZK3RGF6tmzJ+Hh4YSGhuY9WrduzfDhw/OWpQ6JokpNTeX48eP4+vpa9ftHuupZyaRJkxg5ciStW7embdu2fPbZZ6SlpTFq1ChrF01UMKmpqRw7dizv9cmTJwkNDcXDw4MaNWowceJE3nnnHerVq0dgYCBvvPEGfn5+DB482HqFFhXC+PHjWbBgAb///jsuLi55fb/d3NxwcHDAzc2Nxx57jEmTJuHh4YGrqytPP/00HTp0oH379lYuvbC2V199lf79+1OjRg1SUlJYsGABmzZtYs2aNVJ3RKFcXFzyxlPmcnJywtPTM+99qUPiRl544QUGDRpEzZo1iYmJYfLkydjY2PDggw9a9/unTHP2iZv68ssv9Ro1aui2trZ627Zt9R07dli7SKIC2rhxow5c9xg5cqSu6yol+RtvvKF7e3vrdnZ2es+ePfXIyEjrFlpUCAXVG0CfM2dO3jYZGRn6uHHjdHd3d93R0VG/55579HPnzlmv0KLCGD16tF6zZk3d1tZWr1q1qt6zZ0/9r7/+ylsvdUcU17XpyHVd6pC4sWHDhum+vr66ra2t7u/vrw8bNkw/duxY3npr1R1N13W9bEMzIYQQQgghhKjcZIyTEEIIIYQQQhRCAichhBBCCCGEKIQETkIIIYQQQghRCAmchBBCCCGEEKIQEjgJIYQQQgghRCEkcBJCCCGEEEKIQkjgJIQQQgghhBCFkMBJCCGEEEIIIQohgZMQQghRDJqm8dtvv1m7GEIIIcqZBE5CCCEqjUcffRRN06579OvXz9pFE0IIcZszWrsAQgghRHH069ePOXPm5HvPzs7OSqURQgjxXyEtTkIIISoVOzs7fHx88j3c3d0B1Y1u+vTp9O/fHwcHB2rXrs3SpUvzfT48PJwePXrg4OCAp6cnY8aMITU1Nd82s2fPpnHjxtjZ2eHr68uECRPyrb9w4QL33HMPjo6O1KtXjz/++KNsT1oIIYTVSeAkhBDitvLGG28wZMgQwsLCGD58OA888AAREREApKWl0bdvX9zd3dm9ezdLlixh3bp1+QKj6dOnM378eMaMGUN4eDh//PEHdevWzXeMt956i/vvv5/9+/czYMAAhg8fTkJCQrmepxBCiPKl6bquW7sQQgghRFE8+uijzJs3D3t7+3zvv/baa7z22mtomsbYsWOZPn163rr27dvTsmVLvvnmG7777jtefvlloqOjcXJyAmDlypUMGjSImJgYvL298ff3Z9SoUbzzzjsFlkHTNF5//XXefvttQAVjzs7OrFq1SsZaCSHEbUzGOAkhhKhUunfvni8wAvDw8Mhb7tChQ751HTp0IDQ0FICIiAiCg4PzgiaATp06YbFYiIyMRNM0YmJi6Nmz503L0KxZs7xlJycnXF1diYuLu9VTEkIIUQlI4CSEEKJScXJyuq7rXGlxcHAo0nYmkynfa03TsFgsZVEkIYQQFYSMcRJCCHFb2bFjx3WvGzZsCEDDhg0JCwsjLS0tb/3WrVsxGAwEBQXh4uJCrVq1WL9+fbmWWQghRMUnLU5CCCEqlczMTGJjY/O9ZzQa8fLyAmDJkiW0bt2azp07M3/+fHbt2sWsWbMAGD58OJMnT2bkyJFMmTKF+Ph4nn76aR5++GG8vb0BmDJlCmPHjqVatWr079+flJQUtm7dytNPP12+JyqEEKJCkcBJCCFEpbJ69Wp8fX3zvRcUFMThw4cBlfFu4cKFjBs3Dl9fX37++WcaNWoEgKOjI2vWrOHZZ5+lTZs2ODo6MmTIED755JO8fY0cOZLLly/z6aef8sILL+Dl5cXQoUPL7wSFEEJUSJJVTwghxG1D0zSWLVvG4MGDrV0UIYQQtxkZ4ySEEEIIIYQQhZDASQghhBBCCCEKIWOchBBC3Dak97kQQoiyIi1OQgghhBBCCFEICZyEEEIIIYQQohASOAkhhBBCCCFEISRwEkIIIYQQQohCSOAkhBBCCCGEEIWQwEkIIYQQQgghCiGBkxBCCCGEEEIUQgInIYQQQgghhCjE/wO0oaVezrzIvwAAAABJRU5ErkJggg=="},"metadata":{}}]},{"cell_type":"markdown","source":"# TabNet Model\n\nTabNet (Tabular Neural Network) is a neural network architecture designed specifically for tabular data, commonly encountered in structured data sets. It was introduced in the paper \"TabNet: Attentive Interpretable Tabular Learning\" by Sercan O. Arik and Tomas Pfister. TabNet is an interpretable and efficient neural network architecture that combines elements of deep learning with attention mechanisms and feature selection techniques. It aims to achieve state-of-the-art performance on tabular data while providing insights into feature importance and model decisions.\n\n#### Architecture:\n\nThe architecture of TabNet consists of several key components:\n\n- Feature Embedding Layer: Converts categorical variables into dense representations suitable for neural networks. This layer often utilizes techniques like embedding layers or one-hot encoding followed by dense layers.\n- Feature Transformation Blocks: These blocks contain multiple sequential attention-based feature transformation steps. Each step performs feature selection and transformation using the features' interactions and dependencies.\n- Decision Steps: In each feature transformation block, decision steps apply feature-wise gating mechanisms to select relevant features and suppress irrelevant ones based on their importance.\n- Final Prediction Layer: The output of the feature transformation blocks is passed through a final prediction layer, typically consisting of fully connected layers followed by softmax or sigmoid activation functions for classification or regression tasks, respectively.\n\n#### Training Process:\n\nThe training process involves optimizing the model parameters to minimize a defined loss function (e.g., cross-entropy loss for classification tasks). TabNet employs optimization techniques such as the Adam optimizer and learning rate scheduling to efficiently update the model parameters during training.\n\n\n
","image/png":"iVBORw0KGgoAAAANSUhEUgAAA04AAAIjCAYAAAA0vUuxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACI7UlEQVR4nOzdd3xUVf7/8deU9E4CKRAIvRelCwIKgqAoioouKmLbVbEs667yc627rmvZXeta17piWb92ESkCgqAgSO8tAUISAul1MnN/f9xkkpCEhJBkJsn7+XjMY2bu3Jl7Eg6Qd845n2MxDMNAREREREREamT1dANERERERES8nYKTiIiIiIhILRScREREREREaqHgJCIiIiIiUgsFJxERERERkVooOImIiIiIiNRCwUlERERERKQWCk4iIiIiIiK1UHASERERERGphYKTiEgzcMMNN5CQkFCv9z7yyCNYLJaGbVArsnz5ciwWC8uXL3cfq+ufx8GDB7FYLLz99tsN2qaEhARuuOGGBv1MERE5NQUnEZEzYLFY6nSr+EO3NJ4BAwbQsWNHDMOo8ZxRo0YRHR1NSUlJE7bs9K1evZpHHnmEzMxMTzfF7e2338ZisfDLL794uikiIk3O7ukGiIg0Z++9916l5++++y6LFy+ucrx3795ndJ3XX38dl8tVr/f++c9/5v777z+j6zcXM2fO5P7772flypWMGTOmyusHDx5kzZo1zJkzB7u9/v8FnsmfR12tXr2aRx99lBtuuIHw8PBKr+3atQurVb/7FBFpSgpOIiJn4Nprr630/KeffmLx4sVVjp8sPz+fwMDAOl/Hx8enXu0DsNvtZxQSmpPf/OY3zJs3j/nz51cbnD744AMMw2DmzJlndJ0z+fNoCH5+fh69vohIa6RfV4mINLJx48bRr18/1q9fz5gxYwgMDOT//b//B8AXX3zBRRddRFxcHH5+fnTt2pW//OUvOJ3OSp9x8pqasrUzzzzzDK+99hpdu3bFz8+PoUOHsm7dukrvrW6Nk8ViYc6cOXz++ef069cPPz8/+vbty8KFC6u0f/ny5QwZMgR/f3+6du3Kq6++Wqd1U3PmzCE4OJj8/Pwqr11zzTXExMS4v85ffvmFSZMmERUVRUBAAJ07d+bGG2885edXJz4+njFjxvDJJ5/gcDiqvD5//ny6du3K8OHDSUxM5Pbbb6dnz54EBAQQGRnJlVdeycGDB2u9TnVrnDIzM7nhhhsICwsjPDycWbNmVTvNbvPmzdxwww106dIFf39/YmJiuPHGGzl+/Lj7nEceeYQ//vGPAHTu3Nk95bOsbdWtcdq/fz9XXnklbdq0ITAwkBEjRvDNN99UOqdsvdbHH3/M448/TocOHfD392f8+PHs3bu31q+7rn799VcmT55MaGgowcHBjB8/np9++qnSOQ6Hg0cffZTu3bvj7+9PZGQko0ePZvHixe5zUlJSmD17Nh06dMDPz4/Y2FguvfTSOv0ZiYg0tNbxK0gREQ87fvw4kydP5uqrr+baa68lOjoaMNeMBAcHM3fuXIKDg/n+++956KGHyM7O5umnn671c+fPn09OTg6//e1vsVgsPPXUU1x++eXs37+/1lGRVatW8emnn3L77bcTEhLC888/z/Tp00lKSiIyMhIwfwC+8MILiY2N5dFHH8XpdPLYY4/Rtm3bWts2Y8YMXnrpJb755huuvPJK9/H8/Hy++uorbrjhBmw2G2lpaUycOJG2bdty//33Ex4ezsGDB/n0009rvUZ1Zs6cya233sp3333HxRdf7D6+ZcsWtm7dykMPPQTAunXrWL16NVdffTUdOnTg4MGDvPzyy4wbN47t27ef1oigYRhceumlrFq1it/97nf07t2bzz77jFmzZlU5d/Hixezfv5/Zs2cTExPDtm3beO2119i2bRs//fQTFouFyy+/nN27d/PBBx/wr3/9i6ioKIAav++pqamcc8455Ofnc9dddxEZGck777zDJZdcwieffMJll11W6fy///3vWK1W7r33XrKysnjqqaeYOXMmP//8c52/5pps27aNc889l9DQUP70pz/h4+PDq6++yrhx41ixYgXDhw8HzHD4xBNPcPPNNzNs2DCys7P55Zdf2LBhAxdccAEA06dPZ9u2bdx5550kJCSQlpbG4sWLSUpKqnexFBGRejNERKTB3HHHHcbJ/7SOHTvWAIxXXnmlyvn5+flVjv32t781AgMDjcLCQvexWbNmGZ06dXI/P3DggAEYkZGRxokTJ9zHv/jiCwMwvvrqK/exhx9+uEqbAMPX19fYu3ev+9imTZsMwHjhhRfcx6ZOnWoEBgYaR44ccR/bs2ePYbfbq3zmyVwul9G+fXtj+vTplY5//PHHBmD88MMPhmEYxmeffWYAxrp16075eXV14sQJw8/Pz7jmmmsqHb///vsNwNi1a5dhGNV/79esWWMAxrvvvus+tmzZMgMwli1b5j528p/H559/bgDGU0895T5WUlJinHvuuQZgvPXWW+7j1V33gw8+qPQ9MQzDePrppw3AOHDgQJXzO3XqZMyaNcv9/J577jEAY+XKle5jOTk5RufOnY2EhATD6XRW+lp69+5tFBUVuc997rnnDMDYsmVLlWtV9NZbb9X6ZzVt2jTD19fX2Ldvn/tYcnKyERISYowZM8Z9bODAgcZFF11U4+dkZGQYgPH000+fsk0iIk1FU/VERJqAn58fs2fPrnI8ICDA/TgnJ4f09HTOPfdc8vPz2blzZ62fO2PGDCIiItzPzz33XMCctlWbCRMm0LVrV/fzAQMGEBoa6n6v0+lkyZIlTJs2jbi4OPd53bp1Y/LkybV+vsVi4corr2TBggXk5ua6j3/00Ue0b9+e0aNHA7gLH3z99dfVTq87XREREUyZMoUvv/ySvLw8wBwR+vDDDxkyZAg9evQAKn/vHQ4Hx48fp1u3boSHh7Nhw4bTuuaCBQuw2+3cdttt7mM2m40777yzyrkVr1tYWEh6ejojRowAOO3rVrz+sGHD3N9TgODgYG699VYOHjzI9u3bK50/e/ZsfH193c9Pp9+citPpZNGiRUybNo0uXbq4j8fGxvKb3/yGVatWkZ2dDZh/7tu2bWPPnj3VflZAQAC+vr4sX76cjIyMM2qXiEhDUHASEWkC7du3r/SDaplt27Zx2WWXERYWRmhoKG3btnUXlsjKyqr1czt27FjpeVmIqssPmie/t+z9Ze9NS0ujoKCAbt26VTmvumPVmTFjBgUFBXz55ZcA5ObmsmDBAq688kr3GqmxY8cyffp0Hn30UaKiorj00kt56623KCoqqtM1qjNz5kzy8vL44osvALNC3cGDBysVhSgoKOChhx4iPj4ePz8/oqKiaNu2LZmZmXX63leUmJhIbGwswcHBlY737NmzyrknTpzg7rvvJjo6moCAANq2bUvnzp2Buv2Z13T96q5VVs0xMTGx0vEz6TencuzYMfLz82tsi8vl4tChQwA89thjZGZm0qNHD/r3788f//hHNm/e7D7fz8+PJ598km+//Zbo6GjGjBnDU089RUpKyhm1UUSkvhScRESaQMVRhjKZmZmMHTuWTZs28dhjj/HVV1+xePFinnzySYA6lbu22WzVHjdOsY9RQ7y3rkaMGEFCQgIff/wxAF999RUFBQXMmDHDfY7FYuGTTz5xlwk/cuQIN954I4MHD640UnU6Lr74YsLCwpg/fz5grgWz2WxcffXV7nPuvPNOHn/8ca666io+/vhjFi1axOLFi4mMjGzUUuNXXXUVr7/+Or/73e/49NNPWbRokbsoR2OXOC/TFH/2tRkzZgz79u3jzTffpF+/frzxxhucffbZvPHGG+5z7rnnHnbv3s0TTzyBv78/Dz74IL179+bXX39tsnaKiJRRcBIR8ZDly5dz/Phx3n77be6++24uvvhiJkyYUGnqnSe1a9cOf3//aqutnU4FtquuuoqFCxeSnZ3NRx99REJCgntqWkUjRozg8ccf55dffuH9999n27ZtfPjhh/Vqu5+fH1dccQWLFi0iNTWV//3vf5x//vnExMS4z/nkk0+YNWsW//jHP7jiiiu44IILGD16dL02nO3UqRNHjx6tEvR27dpV6XlGRgZLly7l/vvv59FHH+Wyyy7jggsuqDStrUxtVQtPvv7J1wLc0z07depU5886E23btiUwMLDGtlitVuLj493H2rRpw+zZs/nggw84dOgQAwYM4JFHHqn0vq5du/KHP/yBRYsWsXXrVoqLi/nHP/7R2F+KiEgVCk4iIh5S9lv/ir/lLy4u5t///renmlSJzWZjwoQJfP755yQnJ7uP7927l2+//bbOnzNjxgyKiop45513WLhwIVdddVWl1zMyMqqMdAwaNAig0nS9ffv2sW/fvjpfd+bMmTgcDn77299y7NixKns32Wy2Ktd94YUXqpSCr4spU6ZQUlLCyy+/7D7mdDp54YUXqlwTqo7sPPvss1U+MygoCKBOQW7KlCmsXbuWNWvWuI/l5eXx2muvkZCQQJ8+fer6pZwRm83GxIkT+eKLLyqVDE9NTWX+/PmMHj2a0NBQgErl18Fck9WtWzf3n3l+fj6FhYWVzunatSshISFnNI1TRKS+VI5cRMRDzjnnHCIiIpg1axZ33XUXFouF9957r0mnS9XmkUceYdGiRYwaNYrbbrsNp9PJiy++SL9+/di4cWOdPuPss8+mW7duPPDAAxQVFVWapgfwzjvv8O9//5vLLruMrl27kpOTw+uvv05oaChTpkxxnzd+/HiAOu/hM3bsWDp06MAXX3xBQEAAl19+eaXXL774Yt577z3CwsLo06cPa9asYcmSJe5S7Kdj6tSpjBo1ivvvv5+DBw/Sp08fPv300yprlkJDQ91rdRwOB+3bt2fRokUcOHCgymcOHjwYgAceeICrr74aHx8fpk6d6g5UFd1///188MEHTJ48mbvuuos2bdrwzjvvcODAAf7v//4Pq7Vhf0/65ptvVrvn1913381f//pXFi9ezOjRo7n99tux2+28+uqrFBUV8dRTT7nP7dOnD+PGjWPw4MG0adOGX375hU8++YQ5c+YAsHv3bsaPH89VV11Fnz59sNvtfPbZZ6Smplaaciki0lQUnEREPCQyMpKvv/6aP/zhD/z5z38mIiKCa6+9lvHjxzNp0iRPNw8wf3j/9ttvuffee3nwwQeJj4/nscceY8eOHXWq+ldmxowZPP7443Tr1o2zzz670mtjx45l7dq1fPjhh6SmphIWFsawYcN4//333UUT6sNqtXLNNdfw9NNPM3XqVEJCQiq9/txzz2Gz2Xj//fcpLCxk1KhRLFmypF7fe6vVypdffsk999zDf//7XywWC5dccgn/+Mc/OOussyqdO3/+fO68805eeuklDMNg4sSJfPvtt5UqFwIMHTqUv/zlL7zyyissXLgQl8vFgQMHqg1O0dHRrF69mvvuu48XXniBwsJCBgwYwFdffcVFF1102l9PbSqOrFV0ww030LdvX1auXMm8efN44okncLlcDB8+nP/+97/uPZwA7rrrLr788ksWLVpEUVERnTp14q9//at749/4+HiuueYali5dynvvvYfdbqdXr158/PHHTJ8+vcG/JhGR2lgMb/rVpoiINAvTpk07ZSlpERGRlkZrnERE5JQKCgoqPd+zZw8LFixg3LhxnmmQiIiIB2jESURETik2NpYbbriBLl26kJiYyMsvv0xRURG//vor3bt393TzREREmoTWOImIyCldeOGFfPDBB6SkpODn58fIkSP529/+ptAkIiKtikacREREREREaqE1TiIiIiIiIrVQcBIREREREalFq1vj5HK5SE5OJiQkBIvF4unmiIiIiIiIhxiGQU5ODnFxcbVuFt7qglNycjLx8fGeboaIiIiIiHiJQ4cO0aFDh1Oe0+qCU9nO8YcOHSI0NNTDrQGHw8GiRYuYOHEiPj4+nm6OtGLqi+JN1B/Fm6g/ijdRf2xY2dnZxMfHuzPCqbS64FQ2PS80NNRrglNgYCChoaHq/OJR6oviTdQfxZuoP4o3UX9sHHVZwqPiECIiIiIiIrVQcBIREREREamFgpOIiIiIiEgtWt0aJxERERHxPoZhUFJSgtPp9HRTvJrD4cBut1NYWKjvVR35+Phgs9nO+HMUnERERETEo4qLizl69Cj5+fmeborXMwyDmJgYDh06pD1J68hisdChQweCg4PP6HMUnERERETEY1wuFwcOHMBmsxEXF4evr68CwSm4XC5yc3MJDg6udcNWMYPmsWPHOHz4MN27dz+jkScFJxERERHxmOLiYlwuF/Hx8QQGBnq6OV7P5XJRXFyMv7+/glMdtW3bloMHD+JwOM4oOOm7LSIiIiIepxAgjaWhRjDVQ0VERERERGqh4CQiIiIiIlILBScRERERES+QkJDAs88+W+fzly9fjsViITMzs9HaJOUUnEREREREToPFYjnl7ZFHHqnX565bt45bb721zuefc845HD16lLCwsHpdr64U0EyqqiciIiIichqOHj3qfvzRRx/x0EMPsWvXLvexivsFGYaB0+nEbq/9x+62bdueVjt8fX2JiYk5rfdI/WnESURERES8hmEY5BeXeORmGEad2hgTE+O+hYWFYbFY3M937txJSEgI3377LYMHD8bPz49Vq1axb98+Lr30UqKjowkODmbo0KEsWbKk0ueePFXPYrHwxhtvcNlllxEYGEj37t358ssv3a+fPBL09ttvEx4eznfffUfv3r0JDg7mwgsvrBT0SkpKuOuuuwgPDycyMpL77ruPWbNmMW3atHr/mWVkZHD99dcTERFBYGAgkydPZs+ePe7XExMTmTp1KhEREQQFBdG3b18WLFjgfu/MmTNp27YtAQEBdO/enbfeeqvebWlMGnESEREREa9R4HDS56HvPHLt7Y9NItC3YX48vv/++3nmmWfo0qULERERHDp0iClTpvD444/j5+fHu+++y9SpU9m1axcdO3as8XMeffRRnnrqKZ5++mleeOEFrrvuOjZv3kxoaGi15+fn5/PMM8/w3nvvYbVaufbaa7n33nt5//33AXjyySd5//33eeutt+jduzfPPfccn3/+Oeedd169v9YbbriBPXv28OWXXxIaGsp9993HlClT2L59Oz4+Ptxxxx0UFxfzww8/EBQUxPbt292jcg8++CDbt2/n22+/JSoqir1791JQUFDvtjQmBScRERERkQb22GOPccEFF7ift2nThoEDB7qf/+Uvf+Gzzz7jyy+/ZM6cOTV+zg033MA111wDwN/+9jeef/551q9fT6dOnao93+Fw8Morr9C1a1cA5syZw2OPPeZ+/YUXXmDevHlcdtllALz44ovu0Z/6KAtMP/74I+eccw4A77//PvHx8Xz++edceeWVJCUlMX36dPr37w9Aly5d3O9PSkrirLPOYsiQIYA56uatFJw8aG9aDjuSsziS5+mWiIiIiHiHAB8b2x+b5LFrN5SyIFAmNzeXRx55hG+++YajR49SUlJCQUEBSUlJp/ycAQMGuB8HBQURGhpKenp6jecHBga6QxNAbGwsaWlpAGRlZZGamsqwYcPcr9tsNgYPHozL5Tqtr6/Mjh07sNvtDB8+3H0sMjKSnj17smPHDgDuuusubrvtNhYtWsSECROYPn26++u67bbbmD59Ohs2bGDixIlMmzbNHcC8jdY4edD8nw9x54ebWJ+uPwYRERERMNf1BPraPXKzWCwN9nUEBQVVen7vvffy2Wef8be//Y2VK1eyceNG+vfvT3Fx8Sk/x8fHp8r351Qhp7rz67p2q7HcfPPN7N+/n+uuu44tW7YwZMgQXnjhBQAmT55MYmIiv//970lOTmb8+PHce++9Hm1vTfQTuwdFBJodO6/Eww0RERERkUb1448/csMNN3DZZZfRv39/YmJiOHjwYJO2ISwsjOjoaNatW+c+5nQ62bBhQ70/s3fv3pSUlPDzzz+7jx0/fpxdu3bRp08f97H4+Hh+97vf8emnn/KHP/yB119/3f1a27ZtmTVrFv/973959tlnee211+rdnsakqXoeFB7kC0Cew8MNEREREZFG1b17dz799FOmTp2KxWLhwQcfrPf0uDNx55138sQTT9CtWzd69erFCy+8QEZGRp1G27Zs2UJISIj7ucViYeDAgVx66aXccsstvPrqq4SEhHD//ffTvn17Lr30UgDuueceJk+eTI8ePcjIyGDZsmX07t0bgIceeojBgwfTt29fioqK+Prrr92veRsFJw8qG3HKL2m4YWERERER8T7//Oc/ufHGGznnnHOIiorivvvuIzs7u8nbcd9995GSksL111+PzWbj1ltvZdKkSdhsta/vGjNmTKXnNpuNkpIS3nrrLe6++24uvvhiiouLGTNmDAsWLHBPG3Q6ndxxxx0cPnyY0NBQLrzwQv71r38B5l5U8+bN4+DBgwQEBHDuuefy4YcfNvwX3gAshqcnPTax7OxswsLCyMrKqrGMY1P5cW86M9/4mZgAg5X/b1KVOakiTcnhcLBgwQKmTJmivigep/4o3kT9sXEVFhZy4MABOnfujL+/v6eb4/VcLhfZ2dmEhoZitZ75qhuXy0Xv3r256qqr+Mtf/tIALfQ+p+pjp5MNNOLkQeFa4yQiIiIiTSgxMZFFixYxduxYioqKePHFFzlw4AC/+c1vPN00r6fiEB4UEVi6xqkEj1c7EREREZGWz2q18vbbbzN06FBGjRrFli1bWLJkideuK/ImGnHyoLLg5DIs5BY5aePr4QaJiIiISIsWHx/Pjz/+6OlmNEsacfKgAF8bfnbzjyCz4NQ1/EVERERExHMUnDysbJ1TZr5qkouIiIiIeCsFJw+LCFBwEhERERHxdgpOHlY24pSh4CQiIiIi4rUUnDwsvLRARGaBgpOIiIiIiLdScPKw8jVOKg4hIiIiIuKtFJw8TGucRERERFqncePGcc8997ifJyQk8Oyzz57yPTabjW+++eaMr22xWPj888/P+HNaEwUnD9MaJxEREZHmZerUqVx44YXVvrZy5UosFgubN28+7c9dt24dt95665k2r5JHHnmEQYMGVTl+9OhRJk+e3KDXOtnbb79NeHh4o16jKSk4eZh7qp7WOImIiIg0CzfddBOLFy/m8OHDVV576623GDJkCAMGDDjtz23bti2BgYEN0cRaxcTE4Ofn1yTXaikUnDzMXRxCI04iIiIiYBhQnOeZm2HUqYkXX3wxbdu25e233650PDc3l//973/cdNNNHD9+nGuuuYb27dsTGBhI//79+eCDD075uSdP1duzZw9jxozB39+fPn36sHjx4irvue++++jRoweBgYF06dKFBx98EIfD/Lny7bff5tFHH2XTpk1YLBYsFou7zSdP1duyZQvnn38+AQEBREZGcuutt5Kbm+t+/YYbbmDatGk888wzxMbGEhkZyR133OG+Vn0kJSVx6aWXEhwcTGhoKFdddRWpqanu1zdt2sR5551HSEgIoaGhDB48mF9++QWAxMREpk6dSkREBEFBQfTt25cFCxbUuy11YW/UT5dala9xUnEIERERERz58Lc4z1z7/yWDb1Ctp9ntdq6//nrefvttHnjgASwWCwD/+9//cDqdXHPNNeTm5jJ48GDuu+8+QkND+eabb7juuuvo2rUrw4YNq/UaLpeLyy+/nOjoaH7++WeysrIqrYcqExISwttvv01cXBxbtmzhlltuISQkhD/96U/MmDGDrVu3snDhQpYsWQJAWFhYlc/Iy8tj0qRJjBw5knXr1pGWlsbNN9/MnDlzKoXDZcuWERsby7Jly9i7dy8zZsxg0KBB3HLLLbV+PdV9fWWhacWKFZSUlHDHHXcwY8YMli9fDsDMmTM566yzePnll7HZbGzcuBEfH/Nn5zvuuIPi4mJ++OEHgoKC2L59O8HBwafdjtOh4ORh7jVOmqonIiIi0mzceOONPP3006xYsYJx48YB5jS96dOnExYWRlhYGPfee6/7/DvvvJPvvvuOjz/+uE7BacmSJezcuZPvvvuOuDgzSP7tb3+rsi7pz3/+s/txQkIC9957Lx9++CF/+tOfCAgIIDg4GLvdTkxMTI3Xmj9/PoWFhbz77rsEBZnB8cUXX2Tq1Kk8+eSTREdHAxAREcGLL76IzWajV69eXHTRRSxdurRewWnp0qVs2bKFAwcOEB8fD8C7775L3759WbduHUOHDiUpKYk//vGP9OrVC4Du3bu735+UlMT06dPp378/AF26dDntNpwuBScPKwtOeUVOiktc+No1e1JERERaMZ9Ac+THU9euo169enHOOefw5ptvMm7cOPbu3cvKlSt57LHHAHA6nfztb3/j448/5siRIxQXF1NUVFTnNUw7duwgPj7eHZoARo4cWeW8jz76iOeff559+/aRm5tLSUkJoaGhdf46yq41cOBAd2gCGDVqFC6Xi127drmDU9++fbHZbO5zYmNj2bJly2ldq+I14+Pj3aEJoE+fPoSHh7Njxw6GDh3K3Llzufnmm3nvvfeYMGECV155JV27dgXgrrvu4rbbbmPRokVMmDCB6dOn12td2enQT+keFurvgwVzPm1mgabriYiISCtnsZjT5TxxK51yV1c33XQT//d//0dOTg5vvfUWXbt2ZezYsQA8/fTTPPfcc9x3330sW7aMjRs3MmnSJIqLG+7nvTVr1jBz5kymTJnC119/za+//soDDzzQoNeoqGyaXBmLxYLL5WqUa4FZEXDbtm1cdNFFfP/99/Tp04fPPvsMgJtvvpn9+/dz3XXXsWXLFoYMGcILL7zQaG0BBSePs1ktBJSO+6lAhIiIiEjzcdVVV2G1Wpk/fz7vvvsuN954o3u9048//sill17Ktddey8CBA+nSpQu7d++u82f37t2bQ4cOcfToUfexn376qdI5q1evplOnTjzwwAMMGTKE7t27k5iYWOkcX19fnE5nrdfatGkTeXl57mM//vgjVquVnj171rnNp6Ps6zt06JD72Pbt28nMzKRPnz7uYz169OD3v/89ixYt4vLLL+ett95yvxYfH8/vfvc7Pv30U/7whz/w+uuvN0pbyyg4eYGg0uCUkacRJxEREZHmIjg4mBkzZjBv3jyOHj3KDTfc4H6te/fuLF68mNWrV7Njxw5++9vfVqoYV5sJEybQo0cPZs2axaZNm1i5ciUPPPBApXO6d+9OUlISH374Ifv27eP55593j8iUSUhI4MCBA2zcuJH09HSKioqqXGvmzJn4+/sza9Ystm7dyrJly7jzzju57rrr3NP06svpdLJx48ZKtx07djBhwgT69+/PzJkz2bBhA2vXruX6669n7NixDBkyhIKCAubMmcPy5ctJTEzkxx9/ZN26dfTu3RuAe+65h++++44DBw6wYcMGli1b5n6tsSg4eQF3cNKIk4iIiEizctNNN5GRkcGkSZMqrUf685//zNlnn82kSZMYN24cMTExTJs2rc6fa7Va+eyzzygoKGDYsGHcfPPNPP7445XOueSSS/j973/PnDlzGDRoEKtXr+bBBx+sdM706dO58MILOe+882jbtm21JdEDAwP57rvvOHHiBEOHDuWKK65g/PjxvPjii6f3zahGbm4uZ511VqXb1KlTsVgsfPHFF0RERDBmzBgmTJhAly5d+OijjwCw2WwcP36c66+/nh49enDVVVcxefJkHn30UcAMZHfccQe9e/fmwgsvpEePHvz73/8+4/aeisUw6liwvoXIzs4mLCyMrKys01441xgcDgeX/mMh2zOt/P3y/lw9rKOnmyStlMPhYMGCBUyZMqXKHGaRpqb+KN5E/bFxFRYWcuDAATp37oy/v7+nm+P1XC4X2dnZhIaGYrVqDKQuTtXHTicb6LvtBYJK/w3WiJOIiIiIiHdScPICQe7iEFrjJCIiIiLijRScvECQ3ZwtmaHgJCIiIiLilRScvECgikOIiIiIiHg1BScvULbGSVP1REREpLVqZfXKpAk1VN9ScPICKkcuIiIirVVZpcL8/HwPt0RaquJic3DCZrOd0efYG6IxcmbK1jhpxElERERaG5vNRnh4OGlpaYC5p5DFYvFwq7yXy+WiuLiYwsJClSOvA5fLxbFjxwgMDMRuP7Poo+DkBcqr6jkwDEP/WIiIiEirEhMTA+AOT1IzwzAoKCggICBAPzPWkdVqpWPHjmf8/VJw8gJlxSFKXAa5RSWE+GtzPREREWk9LBYLsbGxtGvXDodDSxdOxeFw8MMPPzBmzBhtyFxHvr6+DTI6p+DkBXxt4O9jpdDhIjPfoeAkIiIirZLNZjvjdSgtnc1mo6SkBH9/fwWnJqaJkV4iPMDs+NrLSURERETE+yg4eYnwQF9AlfVERERERLyRgpOXiAg0R5xUWU9ERERExPsoOHkJ91S9PAUnERERERFvo+DkJcIDy9Y4aaqeiIiIiIi3UXDyEuGaqiciIiIi4rUUnLxEhIpDiIiIiIh4LQUnL6Fy5CIiIiIi3kvByUuUT9XTiJOIiIiIiLdRcPIS5cUhNOIkIiIiIuJtFJy8RIRGnEREREREvJaCk5cIK13jlFtUQnGJy8OtERERERGRihScvESovw8Wi/k4s0DT9UREREREvImCk5ewWS3uUSdN1xMRERER8S4KTl7EvZdTnkacRERERES8iYKTFymvrKcRJxERERERb6Lg5EXKRpwyVZJcRERERMSrKDh5EY04iYiIiIh4JwUnL6IRJxERERER76Tg5EUi3CNOCk4iIiIiIt5EwcmLhJdV1dNUPRERERERr6Lg5EU0VU9ERERExDspOHmRCBWHEBERERHxSgpOXiRcI04iIiIiIl5JwcmLRASZI06Z+Q4Mw/Bwa0REREREpIyCkxcpW+NU4jLIKSrxcGtERERERKSMgpMX8fex4e9j/pFk5mmdk4iIiIiIt1Bw8jIR7pLkWuckIiIiIuItFJy8TLiCk4iIiIiI11Fw8jJlJckzVZJcRERERMRrKDh5GU3VExERERHxPl4RnF566SUSEhLw9/dn+PDhrF27tk7v+/DDD7FYLEybNq1xG9iEwrUJroiIiIiI1/F4cProo4+YO3cuDz/8MBs2bGDgwIFMmjSJtLS0U77v4MGD3HvvvZx77rlN1NKmEaFNcEVEREREvI7Hg9M///lPbrnlFmbPnk2fPn145ZVXCAwM5M0336zxPU6nk5kzZ/Loo4/SpUuXJmxt49OIk4iIiIiI97F78uLFxcWsX7+eefPmuY9ZrVYmTJjAmjVranzfY489Rrt27bjppptYuXLlKa9RVFREUVGR+3l2djYADocDh8Pz4aSsDWX3oX42AE7kFnlF+6T1OLkviniS+qN4E/VH8Sbqjw3rdL6PHg1O6enpOJ1OoqOjKx2Pjo5m586d1b5n1apV/Oc//2Hjxo11usYTTzzBo48+WuX4okWLCAwMPO02N5bFixcDsDfDAthITElnwYIFnm2UtEplfVHEG6g/ijdRfxRvov7YMPLz8+t8rkeD0+nKycnhuuuu4/XXXycqKqpO75k3bx5z5851P8/OziY+Pp6JEycSGhraWE2tM4fDweLFi7ngggvw8fEh9lAmr+1ci+ETwJQpYzzdPGlFTu6LIp6k/ijeRP1RvIn6Y8Mqm41WFx4NTlFRUdhsNlJTUysdT01NJSYmpsr5+/bt4+DBg0ydOtV9zOVyAWC329m1axddu3at9B4/Pz/8/PyqfJaPj49Xdbay9rQNNUfBMvMdXtU+aT287e+GtG7qj+JN1B/Fm6g/NozT+R56tDiEr68vgwcPZunSpe5jLpeLpUuXMnLkyCrn9+rViy1btrBx40b37ZJLLuG8885j48aNxMfHN2XzG0XZBrh5xU6KS1webo2IiIiIiIAXTNWbO3cus2bNYsiQIQwbNoxnn32WvLw8Zs+eDcD1119P+/bteeKJJ/D396dfv36V3h8eHg5Q5XhzFervg9UCLsMsSd4u1N/TTRIRERERafU8HpxmzJjBsWPHeOihh0hJSWHQoEEsXLjQXTAiKSkJq9XjVdObjNVqISzAh4x8Bxn5DgUnEREREREv4PHgBDBnzhzmzJlT7WvLly8/5Xvffvvthm+Qh0UE+pYGJ22CKyIiIiLiDVrPUE4zUrYJbqaCk4iIiIiIV1Bw8kIRgb4AZORrYzMREREREW+g4OSFwt3BSSNOIiIiIiLeQMHJC0W4p+ppxElERERExBsoOHmhiKDSEac8jTiJiIiIiHgDBScvVFYcQmucRERERES8g4KTFyorDqGqeiIiIiIi3kHByQuVjzgpOImIiIiIeAMFJy9UPuKkqXoiIiIiIt5AwckLuYNTgQPDMDzcGhERERERUXDyQmVT9Zwug+zCEg+3RkREREREFJy8kL+PjQAfG6ACESIiIiIi3kDByUtFqCS5iIiIiIjXUHDyUuGl65xUWU9ERERExPMUnLxURJA54qSpeiIiIiIinqfg5KXcI055mqonIiIiIuJpCk5eqmyNk0acREREREQ8T8HJS0W41zhpxElERERExNMUnLyUikOIiIiIiHgPBScvVT5VTyNOIiIiIiKepuDkpSI04iQiIiIi4jUUnLxUuEacRERERES8hoKTl9KIk4iIiIiI91Bw8lJlwSm/2ElRidPDrRERERERad0UnLxUiL8dq8V8nKXpeiIiIiIiHqXg5KWsVkuFkuQKTiIiIiIinqTg5MXKCkRonZOIiIiIiGcpOHmxsnVOmQpOIiIiIiIepeDkxSLcI06aqiciIiIi4kkKTl4sXCXJRURERES8goKTF4vQJrgiIiIiIl5BwcmLuUec8jTiJCIiIiLiSQpOXixC5chFRERERLyCgpMXK5+qpxEnERERERFPUnDyYioOISIiIiLiHRScvFhEkIpDiIiIiIh4AwUnL+beALfAgWEYHm6NiIiIiEjrZfd0A1q19L1YUrcTUnC42pfDS9c4OV0G2YUlhAX4NGXrRERERESklEacPGndG9j/dx3xJ36s9mU/u41AXxugAhEiIiIiIp6k4ORJgZEA+DpzazxFJclFRERERDxPwcmTgkqDU0l2jaeUTddTZT0REREREc9RcPKkshGnktpHnDRVT0RERETEcxScPCkwCgC/uow45WmqnoiIiIiIpyg4eZJGnEREREREmgUFJ08KMkecfJ154Cqp9pQI9xonjTiJiIiIiHiKgpMnBURgYDEf55+o9pRwd1U9jTiJiIiIiHiKgpMnWW0QEGE+Lqg+OEUEmSNOmRpxEhERERHxGAUnTwtsA4AlP73alzXiJCIiIiLieQpOHmaUVtaraapeeXEIjTiJiIiIiHiKgpOnBZx6xClCG+CKiIiIiHicgpOnlU7Vq604RH6xk6ISZ1O1SkREREREKlBw8rDyqXrHq3091N+OzWpW3tN0PRERERERz1Bw8rSy4hAF1Qcni8VCeICm64mIiIiIeJKCk4fVNuIEEF62zilPI04iIiIiIp6g4ORp7uIQ1a9xgoqV9TTiJCIiIiLiCQpOnhYYad7XUFUPKu7lpBEnERERERFPUHDyMMMdnE6AYVR7jkqSi4iIiIh4loKTp5UGJ4uzCIpzqz2lbI2TpuqJiIiIiHiGgpOn+QTitJjBqKYCEZqqJyIiIiLiWQpOnmaxUGQPMR/XEJxUHEJERERExLMUnLxAcVlwyqspOJWtcdKIk4iIiIiIJyg4eYHiWkacyqfqacRJRERERMQTFJy8QPlUvepLkkcElRWH0IiTiIiIiIgnKDh5gdpGnCqucXK5qi9ZLiIiIiIijUfByQuUr3GqfsSprBy5y4CcwpKmapaIiIiIiJRScPIC5SNOJ6p93c9uI9DXBmidk4iIiIiIJyg4eYHa1jhB+XQ9BScRERERkaan4OQFim2nXuME5dP1VCBCRERERKTpKTh5gdrWOIFGnEREREREPEnByQu4p+oVZoKz+uIP4doEV0RERETEYxScvIDDHoSBxXxSUH2BiIolyUVEREREpGkpOHkBw2KDgHDzSY17OZWNOCk4iYiIiIg0NQUnbxEYad7XEJzC3WucNFVPRERERKSpKTh5CSOgNDjVUCAiIqisqp5GnEREREREmpqCk7eo64hTnkacRERERESamoKTtwhsY97XuMZJxSFERERERDxFwclLGIFR5oNai0NoxElEREREpKkpOHmLshGnGtY4lU3VK3A4KXQ4m6pVIiIiIiKCgpPXqG3EKdTfjs1q7vWUqVEnEREREZEmpeDkLQLK1jhVP+JksVgID9BeTiIiIiIinqDg5C3cxSFO1HhKuDbBFRERERHxCAUnL+GeqpeXDoZR7TnllfU0VU9EREREpCkpOHmLshEnZxEU51V7insvJ404iYiIiIg0KQUnb+ETBHZ/83EN65zKSpJrxElEREREpGkpOHkLiwUCI83HNe3lFFQ64pSnEScRERERkaak4ORN3MGp+gIR4doEV0RERETEIxScvElZcKphE9zy4hAacRIRERERaUoKTt4k6NSb4EaoHLmIiIiIiEcoOHkT91S96kecwlWOXERERETEIxScvElgbSNOKkcuIiIiIuIJXhGcXnrpJRISEvD392f48OGsXbu2xnM//fRThgwZQnh4OEFBQQwaNIj33nuvCVvbiMr2cso79VS9rAIHLlf1m+SKiIiIiEjD83hw+uijj5g7dy4PP/wwGzZsYODAgUyaNIm0tLRqz2/Tpg0PPPAAa9asYfPmzcyePZvZs2fz3XffNXHLG0Eta5zKpuq5DMgpLGmqVomIiIiItHoeD07//Oc/ueWWW5g9ezZ9+vThlVdeITAwkDfffLPa88eNG8dll11G79696dq1K3fffTcDBgxg1apVTdzyRlDLGidfu5UgXxug6XoiIiIiIk3J7smLFxcXs379eubNm+c+ZrVamTBhAmvWrKn1/YZh8P3337Nr1y6efPLJas8pKiqiqKjI/Tw7OxsAh8OBw+H5IgtlbXA4HOAbhg9g5B+npIa2hQf6kFfs5Fh2Pu3DfJuwpdLSVeqLIh6m/ijeRP1RvIn6Y8M6ne+jR4NTeno6TqeT6OjoSsejo6PZuXNnje/Lysqiffv2FBUVYbPZ+Pe//80FF1xQ7blPPPEEjz76aJXjixYtIjAw8My+gAa0ePFifB3ZTAYsBRl8+81XGBZblfMsDhtgYfEPa0iO0DonaXiLFy/2dBNE3NQfxZuoP4o3UX9sGPn5+XU+16PBqb5CQkLYuHEjubm5LF26lLlz59KlSxfGjRtX5dx58+Yxd+5c9/Ps7Gzi4+OZOHEioaGhTdjq6jkcDhYvXswFF1yAj80CW+cAMHncCAhqW+X8j9PWc3jfcbr3HciUQXFN3VxpwSr1RR8fTzdHWjn1R/Em6o/iTdQfG1bZbLS68GhwioqKwmazkZqaWul4amoqMTExNb7ParXSrVs3AAYNGsSOHTt44oknqg1Ofn5++Pn5VTnu4+PjVZ3N3Z6ACCjIwKc4C8KrBqM2webXkl3k8qr2S8vhbX83pHVTfxRvov4o3kT9sWGczvfQo8UhfH19GTx4MEuXLnUfc7lcLF26lJEjR9b5c1wuV6V1TM2au0DEqUuSZ6o4hIiIiIhIk/H4VL25c+cya9YshgwZwrBhw3j22WfJy8tj9uzZAFx//fW0b9+eJ554AjDXLA0ZMoSuXbtSVFTEggULeO+993j55Zc9+WU0nMAoOL4X8qqvrBeuTXBFRERERJqcx4PTjBkzOHbsGA899BApKSkMGjSIhQsXugtGJCUlYbWWD4zl5eVx++23c/jwYQICAujVqxf//e9/mTFjhqe+hIZVxxGnjHxVUhERERERaSoeD04Ac+bMYc6cOdW+tnz58krP//rXv/LXv/61CVrlIUFlwelEtS9HlI44aaqeiIiIiEjT8fgGuHKSWjbBDS8bccrTiJOIiIiISFNRcPI2gVHmfY1T9TTiJCIiIiLS1BScvE3ZiFMNxSEi3MUhNOIkIiIiItJUFJy8TdCpR5zCg8ypegUOJ4UOZ1O1SkRERESkVVNw8jaBbcz7GoJTiJ8du9UCQKZGnUREREREmoSCk7epuMbJMKq8bLFYygtEaJ2TiIiIiEiTUHDyNmVrnEoKoTiv2lO0Ca6IiIiISNNScPI2vkFg8zMf17IJrqbqiYiIiIg0DQUnb2OxVCgQUdNeThpxEhERERFpSgpO3shdIOJEtS9rxElEREREpGkpOHmjsgIRte3llKcRJxERERGRpqDg5I3KCkTUtJeTNsEVEREREWlSCk7eqJZNcMun6mnESURERESkKSg4eSP3iJOKQ4iIiIiIeAMFJ2/kDk4qDiEiIiIi4g0UnLxRWXCqqThEkEacRERERESakoKTN6pljVN46YhTVoEDl8toqlaJiIiIiLRaCk7eqLY1TgHmiJPLgOxCTdcTEREREWlsCk7eqGwfp4JMcJZUednXbiXYzw6oJLmIiIiISFNQcPJGARGlDwwoyKj2lLLpelrnJCIiIiLS+OoVnA4dOsThw4fdz9euXcs999zDa6+91mANa9Vs9vLwVONeTuZ0Pe3lJCIiIiLS+OoVnH7zm9+wbNkyAFJSUrjgggtYu3YtDzzwAI899liDNrDVqnUvp9IRpzxN1RMRERERaWz1Ck5bt25l2LBhAHz88cf069eP1atX8/777/P22283ZPtaL3dwOvWIk6bqiYiIiIg0vnoFJ4fDgZ+fHwBLlizhkksuAaBXr14cPXq04VrXmpUViKhpLydtgisiIiIi0mTqFZz69u3LK6+8wsqVK1m8eDEXXnghAMnJyURGRjZoA1utwDbmff6Jal8O14iTiIiIiEiTqVdwevLJJ3n11VcZN24c11xzDQMHDgTgyy+/dE/hkzNUyya4GnESEREREWk69vq8ady4caSnp5OdnU1ERIT7+K233kpgYGCDNa5Vq6U4RESQRpxERERERJpKvUacCgoKKCoqcoemxMREnn32WXbt2kW7du0atIGtVuCpR5zKp+ppxElEREREpLHVKzhdeumlvPvuuwBkZmYyfPhw/vGPfzBt2jRefvnlBm1gq1U24lRrcQiNOImIiIiINLZ6BacNGzZw7rnnAvDJJ58QHR1NYmIi7777Ls8//3yDNrDVCiqbqld9cQiVIxcRERERaTr1Ck75+fmEhIQAsGjRIi6//HKsVisjRowgMTGxQRvYalVc42QYVV4u2wC30OGi0OFsypaJiIiIiLQ69QpO3bp14/PPP+fQoUN89913TJw4EYC0tDRCQ0MbtIGtVtkap5JCcORXeTnYz47dagE06iQiIiIi0tjqFZweeugh7r33XhISEhg2bBgjR44EzNGns846q0Eb2Gr5BoHN3GS4unVOFoulvEBEngpEiIiIiIg0pnqVI7/iiisYPXo0R48ede/hBDB+/Hguu+yyBmtcq2axmHs5ZR8xK+tFdKpySkSgD+m5RSoQISIiIiLSyOoVnABiYmKIiYnh8OHDAHTo0EGb3za0wDblwakaESpJLiIiIiLSJOo1Vc/lcvHYY48RFhZGp06d6NSpE+Hh4fzlL3/B5XI1dBtbL3eBiJr2cjILRGiNk4iIiIhI46rXiNMDDzzAf/7zH/7+978zatQoAFatWsUjjzxCYWEhjz/+eIM2stUqKxBR415O5oiTpuqJiIiIiDSuegWnd955hzfeeINLLrnEfWzAgAG0b9+e22+/XcGpodQ24hRUNuKkqXoiIiIiIo2pXlP1Tpw4Qa9evaoc79WrFydOVL9hq9RDUOmIU61rnDTiJCIiIiLSmOoVnAYOHMiLL75Y5fiLL77IgAEDzrhRUiqwjXlfY3AyR5wyNeIkIiIiItKo6jVV76mnnuKiiy5iyZIl7j2c1qxZw6FDh1iwYEGDNrBVCzz1iFO4RpxERERERJpEvUacxo4dy+7du7nsssvIzMwkMzOTyy+/nG3btvHee+81dBtbr7I1TrUWh9CIk4iIiIhIY6r3Pk5xcXFVikBs2rSJ//znP7z22mtn3DCh1jVObUqLQ6TnFGEYBhaLpalaJiIiIiLSqtRrxEmaSNmIU0EGuJxVXu7YJghfu5WcohKSTuQ3ceNERERERFoPBSdvFlBaHALDDE8n8bVb6RMbCsDGQ5lN1y4RERERkVZGwcmb2ezgH24+rmGd06B48/VNh7Kapk0iIiIiIq3Qaa1xuvzyy0/5emZm5pm0RaoTFAWFmTWucxrQIQyAzYczm65NIiIiIiKtzGkFp7CwsFpfv/7668+oQXKSwEg4vhfyqx9xGlg64rQ1OYsSpwu7TYOIIiIiIiIN7bSC01tvvdVY7ZCa1LKXU+fIIEL87eQUlrA7NZc+caFN2DgRERERkdZBwxPeLrC0QERe9cHJarW4p+tt0nQ9EREREZFGoeDk7cpKktcw4gQwsEM4AJtUWU9EREREpFEoOHk79ya41a9xAhhQFpwOq