From 8c76ec1471cd6bca35d4d01b9c0cbecf3b701e6e Mon Sep 17 00:00:00 2001 From: Bingumalla Likith <138435877+binguliki@users.noreply.github.com> Date: Mon, 3 Jun 2024 17:32:30 +0530 Subject: [PATCH 1/3] Added Saved Model --- .../GradientBoostingRegressor.pkl | Bin 0 -> 1815717 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 Hedging with Real Estate/New_Upgrade_Bengaluru_House_Price_Predition/GradientBoostingRegressor.pkl diff --git a/Hedging with Real Estate/New_Upgrade_Bengaluru_House_Price_Predition/GradientBoostingRegressor.pkl b/Hedging with Real Estate/New_Upgrade_Bengaluru_House_Price_Predition/GradientBoostingRegressor.pkl new file mode 100644 index 0000000000000000000000000000000000000000..6ce6ae822efab52d37dd3cbdc64b28216c73e63a GIT binary patch literal 1815717 zcmd?S2UrtL7cd$XkX{tAp~T*>D`MTDNfi(fu|gn$gpyza3RbXz8Wj~gD)z2eup?`4 zuZq3*E*9)v@9gfGWF_X}r~h}~?>>Lb~>1LwJ%rI$P~PI!{zew4AgEm&l_OVu@0ft+oh|OS}|G9$ZDXrc=`>QIaG^p_EB* zBLh)#k^;9?C5n_PNw^|8DKR-IdxF|foRpe~6=5h(PDo6}grnmXq9mtwxEr;lR3sP2 zOTv@oadO2FIc_9TDiv511F=$(h>OuOr78(`njn*hM=K?Rk}*@M+5T$F1W`&jkGj9Q zO0-0jl&qA5%S8zite%8OtbW{+QItZC8)mDm!$HpQ!B{An0#h?<-J)HK)-A9`lUipd zM`Dfp3Vh2;GO|T#6Qv|UB$H$LakE5`N|hv4Dw1QQxE~M@S4dP+MZ7rMlRDRy{iu!P z;jxNH6=tw9Pv7A~B(fN35>s6f(~iUj#CoX?m*ITIRgB)UGu1XfS7Pb2)m2ypwun+F zB`p$?Nytz2YwMs^Suubi*Z zINU&LkCk6Oz&U$DCRblUU2b@`zrVlF5By>O^QDrqBPTFUXd+TdMB$tf%|(MnvUpLX zEMAs`NgKy2ux?phnkFfdMDgLOLD5*(29cs9tf~r;(zt91?niBj&BxhC70w9bYos;? zA7;E!+Ek>j#dqfLBn57V9SHv~mf^v{3>;}?Vj-y`b5+i_g0F$Ep(I&tid8_&C3TcG zmj-2E=laPL!?DUOct%l$GXqdsS!xFZuDY~_wB`hMb$;N(P!QW*I&3PV$uttT21m0PQl zgs#|laY7$asz@%15n(^C#MA~#MJkEVCs63mRob?Zi-o~Sq8JHR6Dbu9mSwAL+b2n( z2d_w_&`*@gIIg-9Q(d}?N>0D3?C`5f=U-KJ{6(dii-%jVhODtmWTY%cqQqgw!X-{6 z#WE58O4xD2m4%+ucSU)%`&bw8oFxe42R zh)9fSS>o$hky6CxQjTM3j8v4Agt@fA_ccXfkU}KJA<|W(!l6MPlg#u`i7nyiIE3j2 z^oJ$F=t`n$Lsv;mGIlys7D6{Bu9En8YyswmnX5#uQpklN?8IQ{D#f@-QW@#a%vGw0 z5y`=D=B~2%cx)bGM^~9#o+=EKB(WBdsgf~oCKV+pMX`7oW07$| z>t##$csIQtBS-d4`zm`C0CBu;F!Bf6$-JYXzIo=1$r}f zQ>4J9m0Pl0j@KBN6HvFQJA(wCY{nEc<}q`Z@KjcrDJex!EN>d|E!`DjF}ANHE-o2I zY0N2Gfrnc>(?dW(2bpSs+FpNfWwRj-Ypf|8t&mWlv#JBXebVqoIja(_7Dcbu(S3QDU-!m zIvf{p9WxS5J!MLbtJ!%fumnnGnButNrBD(3n|LblIOj}motg^Wa=*iFvdk?mrrI$j9eRgoN&;?HinB_{E3SM-m zh%1>!IA$=KfIcjkYbN%=$iS^saSCSinc^!A)5c!O@iGqE%sV(JKqI$-cSxWg){S>0 zBVi~W%s39>nGcUZnKpzNYo{e69})ICtWFajtX`mMsks(4-2I5H}0V~c|Bu%B+Io6~dTnU5m+8@>Rsh;<20ICU_ne;Sj^P6D~1M3Q}VPJb80YZOmOWK4IvaEM`zm zSt#_xoMLbGO-{h}Pz@0!$TVJH?u#Rr)`6`3T!q1S0fb{d(PTwGY<_l9xAha@r3K!J z;9i(D6YD;>Uq2jEMPjK$g7;lSa&wjNm5xD9M!Y z{K-ZfY+NWZ(<$~>Tx6y~LdyylW3UVIsmr1iysmNFm&7qK3`Yrz9ysvEX!|znk*dNw z3gFb#-%}fLO#OqrHNBX!o&~Evwm|&Un7PAD54dx335;9%OC<3ku~wUA{t~G&ndsIm zpa(D7SqH?6g)TB>qC%Mj>{u~XJ#Ysi6{!gniJ1|D8IfbM*x06lBCS1*195edlyL&v zK!rldSV<|0!GMf=%Rr?pNjg}IVj9#Uqy^!~JP1z%TDPwfB#OlYP87?nWi(EKo5hM^ zHAORAlno|*SO;MT{n;RFRYI~dNt#MpnFe7eA}X{D#>T`eJ?;1nX4YV-BxYCy<9l&& z8iK~S9Lq!o9JR@%5HwVsREUJlg=8HH_bLbDsZ^m9wh{7Y7E;^cr&`lsiG&%a?8r36 zqauNGUyER=Y%pK=V8;K6BsRecJdHDh3JVj+O{Nub9fxZktiZ0Q86}p%$&u`6PK79E z5sde>I8XgdnWph536Um8VlGHL3Bfx_ zHlBneC*YX_G-A{%UWNSx2bNy^)oI005jGa1Uvs#E_LiYCaVqXrPFOYzm0?3+uVbCj zHdLmP4(7ZCuN8>XRbr}#h!T}DUM0rFBnkhfy`?yo!cx+*4<0srM>Jt7u()x|w5++t zORpiYo-xCfTE&|8VOhYt7uH9NaFk>Ya+qzQL|rYMIa~>siBrNw(Mb|zcnm(-NMsM6 zbathhoh&{W5wJU16Af~9Y&bsl!sjZyy*=IpvIkpuXZ~0sZ7gk)94T#@ku7ypH`8;< z6rC)OVonhFyZ>x; z`BH5q4_Dz>fv2x<6RK@i&30nRuv1;-S7&jYA6joe1p`DXu>m;0IAQ zd!q4IMAbZ;h`+-qTlOQSs>biLi{BTmp+o9P|D?>(?WJkY-5;PskMKk2RboF%s=E9@ zHTi)Q4IiZ6pXKTW{Y7Zxtj2!AsM@NdwNytZgWLlsQcwCJ^z7NsaH{fNDgKUuetK!z z6MYgsi5y&iQfM!s9FmUJPC6#n=!wwd=nSHWT%;Y*50R6jqtx)rm4h^TCVUY31pn83 zg;AVb@f!Vb?P4`@5j_$)h+as)gbru#Sya{i@%Wnoa0vKO>HZ=#{zLd8@^kuCY4{=X zaC{(*UlKf`CyuYNfR{#D@0Q?imPYTSe~#~Ds`fDz{!RhE8w~s?HFl}Neue@)0%JAw ziJdsQNqYT(=$H5p87G8qqF4?HvR3d;rF3_$7KLdf>|1aZBt& z`X_cHbUA;@)W}2pi0fyBh7aQZgbpd&v7f;jz6d>Hub<07n*KO`$T%e9Cq?5ABwmsD zLG(xDCH_J9<@oZ^#3kaVgbxz0NIN12fy90sUs``5_X%B%JnZ;afjk}>`w+T>4jI>_ z@ku@DkJy9oLG(-bCw@WXEp1P(pJZxU=Z9JN3-M!gDZ46x-(-z{lkq_4k$yRPX;e=4 zSM%{#GY$#A1QLHDe35!$Um`c@m*|toOZ4E;56G1WFjs?Di~UU2#A!m8^i%It3jQ9T3SuhZ?-Q!-sVX1p^q-9ev7ZXa zg8dkvY&-+24e%yW&mLcv19XXhktK>VaTd*G!b%Fb5K>iO0IKIy9<@ibi`3EiScs8~|JXI0&v)ev?wCToJY9r|3 z(HBmSvuI8ZG3ezK@U?sg*WZ#l1&=>av#9=UuDxyAID?|!*Bd|BX9)G97T4d*XPlne z0G*7nod3)MeNk?l{L9YyENRnIMVUc6V~}UEsj;cKC8F#Ob8Ug7e_@Y~*D8T|d^+@(;ar4Jy>TVb^vsyfuasa(H z0r^t8=hYbZGLLlpn8`yIx*rWO~PQNA% zIsXw<;l{~c;Cm{JKa)lIn;x!Cr2L_ufz~%~GJ$`|ywus6qV7}$3! z=;2L1H?F3Fem+4zy}^EQAlFKuYqQPf=HbDa)RTjpK3{=7dgsh5%I-3P8VdNkU|dy$ z@wXYqL#LtFJI(!&Onm~rl+gZ4F6Vz?P_7RBZh>-oF*go(!T1>-nX&ftn<3OR@Z-=) zT)e7xpNj|e!9Uv(zrDcu$9-sTXwT{AUL!6pxxsj|1;1Gc@goxSI347WgWei|{T9!w zwXpW0sT7*S`O9q>FU7k!|84^O*FVqEKQV-hBmOlw`uQ+E4%g($`@j!&fSpW1-knhY ztRWXamV!N+10T0Q-y^_(Qot`dfgTrs8v4dq==q=E9A)46x@W@WYU^8-rrzq)`UPoF>?|m`~+A;p}Ay^4kMEdx4Ad zKEPL%rkp%Oz`jpF?gJ2q{ehp|An&TGoSw2_+`j>S)}3)4Yg}_0RSw2i5$FR!9GeN_ zSPcCe){oeEC2k@$ALcpHQ!dWffZdM)y@7^Y{O|^Qt%UidlU+^wTD2EZ-yl8>%d*RD zvPDfD06ZG#lDMr(uKRrCXqqaTG`d^-wnNnUW+!{bDVw;o>9pVX!oU~Q_3szfj5_~} zVy9?!qb@0Xl3x4iZFMXAtzt~3cPsU<>Es8MdakBI$4H-zdcB4U0y>+Zet1Q${{kqN zpPhQ^%%~+)dOFwMc+zD0_QvH@GoY6T^ln|}_?hp*(Np>DQ1}0kM@_wTFw6V$7U}`i z--doCMRIZ-oyGO96ihwmv0??aJC>8P@#)K5HZELBy&s*kCTaOzN;-j~yX6#De;xX1 z5AxXvKTlQF&8J*H7Qb6{atGxJd|!orl0nWTz-On4Tz}8f>x_Q7b1gM~ch|v{8?2!g zPg-kRD`X=@_=ooLAz!^M*(uSzcbHqOZQEb8R*Fa?4ShtvjJWO z`a3{=N3f?H@V>iUa*T$g0_YiSv4D72FqtfAk#9$?+8Q(h&G+2zr~7 z*DS2%&Ha?ksiyt+Iq#;{jyP50UXLx*>}gzoR1v4wi9qK7@I3?c)owY+pFZAaLG~s} z4(;ZEJPqf6DmQ7(Eb0fyv6=V-=xM@(mj~*1+({iS+Hcfk<~FL>x~7k_4NZ;T!|8oD z=y%JT_>N-+Z>Dx6BzHRbWiKTj5FFjS;ufkd==C7Tck!^v)aL`YQd76I-2OawEA<}q zvKZ*+fSpdC`DaY?JDaEmppSAOXD{H}rVFRv8sIpSp$W;+*G-at7E z`mF)|4KBxxLp7A$XE2{FR1mZ?`OL+u%+Xvtm;(OU7W_70H0K{F(0=w>PCpqCCnm#q zTLk(qf%?0k$9EvdSb#Udey_UpN{BsONHr+n{G~qVE{?2R!_kj~ z@sR}lJb`g-2z(=u_W{)Rg8mkQJ?;V@k3rvEf&U=zi(HV`Ma;#u9V9-1KQC+fW$tQ! zni??D@Oe?mcB%)+x9v6;FD^s7!+1a|m+8s{)Lxk9`hb2HgWWd)y%Dpy_^}M^)dc33BD;&T+XNn_Vqx4q z+&k)no&R2H1K@1}x+HE-=#ih)?CV9!yvX~?i+)!rw;ts@oF=Hz#YoA=Jja(*d3&=- zYr|i#lQcQam#B>rBnb*7lMk!SDP$zeavr;;S#%*7VrF_GEo>Yhsc zgjym`a#i5`SN!-VND_lHTJghR?Sa3!JY0hBC5Z4tLsho#QMCn|-i#ZE<0sG(ocVeH zGG7hi6)OBN!a_AD8K;Yi!y%8?Bnm%m#d!lvwyk+IP84Py-i9aO1X#5VlhdntQjmx< z39^05tF8I9m{@eSZ#i`}rjkpd#aX~2?s*Y=)02BjfFDDdsFEYO-Y{3iz?C_ZCQK4f zaayWskP>Hwm@u_s{BTH`?Q5*A!gMZU9#G=sB3vDXb1pG|yq=??62nFDiBb`-(m*E1 z4C6;o`1zDrkr1v*V)Ws!HiU-MvwxV+Noi|e0hg`J@Eb12HesG8nc_$JEE48tg1Rz1 zw_+ZH5&5tbJLfW=d1`CSAM>0}t_a6DN;nS#cTgco5s#bHaJpM;@7A1s@M6b2L&I4t z;W#0bMPM^?ajtDSwFO@fxW-Ct7|t225^)Z;+=8pL_7cTM2XmJ6U=y-6Dc^=sT$9Q_ z<3VqA!ow3&Q*b(WqAUt$!iT%1{-USYJIrIlO2544<8I#BvI+ALOKlJ@lgHtwoj()e zD$Tud(q$61mmkxHWln7=O2pagDdAEklO8{znxM93v!ZbhC$G*#9v+3W(NwGztYkQ+ zM2VFjo{CkMEXj_2!mwuS4b|F#P$6D1B-`^x3FmHV1N^L6n(aA?lr8XW{A4jIK3OFj z%shRxWE${mk|Wi8YB<$ioE`fbQ{%FaW8dLRP5-g)nG)$e_5&_Wi2ca?pB#xhGGu%Y zCxlxN)rgZ55^y%Qr8@(EF^r9ILJM}!7~IByeR`)hCaS@%WQ+}sm5Gy8v0us|aUZ8g zW4|#W&3?5bDCb*l{BJ*fb2FA$?GjtrhOtM1T#!_DnwSs#qrM{ zz=rB7?vf}Olg%H3>vctsJ%qIudl>(xHdZk)2HTrSPsfC_V^890U*p@9IalmX>p zk71x0`>`i*DfS=czjOFM|JXD5f3+=_h|i7u7U7()V^0moL6HdtY%B<85-qR;sVnvf zY2C47+YZ^W4&@o-@bE}%y%-5jp=H7HW3KYBa-K!NpTKU3%T{t$wuIwhPtfEx4S!z;L#>IjXSv>GYAS z>U=9|kTK(dXYTy_W@|j`mYs24S3kei`Muj}4(W7pOW^x?I!#L3Gq_PSUCX$ZRpj$wlh(~%(kkorfD6l3#(iC}-PShJ zqI*KahM#NJoaJ_FUaGs|vut_& zYEvH1-zY3@)%#kSsqccu&1adfP)shWx9>rPn-kkuzDp8}xpc(Qd`1VuLxPHXW?YI} z+~{`d$Mxs7iJlIdx;5F9sS6+QvZ8BW# zcJhPxfq(b6J-fcnQr(hx@4p=zUGq(&g1ILjM2?9MsCwAq^Y)fk#%Ap9Ii-Bt*pDqX zNy_gIwOMA@*l%#dm$k+|UFdMa{@^s*%FB053Np*SIk%tJ+~H^cxv`?E)xArBOR9IP zR$TqLy4#%00f)~-#?Z2%xc(M1<(lvL-kNa9Le(#ButHbwxRmL}- z@Yp;o@bbv?#dIT^E4%t_dzNF+cJ0+iq8Ufgo6zbNT8F97qw8x&x2@PW_fpP|*E_E? za0~HzeZMGaLU_ipkb!5%Cw9GXF>Qfte>X(67&pFU>M@Ju>m$We9;`MBkJ3Iq~r52Wa7g zyFIt9?KyhHme9zab_s=R7nEP{%yLNWlatf;s+*=vPAXr2@SJ@ieE0;9eHWVM~A1IHg{_~{e$Y&o~TY;jFN)g@6>P$uiDRJ zcum7mg@K6h#>%!-G3~KehBt{lc!R4~XLr|FiGgI$+kV#7REgDp*|~!utDm&A>7E@sVa0tx&97^Zwmsd! zIaN|1=~J2skhm)?sQsA2uj7ub?4K%8Ha4E%xxA!hHJyh6@^E0aID^?w;|lgW_iNrW+hBXGbl)B=#~$3AJ3Z61t^eu4ONVxh^J%nvgri_@ zXjpf{XNBIg77FvuzRuXtw?W79`)u;*q!~%&SDX2Ec{sD~l;_BJZXFu!{+GwDs| zkZw%}#*Ongt?d&PSKhmtZ=D+Sl-7f4s165;YbDP;E~;N`R7y}}t@S4g)QhDtZpF@z zw%*wyemmfpFl*s`^{MEny|RbmmZ2F_4DK{3$qIDcyt$}R?Y@NVjl9hn9{=%d~j4Zk+ELmmTs zQnpSnm{@WD?24b}Ev*o``pd$PiJ$J+95rhnIP0@TvpGW-M!RH7Mm}CwT~(t)h2!-v zNj+w|SZ};Ae)-hc&6bYs`(-%v-%uk$E%i)Sy7>h5xQWI#_}-w^%NXO)=GN`~j2^w1 zmNVpI(@G9CM^`Dh-YR&c^h#%gyRXhyzk}LYT)h49`>by*ybNar6ST^v64l9!E5davAej;r0I)%w)6d+OGvvtRjg9gAYy zw03KK^7Ez0W|da-n6W4=HQz2fV_2V#cC|XI6M7b(-Y!Ff- z@Z?A_JyPs3ysziDfDh--pOBTzbMi3RH>Ap!vAt8aE_yoGL*+EA-h=w9rf<%7jp!e^ zb$8pr3*Ony>hga2!&CbQRk0p;X0f@Ge9pwgkcO|ardZE(X|Q$kb%P_FSFJrcE?qLd z(v@PR)F8_~)bzoW^>lZqwQs_zqo$ITPuCyZQZ#>h%QX!Z(GQIF=1(7)H|^k_M|;Yx ziL6>Mb#e0tJFgGQl{!AkYTDS=c<;as`Ay$n|GH@Kp;psuJ8rdnS?y8V4k_ba9qHUN zwb=}#5$=t8h&oaRuTSqg)JC%C!YHfIq(d{J{64n4J!^K%3-A87|7l(8_{NA2S?R}m z4zFOBUeCxQp!{;`RA#lI-Dh4KBotRy&a|y_weifkp&q@TY`!($`{K(dRhQ+of7Eey zwd)}jH#ZthStt1iEo}eVx8s&-Uo1pkRmVPlqxk2BV&SlU76bb_9Q!)pZCYNP{3#;q zR;{B;_PYD**o6M=``55hp$7uF)IfwzBS;>>yr3_&Cjem z+1uZ(ImDyy3f07r-pv~5>?S-4ua^Cp zJ!Y&CUc%x<@)g{Y*+epnal8@H?9sTzIrBeWWHT#rya4unshhS}Zd`Wk9NfnQH)H%i z`(Z@!EywKq@B$Z>=6E}T_sclB66gMB`_8~WA!fJFy8X>y*S!@&op=jhsjGiuwQ0O0 z8fRxpWy}w>%o4N!J$$ zhnOXr92=aoa^s9@C`fNN^6_1@_!Xdi8-V^A{IshVA}S%TW)^4HEiXWCDr;^C1aG!z=o>(FEr4q@&CtXf zm+g^k;jHJ$7Yfi$KK@QEz9F=8Kxf>!cTW1FJ}-5UOgdQ*TF@$naF@r?lA0^o5C z{oGnR<~2h#I=84j`e*@~$H$+i#jgnMO#$}M;0s<xj=@B;?}@wfM~M!TF!>P=IdeROj!0fm7F_L>q0#g2YXT zl=!&Jb!q$`pE?|GvhEtnBM!qN4%6V9K}Y5QiveN~amwgnp>3YsgAH#-qay~ z{a#h#5E-W&o-rc$mEeN77mrT6%iTY6bTXq5i4)LVgI^YXLWkEcuKIocIsDuLefU*? zKsA6o{j=j|&ex@hU7zM75+}H3wg{RF?BD{@*#$iNqxx~%K+mrKvi#aO&#|l3Uv=Q$ z9w5(7Xolmh!V<@M;2l4iE$BgX)HeE7Dzg{W4WhFZi$fFGpX${D13z zwSho$fIRu>c|Mz|b~jr#TfZ{}5j}CuI%&qg1K>3TSUUcdnC`Pr?4?4)zqn={5HuGE z;i4Wup8r|f*)bXW|iACvnZ}HU3)` z|GD>^r`-D|@bBc$OYEx8{$yRz8u;gp|G-+)UQzaa)~qgx2-UGa>8~Z=k##puerdq0 z8QlDV2L8GJp?^Y;EB?O!vh8mQ^~ztC{yBQadhy!=e?b6w^0(`E&#o6f0zA@x>G3DHf3f9+Xfbtl-~3CjsM6zy&@U6e+R9;_Cx4|%uU`p1u}f#D;Q7CC_S6@J$f~H^pwAwNtdF^7 ztr5X5lRh*g@^Z!B_g^&BY3;V2-4R(|bNHux|J-ja?-l00zT0t4QWPTV zbgp>|(p=CD@L{1R(6PVQouRh=-g?)M|84mNjN+`F^~PTp;NKNsY5tKS%lbjT4m#@x zX#Sh)w?AM1rdB{1_6pPP%X_CFbArIa#+vc# z0rg%0OOJoS(t10;Zg`g0l&2Vgl84u6?5JG-S~}p(>H#+fo~sxyz$GfU(x91 zmq%A=q%(h#{>t)Sdh=6N{>)~7>HlKA^M@bs9RRTO{*B$AWrgVV{~mzn53scTIr&8Y zvi*bwMBf~n+V~d;eD?&%^MC7{PWK=zwfdL&*YAI2`41=7L%s5cfZU@1YC&2;N&V_5 zCpzZRQ=dXa{DZwu2W!TEFF;5H$n$@8{r2FPrP1Z(g^2hW*G!8a3V0%brN@8kkkc^> zPi{bDo?)A%`6Fm9=nWSG0rLEpJ^xv}`M~*_&6enmUtxgP4{T@AAy}p&8F7BeFl{nt32- zE)c_o1Yqg$Q@?7?z8~E(5INuHnzcjFyiETKY42}m*dz^+^K}ld?r-CJKds?y&>{_) z5rQmisKJkcdMUut{J&M*^K!qUM(jKWZ3F@*jsD8=zk%toNnJmTLgajw>!K|pU6qAT zcbsz1*)mXP|4Q&<;UWQGY5O&B^5xhCb%jA40#sHE&_)R(bU4U{AWB*TH^2h!k!StK9>c8ec zBY^Lb0Quv0;D8beF%L8!#r~!K^!r~~_T$(J(9s{TD@cQjF#vh|XDPehD-_)AIL*dR z|M_D&;EmSB&r5y&q)-soE^WJ4%m14Ge^35Iz3czq!$*4K-#CzaIzXQPvhz>G-jT6$ zW(Mh;ACd7l9`Ggr;3*q_iZ zQ+@-cW9z@PUz%S1PXxZF0_4pf?EWQ}iC>FDboMXMTrdeP)Bt(%r`6c>uuvex6R2nX zKaPKFw-G|U<99O9ouW(MT3vF#P{8W1?qBNfZ^wUxUjNMkzNhK(FNoNGr7*1n*8feX zKi8k_2G2V~9slzDCQUE@W%@5G*HXRy$7aYG;h*><<6r#zB5@2SJK>}=c>T;AY|Om8 z9#6;DyH~h-{+cH- zUFrEH9`j3@^+PPY7Kq~aS54Tzu?<%)4nh7Om-P7fAcljq{TU?{ll|6+nOMx$4&`9kYw$5xK3U`yACaQM{rnJ2wdUh$&y5pOzu z!hu$2KK7s&1-9=o=Xe19qT^R#f_EUj&?r0h+?qhzWfo>+V*nj|E$UfP>j3)us^IUd zz6H`xmWJ27WDr36eYy3)wU-Y)$MyMa*Qz~fmfZbd4vGWm&~10GEtYoYilXE0gcW%{qBQsOOv1OC z6jnnVtPS>Vivr*0`o2dtG*@2|I$&2ZsxUI++F)Tfbff1nv||iH zmlZQMylH5OuvO9>Pq(4_+>yN=8skELW%T~2JI%hKslb!7i`bp!`m3v<&y^b>r#q9J z?#%W_MDMIWt{sTBj`JORWKLalS#|TF|E{ zx;1-!hZ+5y=uht>-n0`?H12JZQ*(rxZnSQ)v9bu|Fn%69kdvc8#QAr#KIjv6(P|CizVxIUJv6$Pd)o*< zdM9?1cB}m8DhnEHaGK%I`HyWNy>@QqkZ74NEo2TOr;K+d0z25{}N134Jd z6Z|ZIvsW!IZroh+;_9XD9Bk}GGl2}hOqG2#XlxCU7hAW4kcuOeV%(r2NKuGx*bDeK61s*VAy`a8G<^f-9=8 zoioYVELrp5DS^!