7KeiIiIiEhjUHDydnUYcSorSb47NYeC4qob5YqIiIiIyJlRcPJ2tRSHAIgJ86ddiB9Ol8G2ZI06iYiIiIg0NAUnb1c24lRDcYgyZWXJN2qdk4iIiIhIg1Nw8nZBtU/Vg/LpelrnJCIiIiLS8BScvF3ZiFNJARTn1XhaWUnyzSpJLiIiIiLS4BScvJ1vMNj8zMenGHUa0D4cgMTj+WTkFTdBw0REREREWg8FJ29nsVRY51RzSfKwQB86RwUBsPmIpuuJiIiIiDQkBafmwL3O6cQpTxtYOl1PG+GKiIiIiDQsBafmwL2XU80jTlC+Ea7WOYmIiIiINCwFp+agDns5QcWS5FkYhtHIjRIRERERaT0UnJqDOqxxAugbF4rdaiE9t4jkrMImaJiIiIiISOug4NQcBNVtxMnfx0bPmBAANmudk4iIiIhIg1Fwag4C25j3tQQnqDBdT+ucREREREQajIJTc+AuDlGH4FS2Ee4hlSQXEREREWkoCk7NQR2LQ0D5iNOWI1k4XSoQISIiIiLSEBScmoM6FocA6N4uhEBfG7lFJew/ltvIDRMRERERaR0UnJqDsuIQBRngcp7yVJvVQr+40o1wD2u6noiIiIhIQ1Bwag4CIkofGGZ4qsXA+NLgpMp6IiIiIiINQsGpObD5gH+4+bgO65wGdDDP3azKeiIiIiIiDULBqbk4jXVOg0oLRGw/mk1Ryamn9omIiIiISO0UnJqLOm6CC9AhIoCIQB8cToMdR3MauWEiIiIiIi2fglNz4d7LqfYRJ4vF4i5Lrul6IiIiIiJnTsGpuTiNTXABBpauc9qoAhEiIiIiImdMwam5cK9xqmNwKq2st1klyUVEREREzpiCU3NxGmucoLyy3r5juWQXOhqpUSIiIiIirYOCU3NxGmucAKKC/WgfHoBhwFaNOomIiIiInBEFp+biNNc4QXlZ8k0KTiIiIiIiZ0TBqbkILJuqd6LObxnQwVzntEkFIkREREREzoiCU3MR2Ma8r8MGuGVUklxEREREpGEoODUXZcUhSgqgOL9Ob+nfPgyrBZKzCknLLmzExomIiIiItGwKTs2FbzDYfM3HdSwQEeRnp1u7YEDrnEREREREzoSCU3NhsVRY51T3AhFlG+Fqup6IiIiISP0pODUnp7kJLsCA0nVOG1UgQkRERESk3hScmpOgepQkd484ZWEYRiM0SkRERESk5VNwak5OcxNcgJ4xIfjarGQVOEg8XreiEiIiIiIiUpmCU3NSjzVOvnYrfeJCAdikdU4iIiIiIvWi4NScuNc41X3ECWBQ6TqnTYdUWU9EREREpD4UnJqTeqxxAhjQIQzQiJOIiIiISH15RXB66aWXSEhIwN/fn+HDh7N27doaz3399dc599xziYiIICIiggkTJpzy/BYlsH7BaWDpiNO25CwcTlcDN0pEREREpOXzeHD66KOPmDt3Lg8//DAbNmxg4MCBTJo0ibS0tGrPX758Oddccw3Lli1jzZo1xMfHM3HiRI4cOdLELfeAeqxxAugcGUSIn51Ch4vdqTmN0DARERERkZbN48Hpn//8J7fccguzZ8+mT58+vPLKKwQGBvLmm29We/7777/P7bffzqBBg+jVqxdvvPEGLpeLpUuXNnHLPaCeI05Wq4UB8eZ0vc2Htc5JREREROR02T158eLiYtavX8+8efPcx6xWKxMmTGDNmjV1+oz8/HwcDgdt2rSp9vWioiKKiorcz7OzswFwOBw4HI4zaH3DKGtDndriG4oPYOSfoKSoEKy2Ol+nf1woP+49zq+JJ7jirNh6tlZastPqiyKNTP1RvIn6o3gT9ceGdTrfR48Gp/T0dJxOJ9HR0ZWOR0dHs3Pnzjp9xn333UdcXBwTJkyo9vUnnniCRx99tMrxRYsWERgYePqNbiSLFy+u9RyLUcIlgAWDJV9/QrE9pM6fX3zcAthYteMwC3wT699QafHq0hdFmor6o3gT9UfxJuqPDSM/v+77nHo0OJ2pv//973z44YcsX74cf3//as+ZN28ec+fOdT/Pzs52r4sKDQ1tqqbWyOFwsHjxYi644AJ8fHxqPd/YGYalMIsJ55wFUT3qfJ2zswt58+kfSC20Mm7CeAJ9m/UfvTSC0+2LIo1J/VG8ifqjeBP1x4ZVNhutLjz603NUVBQ2m43U1NRKx1NTU4mJiTnle5955hn+/ve/s2TJEgYMGFDjeX5+fvj5+VU57uPj41Wdrc7tCYyCwix8irPgNNofH+lDuxA/0nKK2H2sgKEJ1U9tFPG2vxvSuqk/ijdRfxRvov7YME7ne+jR4hC+vr4MHjy4UmGHskIPI0eOrPF9Tz31FH/5y19YuHAhQ4YMaYqmeo96boIL5WXJNx3KbLj2iIiIiIi0Ah6vqjd37lxef/113nnnHXbs2MFtt91GXl4es2fPBuD666+vVDziySef5MEHH+TNN98kISGBlJQUUlJSyM3N9dSX0LSC6leSHGCgeyNcVdYTERERETkdHl/oMmPGDI4dO8ZDDz1ESkoKgwYNYuHChe6CEUlJSVit5fnu5Zdfpri4mCuuuKLS5zz88MM88sgjTdl0zwgsnWKXrxEnEREREZGm4vHgBDBnzhzmzJlT7WvLly+v9PzgwYON3yBv5t4E98Rpv3VA+3AAkk7kk5FXTESQbwM2TERERESk5fL4VD05TWewxiks0IfOUUEAbDqc2YCNEhERERFp2RScmpszWOME5eucNmudk4iIiIhInSk4NTdlI071WOMEMKBDOKB1TiIiIiIip0PBqbk5gzVOUKFAxOFMDMNooEaJiIiIiLRsCk7NTVlVvXqscQLoGxeK3WohPbeY5KzCBmyYiIiIiEjLpeDU3JStcSopgOL80367v4+NnjEhgKbriYiIiIjUlYJTc+MbDLbSMuL1LRBRYbqeiIiIiIjUTsGpubFYzrhARFllPY04iYiIiIjUjYJTcxR4hiXJS0ecthzOwulSgQgRERERkdooODVH7gIR9QtO3doGE+BjI6/Yyf5juQ3YMBERERGRlknBqTk6w01w7TYr/dub0/U2arqeiIiIiEitFJyaozNc4wQwoHSd0+bDWQ3RIhERERGRFk3BqTk6wzVOoMp6IiIiIiKnQ8GpOTrDTXABBpUGpx1HsykqcTZAo0REREREWi4Fp+bIvcbpRL0/okNEABGBPjicBjuO5jRQw0REREREWiYFp+aoAdY4WSyW8ul6KhAhIiIiInJKCk7NUQOscQIY0CEc0DonEREREZHaKDg1R+4RpxPgqv/6pEHxZmU9jTiJiIiIiJyaglNzVFYcAgMKMuv9MWUjTvvT88gudJxxs0REREREWioFp+bI5gP+5mjRmUzXiwr2o314AIYBP++vf6EJEREREZGWTsGpuXKvc6p/gQiAiX2jAfjHol2UOF1n2ioRERERkRZJwam5cq9zOrMCEXed352wAB92puTw4bpDDdAwEREREZGWR8GpuSoLTmewCS5ARJAvv5/QHTBHnbLytdZJRERERORkCk7NVVDDjDgBzBzRie7tgsnId/Ds0t1n/HkiIiIiIi2NglNz1UBT9QB8bFYevLgPAO+tSWRvWs4Zf6aIiIiISEui4NRcNdAmuGXG9GjLhN7tKHEZPPb1DgzDaJDPFRERERFpCRScmqsGWuNU0QMX9cHHZuGH3cdYtiutwT5XRERERKS5U3BqroIadsQJoHNUEDeO6gzAX7/eQXGJypOLiIiIiICCU/PVgGucKppzfjeign3Zn57Hu2sONuhni4iIiIg0VwpOzVUjBacQfx/+OKknAM8t2UN6blGDfr6IiIiISHOk4NRclQUnRz4U5zfoR18xOJ5+7UPJKSrhH4tUnlxERERERMGpufILAZuv+biBR51sVgsPXdwXgA/XJbEtOatBP19EREREpLlRcGquLJZGm64HMKxzGy4eEIthwKNfbVd5chERERFp1RScmjP3Xk4NV5K8onlTeuNnt7L2wAm+3ZrSKNcQEREREWkOFJyas8A25n3+iUb5+PbhAfx2bFcAHv9mB4UOZ6NcR0RERETE2yk4NWeNsAnuyX43tguxYf4cySzg9R/2N9p1RERERES8mYJTc9YIm+CeLNDXzv2TewHw7+X7SMkqbLRriYiIiIh4KwWn5sxdHKLxRpwALhkYx5BOERQ4nDy5cGejXktERERExBspODVnjVhVryKLxcJDU/sA8NmvR9iQlNGo1xMRERER8TYKTs2Ze41T4wYngAEdwrlycAfALE/ucqk8uYiIiIi0HgpOzVkTrHGq6I8X9iTI18amQ5l89uuRJrmmiIiIiIg3UHBqzsr2cco5Cq7GLxXeLsSfOed3B+DJhTvJKypp9GuKiIiIiHgDBafmLKo7+IdDUTYkrWmSS944OoFOkYGk5RTx7+V7m+SaIiIiIiKepuDUnNl8oNfF5uNtnzfJJf3sNh6Y0huA11ceIOl4fpNcV0RERETEkxScmru+08z7HV82yXQ9gAv6RDOqWyTFJS7+tmBHk1xTRERERMSTFJyau85jwT8MclPh0M9NckmLxcJDF/fFaoGF21JYva9x95ESEREREfE0Bafmzu4LPS8yHzfRdD2AnjEhXDuiEwCPfbWdEqerya4tIiIiItLUFJxagkrT9ZouwPx+Qg/CAnzYmZLDqz/sxzC0t5OIiIiItEwKTi1Bl3HgF2qWJT+8tskuGxHky9wLegDw9He7uPvDjeQUOprs+iIiIiIiTUXBqSWw+0HPKebjJpyuB3D9yE7cd2EvbFYLX25K5uIXVrH5cGaTtkFEREREpLEpOLUUZdP1tn/RpNP1LBYLt43ryse/HUn78AASj+cz/eXVvLFSU/dEREREpOVQcGopupwHviGQkwxHfmnyyw/uFMGCu89lcr8YHE6Dv36zg5ve+YUTecVN3hYRERERkYam4NRS+PhDz8nm4yaerlcmLMCHf888m79O64ev3cr3O9OY/NwPrNl33CPtERERERFpKApOLYmHputVZLFYuHZEJ764YxRd2waRml3Eb974iX8u3q2S5SIiIiLSbCk4tSRdzwffYMg+DMkbPNqU3rGhfHXnaK4a0gHDgOeX7uE3b/zM0awCj7ZLRERERKQ+FJxaEp8A6HGh+XjbZ55tCxDoa+epKwby3NWDCPazs/bACSY/t5Il21M93TQRERERkdOi4NTSuKfrfQleUtXu0kHt+frO0fRvH0ZmvoOb3/2Fx77aTlGJ09NNExERERGpEwWnlqbbBPAJgqwkj0/XqyghKoj/u+0cbhrdGYA3fzzA9JdXcyA9z8MtExERERGpnYJTS+MTAD0mmY89VF2vJr52Kw9e3If/zBpCRKAPW49kc/HzK/li4xFPN01ERERE5JQUnFoi93S9z71mul5F43tH8+3dYxjeuQ15xU7u/nAjd3/4K/uO5Xq6aSIiIiIi1VJwaom6XQA+gZCZBEc3ero11YoJ82f+LSO4Z0J3rBb4YmMyE/65glvf/YX1iSc83TwRERERkUoUnFoi30DoPtF87GXT9SqyWS3cM6EHn94+igm9ozEMWLQ9lekvr+GKl1ezaFsKLpf3jZiJiIiISOuj4NRSefl0vYoGxYfzxqwhLJk7hhlD4vG1WfklMYNb31vPhH+t4IO1SRQ6VIFPRERERDxHwaml6j4R7AGQcRBSNnu6NXXSrV0IT14xgFX3ncdt47oS4m9n/7E85n26hdFPLuOlZXvJynd4upkiIiIi0gopOLVUvkHQ/QLzsRdP16tOu1B/7ruwF2vmjefPF/UmLsyf9Nwinv5uFyP/vpRHv9rG4Yx8TzdTRERERFoRBaeWrBlN16tOsJ+dm8/twoo/nce/ZgykV0wI+cVO3vrxIGOfXs7dH/7KtuQsTzdTRERERFoBBaeWrPsksPvDif2QutXTrak3H5uVy87qwLd3n8u7Nw5jVLdInC6DLzYmc9Hzq7j2jZ/5YfcxFZIQERERkUZj93QDpBH5BUO3CbDza3O6Xkx/T7fojFgsFsb0aMuYHm3ZeiSL137YzzdbjrJqbzqr9qYTG+bPxQNimTowjv7tw7BYLJ5usoiIiIi0EBpxaun6XmbeN9PpejXp1z6M5685i+X3juOGcxII8bNzNKuQ11ce4JIXf2TcM8t55rtd7ErJ8XRTRURERKQF0IhTS9djEtj84PheSNsO0X093aIGFd8mkEcu6cv9k3uxYvcxvtqUzJIdqSQez+fFZXt5cdleekaHMHVgLBcPiCMhKsjTTRYRERGRZkjBqaXzCzGn6+36xpyu18KCUxl/HxuT+sYwqW8MeUUlLN2Zxlebklmx6xi7UnPYtSiHZxbtZkCHMKYOiOOiAbHEhQd4utkiIiIi0kwoOLUGfaeZwWn753De/4MWvvYnyM/OJQPjuGRgHFkFDr7blsJXm5JZve84mw9nsflwFo8v2MHQhAimDoxjcr9Y2ob4ebrZIiIiIuLFFJxagx6TwOYL6bvh2E5o19vTLWoyYQE+XDUknquGxJOeW8S3W80Qte7gCdYdzGDdwQwe+XIb53SN4vKz2zOlfyz+PjZPN1tEREREvIyCU2vgHwZdx8Pub83peq0oOFUUFezHdSM6cd2IThzNKuCbzUf5avNRNh3KdFfm++s3O7hqSDwzh3ckvk2gp5ssIiIiIl5CVfVai4qb4QqxYQHcfG4XvrhjFD/88TzmXtCDuDB/TuQV88qKfYx5ehk3vb2OZbvStD+UiIiIiGjEqdXocSFYfcypemk7oV0vT7fIa3SMDOSu8d25fVxXvt+Zxns/JbJyTzpLd6axdGcaHdsEcu2Ijlw5OJ6IIF9PN1dEREREPEAjTq1FQDh0Pd98vP0LjzbFW9ltVib2jeG9m4bz/R/GctPozoT620k6kc/fFuxkxBNLufd/m9h0KNPTTRURERGRJqYRp9ak7zTY8505XW/cfZ5ujVfr0jaYBy/uw70Te/LlpiO8uyaRbcnZfLL+MJ+sP8yADmFcN6ITUwfG1auYRFGJk9SsIo5mFXA0q5CjWYVk5hczpkdbzukaiaWFVz4UERERaW4UnFqTnpPN6Xpp2+HYbmjbw9Mt8noBvjZmDO3IVUPi+fVQJv9dk8jXm4+y+XAWf/xkM48vKC8m0SnS3Fy3uMRFanZhaSAqDUaZ5QHpaFYh6blF1V7v1R/2M6BDGL8b25VJfWOwWRWgRERERLyBglNrEhABXcbB3sXmdL2xf/R0i5oNi8XC2R0jOLtjBA9c1JuPfznMf39K5EhmAa/9sJ/XfthPz+gQjucV1xiKTuZntxIb5k9sWACxYf5YLBa+2ZLM5sNZ3P7+BjpHBXHrmC5cfnZ7/OwqkS4iIiLiSQpOrU3faaXB6XMFp3qKDPbjtnFduXVMF5bvMotJrNh9jF2pOe5zfO1W4sL8iQnzJy4sgJgwf2LDA4gN9Sc23AxLEYE+Vabk/b8pvXhn9UHeWZPIgfQ85n26hX8t3s1Nozvzm+EdCfH3aeovV0RERERQcGp9ek4Bqx1St0L6Xojq5ukWNVs2q4XxvaMZ3zuapOP57D2WQ7sQf+LCqw9FdREZ7MfciT357diufLA2iTdWHiAlu5Anvt3Ji8v2cu2ITswelUC7EP9G+IpEREREpCaqqtfaBLaBzmPNx9rTqcF0jAzk/F7R9GsfRpsg3zMu7hDkZ+fmc7vww5/O4+krBtC1bRA5hSW8vHwfo59cxv/7bAsH0/MaqPUiIiIiUhsFp9ZIm+E2G752K1cOiWfx78fy6nWDOatjOMUlLub/nMT5/1jOHfM3sPVIlqebKSIiItLiKTi1Rj0vAosNUrbA8X2ebo3UgdVqYVLfGD697Rw+unUE43q2xWXAN5uPcvELq7juPz+zem86hmF4uqkiIiIiLZLWOLVGQZHQeQzsX2ZW1zt3rqdbJHVksVgY3iWS4V0i2Z6czas/7OOrTcms3JPOyj3pRAX7EhHoS3igD2EBPoQG+BAe4EtYgA9hAXbCA33Lj5eeExbgg49Nv0MRERERORUFp9aq77TS4PS5glMz1SculOeuPot7J/bk9ZX7+WjdIdJzi0nPLT7tzwrytREa4IO9xMbPzu0M6xzF4E4RdIgI0Ga8IiIiIig4tV69Loav58LRTXDiALTp7OkWST3FtwnksUv7ce+kniQdzyerwOG+ZeY7KjwvrnIsp7AEgLxiJ3nFTsDC/LWHmb/2MADRoX4M6dSGwZ0iGJIQQZ/YUOwanRIREZFWSMGptQqKgoTRcGCFOV1v9D2ebpGcoVB/H/q1Dzut95Q4XeQUlpBV4CA9p4Cvl62GyM78eiiLbcnZpGYX8c2Wo3yz5SgAAT42BsWHMyQhgsGdIji7UwSh2ltKREREWgGPB6eXXnqJp59+mpSUFAYOHMgLL7zAsGHDqj1327ZtPPTQQ6xfv57ExET+9a9/cc899zRtg1uSvtNKg9PnCk6tlN1mJSLIl4ggX9qH+XIk0mDKlF74+PhQUOxk46FM1iee4JfEDDYkZpBdWMKa/cdZs/84ABYL9IwOcY9IDenUptlN7ytxukjNKSI5s4DkzAJSsgrpERPCuB5tm9XXISIiIo3Lo8Hpo48+Yu7cubzyyisMHz6cZ599lkmTJrFr1y7atWtX5fz8/Hy6dOnClVdeye9//3sPtLiF6TUVvvkDJP8K6XsgqrunWyReJMDXxsiukYzsGgmAy2Ww91guvxzM4JfEE6xPzCDxeD47U3LYmZLD+z8nARAV7MvADuEM6BDOwPgwBnYIJyLI1yNfg2EYZBU4OJJZQHJmoRmOsio8ziwgNbsQVzXFCId3bsODF/c57VE8ERERaZk8Gpz++c9/cssttzB79mwAXnnlFb755hvefPNN7r///irnDx06lKFDhwJU+7qcpuC20OU82LcUPpwJNy40N8gVqYbVaqFHdAg9okP4zfCOAKTlFLIhMaM0TGWwLTmL9Nxilu5MY+nONPd7O7YJZGB8OAM7hDEwPpy+caEE+p75Pz8lThdHswo5klnAkYyC0oBUfn80q5D8Ymetn+NjsxAbFkBsmD9tgnz5fmcaPx84wdQXVzH97A78cVJPokP9z7i9IiIi0nx5LDgVFxezfv165s2b5z5mtVqZMGECa9asabDrFBUVUVRU5H6enZ0NgMPhwOFwNNh16qusDR5ry5R/Yn/7Qizpu3DNn4HzN5+AT6Bn2iIeVZ++GOFvY3zPKMb3jAKg0OFkR0oOmw9nsflwNluOZHHgeD5JJ8zbV5uSAbBaoEe7YPp3CGNA+zAGdAile7vgKmXRC4qdJGcVloahCvdZ5n1No0UniwzyJS7cn9gw8xZXdh9uhqWoIF+s1vJpecmZBTyzeA9fbU7hk/WH+WZzMrec25mbRyUQ4Gur8/fndBiGwcZDWby/9hCLd6QRG+bP2O5RnNs9iqEJEfjZW1dRDo//2yhSgfqjeBP1x4Z1Ot9Hi+GhHTOTk5Np3749q1evZuTIke7jf/rTn1ixYgU///zzKd+fkJDAPffcU+sap0ceeYRHH320yvH58+cTGKiAABBScJjRe/6KrzOfo6Fnsa7LXRiWxvnhUFqf/BI4lGshMReSci0k5VrIclRdO+RjMegQDCE+BhlFFjKKILek9jVGNotBhB+08TOI8C2998O8+RqE+4FPPTPHwRz47KCNg7lmO8J9DS7u6GJwlIG1gZY/FTlhfbqFVSlWjuRX/6G+VoNuoQZ9Igx6hxtEafBLRESkQeTn5/Ob3/yGrKwsQkNDT3mux4tDNLZ58+Yxd275PkXZ2dnEx8czceLEWr85TcHhcLB48WIuuOACfHw8V53McmgAxvwriM3+lYtZinPyv8yV/9JqNGVfTMkuZMvhbDYfyWLzkSy2HMkmp7CEAzkAlftdkJ+N9mEBxIX70z686v3Jo0UN7TbDYMHWVJ5etJsjmYX8d6+NzQWhzJvckyGdIur9ufuO5TF/7SE+3ZRMbpFZFt7XbuXi/jFccXZ7juUU8cPedFbuOU5aThHbMy1szzTf26lNIGN6RDGmeyTDE9o02iiYJ3nLv40ioP4o3kX9sWGVzUarC48Fp6ioKGw2G6mpqZWOp6amEhMT02DX8fPzw8/Pr8pxHx8fr+psHm9Pl3Nh+n/g4+uwbvwv1tA4OP8Bz7VHPKYp+mJ8pA/xkSFMGdgeMAtPHDyex6bDmWTlO4gLD6B9RAAdwgMJDbB7vLrdtLPjubB/HG/+eIB/L9vH5iPZXPPGOi7qH8v9k3sR36Zuo9cOp4sl21N576dEVu877j7eKTKQa4d34orBHSoV0rj07HgMw2DH0RxW7D7G8l1pZlGOE/m891MS7/2UhK/dyvDObRjXsx1je7Sla9sgj3+/GpLH/20UqUD9UbyJ+mPDOJ3voceCk6+vL4MHD2bp0qVMmzYNAJfLxdKlS5kzZ46nmtW69b4YLvonfH0P/PAUhETD0Js93SppBaxWC13aBtOlbbCnm1Ijfx8bt4/rxpWD4/nn4l18tO4Q32w5yuLtqcwencAd53WrcU+r1OxCPlibxAdrk0jNNtdcWi1wfq9orhvZiXO7RdU4amaxWOgTF0qfuFBuG9eVnEIHq/cdZ/muY6zYlUZyViEr96Szck86fwE6RAQwtkdbRneLYlDHcGLDAhrrWyIiItKqeHSq3ty5c5k1axZDhgxh2LBhPPvss+Tl5bmr7F1//fW0b9+eJ554AjALSmzfvt39+MiRI2zcuJHg4GC6devmsa+jRRkyG3JTYfkT8M29ENQW+lzq6VaJeI22IX48cfkArh+ZwOPf7GDV3nReXbGfT345zO8v6MHVQ+Ox26wYhsGa/cf570+JfLctFWdpFYvIIF+uHhbPNcM60iHi9NdZhvj7MKlvDJP6xmAYBvuO5Zohavcxft5/gsMZBbz/c5K7PHx0qB+D4sMZGB/OoHizTHywX+P8059XVMLetFz2pOWy/1guEYG+DIwPp3/7sBY5nVBERFoXjwanGTNmcOzYMR566CFSUlIYNGgQCxcuJDo6GoCkpCSs1vJV3cnJyZx11lnu58888wzPPPMMY8eOZfny5U3d/JZr7H2QkwLr34L/uxkCIyFhtKdbJeJVeseG8t5Nw1i2K42/frOD/cfy+PPnW3l3zUGmDojji03J7E3LdZ8/NCGCa0d04sJ+MfjZGyZEWCwWurULoVu7EG4+twv5xSX8tN8cjVp3MIPdqTmkZhfx3bZUvtuWWvoe6NEuhIHxYQyKj2BQfDg9ooOx2+peQSOrwMHetFz2puWwJ9UMSnvTcjmSWVDt+bbSUvaD4sPcIa57uxBsjbg27UwlHs9j/s9JFJW4GNezLSO6ROLvo/AnItKaeayqnqdkZ2cTFhZWp8oZTcHhcLBgwQKmTJniXfNUXU74+HrY+TX4hcGN30J0X0+3ShqR1/bFZsDhdDH/5yT+tWQ3mfnlZU0DfW1cdlZ7rh3Rid6xTf/vTX5xCVuPZLPxUAYbD2Wy6VBWteEmwMdG//ZhDOpojkoNig8nNsyfjHwHe1Jz3MFoT2lQSsspquZqprYhfnRrG0yXtkGk5xax8VCme3piRYG+pdcsvd7A0muWrc/yVH/ckJTB6z/sZ+G2FCr+7xjoa2N0tyjG927HeT3b0U77erUq+vdRvIn6Y8M6nWzQ4qvqST1ZbTD9DXjvckhaDf+dDjctgvCOnm6ZiNfxsVmZdU4C0wa159/L97L9aDYX9InmsrPaE1LDuqemEOhrZ1jnNgzrXL6xdVp2IRsPZZpB6nAmmw9lkVNUwtqDJ1h78ESF99pOuXlwbJg/3doF071dCN2jg+neLphu7YIJD/Stcm5KVoVrHspk8+FM8oqd/HzgBD8fKL9m2xA/d5DqGxtMQUkDfSNq4XQZLNmRyus/7OeXxAz38fN6tiUmLIBlO9NIyS5k0fZUFm03R+4Gdgjj/F7RjO/djr5xoS2qIIeIiFRPwUlq5hMA18yHt6ZA2nYzRN34HQRFerplIl4pLNCHeVN6e7oZp9Qu1J+JfWOY2NesXupymeukfi0NNRsPZbIzJccdmuLbBJjhqDQYdY8OoWvboNMKhDFh/lwYFsOF/cxrOkuvufGkax7LKWLx9lQWl4YTKzb+79g6xveOZnyvdnRrF9ygAaWg2MknGw7z5qoDHEjPA8DXZmXaWXHcfG4XekSHAObmxNuSs/l+ZxpLd6ax6VAmmw5nselwFv9aspvoUD/O79WO83tFM7pblNZziYi0UApOcmoBETDzE/jPRDi+B+ZfBbO+BN8gT7dMRBqA1Wqhe3QI3aNDuGpIPGAGiiOZ+cSFBxDo2/D/TZSteepx0jW3H83i1yQzlPyalMHhjALWHcxg3cEM/v7tTjpEBDC+VzvO69XujNYcpecW8e6aRN5bc5CM0qmVYQE+XDuiI7NGJlSZhmexWOjXPox+7cO4a3x30nIKWb7rGN/vSGPlnmOkZhfxwdpDfLD2EH52K+d0jeT83tGc36sd7cNV1VBEpKVQcJLahbWH6z41w9ORX+B/s+Hq98GmebUiLVGAr41u7UKa/JqDO7VhcCdzWqHD4eC9Txdgad+P5buPs2b/cQ5nFPDOmkTeWZNIgI+NUd2iSkd62hETVvuao33Hcnlj5QH+b8NhiktcgDmidtOozlw5JJ6gOlYbbBfiz1VD4rlqSDxFJU5+3n+C73emsWRHKoczCli26xjLdh3jQcwiIhcPiOWSgXF13u9LGt6hE/n4+VhpG+ynaZUiUm8KTlI3bXvCbz6Gdy+FPd/BV/fApS+aJbpERBpBpD9MGd6R2aO7kl9cwuq9x1m6M8295mjJjlSW7DCn9fWJDTVDVO92DOwQ7q7YZxgG6w5m8NoP+93nAgyMD+e3Y7owqW/MGVX387PbGNOjLWN6tOXhqX3Ym5bLkh1pfL8zlfWJGew4ms2Oo9k8/d0uBneK4NJBcUzpH0tUcNWN2aXh7UzJ5u/f7mT5rmMABPna6BQZREJUoHkfWXYfRHSoQpWInJqCk9Rdx+Fw5Vvw4UzY+F8IbgcTHq7/5xkG5KXDsZ3gHwaxAxqurSLSogT62pnQJ5oJfaIxDIMdR3P4fmcq3+9M49dDmWw/ms32o9m8uGwvbYJ8GdejLf07hPH5xmQ2HcoEzN/zTOgdza1jujCkU0SD/5BssZRPe7xtXFcy8opZvD2VLzYdYfW+46xPzGB9YgaPfrWd0d2iuHRQHBP7xjTavlqedDy3iF2pOexKMasydogI4JqhHYkIqlo8pDGkZBXyz8W7+GT9YVyGueE0QF6x091XTubvYyUhMohOkYGl96XBKiqIqACtWyt0OFmfmEG3dsFEq6qktFIt719raVw9J8PUZ+HLO2HVPyEkBob/9tTvMQzITYNjO+DYLjMope007wvKK2oRPxxG3Q09JoO17nvKiEjrYrFY6BMXSp+4UOac353juUWs2H2M73emsWL3MU7kFfPpr0f49NcjAPjarVwxuAM3je5M17bBTdbOiCBfrhoaz1VD40nNLuTrzUf5cuMRNh3OYsVuc9Nif58tjO8dzbRB7Rnboy2+9ub1b19BsZM9aTnsTDFD0q4U83F6btUS9M8v3cNVQ+K5aXRnOkU2zjrZnEIHr6zYx39WHaDQYU7HvKh/LH+c1JPYcH8OZxSQeDyPg+n5JB7P48Bx8/5wRgGFDhc7S9t/Ml+7lQgfG5+f2EBCVDCd2pgjVR0jA4mPCGx2f26nIzO/mPfWJPL26oMczyvGYoERnSOZOjCOyf1imiwMN4QSp4u1B04Q4u9Dn7hQr95LTryT9nHysGZbi3/F07Dsr4AFrngT+l1uBqSclOoDUmFmDR9kgYhOkJ0MzmLzUGR3OOdOGDADfPRbrabSbPuitEj17Y8Op4v1iRks25nGpsOZDOscyfUjO3nV1Lj9x3L5clMyX25MZn9pNT8wC1RM6R/DJQPbM7xzG6xe9EOd02Vw8HieOxztSslhV2oOB4/nUdNPER3bBNIzJoSubYP5Yfcx9yiP1QIX9ovhlnO7cFbHiAZpX3GJiw/WJvHc0j2cyDP/LxmaEMG8Kb05uw7XcDhdHMko4ODxPBKP55ffp+dxKCMfh7PmH5WsFogNC6BTZCCdIgPp2Cao9N587sktCc7EkcwC/rPyAB+uS3JX2QwP9Km0V53dauHc7lFMHRjHBX2ivfZrdboMvtqUzPNL97j/zoUH+jCySyTndItiVNdIOkcFNZupmvr/umGdTjZQcPKwZtv5DQMW/BHWvQ42X4gdZIaloqzqz7dYIaIztOttrpdq28u8RXU3y57npMDPr8C6N8s/I6gdjPgdDLnRrO4njarZ9kVpkVpDfzQMg61Hsvli4xG+3JRcaWPhmFB/pg6M5dJB7T22T1RuUQkfrzvEFxuPsDMlh6LSghoniwzypWdMiHmLNu97RIdUKrZhGAZr9h3n1R/2s2L3MffxoQkR3HJuFyb0jq5XUDQMg2+3pvDUwp0cPJ4PQJe2Qdx/YS8u6BPdIN+3EqeLxPQcPlm4gphu/TiSVURiabBKPJ5PgaPm/c4A2gT50rFNIJ2jgugVE0LfuDD6xIXSxktHanal5PDqin18uSmZEpf5I2Lv2FB+N7YLF/WPJaV09PSrTclsSy6f8uhnt3J+r3ZMHRjH+b3a1bvqZUNyugy+3mwGpn3HzMAUFuCD02WQW1R5o7jYMH/O6RrFqG6RjOoW5dXTEVvDv49NScHpFBScGpDLCZ/Mhu1flB+z2KBNFzMctetdGpB6mqNIdRk9KsqB9e/AT/+GbHOaDb7BcPYsGHEbhMc3ztcizbsvSovT2vqj02Xw84HjfPFrMgu2HiWnsPyHuh7RwVwzrCOXn9WBsMDG/14cOpHPO6sP8tG6Q+RU+OEywMdGj+hgepSGo14xofSMCaFtyOmN5u1KyeH1lfv5YuMR90hOl6ggbjq3M9PP7lDnH7jXHTzB3xbs4NekTACign25Z0IPrh4aj93WsFPnauqPhmFwLLeIpNIQlXgin6TjeRw8nk/SiXz36Fd1YsP86RsXSp+4MPM+NpQOEQEeCcmGYbD2wAle/WE/3+9Mcx8f2SWS343rypjuUdW2a9+xXL7alMyXm5LZf6x89DTI18YFfaK5ZFAco7s1/RRUl8tgwdajPLdkD3vScgFzhOmWc7sw65wE/O1WNh/JYvXedH7ca64/LHZW/sVA17ZBjOoWxTldoxjZJbJJ/u7VlTf8+2gYRrMZoauNgtMpKDg1sJIi2PQB+IWYISmyG9gbYEqM0wFb/w9+fB7StpnHrHboNx3OuQti+p35NaSSZt8XpUVpzf2xqMTJ8l3H+HJjMkt2pLpHevzsVi7qH8vVwzoyNKFhi1sYhsGGpAz+s+oAC7emUDrQQLd2wdxwTgKju0XRsU1gg04fTM0u5O3VB/nvT4nuoBgZ5Mv1IxO4bmSnGkdk9qbl8tTCnSwq3Sg5wMfGrWO6cMuYLo1WaKO+/TGn0EFiaYjafyyX7Uez2ZacTWLp6NjJwgJ86BNrrt/rGxdK37gwurYNavAgWMblMli0PZVXf9jnDqAWC0zuF8Nvx3RlYHx4nT6nrGDLl5uS+WpTMkcyC9yvhQX4MLlfDJcMjGN4l8hGXVfkchks3JbCc0v2sCvVXKsW6m/nlnO7cMOohBqnEhY6nPxyMIMf96Wzem86W45kuf8OgDkds1/7MPeI1NkdI+q8fUFj8MS/jw6ni02HMvlx73F+3JfOxqRM7DYLUcF+RAb7EhXsV3orf1x2vG2wH6EBdq8NWgpOp6Dg1MwYBuxdCqufgwM/lB/vOt4sJNF5jEqiNxD1RfEm6o+mrAIHX2w8wvyfkyoVLejaNohrhnVk+tkdzmhxvsPp4tutKfxn1QF39UGAc7tHcdPozozp3rbR11qVTQn8z6oD7h+4/X3KCnp0oXOUWUgiLaeQ55bs4cN1h3C6DKwWmDG0I7+f0L3KpsUNraH7Y3ahg51Hc9iWnMW2ZDNM7UnNcU+Nq8jXbi2d4hdK56ggYsICiAn1JzbMn3ahfvjZT39KXFGJk89/PcKrP+x3jxSVFVG59dwuJETVv3iHYRj8eiiTLzcm882WoxyrMAU1KtiPCb3bcXbHCM7uFE6XqOAG6V9mAEzh2SV73H9PQvzt3Dy6C7NHJxB6mmuvsvId/HTgOKv3prNqb7p7ml9FIX522ob4uW/tQsw/j7bBfrQLNZ+3DfEjItCnwQNDU/z76HIZ7EzJYfW+dH7cm87aAyfIKz71tNRT8bFZiAzyIyrE17wPNh//dkxXj09bVXA6BQWnZiz5V3MEavvnYJQOqccONANU70vBpiKRZ0J9UbyJ+mNlhmGw6XAWH/ycxJebkt3ranxtVi7sF8PVw+IZ2SWyzj+gZeU7+GBdEu+sPsjRrELzs+xWLhvUnhtHd6ZnTNNugAzmWqIFW1N47Yd9bD1irp2xWGBin2i6tQvmrR8PuosUTOjdjvsu7EX36KZpZ1P0x6ISJ3tSc9menF06MpXF9uTsWn9YjQzyJSbMDFLRoRXvA4gJ8ycmzN89Epdd6GD+z0m8ueqAe01dqL+d60Z2YtY5CbQLadgAWjYF9atNyXy7NaVSYQkww82g+HDO6hjB2R3DGRQfTnhg3X+INgyDxdtTeXbJHnfxkRA/O7NHd+am0Z0JC2iYP6uUrMLSAHGc1fvS3X9n6sKndFSmXYgfbUvDVFSwLxagxGXgNAycToMSl4HLKL13mffOk27mMRclThe5GccY3LsLHSODaB8eQPuIANqHB9S7QIdhGCQezy8ddTM3HT95qmmbIN/SghqRjOgSic1i4XheEcdyiknPLeJ4rnlfdjueW8yx3KJKU49PtvaB8Q3e706XgtMpKDi1ACcOwJqX4Nf/QknpdICweHP0KXageYvuB35NV3a4JVBfFG+i/liznEIHX25K5oO1Se6AAdA5Koirh8YzfXCHGqsIHkjP460fD/DJ+sPuEBIV7Mt1IxKYOaKjV1QfNAyDn/af4PWVldfbAAzsEMa8Kb0Z0SWySdvkqf7ochkknsgvDVNZHM4oICWrkJTsQo5mFVJcQ8GOk4X42YkJ8yclq9C9bi0m1J+bRnfmmuEdm2QvseISFz/uS+fn/Sf4NSmDzYezqi2s0aVtEGfFmyNSZ8VH0CM6uMpURcMwWLojjWeX7nb/HQj2szN7VAI3je58WuHrdBmGQU5RCcdyikjLLuJYbhFp2YUcyy3iWHYRaTlF5ms5hWScFBSbQqi/nfYRgbQPD6BDaZhqX+E+MsjX/QuWtOxCVu87zo9701m973ilKZZgrlUb1rmNe61Xr5iQeo0QFjqcnMirGKpKH+cU8/+m9Gq0qah1peB0CgpOLUjecVj3Bqx9FfKPn/SixazYFzsQYgaUBqoBqs53CuqL4k3UH+tmy+EsPliXxBe/HnGPTPjYLEzsE8M1wzpyTtdILBb4af8J/rPqAEt3prrLh/eKCeHG0Z25ZGCcV1RAq86e1Bz+s+oAhzLyuXpoRy4eEOuRdRLe2B8NwyAz38HRrEJSsgtIySoiJaug9HmhGbAqBKUy3doF89sxXbh0UHuP7j9V4jT3zfr1UCa/Jmbw66FMDqRXnRIX6GtjYIdwzupojkwZhsGLy/ay+XCW+/UbzknglnO7eN2eUsUlLtJzK4epYzlFnMgrxgJYrRbsVgs2qxWbFWxWa+nz0pvFvLfbLFgt5rlWqwVcLtZs2ERobGeOZhVxJLOAI5kFVUb0quPvYyUuPAALVJmC6GOzcHbHCPdaroHx4fh4ONQ0BQWnU1BwaoGK82H/cji6qfyWk1z9ueGdykelYgeZYSq4XVO21mupL4o3UX88PXlFJXy9OZn5aw9VWqvUsU0gQX52dhwtH5k6v1c7bhrduTRUaY1oXTTn/phbVEJKViGp2YXYrRaGJnjXHmEVncgrZuOhDH5NyuTXpEw2HsqsUja8TICPjVnnJHDrmC4eXyPT1Grqj3lFJWaIyijgcOm9+TyfI5kFpOUUVdp3zWKBfnFhnNMtklFdoxia0IYAX+/8JUpjOp1soEUh0vz5BkKvKeatTG4aHN0MRzeWh6nMxPLbji/Lzw2JMwNUWAezOqBf6En3pTf/0PJjDVE5UESkgQT52ZkxtCMzhnZkW3IWH649xOe/HiHphFm9zd/HyvSzOzB7VGe6tdM05tYk2M9Ot3bBzeLPvU2QL+f3iub8XtGAuUZqb1ouvyZlsCHJDFTH84rNIhZjunjF1FJvEuRnp0e0uY9adYpLXBzNMgNVUYmLszqe3poyUXCSliq4HXSfYN7KFGRAypbKI1Ppe8zRqZpGqGpi860QqkoDVXhHGP5biBvUoF+KiMjp6BsXxl+mhTFvSi8Wbk0hr9jJxf1jvW4ak0htbFaLe3Plq4d19HRzmj1fu5VOkUF0iqx/1cTWTsFJWo+ACLOAROcx5ceKciF1qzk6lXfM3IC3KAeKsio8rnArNjfSw1lsrququLYqEdg0H7pPhDF/hPhhTfrliYhUFOhr5/KzO3i6GSIiLYaCk7RufsHQcYR5qwuXs/pAVZQFu7+DLf+DPYvMW+exZoBKGK29pkRERESaOQUnkdNhtUFAuHk7Wb/pMPY+WPUv2PQBHFhh3jqOhDH3mpv2KkCJiIiINEstv8agSFOK7AqXvgh3/QpDbwabHyStgf9Oh9fPh50LoHUVshQRERFpERScRBpDeEe46B9w9yYYcQfYAyB5A3x4DbwyGrZ+ak77ExEREZFmQcFJpDGFxsKFf4Pfb4XRc8E3xCxG8cls+PcI2PQhOKvfo0JEREREvIeCk0hTCIqCCQ/DPZth3DzwD4P03fDZb+HFwbD+HSgp9nQrRURERKQGKg4h0pQC28C4+2HE7bDuDVjzImQchK/ughVPQuwg85zANhBQeh8YWfmxfzjY9FdXREREpCnppy8RT/APhXPnmhvmrn8HfnwOso+Ytzq9P6w0TEVWDlk+gWblP4sNrNbSextYTnpc5ZgNi2EQm7kNUjtBux7gG9i43wMRERGRZkTBScSTfINg5O0w5EbY9z3kHIWCE5BfenM/Pm4+Lswy31eYZd4yDjRYU+zAMIA3njcPhMWbVQIju1W4dYWwjg0/4lVStqFwuhnmIruB3bdhryEiIiJyBhScRLyBjz/0mlL7ec4SKMwsDRnVBCtHARgus2Kf4QSXq/TeWeHeddI55r3LWULWsWTCXcexFGZB1iHztn955TZYfaBNZ4jsXjVYBbczzynOM0NQ/nHIKw1Eeek1HDthbiB88jXa9oKYfhDTH6JL7wPbNMR3W0REROS0KTiJNCc2u1loIiiqwT/a6XDww4IFTJk8GR9HDhzfA8f3VrjtM2/OIrOwRfruqh/iGwyuEigpPP0GWKzm1MOSIijKhtQt5m3TB+XnhMSZYaosSMX0hzZdzOmGLUlZwLXatWmyiIiIl1BwEpHKLBYIijRvHUdUfs3lguzDFYJUhWCVmQTFueXn2v0hMMocJQqKMh8HRZWuy4qsesw/3FyXZRjmZ6VuhZQt5i11q1lEIyfZvO1ZVH4dn0Bo17s8TLXrY64hs/uD3a/yvc3Xe4NIbhrs/Ma8HVgBztIqi+61aPbSm7X8sft46Vo193GrOSo45CboPMZ7v2YREZFmRMFJROrOajU39w3vCF3Pr/xaSZEZeGw+ZiDyDarfD+wWC0R0Mm+9Lio/XpgNadsrh6nU7eDIhyPrzVtdnByobH5Vj0V0go4jzeAYFt94wePEfjMo7fgaDv0MGFXPcU+tdJzeZ6dshu1fQLu+MOI26H+lOSXUmxVmQ+o2SNmCLXkjgxP3YdlwDHpONPuciIiIByk4iUjDsPtBVPfG+3z/UDPIVBwFcznN8FEWpFK2QvouKM43pxSWFFWdNlhSWHrspHVVJ/vlTfM+tH3pdUeat3a96z810DDMtu782gxLadsqvx53NvS+GHpeBCHR5tfncprTH10l5WvSXCXl99Udczpgz3ewcb55jS/nwJKHzSIkQ24yN2b2JMOA7OTyEJyy2byvUOzECnQA+PYn+BaI6gndJkC38dBplPeHQBERaXEUnESk+bLazLAW1R36XV79OYZhTnsrKSwPUiVFFW6FlV9zFJgjW0lr4Ogms0T81v8zbwB+YRA/zAxTnc4xw86pfoh3OSHpJzMs7fzaHJUrY7FBwijoNdUcXQtr33Dfmx4T4fw/w4b3YO3rkJUEPzwNq56FvpeZo1Dtz26469XE6TDXw7lDUumt4ET154e2h5j+ONv2Zfe+A/S0H8F6ZJ0ZiNN3wU8vgT0AEkaXBqkJZpESTUcUEZFGpuAkIi2bxVI6Dc/v9N9bnGdOAUz6CRJXw+F1ZgXAvYvNG5jrpuLOKh+Vih9urrs6sAJ2fAW7vjUrCJaxB5ijJr0uhh6TGrdSYEAEjLrL3HB51zfw08tmINzysXmLH24GqF5TG6bEfEFG6VS7rWZhj5QtkLajfL1WRRZbaeXE/pVvpd8Pl8PB7vwFdJsyBWtJLuxfAXuXwN6l5jq3in8G4Z3KQ1Tnc8Ev5My/FhERkZMoOImI1MQ3yCyu0HmM+dxZYk4JTPrJDCBJayA31VyfdOhncyNjMNdKVZwi6B8GPSab0/C6jm/6zYVtduhzqXlL/hV+esUcQStrd2gHGHYLnH193YKcywknDpSGo63l0ySzD1d/vm9I1YDUtlfdp9sFREDfaebNMMwwtneJeUtaA5mJ8Mt/zJvVxwyx3SaY6/BCYsxwW1YcxGqt63dNRESkEgUnEZG6stkhbpB5G/E784f4jAMVgtRP5rS0kkKzdHqvi8yw1GmUWTTDG8SdBZe/Chc8aq7jWvcfM/AseRhWPAkDr4bhv4O2Pc3zywo2lFU5TN1qBhdHfvWfH94RovtDdN/SfbgGmCNCDRVYLBaI7mPeRt0FRblwcFVpkFpsVl88uNK8LXm46vutPqVFQHxLC4NUuNmqeWzzNf/sbL6lN3uFx6XHrT4nnXPSc98gcxTSN6j8sU+gQpyISDOj4CQiUl8Wi7mPVJsuMOg35rG80o19o3p49w/GITFw3v+D0XPN0aefXjZHkH5507x1GGqWSM9MrP799gCzUEZMPzMoxfQzw5J/WNN+HX7B0PNC8wZmmfy9S80glbgainMqn+9yQLEDqpk92OTKwtTJoco32ByVLHscEFG6f1vb8vvASPN73dhruwzD/EVAxc2zMczjhqvCfdnx6o6V3so/tPLn13q89DV3G8o29y597N7Qu5bXLBbAUlriv/S+0vOaX7c4nYTlHzRHmMNiW97ecSJSJwpOIiINqZE2KG40Pv5w1kwz+CX+aAaond+Y67nKhLYv3SerwubD3rrxcGRX8zb8VvO5YZgFKkoKS4uEFJ30uKhCBcaTHpcUmec5i83PcDnKH1c87r6v5vWSInN0rjjPvK84Unfy89Nl9SkNU5GlYapiuIoqP+bjb47MFeWYm0sX5Zh7rhXlVD5WVPFYjhk6i3JKA1DrZgfGAex6yFyfF9wOgqMhJNasgBkSa/4yIjjGvA+JMb//3vh3pKk4S8y+VZgJhVnlt5Ji3CHZME56DO6wXfa4ynmuGv4OVvPY/Xf4pL+bPv7gF2r+8sEv1Kza6hdqro8se3zyaz4Btf+iwl2MqKjyvwEn37scpSPSfhW2wvA9aZsMPxW98UIKTiIiYv4HnTDavJ04YIao8I5mUGrMAhaNzWIp/YHE19MtMblc5YGpONcsnX+qx0U5ZgXCvOOQd8wsNJKXbp7jcpRvCu1RZaM0FUZqqh3NOek9VT6mlnOsttJNn23l13A/tp303Fp+vrs9VD8yVum5Ue3rhquEouzj+DlzsBhOyDlq3o5uPMW3xQpB7SoEqSjza6oyQlZhNK/i8UrPSx9b7RWmmZbe23yrHqs4FdXmW3na6alUGek7+XWX2ScLs0pDUVbNt4oborcEVnt5uLL7l/6SpbjyfXWFcM6ErZowZffDZvNldHYethOvmscqTRf2qWYacYXXrGWv2Sv0v5P6W5X+6TT7RtnjiqO4dfo7aTPPrfh3suzxWTPN0fZmQsFJREQqa9PZvEnDs1rN6YV+wUC7+n+Oo6B0WugxyC8NVVWeHzMDV0mh+cOeX3D5D34Vb77VHa9wzDfI/CGrUhiqKRC1TCUOB98tWMCUCyfiU5QJuSmQU+F28vO8NPMHy9zS1456+ivwIJ8gc/TGP8wcvbH7Yfaj0qmRcHqPLZZq1hT6VXOspsc+4Cg0K6QWZpcGwOzykddKx7LKR11dJeYvMWraSqE6Vnv1IdfqY/7iw70lRumWGc6iyu8vG7U66bAViATI21P3tnirPpcqOImIiEgj8gmA8HjzJk3Hajc3kK5tE2mX0wyuOUchJ9W8zz9e/hv6k38zb7VWeHzyb+wrPHaVVDP9q5qRj+qmh5VNVas27NYQgKsbBfQLrhCETrqVTXHzDwP/cDMoeUthnPoyDHOqbcWA5SwuD2uVRvXKQlJpUDrdda6V9h2ssP+gs/IehCVFeWxY9xNnD+yP3WJUmJ5Y2j9cJ08ddpx03GH2pUp9sLp+aauhf5aeU2Xt4WmMnpYdb2abmSs4iYiIiDQkq618ip40bxZL+ShxaFzjX6sO+w4aDgdH9zgx+k4Bn2YeTJsZLy75JCIiIiIi4h0UnERERERERGqh4CQiIiIiIlILBScREREREZFaKDiJiIiIiIjUQsFJRERERESkFgpOIiIiIiIitVBwEhERERERqYWCk4iIiIiISC0UnERERERERGqh4CQiIiIiIlILBScREREREZFaKDiJiIiIiIjUQsFJRERERESkFgpOIiIiIiIitVBwEhERERERqYWCk4iIiIiISC0UnERERERERGph93QDmpphGABkZ2d7uCUmh8NBfn4+2dnZ+Pj4eLo50oqpL4o3UX8Ub6L+KN5E/bFhlWWCsoxwKq0uOOXk5AAQHx/v4ZaIiIiIiIg3yMnJISws7JTnWIy6xKsWxOVykZycTEhICBaLxdPNITs7m/j4eA4dOkRoaKinmyOtmPqieBP1R/Em6o/iTdQfG5ZhGOTk5BAXF4fVeupVTK1uxMlqtdKhQwdPN6OK0NBQdX7xCuqL4k3UH8WbqD+KN1F/bDi1jTSVUXEIERERERGRWig4iYiIiIiI1ELBycP8/Px4+OGH8fPz83RTpJVTXxRvov4o3kT9UbyJ+qPntLriECIiIiIiIqdLI04iIiIiIiK1UHASERERERGphYKTiIiIiIhILRScREREREREaqHg5EEvvfQSCQkJ+Pv7M3z4cNauXevpJkkr8MMPPzB16lTi4uKwWCx8/vnnlV43DIOHHnqI2NhYAgICmDBhAnv27PFMY6VFe+KJJxg6dCghISG0a9eOadOmsWvXrkrnFBYWcscddxAZGUlwcDDTp08nNTXVQy2Wluzll19mwIAB7k1FR44cybfffut+XX1RPOnvf/87FouFe+65x31MfbLpKTh5yEcffcTcuXN5+OGH2bBhAwMHDmTSpEmkpaV5umnSwuXl5TFw4EBeeumlal9/6qmneP7553nllVf4+eefCQoKYtKkSRQWFjZxS6WlW7FiBXfccQc//fQTixcvxuFwMHHiRPLy8tzn/P73v+err77if//7HytWrCA5OZnLL7/cg62WlqpDhw78/e9/Z/369fzyyy+cf/75XHrppWzbtg1QXxTPWbduHa+++ioDBgyodFx90gMM8Yhhw4YZd9xxh/u50+k04uLijCeeeMKDrZLWBjA+++wz93OXy2XExMQYTz/9tPtYZmam4efnZ3zwwQceaKG0JmlpaQZgrFixwjAMs+/5+PgY//vf/9zn7NixwwCMNWvWeKqZ0opEREQYb7zxhvqieExOTo7RvXt3Y/HixcbYsWONu+++2zAM/fvoKRpx8oDi4mLWr1/PhAkT3MesVisTJkxgzZo1HmyZtHYHDhwgJSWlUt8MCwtj+PDh6pvS6LKysgBo06YNAOvXr8fhcFTqj7169aJjx47qj9KonE4nH374IXl5eYwcOVJ9UTzmjjvu4KKLLqrU90D/PnqK3dMNaI3S09NxOp1ER0dXOh4dHc3OnTs91CoRSElJAai2b5a9JtIYXC4X99xzD6NGjaJfv36A2R99fX0JDw+vdK76ozSWLVu2MHLkSAoLCwkODuazzz6jT58+bNy4UX1RmtyHH37Ihg0bWLduXZXX9O+jZyg4iYiIx91xxx1s3bqVVatWebop0or17NmTjRs3kpWVxSeffMKsWbNYsWKFp5slrdChQ4e4++67Wbx4Mf7+/p5ujpTSVD0PiIqKwmazVal8kpqaSkxMjIdaJYK7/6lvSlOaM2cOX3/9NcuWLaNDhw7u4zExMRQXF5OZmVnpfPVHaSy+vr5069aNwYMH88QTTzBw4ECee+459UVpcuvXryctLY2zzz4bu92O3W5nxYoVPP/889jtdqKjo9UnPUDByQN8fX0ZPHgwS5cudR9zuVwsXbqUkSNHerBl0tp17tyZmJiYSn0zOzubn3/+WX1TGpxhGMyZM4fPPvuM77//ns6dO1d6ffDgwfj4+FTqj7t27SIpKUn9UZqEy+WiqKhIfVGa3Pjx49myZQsbN25034YMGcLMmTPdj9Unm56m6nnI3LlzmTVrFkOGDGHYsGE8++yz5OXlMXv2bE83TVq43Nxc9u7d635+4MABNm7cSJs2bejYsSP33HMPf/3rX+nevTudO3fmwQcfJC4ujmnTpnmu0dIi3XHHHcyfP58vvviCkJAQ97z8sLAwAgICCAsL46abbmLu3Lm0adOG0NBQ7rzzTkaOHMmIESM83HppaebNm8fkyZPp2LEjOTk5zJ8/n+XLl/Pdd9+pL0qTCwkJca/3LBMUFERkZKT7uPpk01Nw8pAZM2Zw7NgxHnroIVJSUhg0aBALFy6ssihfpKH98ssvnHfeee7nc+fOBWDWrFm8/fbb/OlPfyIvL49bb72VzMxMRo8ezcKFCzXHWhrcyy+/DMC4ceMqHX/rrbe44YYbAPjXv/6F1Wpl+vTpFBUVMWnSJP797383cUulNUhLS+P666/n6NGjhIWFMWDAAL777jsuuOACQH1RvI/6ZNOzGIZheLoRIiIiIiIi3kxrnERERERERGqh4CQiIiIiIlILBScREREREZFaKDiJiIiIiIjUQsFJRETk/7dzP6HwrXEcxz/nF42ZQfmTMdlIJBQlysQGC0MpIqlJ2Ej+ZKPURIg1O7MQNkSNIgt/iqUSG38WWCsJ2aDYjLtQ6uR2z+93u4yZ+37VqXOe5/z5PstPz/McAAAsEJwAAAAAwALBCQAAAAAsEJwAAAAAwALBCQCAP2AYhtbX18NdBgDgmxGcAAARo6OjQ4ZhfDq8Xm+4SwMARLmYcBcAAMCf8Hq9WlhYMLXZbLYwVQMA+L9gxgkAEFFsNpvS09NNR1JSkqT3ZXSBQEC1tbWy2+3KysrS6uqq6fmzszNVVVXJbrcrJSVFXV1denp6Mt0zPz+vgoIC2Ww2ud1u9fX1mfrv7+/V2Ngoh8OhnJwcbWxsfO2gAQBhR3ACAESVkZERNTU16eTkRD6fT62trTo/P5ckPT8/q6amRklJSTo6OlIwGNTu7q4pGAUCAfX29qqrq0tnZ2fa2NhQdna26Rvj4+NqaWnR6emp6urq5PP59PDw8K3jBAB8L+Pt7e0t3EUAAPA7Ojo6tLi4qLi4OFO73++X3++XYRjq7u5WIBD46CsrK1NxcbFmZmY0OzuroaEhXV1dyel0SpI2NzdVX1+v6+truVwuZWRkqLOzU5OTk39bg2EYGh4e1sTEhKT3MBYfH6+trS32WgFAFGOPEwAgolRWVpqCkSQlJyd/nHs8HlOfx+PR8fGxJOn8/FxFRUUfoUmSysvLFQqFdHl5KcMwdH19rerq6n+sobCw8OPc6XQqMTFRt7e3/3ZIAIAIQHACAEQUp9P5aencf8Vut//WfbGxsaZrwzAUCoW+oiQAwA/BHicAQFQ5ODj4dJ2XlydJysvL08nJiZ6fnz/69/f39evXL+Xm5iohIUGZmZna29v71poBAD8fM04AgIjy+vqqm5sbU1tMTIxSU1MlScFgUCUlJaqoqNDS0pIODw81NzcnSfL5fBodHVV7e7vGxsZ0d3en/v5+tbW1yeVySZLGxsbU3d2ttLQ01dbW6vHxUfv7++rv7//egQIAfhSCEwAgomxvb8vtdpvacnNzdXFxIen9j3crKyvq6emR2+3W8vKy8vPzJUkOh0M7OzsaGBhQaWmpHA6HmpqaNDU19fGu9vZ2vby8aHp6WoODg0pNTVVzc/P3DRAA8CPxVz0AQNQwDENra2tqaGgIdykAgCjDHicAAAAAsEBwAgAAAAAL7HECAEQNVp8DAL4KM04AAAAAYIHgBAAAAAAWCE4AAAAAYIHgBAAAAAAWCE4AAAAAYIHgBAAAAAAWCE4AAAAAYIHgBAAAAAAW/gIrq6Sk0bEHUAAAAABJRU5ErkJggg=="},"metadata":{}}]},{"cell_type":"markdown","source":"# How prediction can be made using trained TabNet model","metadata":{}},{"cell_type":"code","source":"import joblib\nimport pandas as pd\nfrom sklearn.preprocessing import LabelEncoder\nfrom pytorch_tabnet.tab_model import TabNetClassifier\n\n# Load the frequency encoding for 'ZIP Code'\nzip_code_freq = joblib.load('/kaggle/working/zip_code_freq_encoder.pkl')\n\n# Load the label encoders\nlabel_encoders = joblib.load('/kaggle/working/label_encoders.pkl')\n\ntb_cls = TabNetClassifier()\ntb_cls.load_model('/kaggle/working/best_model.zip')\n\nnew_data = {\n 'Age': [25],\n 'Experience': [1],\n 'Income': [49],\n 'ZIP Code': ['91107'],\n 'Family': [4],\n 'CCAvg': [1.60],\n 'Education': ['1'],\n 'Mortgage': [0],\n 'Securities Account': [False],\n 'CD Account': [False],\n 'Online': [True],\n 'CreditCard': [False]\n}\n\n# Convert new_data to DataFrame\nnew_data = pd.DataFrame(new_data)\n\n# Display the structure of new_data\nprint(\"New DataFrame:\")\nprint(new_data.info())\n\n# Apply the same frequency encoding to 'ZIP Code'\nnew_data['ZIP Code'] = new_data['ZIP Code'].map(zip_code_freq)\n\n# Apply the same label encoding to other columns\ncolumns_to_encode = ['Education', 'CD Account', 'Online', 'CreditCard', 'Securities Account']\nfor col in columns_to_encode:\n le = label_encoders[col]\n new_data[col] = le.transform(new_data[col])\n\n# Convert the DataFrame to numpy array if necessary\nnew_data_np = new_data.to_numpy()\n\n# Make predictions using the loaded model\npredictions = tb_cls.predict(new_data_np)\n\n# If you need probabilities instead of class labels\nprobabilities = tb_cls.predict_proba(new_data_np)\n\nprint(\"Predictions:\")\nprint(predictions)\n\nprint(\"Probabilities:\")\nprint(probabilities)","metadata":{"execution":{"iopub.status.busy":"2024-05-22T13:16:12.939289Z","iopub.execute_input":"2024-05-22T13:16:12.939746Z","iopub.status.idle":"2024-05-22T13:16:13.029696Z","shell.execute_reply.started":"2024-05-22T13:16:12.939712Z","shell.execute_reply":"2024-05-22T13:16:13.028572Z"},"trusted":true},"execution_count":38,"outputs":[{"name":"stdout","text":"New DataFrame:\n\nRangeIndex: 1 entries, 0 to 0\nData columns (total 12 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 Age 1 non-null int64 \n 1 Experience 1 non-null int64 \n 2 Income 1 non-null int64 \n 3 ZIP Code 1 non-null object \n 4 Family 1 non-null int64 \n 5 CCAvg 1 non-null float64\n 6 Education 1 non-null object \n 7 Mortgage 1 non-null int64 \n 8 Securities Account 1 non-null bool \n 9 CD Account 1 non-null bool \n 10 Online 1 non-null bool \n 11 CreditCard 1 non-null bool \ndtypes: bool(4), float64(1), int64(5), object(2)\nmemory usage: 196.0+ bytes\nNone\nPredictions:\n[0]\nProbabilities:\n[[0.99735236 0.00264766]]\n","output_type":"stream"}]}]}
\ No newline at end of file
diff --git a/Loan Status Prediction/Bank Loan Approval Prediction/Model/README.md b/Loan Status Prediction/Bank Loan Approval Prediction/Model/README.md
new file mode 100644
index 00000000..0fdac088
--- /dev/null
+++ b/Loan Status Prediction/Bank Loan Approval Prediction/Model/README.md
@@ -0,0 +1,149 @@
+## **BANK LOAN APPROVAL PREDICTION**
+
+### 🎯 **Goal**
+
+ The main goal of this project is to come up with Deep Learning multi-layer neural network model for predicting approval for personal bank loans on the basis of customer's information which includes their age, experience, income, geographical information and many more.
+
+### 🧵 **Dataset**
+
+The Universal Bank dataset is taken from [Kaggle](https://www.kaggle.com/datasets/vinod00725/svm-classification?select=UniversalBank.csv) and can be found [here](https://github.com/abhisheks008/DL-Simplified/tree/main/Bank%20Loan%20Approval%20Prediction/Dataset). The dataset for this project consists of labeled data. The target column is called 'Personal Loan' which is used to predict whether a customer gets approved for loan or not.
+
+### 🧾 **Description**
+
+For training the model, different Deep Learning approches are considered. These are the deep learning algorithms which are considered.
+
+* Feedforward Neural-Network
+* Feedforward Neural Network with k-Fold validation
+* TabNet model with k-Fold validation
+* Wide & Deep neural network architecture
+
+### 🧾 Data Preprocessing
+
+These are the observations which are made on dataset.
+
+* The minimum value of Experience is -3 and it also contains numeric values which are less than 0 which is not possible. It is observed that this field has 52 negative values. Further it was observed that minimum age and experience diffrence is 23. So wherever the experience was less than 0, it was replaced with their age minus 23.
+* ZIP Code was initially represented as a numeric data. But it is a nominal data. Out of 5000 records, there are only 467 unique ZIP codes. Thus this represents that the dataset is restricted to a particular region. So this was converted to appropriate nominal data format.
+* Education was also initially represented as a numeric data having 3 unique values {1: Bachelor, 2: Masters, 3: Advanced Degree}. So this is again not a numeric data. It is ordinal data and was converted to appropriate data format.
+* Personal Loan (Target Variable) is either 0 or 1. {0: Loan not approved, 1: Loan approved}. So this is binary data,
+* Securities Account is binary data representing {0: doesn't have security account, 1: has security account}
+* CD Account is binary data representing {0: doesn't have CD Account, 1: has CD Account}
+* Online is binary data representing {0: doesn't use online banking, 1: uses online banking}
+* Credit Card is binary data representing {0: doesn't have credit card, 1: has credit card}
+
+All these binary data were initally numeric data, so these were changed to boolean data format. Rest are numeric data.
+
+### 🚀 **Models Implemented**
+
+Three deep learning algorithms are implemented which give more than 90% validation accuracy. These models are described as follows:
+
+#### Feedforward Neural Network with k-Fold validation
+