`%jyub$p7l@GILYO*=y;wN#>=YEgCEH(XvV~c`{(xX3g131*mQX zZ~;JpAh%1E8+Fi4_u;dKOUIy_rkWc9!Jg$Be0J%8Z`r_Y9{q^Z?@J1Y`@V}TNf?99 z^6{4~N2E7HxUdB1Lv9FA+Ea)6$lfusZqG5JQ2)e+__P+EJhLNbXOBwZ3k5m$ znSznXi;thC#V>1ZaNDNqg&jjiqHcWr+bTrJl!Y&NHFf{H9UXPf#tFU|T$lsIj!8c3 z+J3mAWZZ>UyY#Lt%cKvz@!9{6avR_J^cnA5O=oXFnEWmJ&uxBEAD_MzbYu;Xw>H1M z@7VLgT*g8E^|KxQdpk0$>j3{p0AeuQ-KipK7_hs|p8Dx%3~^BAzR^<6_#tPeH2^Oi zpa907cz&hB!`;$RPd@&VB^rEk=1g+;o@ns7@pHJJ_wc*U>Bx(ZpQXjG0`1A!FL}lz z5TtFMvc54|v0;eilX~gMjgLQGi(i)gbJI*`rd3ZzUHSM!mmtDsS@_ujI5+t7Af3Gh z!LJ4v)d7}1Tl?XfpV_!!@?Y*PwDSZ<=0AKkvn5gQ_^k~+o0%nHG)0` z+UimDvh%y?wSQUuBX~di#*8?pKi*rXoimZvUDi#n{pteWO?3Gey185|4Bc3x!mWg8 z)CTTzz#EZbJ-BEHkS9Ma&%@6~{R~d9FzlxRKps9i7Ja)gZHl++ zu8|FO&X%Ehna`#K*C&3He5m#3G2zgAI*B+@%VH4Y`=e= z8zfZPh?1)tLycjvhd$t#J{aD9jMoTS_9us088sXcgN~AYfOFgo-LAb-S!vqe~GwI$W>eG z(EnZeIs8@yWS_v5jS&a&CIv3q1LW!du_*5Z(69c-_9t`*zg+o0oc}PAK75j!+C`WD zlER{+h4+iX9BSaBEM^&~{b+NuouRTbK%V?XO2;#Wxoen@P-p%i{B#7oPQSqSsQBNv zUs?XkvGuq1Lwe6Pe~-SO-m_Jbn;HZ9%LXVA(DB%{8hlr1?*WkPX9R+X`aka1MaGh_lp1Gq zkcf{zR*UZjc>XHE^`qf zQx<;Or25{|zfRK`e+0ifTzCR39X}(6o$;u8BS>#Wu?D|I8g*NAq2Va0d?fHW*;Q0e2;{fmf*xwe9 z2+r`1tA7r;^6`aQd_TbJ0g%K&T+FI8z7g79dGhYnKIag{$1hQ7{I@Lm{br}NZ$O>< zc>`SZ`{y4o_hC+q<$C9z0N|VWJ#YL93vPX*1c$$37Ad{!ud?`u?gf1D`R5P6hd)Q} zZwrHfKreti{v!J_m?FwT1cCh>`w>!~bq>%kSw=|NLJ% zHGpy*=K|g>z z{@G{yMQ^0)re}Bj-TEE(P5gx;qm6(4f$ji+Jpa2r!1*54>dk?=5|^Di`$uSA_Wlny zq(=<@*ol-ivq~gKbspQxWk-( zWa}M&BEX9T$kSie{Hs4GPVuAl#;?Ei|KG!>|8o6Sq!(WTa!2dRpPMBthXm}#yyL$t zzkdIh0^bT<{tY&@u868V4^Hdf=BD2DzYOqV0hT_0VC|nfRLB3I`EQLMrmep58wVZ5 z1LXN1>gP~Q37CN9*jMlQ)9?9@fb9lIFaVM31h|j`3T@|yF;JEqzN zw3LtEN{gQic*6k>1}G44@0NKdT@`ln)={*Ck1y2XllG~AN6w+~nXl#H+yL;5pOydIpeah;_RuY?!4b58k6)Ck(SKR?pD;Op_L^&l(R@CB zUMeDF%EFI$i+>xDxm<7j8wwo_1IW|A@I?3p>idT$*;Q&>(3yXJmp*C7Xa7H0zgm|Y z?;Z4%*3170AV6|cOOJnM+nlxLm0tX^^!K;?|DVBk(Yt^9E&kJ<>zzMG1A`L)^6k&; zU)s?f>-hxV)R{ksJ;wmvc!0e151SkRxaW@A`A75g#{aQ^H%^y6_imWCc>i0z)Bmjf zGJx+)fIR=>z1t;E@BZtz?1%d%`sT=J*U$ep{v?oF4Up$QX~#BRD~zxh)YbG-XC426 z=6}8Zm<%0F0m#!o``h|7MnR+Wzgy#P^*0shW&z~MZ{O=2U6{t?_75`GiJ!!tzeoRX zbCdO-pE4;`u?oCM`$eMBPkEu4cp>GteVy#0#RF>H+Ztx$Y;EW@S33Q$9OX(ERayGl zYoaT?xpT>sTg!UT#s7#3%y#vlkDMqNJos=A`t|Zvo37aT)0RVW?PS+`&{Y#JrY>9; zL~mPdHE>%EA>FsduqIVMMxgu?-`Dp0?n^sPZn(8O)tQ5Z6g{hZ<-SW7xk0@%ZM*E= z$@Udo=rb2$K1v(8;5^980AY0(`gDM=du%-y+SDRtnZnV9&TBWXsK&SI^bA?`eOCuq zp^zu}gS$xE(5oJ7o~kXzXj0pr(34^jOA7sx+P+id}M~n{Vig2s7`$QEBIj{{qTLo>P8h%`|Z@xRv-H!Cl-bQ z?1v&$U&fe^sfhx+m*1P(ttHJtA>FuMxm#TvI?(a*QCXrAZ}cU#*+A4-jt*qsnL6TP z9BMwhAluAw5IP##^u)Q5aU4G>QK;Bv>-NtjQ0^~6Etq!glt`Mf`o!|>DwHy3*Y$0U zhoMu?t=gE69L~Y-LjjI}`V=((nuEBSJlK>eI(^oUVM##nUMeeK-1b-rl1;LxDFhJL6<$gEv1mwk|#-O0&~_WB^l zaeewOQ+T2Nx9xnIpY%lC{Jx*><>ZMbn8!9T+1(xGFnp=ysMUwZ%lCJRMVGIC7aq7x zp^^Ke@0qPva&k;jAx?iD9Nm_q5v%SG3sLgUZ!X=%B6MiWl4%iL1|iGf+1GAWk)obg zL{DFz3P(?sU&g322cqi^;#KP=Mxb4||9W*3b>IMOADePx(BX!3kK30!a^u^<1^l=J z_-j}CQin4GUp;9LWdb|=-<1cNt|t#PU7H6g)UFT6c_P`DkbU6!mup|tY`(3`JkTC6 zk4*ze_EAxJeG)o^Y(q6|H8%u;np-vdmeEcd} zd}f=@eClvOK+e<2bEGJnA?;i@EM%<0a~&cc^FMT92H1A|I{i3wu;n1Aww zQ(5REbDmB&?yEW(TAYuF8R&VR`58BGd&(-3WrT^WV z_w=(^_77UX$A3H)5mw5=SFhV@zBFQ+-ghLHh0oFHsdpbrh6Tw3<=OxC^lSSluhYdQ zlg~yXcfv3WdusGYhILiA&l8i)BNmKv&WxEAfXMT9wpm&Lg64wKd7!*~DEk|`tPx`C z1($mxVrLG|QA58h`AZ6vcfEG>*2x1R^vlBM+Ktw`53dFtk>^A_|KWb)zi5M*Wi=nY z?}#XiK5cH9x$~AMYDpMoV45c)#j@}PffLT&ynRh?9%N1E=ofjQ^pBv^lxd%&0U!4{ z>+A!`KFA*M$@v@4fAW?uI!p<<`#Sq5K>O=`WLffa^vmmwUk<paH*w7<4r1L%l-+=H)q{^RBHY$vq?zvHy0*95)(*AVa<0n~{l^v0j2AUBB*Jo|Cav1eXKxXwdc-^j~`6 z=cv_O2cFMs`xEff@fuAY%ImE}A|FZt|kDuSuzkYmQklPO+Z~O$7Z*PK_>a?*N z{%7U)2fhOUYVD66t#G+T<(_Xl`DoQuI^!Rj|MmJc5IX9uLtjudBm6rRQ6Oxw?AlDd z{@WAqNd7Hv{$QWO(i79KWKi^mJ5e|Hdb@^X4c-*1Fv?}k!iOmD_j=u=N6Y1hdJZyCfzhjp9 zBSR)S^A9xt>+u%}9YyKV&+Y4U9j_l558bHu{O9-lSO5I+{|$bi-tiL+at|R2)j;kY z$+5xJKc*&4M2?zz=0f{74q~8Q4zRTU8_!fX3amLv?>kzhfR_M}=l_>43Cg2fPmf`n zFOJcBeklXIcwPLw^6D%o#!Rvg1ePm8~BLJL%Z}ck$`rXA+9-BJ|=XK}RH?lgIzZ?pO9xChrZ3lbjR& zYw@ov|9QqX_}h0prs<78DIk9;K%V?_>TSAPD9A}Y(xh+we|i4XKYoS*-@|qJ=kmZR z#rAkJrJc_D6`Ggrf6!3h_$PUwX}a{;JS>E>(3WP_(>wo;1iVoIdE<{gzs@xn{wDTr zlYhM)iT)1J-gQL?96`I60cq~|TlsYu%dRp|tk(7&P z$?(3$cM2~QbK)h`zIMk~Hve&2?6aq3(DqG4P5zQN&Hvre|5ANn=! zeS1ZBdi%#k>(fp8p`kC1n%KPUgWi@O((`rg{^&ui(dT2T4nPGq6JHD%-yekvi~HO$ z8i0(AcRZMX*%yVjOq?AVG!M02mwIbTnj5{c=75EEm)vRp84ugFdF4UB@R{rXBd|N| zjLtngQW@u$#Pn4SAMZ}1E7k#ZkGa!xuD8z`SJZ_b>bt@@wm}v8wxGv+hk&{Og#hc( zX)Qa|T{H4FC8#L9`ZeWsA*$JP-Rk9h33v&bs%AQ3nZ|bt2l1;s<7dW zs8%lNZIIgS_^g#HJ8|$)TXeXNZgx(>Wz{L`wfbZ>V@d|-i4$0bw;alntXoa z-Hs0I82t9pj21Lk?nvJcpJi_Ueju`Z_xwuMslMpmh2RCB6M{It+xj5(zTE(h&PSj( zM@#qaNnzaW0tuS+I=yqkk|b18+xbhSwT9Thjo5rN0X$5!B zmV6w9>JB@!{7#*Cu6#Qgt=s!0{>arRj=stt)m~cOVN#E1> zyq4v6q!$+1+01L}N)O8(o4tFF3q3gsS=U_IonB{Ew9#&nH+^pXhbPeyKJ-$vUb_xG z@}i#weg3@Kvlo4N`P+BFQxP4w)y_8T4ux*^>9M}*)NZuMe_l=l+J!z4U9VtkjvM_? z*CWkePw}J^9e&Jt5kk>vebxKLH|%JETh9C9i=AlnU2=>TRYtb!4Glwg^g*Kwt9W01 z<4YgQ%^Hx|&xhk*-GlC*Vdon5u{|yL80^>5zAN3fS;nZymhI>i#fbweg4=QR*PZEh zOubbbT0C&q=9&B3{@;~{HA7Dx7XG{2@IF5N--;&tsT(k#2n5_d;=!fVjvhC+l$nP` z&OuzX`0V?v&W~uHcJ%!g)RH7jF!x((^Pnm~d-6PiH(#>n0P>1m2c_F=LJj%&4Yl~} zF$?aa7W7m49AM_w2$z|iR-qAhJZ9CsSNVa?aMD2tDurqwT`s6vwW0yWhCqz!p`(yST*zCAE4>cwPS?K=T z{4a>NFMc$0I%>ejPjf}2SeE>WI30e|&Bc1xQI^n=4M5&HjNJ#Fx^(bx`90}+|5mIO z;92Y9v+KCwQxbxjeo6VO-xD)k^VR>K>_hh$k6vi$GF0a|B(N(W!>Te=@a&g%F=HiF zDL!TBxYi<_=U4>4Ed4vr@3m-cYE_+e@bBWclrJqed}z2{{3_7V&-+}al8b-uYqh>A zxw#X05`qk*wRvE6P+uJ&Zmv0lU6L6-?%_$ zA4=?5mj2wW8%~*XFXNB%7??km;Bfzh-hEsR;GgXCdHl2SXI*Xal)D3V>in%wKr1tT zJR933dhy0go%a#^E`GaNEj(7scA+{1fq`iVkz!f;W7~xt(Yp_+4IMQHm`yr{_wm?o z?Xxku{2C-Cfr7bzbe$%CIY4`o&(leRFPJ`PKrOU%T3+#L%hkx8kDsZ<7ef1b0IzHC zxjf=0pBF4KskIul;p2<7_(U&t0dKDspM4)t-=-H@4vAfj-jWH9x&L^rhX1nkH|Cm+ zXJO-&=n@})!&*ehl!b3(o^i}YxF3=Eox|&@!LJV;k@(JwKY^d9)rEq9iv{1G_D9_a zK^6x5HvhR9{fknMxFe^Z@O=>}mc{?|osJC$9}d+U{~AF@O#zmUA88l+&YW*GSa19% z^I{Xg=Z(KPQ%?%ep2O~Rn?aLx=C9w49|EEKKi$t?`O9roS+#c4WukOaRh z|K0Qb=JLxzRB%3_1QnBPv{VPapnK?IYM56K75jgt>wTXBnXlXck0(EyhxxP-oiVglk>2+SbOtRPf^G zoV0;gsAaF~-Cx&or(XQB=(Bmee~|}Ngb9qwUHq5+|4Fa^x`W)_0LgklAV4OW_&v;q z*A;##gKnV7aGwRaB8~k$pxz50d7gt8`O@6#4rp+V`JejDy@Awx{4_0occ>?Rb3oIM z8$XUA2bbL5eFII>)Z>c?Eq+=0Zxd&7#PP-rG?9;wM2Hm2!e`p$Ia%oa9nA0G3o;D% z^4<48**~&;%0KI!KYc-vAb`C1!S0`jM7^!#)^mm4{f{5u^#E855Cb+31Tn88Y~SsV z_dldN-n_(AAyV%T7bFjh$3OQRhEecISH1J!Z|NV?(5L@EpilCtc#{g9@9w|G;x zPCDj~|pJra?b*h!#JeacZIrhYQ$8Rw39|DlaKf8W9=~-a0^7FpGj34^-_j~+j z>Gj`G;G3M=mFB-ypAIj3pD58;KM?)*2K>GNdGR~ZY2G&~bJ*M**CBUw><7&SVQ@k6 zsd)H}4@bSCoGVmtdeo5CS^pFK-;@7u^{4-RSp9&J{s4LW3+^|rfDo>yUGeW|;XVhn z^WWd{KLGk22#`m=Xi9w}B-qcq4@0e^KVrY%qo4Jc{(D=m|3v`bB3=G>h+0^qG+ZyF zPyZ$Tzqdcp7ssY{{Tc;)lYD~G@!Q$j=ylW>IjRTkSdiv|NKp(IGJt&hy|KJfShDHV ztja5-{||ZZ9T!Eiy$?4=%$Pw%P(e{a!9a#N1j!&ENktqS15zP-bh-+sOC=guGVbf~A!shmz%@!Ai{55tQHK406h zrR?aeMGK>fw)PNA|8V3D<@0mf?7J&v3=ei{)UVTTj(@RW{ad;G8z-3mA~D<}5IOB1 z+kQuMYwzjhIY6-fi$Y#BBBz~Y=TAMP<26m+i2pG=j2M&~hseo4`SShTJIlHczFNV8 z^-nDFhV%J^-Ov1{Y(MVVk^Y-go#kp2r|>B4WkzyJ6yhi(d|f0bOTNIO`4QyzGo=2|nPIzvAr&@H_x@ zF)#h7{Bg)j=JP#kce^bGxf!yrvta!_9(fb^eC<~6?n&9l5~tss{#C8N#e(&BgNM{x3WJICJ3ap_^aBdFzKX{Zf!e$G4pHXQna*Qi+D#vOR;J|IxW}{m~(fFU4(n|4pg>YUcCKCqEa|e+K$L z6Op5T-0Mkqq$LSjA3J7=dHn};US<7fp+~d%^0nK>-jJ$&$r{?h&iB{H?;AXzX}eNU z4XQAUl^?%&%FIBEKiU6!{$u5h7A(JWQLlN3ocM<^1Ez@Bae2DmZ?69eErs&m-`Ig> z{EHo^{G90L{lu=rnp~4gpI0xrv~`>GoJ!L_50kgjc8uz|cUPK`AsfCQzj0od=zYp> zbi}JG@inkmUvGC8vU_Q@pgC*0k#&bw?N;pu#Aqvw(CpbAQeN7n=%k3?%>?&N`FFcR z?GBQge|?C8!o+q?EAN_;BkFxmJlSSLR_DPfORGNQRlt7N$T2pg8fX`P4&Cw7$JO z6pS`Hzcn_uhL*b~1SP#QCAo!;#n~#};F%Y?!o$IkbUabF;j7K{$x#2y9w#*#6Y&>~ zh30{3M69i1`e0*yLWZWyeEPI038|4C*!5N@3|btfFIo>|S`8c3Y)e~mwq?RZ*V~6xubf5zpHcX`9B@V)$WUz#I88-O-~11T1jR$#3Hd3rCsghFb=} zrfuQLMGFRjrF6MLZ=2qu`XRSCbx&0UY)%+cWDDNqx*c%&QOkUzy!*+bCDV zv_VkFyuUwivKFL0*L5gS?F6Re`{x!9EMRYj`22<&hGgPv1J$OZW!nJy%#R(d1>}hw zW%iKl{fa(hqj=%Ijax)y?oVqC9of0!7dGnMeP?Y#2ERIfD)d%gpuA^ty*`9M>BByU zs~?{P%_n)(Zqzs#bb>yQnMV>}ADO9jI3^5K@6L&fJ~;{|zjid;({Zu_BPGy%@wEX@j0QN8 zukEi~Z<6XnMw%qI`Ec1m@!Z^nO#AE9kJuW0h;xX?${j6@iA5*PBiG`Mh$7#aljuJd z){7k7jkH;16y18KIX)MWr?I7`PqmDRWK+j)i9H$;@XZ)+uAxB~U-wVXLO)3Rzjn2% z^TdMq#f?rpzQT;C%_$w+JivlvdVNTXe_}!cqubW%+s&FdEW2;LW{4emzb16Y{$=)L zL*$OWokIF3u!EBVS3Bdq1EM=(pE5mzhYp$5XSh9Sa7BI3EW18LZPKyl@#~Ox+~r^W zdE`opT@6C>x}g6Z?8y8>k+EB{T@>+h+lFLqI%~abroJNHjO-N8yEu~P@^BBgCX0G( zu3dk#K4NF$wm7f)6kp@A^721*PV|4aKOmi#nTYKZgXgr~?BwmW(QCU>yHq;ANZUCE z_gUARfkzgs>}ICg?y8LFMOU*T% zZ-^c>Mtn{^M!V*V?eAvZNj(O4IRkd)>6Ehgr_rj0JdQJVUT$%t^!s70kANfR1!Fo1 zs2FAGm$`PAp{4p>SWO9X6o&%6RmMO4c>R&=E`)bZ1Lf0f-4q{i(l6ho1_SEvGkgO> z&%i=TkRu5$3%@e?HI4-xi9ELn=)4i@jbsq8DEm{!Pp`4zTO-G-piK!Z0?=DJU(yC2 z(D_M*QS48ee{{|@^Y!Nh?J`;*kJ_bDI}6!kw*IN+5|EmedluGlDi%gueojP7#XkKr~zAayiR=i%!)JVBKDZ$#CG-RgH;%GS&21OI=Xe!}VB8N=NLk<-ku?T@F-EMa!Y0ABt_=Su5e>W;>@ z;=X)dt1CLtN95!m^Prf+itb#R@cvfH%D*!CRpoa>0Y-?NaI*bJLu;33h9#?b@kiZt zN1h?#D?}M+`=9!O{{PIwq5%@X`Bs5kN~5i7P|y<6P>%4 z6|_UF*nVplYhGX^>RK^xt(@DEvz0v*Ah?GWAt{OJ0zTBkPf?80dN>4!WYK0oJ$%NvncZdTAcomYO*dF9#<`!TAU=BK~~+<1R{7fJqu2P)W_&Mn+mjoz|3B`*rL{9uG_6L=J zSkvft=U-vF_R58SgJAtzIsQID{xFO;2|xZiOg?-;nq?;yw_5DUn}4V2ABnsuL{2)f z^9RgE*Tu)pfw#XPIDOt99-kO;JFI&xfIQspI+Szpq{knO&gX(BQ>4+6uNG zW05zG&zD4RlazW=0$5om9%Zr#>J4MGmKdQ^ReH5j*6TRHfVH+&hoZ0os94+uS* z#11!0qa0tc6AK6RAxodF zc;xaR9*nPvPA~9_R^W~>V4shVSD^c7=(WaRV78+l{Fs!;n7$RkwbPrsNgF#s$=Uv4 z>)#qcamLPb9*-Ks_o6L3t|gg)$ZYe=Udsbv^UL;*kH&Wgrk$ln<}f2*Y?CrguNeTN z`XK(HTXlSH0keG9rDlnJvNoArArdI6BRnN>J zKXm5#jxP2JJSQ_4li%01gUD4wza9Q!2kk!Fb~@0)9!fu*?rUoe$X`xdl;(NH)LqCfn>ofz2u zILUGExCq7lw;`}$*h#HfKVo5V*7Rz-0%E}H#IUj5uMbn;i7O0I*@oE7)I5(x?bOB2t*o=Svpd7AZq^0OV!59zIOif#3iCY zZ?FQ@gW%f;-CnV6#IQET=$5K%BSYUy4VvHGKMWR~=^6B5trM9tJ@ekCvCgE`mn9o+ zHFPGc{Z6|dn(R!%wuaVpTIxY;XT18pZnir~yL_j?v-N#R^Covbnn|2UdR#=meixmI zMeC-eKTbLm?U%i8eZJ~U{9KCL*VvEG?>Li1&qiA$y>%pxn@tx@JnKT5CDjb`c;`&U z+>1KDE6bHksW#u)=8^+RnVzPrQPPL_Yz@&`RM%0VPi!AD!+34-_(o2Odk;tQeZ)4u zcDYW3xqp0n$U=+%t&IZ11U3o`E88egzWWlb=*3v^(*e57p5R*DxyI1nGJBREyBBK1y-sT#Cx>hU z2QJ^CoKFq1Iv`(6WiVNBEys3%i7lPxj)>j{J-Pgz<@}oHp1!6XTm}s?>;nyxUk%v? zou~u3`%dNjTF7sJxCW77B=z48XamWeyZ@XtKU?s?*@^~PoB;*9AUz`d;pFC@w?awN zGLIRir2N3wiUwI-%baCt?px9oY(C%8?Gum!X7$QmFigU_vJSPf4nZ^N2&aINlfanE zk6s7VH)Z^i$A9iyH+P+2hl+YzA3e0E9%K9`$JG6^*I)ZUN&_l?KVfC1^>1-3;mwY> z`(Q7ZAG;E$7-jlL9?9+|eVWLdkf;2Hc+nWK;($~)G;QIi(4&GIT{S|U8e+xtS3No` zZ`as^ya`EKZk6f3ukZIe7o-uq2^kcpyhH0fD*Q)|@PTo(ywdFXf_ls-Hfm@eXzTUU zi~zUz$kw`mI#Z@Ubw|UixUc+x%>MfXn}xbk-bP8(---rV71PhW>5j80VHbD{5|rNp zFJx6I`{Se^JE7I);qn?+i}D2XPep?)&V)R>pq%{mNRPEan|^shOFcc}4F1NW#KQ8 zJ4gQ6)8hP`h7kASTOyRm9IY)?hOSe zbgL@AD=OFxk(2+}jn>H4T1US&`-4}1((vdb&j68=ezC^akBAD3MrxK0i2wEWk73%V z_r37z@n3o+c2JrJul_@IneKRD$k$)bzVACx&d!*I!*=@!=Kre3|L^Aa#Bd84L`g0! z{B&xLgJApJ3;F-XASmu-%Ue>(*RZsl2G)Z8Cu)#ojQ()ye|AEjnYn04uh)9K{D;n! z)?W&DafgN4ufH+K%5slAa;nH_)E9jDqE0{q`j+YaDtb9H2&y#*_O{YjM@H|l!2gqc~4L9;*atH zc{cxsui^1T$}kU4FFKh0>-87tEkfbjUIs`9JK z_e8y^K?S2@10LFf?FJD9J3+Uip`MDM0Jjas|%5-4lf0bZr9Lz|zJE{^fdNXaacLh6l8E;rsuTicSii<3-Aa<|KmPpvW~5kL3=FWWS^i1*+rJ1vu%E=_u<}T>rmrBXFq><5bEZX(9;nDmq$kZ8LLMU zSFBqdkr)cAlIu3|m#ynE+v*OVIH*3+tZ}K|gRVhfxn5UIM|}uv^^Y7fu}(O=?%q4O z=}>pb%~)f;{Y*{ptSA0>abFsV(&zdq!^ z(ibN-clU&$4X(`y|H}*Z8XeYL_S6ZsIJ!@Nx6B73WuIko2srAH# z6mKeSkzdn|Ot+t&6TiZRYzg0THRFK`>2R-uOTAmpiuZl`kWpu=?fK~8OstlEn>b;N z8+j3DU{`Iv8##E}u+TKojj(!WxDkDIi@gOtcz+Gw)BAqq?{hxac^=)tfqZnlvQt#* zpx|F~M1SZ#Vm}As^fTz7;T?NK8$?HoOGLk{R;G&IJrIXKLDlAr!Xl?|f-QXV7k5dgN+EL$C}S{dVWN-mqb} zTcZ*;6F5}#qUh?O0kE<7^8$x{0g#)2zvtkNgJ8_Y=V8@54F&06lLopPhCuHa@3@1S zQP6e6xDf5!P}s+;w7@KlyAxZ5|rWBG0sET93E%lDaAraxVNtRsIe`KNyT+qPCqBBzxGYhhj(j6#uS|Y<#|?} zpw5?6_b>S6eulWlT$h^54hr%cVnj4Xh%IDe zd!R(cb=o7;V}`H?LdD$OlOoxE6zF^?`&!~sY5m7H{3{|L<|y9z?uA2Ir`>An) z<(ID0YGM3w^^e>5S|qObB=OMmQ@nKwS{zyM^l|u=@mIP0BOL#g;|u4%b{KzvNayVtMzZ4bI1Tu2XExBsU>%I6 z6`kDOyYd6!+9S^hF%FSIJDVQQ>Ti2vxDEz$`A5q6vMvbwqwA!@%J^|nh7s)`f9D^z z9ZS}N50}58oUeoK>3S!vkEorOSm%>qtka6E z)$*hl&JLMZXXXN4{ev{6^9*FkW6kx3y1!iis*l*SZ0NWcL4L(`+SgPu85Smwl_tI1 zS&%+*yHo5JMv>jdi2wPs#Fvyzv8X#CUlb-GT^NxwoB z!#5(;)!U{RcbxyrLd^R0-Ve<3UAt4Le+{O|0Hsv7^5 z;|qWIZi9N$aW5zR*o{9VjdXK8jcs@v&mfJl#S1$`PWlnY`tPL7o?!Qfi`)KV^_M-$ zrR$xX`cq+Nq3smcV8B-q9j7attCx*G`XK+`tkVa~Pb!v`zrEY4KUu}IQ$U*1_Jg|P z%xlOW0e!AK{W9-nOkE(j&i*&+v^kS3p2_SiH02R@8qOk&eVbVQZO)mw6%?+VEy5PiqQ2|Uiw88_x$vxC2#!r zpXo2$ek+YXZMh`j_PgRbEvNos`+v+09Y_7m+P~cX(Qwl8qPYJL%I`z@iGIxlil;&rsyWB68A+wR5Vr z{WTFmn&8G$5y*={ngH=07^$63OSo_0u<`j3{H>K7HYhXR8|j zQ7AW>FJCgv`JD7jz07K-0<3xU4~@Ud%ICzZToRzTO7`DO|FQfx92KGSW)<77)==7D zaickceB-arKcc@hzbS6Z^Y1u( zpNz;U=WPA?=|bY1g1egp`~TySHvy58e-ppndmw`DIt2^%PyWa9Pvy$5aQi1gy{Gc^ z7i+YAAez5a>-?)0+j!*{oih{hVltnf9(3u9Vp>BoOR)WzguE0!f7b}(jUw4+cAGYJ z8T8xoze274g6WrvdQU;*%zv=+SBl4Gg8a&*->;WnRErVH|7qx81|p~b!S+An&e#~{ zI?NYLziG&uj>yUXFi`6SoBqVmN3i@?HvF7&DVGE&u5$ICPS4*Q|M`c7;{R{#^k)5w zonC~j25sMQTb{1yy2xBbWnhgb+oW&us@2t6drEpd;>Os;C0fuou4K=9J1rRH`R&xT zd2M0bykw%C+?u4!TH12_v9_e&qHTFyn`n`p1!Jb~IpzavnkQH!ehG%CZy%lAE;~ca zmhjN#$-`m!?L%MEG`(Qv&xbQJ3t#?9il@k19#oFtNIEb!#%y zqqnkpu9W%#6Xnl4B_ zkj(Yk4I#blqW8^Cm_q#Z9d)jTc`C3EVyY+Tjegj}bfp+9Q)e|#PaFt8Ypo1VnB@(J zRIDD}FbD?A#~LZ>!^0Ig0`H?DLBAjKNpjnToI0NN&1SMY8PNJz{~Tve;(X^`!66lQ zvQqbKp4S35k{9q@HC5t9V&5%T)pnB`S>jOl#k||@3N-gn;23ujl{5Xk&wXbyT)*uI z*&vZ@@;}vF_klAx7%>U?xG|ISXtaN3bEQCqCRwcnfE(}8->)%~!Y)(92I+F;*Nb4N$W*?c$p zZAU}0cHW^o;u|?pu39!d<;KgItFI*_St4wPz5B3nCpScM>b^ zTL!|u2in6)lSpWPBzSqV8)N^s>>TF^*g4KAvvVXeBLiB02VlcfKpP;2%zmKT81{Pg zIuN{VOQrXtIakJ4*x7x)x26AcW-HWhR`!Bn>htX!>3S)roh_X5;EAaDklC9)ecu8# zx%`^teA@qRhu+UG6GNsg%h!N!LtJ{Ce>DTvQ$sZQ`}Nz)=6P$Pd+I%>pTn-xrkr#M zu|6;Z=5qOS%lUNuqyhRv=bdGC7Ob5{3yPhR#E0(ihC4A=ybraN>@^+qRJ-Kui;weLt#9zOsHw zlJ;K>HYJXLATGafBv3KR_>7u%#P{YzaGj+ddPIX)L_KDhJ&PvR1h=StsebJw;7c9K z-*2k?emZN0Z~iNwjRZ8geDifc#VFI?_<7j;wG)Owx&5e|=~l*Xh#t}G!RgPj<18zm zHJ45;N)a6A|Banv&V#kN(lhb{8VV-=*NzjKVECINa>}oh&CC6wM49@5J16q=r`bta z{IlNbjHqHi*G+JqirP80Lj9>;vRn3hI_>xN^R$o6gB!G>k-H1XC@ViLkVoyTb@5&X z?0#HNl3X$;ewhPyTz>tzW&D=tULEmH1%8r-Y5w{XbHJ9%S1so&i@##u6ygy)2dudK z59vU~DC4_C^=eV?egJEd0Csw7TzjdJ)Xx^0S5jy;a6nxH}*i zel7G!8}Sq(!${ia-EI!ezJ+Vm4miP!f0|E~$sZ}UXRBfCp$v8~qDby>UXKIi7 z(tKaB{@YOE?fS0844~yi;oKOI#>l!L>`w=glm6^Hx1QNr|KgXut5$!={O0H-mjv=Z z`A=E=DO?!}hQFi20b_v3X}{TZjz&{jZ&i<&Ex1nK33*)*x#9nG{ibwLzc6NSjcL3M zy3skKhZmg@IsF&bP91e_INV=f_YOh#P|J&c5 z^c}x%!9N!NhA7_%k&}Pec}jV{H;kRYi+>s)%EHgiQ|{=`D}N}ilI2G@|MWzU>=A9K z$Bbmh?5%o`G_Y%m@q4Te@mPCH75lHk`YTI6R8KJcmE#k^_Rkgt*zx0!-H(td?7O#z#wBPJHK}mGLo(Pqfy!xM}zXS4I`QcymX*>f?$p_VX1>WL~|0v%P zc}{%3-l>qcB8j@$Apg$?c=b0ruX6qCj2^l0<->-YPa^h!K>f6Tto~P){t~$ZqZz+m ze&h$l{1n~~!X3lyfyn7UvHRhH?D@RnQ@<`B{iW%xxUGEuN#S1jJ5f5{cLW-uRE|ABwy%e)!{FPr4%wII@1cleR6d z{-b=Q;n(oG-P%&^m)l=cxt&(L9WVY-U1lg=MDX=jzgPRDlr131djDAbD-A!Z7YNoL zk*K$johMW8Ti$?ZXQ1O#*15!~tp12Xega~}@+bLteDlaiN1mN2I%lHsg4zpm$`9l( zyCcn!e<-(E*iIt``LT!`zSC%Z*>}=S-q~CZ|MFkke~m-E&&d&0Wz4xVAXZ?C#aO(|peqG_*6p*I8 z{h1b=I6kW*ul}ekA0Dr0J!^d@XiNz#8Ueli122*gIpOy#mK`z5{P{C|f`!R%F8^wR z<$nz7J&~_}daFjqMY&z)-JI<0COH2&7I_o+d~JFCSLmZ+S4Xuc?>qpS{^O8G?G-E5 zA7V0d(T*rX!S+*W{nvVVQ0Mc_em(wszY1P*MMu!iFd6liAXe0$S$$u>#b_Zs&##-*B9P?y8nrMy+u>4gyg57N3*GiWhjX$*3kgBv!!Rveme8Y zAN6lCx}Sl_DL;kt?i>}Zxtg~4huDD^f0Un!yeWKs$;LbB(!%|>r~f$F?U&ns^j2{E zG!-38=gZfw)$4#r`)$aDL9RNy{sYxN4SCb}{9a9#uEuV6`(Mw$=r5J0xcv|E&;Jv? z@OMTt(f?V9ob=CGyW*5cEZnM8k%voSD_DO1#?Erizt~wO)nJ&ejVFAL zbe}Dq@ZGxS{?zLtYlE~ePERk28u<1780glCY&iLF%;)u;$e#xv%o_M-PcpAj>xOw- zdXiD6%=TSwZ%-ZvZ*yV{?8$}A>))99o0FCLAJXd?7!eikqc+#)8j)>R8+m9ht_94> zsa;1sGK0Pw(%%hhYz1+3A_}X8wIEkZ->n`j+aGb~;t8RXb{osiaeGz})!Y^e?Q+yt zURNWtLSkJLOxi)(WS@r#Q+1*Hg20>i0(Ie?=b;{=XF3qO_+r3?o9?i0hqQ;;fc{X_ zO0!wSd`+?`x>c$64qXyBWxeWimyQGmU3%(fE`qNwCps2v@`JkGy+2K^7X;eNx?R*5 zY(eU5%Z}4}X$lLvi$epWI>VOJqe9$j8iID=bnDao)xo81t+bQ3%;ELVc-?M;OyR&% z%ds0;H&M9LwE(qdTXdh)eJ8D%UCqdJyA71;)wc`y<_GoPOWm4yS;8%ctF1Jj0^DQ# zMb-NR0OagR>GM<8=pVh^u!WTdXb0Rmx@xKmjGaF;sGMM?$ey6K*>x69!Lep5tEiIRPlt8^d+-XzjlL5 zB_Ce6)%FJe*Lm$z)x02S-SDHs2Kj;gfc-z05;wTCqFPGofFMYti^lJp>@y_|pBMFQ5N}Ov z&lEOomSIAe^jV+dzMqj!l_};nNuP|EzoxF27Xhd@N-J2#IWJ=U(`L!G0t}OwxX+Amg)k)m2#-DX=wj)fB#J+v< zoBeN{1Ncn9?($ig-6hBt&1ic{$Is8P{gOdkou98o7Nymi9kpJs)b5hbyLBz&E9@?P zwpE)v^ZN=g;?jNtee;KY7%sy5iNgjm;lsSZM>k~H>EFdf6GN*%||u$2!+V9=dugQfHM76@p&CY zju>{`R=-|QvVYf5p!1TfGbraPYxkqaJu)0<76No$NFinbptwr*`}YX;8F+7LydeO1M$ZN^4zwEi}LVIXg{58Pm4G~?++=1k|mJZC^{HooJCCRY6 z?78eBE4+-aO#ctPGpEH&PKKRazBnA{tup==l~Bt7=P<#3vl@CtiwCFtuy(tJDtpd3 zpBA2XQYL>V{-1U7_^`RaCG4v&V1T>go2esgqB?ZWz%@fCI(X)BEjZR(GKtz7^FEKq`#tW}X0G76yE6Hb*i`$yH$!>j{{Kk-v=qVk*G7+Y z5i7=Du0@x56a2z}){hEj-2k04?eIbek(18sx@XD$3CDlr34h<+9(f%QIq|1v@#dD4 zeGJxu`YVe+^j0wa{%`nBhlTP_M^vyYBF7!u{_3rL+`2~fP{k79IWaoG}X(S!!?I&1&7$CnJB8Ojmw)JyG{*|p0{oe441;cNMdK)2D%si~KO#SdN;Yp!`^gHq>OkewcEJ-LRBV4|e`XFWdA=E%(vGs+om*yE z|Em}BY!EB9|E05!X=WB|f(BfEuX28G#e(beCF#TjhNcLxe$Sps;Y*nEB6_@zcuo3f}5Fv_p&Nd z^;`AUFmrx!*XGrv5Xj||a=xL~b>zkAae50nyr=}L`B;yRa#z4;q9+O z^|41@A4E?5$Jz}!M4Ynt;TBxA{8NScUp2SEjLb$ufm{3-rWv5Rj3Zt+A<}TkZrT2W zPS*}5CBAV`gA!O&1A410|4?@ve`Sx##}CT*tJa$waW)z$*#Ds8Wp@?uZiMRNiaa+ypIn`PQJOQkY1pGsJ6`>P&XwkW$<5F9ZVgNY^;Z^t$+3@m zfpbg+)6WAH>5Evg|9$9QLF2(kyanq|W%6k_X?!W}E1!Pj7Tojo%jqkqzZVMdL9E#R zy|nH>e_Qx9LH)gvN84>q`h!l?9uX7wdfW0&U8`9C2=`wr7k|S0^ZTOy0}wg-$DM1h z3IjYwG@Mv+lUM#|diWvFACXi4u=~>->gYAP>)IQ?od3{U!SPQ3I_QtcNx!6!8a08@ zo;mYSNWI@2|2c#~(sekeZ(c|#C6>Cd)5(Jz{&d)aQ_r9b5lMxGdvqkqnphUc+c z@w@G&(yN$$iv-gz1j8MQSh4@`s9G2MWB!ugoPUMupK#Qh_S-q>$9}g{^6Y$rGpfe~ z(|;)PBM>?K^6z%M*Zk)23!fudx%yW){-QA4`H1D9u)A6LLbR zUX17S+4=WdBy#L#%M7ri1zzsXFcHu>GaN5QA#%j9{pai#1D8Ben+>#`VVy~Q0i82( zcrgNz6MlC6YS*3_^So}2fv%JwM@gTu_>0Hq35Xmu+5V??uhYk?4NL+$Kd5kKTgF$G z{vWIo#-tsM68!F38DI6Ar|0YgV|o2YRF_G_i;)8Q4-yS+^5NLTU+({JWy{|8=-LFANwCfae7=upm-($x5cg6WrpywQji)BlXvzWSJ6@z5FH zvmmjrboxyWa%qtq8!vdijk547#I6%;KgOb7;}ALF?{THEtp5^6lB3A)wi^>}zo@-v zD(cUPf42R9kah7@L@`lShuzm=umh?JdjG#! zlFbW~W$}XJKV|W!&{KH+dIkn$31Y?kJMGi=pN*fahrTqzNoIG_w!g}6!dsL3H@YmbA*t)ddS}@_tm$(AGRmLB;L9?b| zsqpz?i_oLRh@AXq*nihkk%`fs`t@h+h3-_K93_rr;a4WV-{gIbhr6eP?!WMDf!-?P z2So1CvN*6y@VkSh=+P>~itXRj%!rRG=JTDA3zXyjX$A$-iv*zp-rgj_Cup z3budCkhdI>6MvpB0#}M|_`U4jM0Fvr{;h2Kt6m%|ePI(&#rji2aQv5rdavZ`4=FnN zBBo(P-!SbQUiq!8{!i2Aol$cR5nMl2mi}?Gue9v4ZVoU0P+ev;XzV?Sq9MdRpD$1pmU||XUpQ3uYwm(gN~HI zqFtr=&sXZ0m?SKKU@l)0P{v=6&o>}e)IZipQ^Vo(cES9sEdCQ@UwyWzxAB+9FI~HR z2_5OaLvZ}I3H3gSNb{BKmaTu+oGpw{3(5!DPiCD-2A8GZX5{TbtXTea_wNa|S$7g_ z@I4FQ3G{XgUhG8V#2>qFLeO}f`iC?Q@ai9`=T_w9AXe;uICy=TVX=9)VE)ZU-Zn%| z{Q=W=*97m+*FNoQaF`eWRKBwGlO&H7SsAVtEdR>*s1`%zDelYL-|gsN2VZ}~*9Ik` zAm8h4igR-W`wzOR@z>oQ*a(Qxg;i`{(va}Vh;0P~t>+&r4` z%krrlq4-l4er5c<=->!q#r%6b`S^^}bx-s94^*Fh$UBHwG5=n;*8h>_w_VT)-?JdG zD=UBd@i}c@Ir%s1z=rA&mr-!Jv+Evc&gC<`%lOK|KYdN<^YJIv2=?EU@l|D?O<9SB z^WP!V>o8)){#)pZkviLl@8tELY5XaZ9~awkUZZ`RdG!a44rTleVWPQxMSBG64=H+d z43U%mp4EESfrm5l*N1Mr#*06yKSAD6L{9h@&ABK$S;Y8t;u_mqyzx8bE7iZprAGmE zul;iPQ7ysx=Quhzfyl{!B?q0bNp!3~`ay!xlI`X|kqpV_AMD#7_TW#Lz-CA|J| z3iZz8>z{tVMoWm-yYzcaF~|?GIiMJ)LgX>B`HAzaD=@J=w1@o`6{8J)#aQsif@Lxs&R}nes zS18}Nt=(hYOQ|4n(YpC~iL{9j#UL-e$d_9x7Z|Wc5?R!J>uQL5fn>RDv25#fke<)6A z|G!u+VCr$f^t*u`-Q??UANp4haEkTG&XRr;Pf?^xG(R&Rh54W1w2LM&E9;FVEuO&d4-7O@+HGAYn+r8=??HNeHy{5|ETXSZe8o>QXm}({+H5vwIJpV+eOU{X-R6>1Td& zPY*I~->sF4$Jvm$(FdM?`ff$GTb^sM;<^=yieEpx=QP>(#Sx#@cD3{%CEHipOY9xV z#OA>x%%0nlLp}b?_+(&5@}^iG9q(pGbQaCGjHqrzHf;V{yW5Gb13y~yB-f=I zmWl_oBR1CkYZJH2W!`>OscZxKx-fimq$_QTU?t1@==V#Hv zlS2oM&+~+nx4N{-J_Kakk^~b?PZNdy;{d~9M>bq}>FS?kL9~aw9pUt&5qV~L`b(aQ zE&1N2?E;@%QxY09w3CsZF>xCA#Wh^VoSZpy$s^da8)ZP>^RtJviqP5xzJ{@hl_Og{V^qcDYI&HrVi zcw1H{lCofTUGI8fF!klusUZfwkX2lLVY-bE#6I;OZLHx3?f=s0wyIAg=&mLK`i61P z@?D#Ho7aw)ov)?y^VaiVaJJLcS+gw|!Z+*OZqzXZw$u`(f6eO)D^B$%(sdy)@k$qw zLz)k$?OR;WsVETCRt_;+GcZJf-w+Q5Ly_aGF|)_n!iIZ|do=taf~@Iog;BlR19Pa< zY-f}!+@F%GHfwD>7>2zQ&0QS@i+X%naYiK`y36nF!XUbP^1J5lqoHQ8*J$gP7I6Ag zllZv5ETB!tOR*_Sx!*%2$%ooA-`&+EM;4!ZdDOvyoS3y*TKkeYdA{UspM>r$f>8UfHy!99ilc#Q(8}LUX7~OxsnRnBg zK*t|?^V%@#WWnQ|wd3#hAS=~Yzg`xr2EpPQ`&*oD3HhJ=$1FeA4D9OfP1zx72l{U{ zC0<*)62H;+yY0Btn-q?|ej}kkoqTv{>u;uFLH0~BAK3V_6R4{9ulwE=;IFa4)s4H` zz~S144LeE9fqb$vyR}yY)4KOgi|nWaC!;&xn-(z;Mm~IUO*OtJdJ|OG{36 zXqnR!W}6+hyqIMRm+qbTql2M6)aZN5uB)>R*xmV=TR6cNCjJ=cS7RQ)s5^&e7a44m z4ovPhX?}7Dn0MK~^judFyu4p}`b|37>bPO6J)x+&nZe6lzHnucN>N>LfA9+xzn*)f8}`~gt?umO3!Ve^^(CW3@YCaU{9)|~Xt=ybXqOgVAX%;N^QO&X(SlKChtCBD zLc^~gEMlF8LjOHKuBF`whT~Q*SNA&*1sTOU5A95Xpvly+=BZcxz;o4^hS6>O;YPPX z3ssNwg^b`2w>ESb3M(ux*t(DNgC+a3+imSX5Tdn>q8AMHg!{!2?vZUHAb!SOCqtVk z*f(I_t2Q}9VZi>!FH1%y!^&Y1{+^~opmvin;ZGxFo8w+AozaY*)eF0J4|h#Gj!CG_Ry-nN}Kj|I*^1Pb7$ml>;nZKZQp->Jq$*> z`;R`bXDF0Td#0+}WCUCv5g4ZBIt#X)dj3%D*d!RI_T+tw=Na(6$_@}yeLjf9hJewassnz;R-CD5{Q*$akgS-uZOO?=!0k&Z`Yi@i?H&orUGllQEU z&5Ply8i)Tir)(af7Cvr(*s;u6`tDaXx`5+)eU+>Yi{Sy6|Dc>N>)o-xx`?ztFS}*W z&r&(=mHi}bG30ak`Q?1YIH&ylFzTO7fA%}9c^&heolF;l0he!3&R5nC9@@?MoKvsG zpu^?st-9?=(L76j;H*Fc+m*)1$`mYQhxqPsbu{8md7>;hF_U{ z>YdOyiY5!q-rV?0*H(e+18w~_O122j11OU}xY5M~SC^T*c>t=HGQPr{upM+$^r!`5 z#dVk_ea`rgUpz%{9*tHDbe)B>4&bIa_pK=SaJWHQvn9WI99&+{DuP))4sMCzZiUFv zpS8od*MzygGa!X$2ZhcVb-d6(v+@uYBOQO4IsUI#=@`fE>`drWju z>b}QbW4fRni>wR4{@U~T;%jftO1VZ{rGfIHQlmEnlBkDu$o)^8|pB7#RP$nO}6^y^C@(oac8zLwD z+4`r)I{hp2n(u>-w4*9_XE?2_{B=W~6=KEo(+oT@uk(WCu!{47QA-7M&UD8MV?<6q zVeNqY--mSW-7O0&IWHJ8qD;Oa@_Hh2^k?($nz;4F&1L&89K`o5$l3$yoe@6o!F|tO zE50K--llt`x5rFK;J%jxmhqLvf9*OZ_5DuHgg7pr2?TnpjGzBZ?m}I#{qBVx^+v4N z|9ZY~TKyi?*MKt>C`a%HdaF#n-}UjeXOBwftz%S{pXd}9kvMe?^q~Yff)~(R6TC1- z&5IOA+`yG|(Z`^AG(Ds#;E3pA8-x@Dy`c}+;KN_97bD}5{!fAn%yBCiF zq%pWq!`R{jPWrQUsE)%XyOkVW$=ipFdPhC7;q$Y)uDdJs+}nFY!JAZ|^|ZoSA4*d? zezX6c5$L0fMd+vgt(Yx7MFc;smpdDORe<{=d$3-*q*c(fD=l@dgl<|qG zO{2`ETcA26u&4_3)*UZs{m6-bwUVyQz^6u_ZrT3Bm}NE>zJA%u zvjairO3T0a?bJ-|nCxHffA4Vfi-!qEe!2W9^jss@fA_(F_#<-CkF;B_0w)7!Ezg^L z4B}~k>d-c>pGwEiaa#%6o3n)%$ z{43lQ3ECk9phx`?IpJ5^HMTZn-W)XY)?#VE8V>oxQ=8rjiJ5Y39$?_{ae>N07ibUk( zKlc1lW}t15!?DwX^=}07hVl7|^FRA^P|-@B!pr~Yyvq7lD*yHnKL0Zc6^Z8SpF3Np z7BJQCA6k+$ou@xdKc(_n2UR^kk_fgxv8eZOzW)1$bW;Oxe6Zy8Jn~;#erUTm3iaod ze|G+{q;a6ysbw1k>wh{gFoGZcoHI8sN&i3c-aMYF@B0HjNwZ3#G{_C1NQR8zF0&#b zLa1vhDMbU)BqEhcs5DEFX3eGH?q+?ORGKHvvoz23T=%Zyp0D#gzw6=oJpEp;pFh0M zId{MJT6^!c*PhQwKi6w{R`LQ?`C;$|+uuZtXc8i0{3xFPsMx-)z;?R-U(SE-`X7&a zCnGZQU)=tk$|ZTFIvY6sR|4{;aHL-`b=mp$UiqB;ugS z0q-%#c{fBADOJeiI^MCF^Gu8LL%i|pX zO-CNxzn8;%5s2SIQ+&oG`APi7zifZp=P+dY&+7E>G8(9V5oiB31@ns@Uoq@NJbnq! zJ$ZKVw}1x9=dOQsN`G-zPXGTu?Bh)RkA0lF@)UK@W%ZUBdJp(Vc{-CDy}QXjvUS?# zLq+AnV6{W@9j_=69NFd1KX((KfmLXd&jDf;}HQ@+&in14R@>DCWNYz zv7OdNZSl5(AL^fvFPh#1w)IZ<5?Ig}wwi^&mS&=Ta{Z^R+Huwas82s*HP3zK_xfD2 zHPFBriib_iUEI?G5<4lz`B;nurBmyEt!vv4JYPIiY`I?tiqbD#y8GLj{InSQZbIMy zXxC-X?Utd|5Nh9C@AL|Du$c08V{EB5k=$FuK+AuMU%nB&q+G4(v$Y}iP!{}?@KbD| zqWL|m)%*H`-tBGc7QeIugQ49&=6hSfgA=)JGIp3i&yz9MpWA9e;O>5&hJOd z_!{5%@2@c*_g=K$)M=%=%V;Mso7L^He~be-4e8(B^LT%Fe!|*d za0_cVmOf+PjvPPmw!OK>?1ndt9Cm5b`IZilGqcOV#kcLC@9PXj)yinlh)J0^*eMds z6%KY>>?_)DMl^ePTa1B8mUoN%nx%lrlcUEDot+JKeRMn6Jxzz;SAktp9?gKLzFva_ zZ!)2S*QYMKm!!hBaSHNDN8^EbehIBOoCvEHbT3dpIT4DT&bL*uOoR!V^6x@A#Y5`2 zuaU|NCqc~7;@O=7;~`orabKU}74#=w(65fp9Bh?c{ckA#c{lg?S31Np=5{vhJBzh1E`FQfQ=ZWY0;V zQJqCiO3#@&({gm9PKvx^)T!!!YNCfx-Kzhc7u~uwk2+lqa#5w#&?xGR2`|T7Z*{Ahc?{WJT`nfPf z{1*W&m!3bQ*NN%*22t31u{YX4Sm=zmA4PmGCf`xYryqC1$Qk`S@i;YU&cvO4 zg-bw(4p<#-WoC{1CdgAlbVC&F(^K0o+Pd6--OlkNUZ%qaPEfg70sl99Zilbo$%i zMO(K1;&C43S=4D$+qZmX_ED5{o?N#6l8EX0BDs_H^A%BUJ4D7fqj>3j(UxBEUs<(B zVg3Pq(@^^o;UA;;dzL)%m4jNt;0K39^pK1POpEeBcGmk7Wv;!OP{uf3n5|c zn>8xsd|!kb^130OLKNw*arKr8ygSid-%IHXYn`61kFxAf=ird|)WS2Y?|jo@Wbwt} zl8$iZf1UW$PELMzR74B$8m$;b6=yza4U>1d-Me~WH|u>vbowP=OI7X zL-70E<=ypuU)OI@0ZFp zo+oP-*k+^+zksv;86wXdkx_nN)$zQrb6EeC|J+OBT&FZbUSBr9c+RO?!UJ8j+O}Le zp0odBj64%Izies1Jz>%-ul?O(Eb3iT%i zUmV9d&s(?hufP3m(aV_#31OW5XL_F+z2A#b{xLJnPVvj-j%s|l%hfz(Q@rH8R58bb@LH!x^N4!pvuyWSWfy>6! zd!MoHyBF??CJ`+EN9Uic^!rbIIr;g7Fi!iy4m#z`&VSb*+Zw^`dw%wDQ+KfHAMJku zc@Bt-^o!@|1=f0<=iHgZS$=lNvqxmu4>9-r%oi*a)t`ZadZ!xBW`ga^-CQ=~2W|+3Alt(!33bA14(xQ2+Y-FNs>*=alIA7I(J(h9}N71!_U{ z2m6LLto%fAbJ)##; zsc|+fukTX+%jL&C{*#q|WSeG;;3%-l50g#N`}n0+b;^$!Ev#2VTg!7kIC;KLTq6$>nf#C20E5dM zKh62ab8#n!P4JL80hgX#Xa4dbyIcM^u>^AI3DRo8h6OeJpz3?kpLEo z5DakKVj?=aPtT7@el@DGA6fRRxHfIY$l*gc`%kj?5_xMm{Xae59g1o*{J&(Mg;qwH z{7Gk)eA>?lkQc({i|4Ok#b}GYMy~aqKPAT|l?9Kn;OxK1O20sPv*!mNFV1sLviOo@ zE#(}4g=4x$Bi6QGpUu4v*c$C&jh`?$6@eF#h_%Ph>CaZBnD^p--{uJ9jYMRWpE&=O zG(V5ipUAz>p>FA~fBXBjwD=St-qpS zAO9iI?0qJvE;R-(#vwBDUp#)E7}6V_blt}~Cqbt(8hK;cd~yA&a=s}1=u^n~zUjK8 zKS{Cv2Vps6V6riP!I5n>=)>a=XitPwPJsdGtOtM*k^&@|X8~!>a{-`2)&1 z$B%W>pS%9Wq5OD6hJ5ipQ<4<^wQayY&idC-`Sd=u$!z(OeV!KAPDUSU==g;@{SDQ> zZu|;P`+U%U}gd2@;%y!g#I|5Ug1|9kmA6ZK9;tlfSJ(z9MA4|b^c{0Tg$(3OoE=0){pH_Y8c#5Rp-T z#qIb0uch|-tpZr*v}if=k+%S`w*C8O&Qb5#(XHP04+ob=6+Skt_xRnlu%&ZBx(8?f zITQ6>#GyacrMvB@R&M{A{mQgIf$bfa{qH&bUpDH!1d(As&##QQ&8POYh~4Vch^0SW zemTfn%;pPX)|Ut+kN@`jTDjMMWab~Hi%zfPRyu#0i@z^phZENyd9yo)Ix|N$u>Nzm zKg&_>3PeWvc^+1I!!P+&G4QBv6s!C&cpd!@xBQhD(JHq5GL_Sx`9H-O{I}037;^g0 zHK_MC#M=Hx`T6+PgSDbK#~*pf+lt7r6LI-JU-#=))P&J2|3!yei@Z&UjQ)2_eD80f zmqj+M3VR#PYJX{dKJp6KeDVIRycxeH%u#dWoIhBHy!D6-`!U@3y-HGl<&Em?KQUU) z{zpUWUm*(E$kxBA@vck4iibLbYzzi)w%;3&SH$Kg5QPUqSe|~!th;ps>u>$nPs#ga zE6sP%!2EaRwExYR?k$K6`^y|xt_WoX${ufzaDQ*1q2*UMe*NdaCCTFMKW)c!??hzS zf6|zZ4~6N~-}_bZl=y?s?^*jtX}-+z6UST3+5f5=zoGpXL(cL)i0P)+ zO&H~0(RbcOVUhTI*VZiiqtkx~`G?v0m#O*v3iki%@Bc8`2DTrHoc^zF`On>dsNVm- zxJ*Nm9Z};%-3Ruu0pWifnEKj;qFVQCb!wvG72&fHtJj`MZBH&mOba}4S&3vnRQFHQ zP$ef0w_P1Lr#qScwb_F#tM24-H>Ir^UAmKvE;Hg)EO}(dOFj7qLLNDq(d6oBUpwfm zZ+v~(VSD0gbm_^}Tzj(VM@sP5f9%Nwjknzg9keFSsyV7}|Jac94J)<(s9H-fm&ShN zXO~XNW0tv)tip#q!sZSjXWm@R8@Jk-OzY@lc*@R&RNd$haKhc02s(5(j8t^i%N$^J%-BJ0lYAj?<5x@D$6XrGydydN*(b5!rWqjvEO>TiR^&o{YsbnCN>urK!IeMC!X9aZV7upx)QA>`!}V_-0#b5z*WVejb|ec+VRjXtFF~gwj|W znBTp!a=B<$!85LHyHSEZAlRhX?%78Nn5KC5?wlt5Am^@wV`o(W-Gj5!`xYBQx>D7v zVJku<7#0DFJu0prJ{5%bW8m&cC%fH5Ai3WhBKiGVFf^T)a&qW#C*mG?)8mc5V@JiFt9KI1>}*S`+j{qf6d{(-c) zVc)-B6vhbegq`odQ)n2xMXz$WknfXyxVZCpMQH3kX#DDlKZI6svBm!Dok`^q*TB*Y zXVPr+AGu*_uH@sZpZ(emawdU2t&5)oITI!Ce77NEoyozI_PXl^I+LH?u47iua3bY{ zKJ{*~WEj}*EbF>`VgR_`?tTB-z5&3SH)L$1-1>P{kNxL-nm;g54UYU`e z5DJbuMbUDi7tWtFIy!rvsQ_j^?BSPeG!#laQ!nwH9KcieAF~iJkNo9Y7S@i@gMGoJq)>_WODS0GSq3rG9&_9jSV~roE?z z18MmY^hdY>skq74$va_6c5ZvO`t$JWciSg48ToWDNx1jkSp9=D$?RL|zE0ncs3yPi z=-%0!C>))%K`|OgNQbjOBfRl>Vn506R>oxdbFV$KD@=%?{Pk7#9}OhWzxS13BBGTk zJ~zhaW;Nj@JRQ8(N7SeZ_kZdD++>aeaFc5ez(F_Z#DYJ&10l#b_=O*_+iPXcNA>|Y zx&uNF*zJ%%fbKEi0Wh7!!d;(yGeN(7%?}i%zpG{fvoSt4Kx|hN43b`|Yr)wii;6V) znZRT6c~ZVShF3#mbf6T69NonaQ}k=P5HdlT$yb*0MZE#>pE4pnp(ffuGH2C|PGHh9 zGIVkKDbTMC2B?O(Ej9W##mB7?4G~4N&fW_GHDKGhA14p)NCaIb-&4wOhT&Tx_N?KP z@kNh2g3bl)b4NEPLPsXwK+129;aecq-T+gjbnlht!9@50+ zKZBptdB;;B<>0dbQoC^u0A=YawFwdYPS&9 z0G^gFEB`_!1qM!dJ(x8Cg5qS>UpgEuPjWAvfbWa}x*)!x38GV;ISVU=!?$K`uWX*i zT7aU1$Tu!NHU5|OYudFTux%9(smDW8YoH4z#4FWvw@ z`OeE8r+I7O3X|_H<#$J(24d~@uTf@D$uPfFkjdmjR*n9$^3S_!n)NzZ1*uHFau%RC znf7<+coYE-9PWy1P(Nz8i{9}_3ySXcyNW=X4U~t zIyzbDcWu+QcJa*8?aPZt%T`wg}I57lIaRsQ;Lmj9@${&YC5`qv8s^hRXZ zpLhcrw0tst@CEh)937t?^7IiI{?D`h+zLK#`=P_p@+9|C|0S#Z z;M8{cp1s33+YecMS@Qc}fWC;YXaXhq&`adDCLWERMR58ry1!|JyxQf@8$ybV8dsINwt*9{(s7DJOx?>*5}tbk*A(>zM27zmZ@}|BXPvw3 zOcZDT#SD2ih_&;-c!S-NDLF2j{Wo*uS+V7d`yT?qC(Geu2eJBZv^`rO&k~W5|Ip~o zWg&TfcS!OpcUJpP^JUp@?u7f3eU%3{(0+i^fAvGXt=al#&guV;Q1aODU#owz(l3$E zZ9lfCH=nJ)#Qu|nq7@j?yGZbN1fXy0CcmNf-%x&%4Q($Hy`}Zf9uv|Zk&#aE`0Zfa zyM)zEmT>wnx?OfeKBNA@Af*Sw1^Uf(e~vF=*)Ilfu>W_$h@25?``_0QVfnf3mN(G; zx%1xz<+>s=>TmI⁣~y8L$1!zij{93z+nL&mh#FQGR0oRo-zx>#(uYS^f`$Q*Lzagh{q4_E6w&dH68M=<^MpG>w(C~e`=w(sQnWES^nkx=k`CIsP|yD{&{ImSNLUW zO7?FSjpgkBc_Gi6&9Ax|UnX&DJomqxeoxN!!w2>DW9#qP=jcs7@0w@V*4u+v_CxzK zU*rv8^Ya3D*ZIWwVv&C@@4uY>7*79NxAud314jU+dmYpvD@vA zmO^JHKTpaZhP)6&dOm={`R|W2Bb?tlmx3yjpCsiEN1g!D4w1qGn2WDv`E9l+g^o;q zjFc~{{BxtbeCs{?B(!Dnt73o_Ba2@#{nB?eo1>imTNYm|$F|)Org+f=G~HdI!cdWL zL`M7JZ{Dv36d!Q%`LgWpU#@@L^=Aa?J(8`zc>EB)@2sX-#H4?%{}PFEMm^9*#5LqoKeOHtJW8YP2V~V;W*DCA$k8=KprG6o!wK|ZC zsMzUNd3GT0PUbzk{Y;OHQ;FIXZ>>*Wb}ZhU+)ST*DIb{vhxCa1kCG^l zI6V^nBjdn4(S8oA#wl6xUv0@}uWNf9_FI#UmwM0c%j1(aKSv(bZ*EU`8pYE$g#&3E zTO1Ir0VL6M`V0Ndx-|5k2P<2bM zQroyMJh+=b`RF+lnALLd%V}>s zpiAY#F|pm-k@%xt{S_UK3qQs674s^*-;+V0f!a^&XP#3vEiw z*PHkahNp?)+S|T)Lz=qN!Ln%sAtB~u%XS@oAuWD~+KF*K@b0c3^s)q!m%S}W`7z6o&L7Q*{yUvhX3v21+oGVQ+RKJ`W#4@9 zy_*fme|X3;r==C?eRkT*w@WPv)iY6NW@ta+pV*?u<8^k34y5>_(tuJIKKb#v;PN;( z8&Z0F{2J>78)DGwW|MWIcrJu5H*r4XMV@UXYmNswK#BL+)CaF!!1d7i%p9|Rq<4@* z#CdaXNc^-oIr!%=P*Cr?wdH0PNNc-%Na|KEP_>O5s`A+!5&{oy*{y5`RcF`rYoDP5 zlw;WC54$f2Ev)AYj-NJyn1s$p(-!sw$-NmIGr3~aO|;MG^|I1NdFCL&FAi|SWKm;y zYXM%%`)oLU(;W`nNgKAmWRT?dcsDq{FhBVDZ!btznQ8H~qYEU2T#rth?+*@*vitSz z;}3@qA3Jeoi9fWuc=^HE%l@!AP}_6cfB@0kGCtpJs~7-sc0*i_83w?xEzU}br_`{Dk`_x1uD@S zehNE)j=GmE|M3*8<|WC4Shx%^u|0%ln6XdyEC^Nv(dBtQ!gAifj!l+eAZi`x|FwTZDr8 zXvft~Ig{Z3)IOR$9Q$bYNcYk7mikwE9L4NMbba=NKQHCRu-L>ktQSes?J(UxqUWO- z{b2Dt%DZ!Id^3AxLQH#XXsRJbx{pQVUB!R&dcbYG7lC*jG_AnJ=h;6~VR|d+57f`X znsE@lJl7q6mWq+=!*N~`_BDLNRG7l#f0pu_AWsRA(Ty(*zb|7IAT-bX`^>nV!tRhiZetVY}k z9dteprZV{?zJ_0WA5BV)d{7y9yB$29Kl_GSVH`|h@{6T>S?%cb?zx#0RgJ_NXHi)!6i*Cj9 zz+ZPgFKTKNQ12J9C|1XN*1O*0C^$d4Sh#B_=Q^@Devt@zA5U%lsa*?JJUFjXZ~4{g zQ&dAHQcC|5G+`=@sFsHCLus|C|C3TSzn!|39&=#{QM@aYw}c zHNi+^UMF=}ezve=Z`;uzM_07!-mW8AOqP6C1v$Ohdq;83!^+~1Ia*+FG)ll}zgQB^Kv6r`O)rJmVCo0R@te3 z8l3A`viKEo3D@FVQk?!n1NEl&anx=<6@O_RYn$cId5~2T`C5pz?Ki2)ZfoxeM!>8- z6r~CnTxR{D!_oOAxtGr4(e<6)k5aq+pf20G4)W4q**_hhHVV)|WSEJ#{h+!T4eM0V zmNWlk<-a&uXuyjE#T|r)oc^~?@+t0vkn}zpdOrxmeu-k{9nsK6y=eIJFjo5M{L{mH z(??|Rlb(HfA>=7lo!@-Mg*A_X!5duuy)hyKwtQa1&WA#(<@I$j)08;tZ{6}w+Rv7V zk=kF~_}uGgb>jzd&O_1rZ~C&+ud7Wiiw-h=vobvH$;yAa{EU%jf=E9X-HPY&NXt_1 z<#&z$a{e`R9*%n+-3-$mhWA{^eKfV(@5sU<%?#S* z!5oHRQJK>5lPvq+r{bX={%19$G5Lao8u_yLl5Lz!Bx(NJBhLY`cKdzjRQLR~%~k^*b(MtTjRy=a(|<2{ z6Lt6|tOXuT5F-G6D=Yminz;mh87Z2_X6nzAt|K~OM9zq{^*`|H_;k6pYheT}uo{yB zfWDO_-$Nx-WrtT0tN&A1eh*u{-77oi0li)<;rZ3bcg2YMBQp9g;&nVl+olfhO;S1S zSC;-5Eyc_}<~ryA4B&>y=>J7N>C^-$!-c&TUen;TzlO?hD1RX8?T^Ule-xeCe1hLx zzSFWCIRR@Ona&Rn4zr~Tpt)SprR#4l0}n$_#|<=nNbb4+yo zrT5W9vCFUc)quDB$XUJjAGx@ibqQ7QC=lG*e@~L#r z`QLC%_ejLr{*%{rYtW3-v8?>V;59FjrrY=0`A_lo?KKJQ{+I1Pi8K9?n2=G34E@FJ zPtuo5!;R-VHLUzZantrL5mWc^Ym%ks(tT;pocT8z^``s%3_0TdCv`A%hk2_E);T0P z+!*B3`}i34FW5Kf9Y3l1Ln!iDtn#P%(a0Z*$lxcf9FFOSB9%a82ev`tJ^$Kqf~gKE-01$k2u zk0DaH5A}8B@MeSDi-8_zOMaH}WtD%KM%Q?s3)_L7pAhqtJb)G>i!TXxuwnK`<#F2I z3{)f;aXGCR1#|D-=nAfdqdFdLat2&#o{KJsS55vU;q#e@OAtl%R{SB2xy`08a&1=% z&Na_P7fDjStn{yt`~Gr&+G(KY2PDyW0Uezz{t(O6m95>%IsLyZzC_L^&itQ+ilibk z?6(YV|Kd}9>|N~zum7_DYM}qCqHO8*N|MaFx4)9`8l3x>X}_`_^RM>&Urt*3nrSDF z0X;sJ1RGLgf3#oAMn0qc5cfZ>9cjC+)$@a_bIcf=nuixzh;%z7s{if%4OOA!x35Ln zla-w9e+KdvAu`H8W{!sv_}Z>rnf8$VAqqM_=Ob?cV(s}K>b--t|9+__@_^>wnC0IsG@?Uadg=S@kD$vSDUIHp_nLY?7rv9ga?~=Q0`d@#AkynM&2?^hsejrJ#x>8YFZ$Q`zt#AB4PsM7(I&TFdzSE^&6GKf zT8KU*(!1ul=pxCvhA&J1dz*T_DmlCt^qG9h8R%PCd~rC%W1RJGEk=}&$nc+@BaSu( zD$ei1p|U-k<0qN&<6^t?el)vb{*$+Zv;QPhzBpZXIn!T&>E47`d;Ux7bx)mNMB}{a5;XHJ-7<3(opmxBP2h|3#!5SN+|L zdhcfIUu=I`7s|DtKKAV)j?tkI#g!eIUQ9-usWlYDJ#rtiQ7IPm(OsKz;=$ z|9?0~vgbd}krXwdsC_qDw(V>hEsSoK6W{1bJ2GqK=!AinwTaP(r>9T8)+T&S4V%k{ zwaJ)d6@!z`=47Q#i|==SnGt){ngn`6n zxdQ*iS8LMaN2>Dh3L7$S`tYrmPCzb>)!XCu+?w1Pn>y@mjwMk%sA0YNQ9n|k@jS^y z6u<7*7EPx7)F9#8emqIHGbBrwll&P0h9qifvSybkLtcNvnVze{{cef%&BmoSt7$0~3oC_hW{u!G@DVJG^pmfeE}(dIuBr zNS8sLgFfo@Ayad93EPh3kyFY0NA>OLK-AmkJqYOKM0Vbt-#=rc9ihBzO!nS&B6kN3 zjOm={O!RsV%GxaNLKeokdCYn1L^6DT+4dMCdJk%^yQWihfHayp@mb?w2a@ph)vzhb zuEgo&em&Plc6e`3w6t2i>v@MyTyukF<#g#q_8wi|C}_0}c&teNXw5?$2}R%)I8`Qn;8 zxp3~ojI*mc5s^P=-FVzflGA^iD6I$a&mj}-kJ)%tJ} z5VPw`bCbteknjy%etx`aM4C5KHdSoFC&^Q@woKdSNG#frdFkqwoQ;n=%@FCYdPbq+uSsT* zZmypfw806YPajn|+$;cob#`8MTw78)!#y(aL0(X#4QAFJziG+p_>3P6n396+4#)HM{@r=0(2uT zCc111gAv`-8Vfds!Hdl^-y3WTgBy$PTFP}Yfnk4k@7uZDAF_+(9GlJYg~uM7LN~Ya zfjHliXNjyB^RAbC`G3VDAk5~Fa2XCVVx(bt^s`IgccEK7X zGhy50zI-j>dHAYjWg?I4HMm*u)GL(PI`< z4{tggRPR)r;}7=$rNJo&BIU-z^PRIi)K86t2N&1bt9VaPa9sbeKi{@?f~uYg@Z5FK0qbSkjK>Eka;z zz`<7E+X_J2PwV^MO+gSYT&&c;EEo>V)cdq0S^%!*?Zb3R{9wV_F$cbk2!hBRt_#jB z8U_`e?|*%xqX|xGI#b?>zP8@F$=RDpXJY|D{=b&n*WxW$6!;+wPivT4Q{yk4X1FM7QE~ zqCm|NPg;ohKif0-Kc(l4x&0ct_n@RQlm{kfw?|K=FJ1>*V|zGR+c)U2k3FkOPR{Gl;+-+;dum1-}yUs~| zmOE=P(CL(@rw_E6v{}>Dv$p<%qOz^Wz7;}enjl828on(3X&S>Xh#u8_o=DOCV|?(v z4V?Bzud8)ML5y);nbxZ({P1x3uL-M0vh=6*>3}@iz8QRh>FH;}8w%yScXjj!RXQPJ zv;g|HBVN$I*UmpUuUqOTZ^?PiMppij{NjU|tL<6yJhXgSd^rE->S^uXta(bBPnT;K zd{A3|>Qd3S_Mq}c7sXVrXP);ujOUkxw1Au{T(_?v7a7f5NN{;{*fxa;Cp-@}>O*i5O}9(?Gd8h>ZLb z`@baHH-n#kGv)NZn#j{aWXyAk&*@S>$BrRS+SI%JFZ3y#cJX3g`^@isL7Wb&)3LtNxs=M=A_h?MEc*1w{C-_t_MF>l$2xaR*_{?YB4 z9?ECc|MUx!*1r7B`e4@oZ}~^TQ9@@PFd>{ZOj{DvhuF?e`sV>u-g6+aT6%e~RWTa@A_> z!|DI~AZ16%*%(DWNZLG^P5!v?lL4S7$2NWLQX zIYp;x{X~C05}+9MPrOeccR`0MmWqeqH2yAzipU!O?TpU{viaivi;Df|v$qV_KnjyD z5CDDaf)@i2nfCu9y;NAV&?Gg*XBN=?Ye}$vHS%4N*B`NV{rfzjW7jV8Vu2oKNP?LI z2A4Vh6^G+R)Z6}ivJN_@K8WR9XLUnG+z}b=kN7?XE%5M-p_hj?^<<%>MhsGIYEjzG) z^PHG0{l7b!49bw7z*;Az)se*yRonDOd-{B!%Sp^5-azxc@nSF{qyC8ZiLIV%+&%8m z_Ij@q4mqbccE|EFK37L^y50PW|*!H9JJGz@uT5o?bhn_k{$FtuAeNXJFh0UZE? zQ{i|qnto7&l6}$(`fST>G(*7hKXmy;VE8CRM)~EoDLNw@(&}EfFyxE-zk)l?jkQV)S^kTbFU$VRV!NJ>?W)Jw|CGfi z;s6bO->f0${FN;ElI-DrPsSL`zi4*;7f*ikLYUX0f6+1@-e0bNJkIowL%pZ6^*2n^ zyd+#%_DdZ$PT`z?jzQie#M=J1s`ZL9%UxVJ+y7YPjc3a*TN-drm|2jzB~0J8-t)&8 zEvNsY=PM?%<%{jVSZM&IY}%{d?LW0ZbWSX27w7zsEc^Q@4q(A)KXIt{WVZf!TMTXp z_oqFdB6r1()BnUHFM-W3HVwNY4;1-u5q1OVNgwC%LbC|4S0ylhgmvX^ z$JzeOLtX|VqyA8LKF#C90{g(2ACv3df0-xp9*--`Yb>iEHaQfd&j6a*LKb1s)|7V@xNXKmxILCjBke9{g=keG5BTPCq zw#6@nCYi?p@@6DflyI&`Ek8EGWIsRFRyj6&`{m;borkPW=M%3GXC|1XtQ(ghitN=y-3!IsPj~-T}ng z{l7$&f!+69ImYsTw45Et+l$D^Ka1~0@A(nhZ@UP#?qroe&EJWxQTWIal@V($}>og;B+;UtFA3F5HkD zrDJ3NP|qdOeDJb&Jx%YNY5th{NjwnJg>^fhS_2mQe9$mo0FAFW8rwmYGj zIu>MTnf^bY!};Whh1#+5^L$c#!BRWBHJ@Y^Jc}OK%$R)n>2p8Ixi4`ERZ!pA%!oX; z$@J;%;z5*7hJAVG?M2qV^Dl{e-k&U;do6y}CVMhV$I5NU69@96LzGRg6nnCST-hiH z5}hl$-qEy^E0B^fC2h?xAPb`0vyXqaBYEWIy#ixC86Hht`moWF+{?PZy615xa$nHO z+}z!f?7Z?}ZwoI65~tJg%lR{oBroSvzTy`RkdNQ*dFyQxP)gBX_wr;LcyqDwug{;F zf!j2TecHVh;C^D1`BGag(({M=n#(IJU|~|;hDteilAPA@^De$K@i?5bMfs5@Dd>80 zUy6JHOm`opID5Z0oO|s$Jjru7Cbpznhli`*c=Vb>a<2T$JuEm4&HeG-FZEj4ycYJeq;}vU?diZOj&OH?1xcZnC z>Lx?rdFw}2A>DnTxTrYhcRxRnD`=F^)W!uqS0%(7nOFgTQt5&S6-|iUU^l4bjSbxI z(p-mbP&mwTpI z$3v98!ZY6W1jsQo?fdfUY-qAzYe3kcJ^*p<2NPGcBwl3mcj7-;P5J6C0?(&Pq#6SC9+=XtIV76-43XAi- ziD8S|%X!C)h=T5pMur`9iOze!Ssp$I`0*88Y!|H2BcCo+wzyWrBZhIq6@&X4k=;us zH7|)(CFvImS2dp4g;Wf4oDefkh1d;VTAr+GNG7-Ix}De=5y9`uvq4q{#Bj!!2!mB- zWV&AEy(3lnq}9e{am}7+lO^$cf9Wn8h>}V6Zqg8KkNxsW6F(5>B+VLw~|sEmaQ4n1Aq{Nqs(3M-|c5Q5d zQdRGiCOXIT@uI4Hk8*(RZ+1`gw6Ow>E8Wf2OLbt++5%`ZzYnN9j~tr3SB?Y?|K{}e z9l-tv-G?k5X9_EqL}xc@>j>+*<{akF(}edQT&8@<>PzxESn{lm&4}ZrA=h?(FeZ+A zi^IRC7=oeq%$rT*G+<PnuKn7xKU`SYZTYO3Ho%)SU#DG%W`s9#>6Rz& zJ>Y#>*viiz-Jl77_nF2S79i-MGG<}6HQYR#^3^8Y3_RZo4JVOMI6Fmuj=LzK6&2dX z!}OHl*0tN4pRMf=Y29yie*JVH98N5m6mlQHCbjFeCJJVdvFQHXBc@)U-{;z9r`y zx9RswRYd2uUT08Qs{-MMnO&}p>0mgsA>#fsMJqVh?{>+XwKURX0ZeNvjhOnr4d^>reBFdzYge==053*|pGr@z;kUww z6c8En0^)r^WivuoT#Rr6x_l+UY-+~!vgA`sR60BtSaP20k;TvBf4?aDj5z1GvJL7@ zXD=g};&DyJ@#BM@{|?~X*Fa~hc>YKf7bE=wInx$!ZNSOlV9x%24qeY=>3{CZvqc?6 zN5g6RlBlZ%sCM1PrTcw2`{lG*x5o%y(GgRU?+*=A|Fq{+njdRl6dg>K{*~?tmu^fB zWQ|Mf%FjEZl&Wd#&3bG;y*_HmArp<;e*CLABVH{mC^aHjyx^I+V-b9ImR@(gE!~8 z7!P^f5gFy5xz6ITQ2h9uCujc4Du0ZYb6!LP18B14!({ymVG_r>8lC>S%4g(DwIo1s zGRsdAj(c6S2S!BKZ$|!k2LHSzOutilCD57sT%tDe>H5jw=f&^4FQn8{UwQ5C#W^ol z$Mm!2#p;}X@e9D;a<1#s{f%B2Awz#b)`TlURpnpCUwz$K^TKtNpI6=@QX@mN-u5Rr z>s%F?X35FdM@4!gGVDa${u=&T5WRc@_xr!=nE#yiZ-8=*5E=QGc&%~=zaqPA{3Uxk zmj1N;_d%W^n{Sa5a#Be7_=^6XG;m*lw4W~#BW-_VreDUnLYaKAK<<5gCYWvuM27zt z?+bk>SY%fDd>*U)!r)Y2yf8 z{QyQ}hsdzspr)5T@Lx}8ovGDlQT^KwjJMwQH!N&R?0JU#y|96qfS5$U;FJ?y