+Here we implement a feedforward neural network for binary classification using TensorFlow and Keras. It uses K-Fold Cross-Validation to evaluate the model's performance, ensuring that the results are reliable and generalize well to unseen data. Each fold involves training a new model and applying early stopping to prevent overfitting, with the best epoch's weights restored for evaluation.
+
+Layers:
+* The first dense layer has 64 neurons and uses the ReLU activation function.
+* The second dense layer has 32 neurons and also uses the ReLU activation function.
+* The output layer has 1 neuron and uses the sigmoid activation function to output a probability for binary classification.
+
+Compilation:
+* The loss function is binary_crossentropy, suitable for binary classification.
+* The optimizer is adam, an adaptive learning rate optimizer.
+* The metric is accuracy.
+
+K-Fold Cross-Validation:
+* The dataset is split into 5 parts (folds).
+
+Accuracies over all folds
+
+| Fold | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
+|----------------------|--------|--------|--------|--------|--------|
+| **Best Epoch** | 47 | 45 | 25 | 47 | 45 |
+| **Final Validation Loss** | 0.1204 | 0.0833 | 0.1053 | 0.1113 | 0.0882 |
+| **Final Validation Accuracy** | 0.9549 | 0.9620 | 0.9660 | 0.9679 | 0.9710 |
+
+* Overall Average Validation Loss: 0.1017
+* Overall Average Validation Accuracy: 0.964
+
+| ![image](https://github.com/theiturhs/DL-Simplified/assets/96874023/9352f641-2a02-4d11-b177-18a9c6b2a2f4) | ![image](https://github.com/theiturhs/DL-Simplified/assets/96874023/92325127-5511-41cb-8237-ec2da884e6f5) |
+| ---- | ---- |
+| Training vs Validation Accuracy : FNN Model | Training vs Validation Loss : FNN Model |
+
+
+#### TabNet Model
+
+In this code, we implement a TabNet-based classifier for binary classification using PyTorch. The model's performance is evaluated using K-Fold Cross-Validation, ensuring that the results are reliable and generalize well to unseen data. Each fold involves training a new model and applying early stopping to prevent overfitting, with the best epoch's weights restored for evaluation.
+
+Components:
+
+* Model Architecture: TabNet is a deep learning model specifically designed for tabular data, with capabilities for feature selection and interpretability.
+* Optimizer: Adam, an adaptive learning rate optimizer.
+* Learning Rate Scheduler: Reduces the learning rate by a factor of 0.9 every 10 epochs.
+* Evaluation Metrics: Accuracy and logloss are used to evaluate the model's performance.
+* K-Fold Cross-Validation: The dataset is split into 5 folds to ensure robust evaluation. Each fold involves training a new model and storing the best validation loss.
+
+Accuracies over all folds
+
+| Fold | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
+|------------------------------|--------|--------|--------|--------|--------|
+| **Best Epoch** | 35 | 45 | 46 | 41 | 24 |
+| **Final Validation LogLoss** | 0.0438 | 0.0623 | 0.0626 | 0.0466 | 0.0651 |
+| **Final Validation Accuracy**| 0.980 | 0.985 | 0.978 | 0.972 | 0.982 |
+
+The parameters that yield better accuracy are selected.
+
+| ![image](https://github.com/theiturhs/DL-Simplified/assets/96874023/3da4eb3c-07b8-4d6b-85a9-192f8d58d397) | ![image](https://github.com/theiturhs/DL-Simplified/assets/96874023/2957e428-68d7-4208-b435-a68ed23dea38) |
+| ---- | ----|
+| Training vs Validation Accuracy : TabNet Model | Training vs Validation Loss : TabNet Model |
+
+#### Wide & Deep neural network architecture
+
+This implements a Wide & Deep neural network architecture using TensorFlow's Keras API for binary classification tasks.
+
+Components of the Model:
+* Normalization of Data: The input data is normalized using mean and standard deviation calculated from the training data. This step helps in stabilizing the training process and improving convergence.
+* Wide Component: The wide component is a linear model that directly connects the input features to the output layer without any non-linear transformations. It is represented by a single Dense layer.
+* Deep Component: The deep component is a neural network consisting of multiple layers. Each layer is followed by Batch Normalization, LeakyReLU activation, and Dropout for regularization. It comprises three Dense layers with 128, 64, and 32 units, respectively.
+* Combining Wide and Deep Components: The outputs from the wide and deep components are concatenated using the Concatenate layer. This allows the model to learn both low-level and high-level feature representations simultaneously.
+* Final Output Layer: The concatenated output is passed through a final Dense layer with a sigmoid activation function, which outputs the predicted probability of the positive class (binary classification).
+
+Metrics
+* Training Accuracy: 0.9715
+* Training Loss: 0.0752
+* val_accuracy: 0.9760
+* val_loss: 0.0531
+
+| ![image](https://github.com/theiturhs/DL-Simplified/assets/96874023/39126a2b-c038-4678-a346-936604bc8f1e) | ![image](https://github.com/theiturhs/DL-Simplified/assets/96874023/0d4d3df9-5e95-41f9-9058-0f8f92e77146) |
+| ---- | ---- |
+| Training vs Validation Accuracy : WDNN Model | Training vs Validation Loss : WDNN Model |
+
+### 📚 **Libraries Needed**
+
+* pandas
+* numpy
+* matplotlib
+* seaborn
+* tensorflow
+* joblib
+* pytorch_tabnet
+* sklearn
+
+### 📊 **Exploratory Data Analysis Results**
+
+| ![Age Distribution](https://github.com/theiturhs/DL-Simplified/assets/96874023/17709677-b86a-4d5a-8595-ac9a419de225) | ![Box Plot of income](https://github.com/theiturhs/DL-Simplified/assets/96874023/64ecfa44-e3be-4f35-9105-9aaed87bd940) |
+| --- | --- |
+| Distribution of Age | Box Plot of Income |
+| ![CCAvg Distribution by Personal Loan](https://github.com/theiturhs/DL-Simplified/assets/96874023/0be9aab1-de5e-4170-a042-8e9620c6db15) | ![Distribution of Education](https://github.com/theiturhs/DL-Simplified/assets/96874023/36bb6796-132f-4c8c-9f1d-52c157222ff3) |
+| CCAvg Distribution by Personal Loan | Distribution of Education |
+
+### 📈 **Performance of the Models based on the Accuracy Scores**
+
+Summary of model and their accuracy scores
+
+| Models | ANN | FNN | TabNet Model | WDNN Model |
+| --- | --- | --- | --- | --- |
+| Accuracy | 0.9820 | 0.9710 | 0.985 | 0.9760 |
+
+### 📢 **Conclusion**
+
+Concluding, this project aimed to classifies Bank Loan Approval using Deep Learning models. Among the models developed, the TabNet model achieved the highest validation score of 0.985. Using K-Fold Cross-Validation, it ensured that the results are reliable and generalize well to unseen data.
+
diff --git a/Loan Status Prediction/Bank Loan Approval Prediction/Model/bank-loan-approval-using-AI.ipynb b/Loan Status Prediction/Bank Loan Approval Prediction/Model/bank-loan-approval-using-AI.ipynb
new file mode 100644
index 00000000..2fc9e80b
--- /dev/null
+++ b/Loan Status Prediction/Bank Loan Approval Prediction/Model/bank-loan-approval-using-AI.ipynb
@@ -0,0 +1,1864 @@
+{
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "cathedral-nightlife",
+ "metadata": {},
+ "source": [
+ "# Bank Loan Approval Prediction using Artificial Neural Network"
+ ]
+ },
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "maritime-marketing",
+ "metadata": {},
+ "source": [
+ "In this project, we will build and train a deep neural network model to predict the likelyhood of a liability customer buying personal loans based on customer features."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 340,
+ "id": "olive-lease",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import seaborn as sns\n",
+ "\n",
+ "import tensorflow as tf\n",
+ "from tensorflow import keras\n",
+ "from tensorflow.keras.layers import Dense, Activation, Dropout\n",
+ "from tensorflow.keras.optimizers import Adam\n",
+ "from tensorflow.keras.metrics import Accuracy\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 341,
+ "id": "recreational-direction",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "bank_df = pd.read_csv(\"UniversalBank.csv\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 342,
+ "id": "unable-sphere",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "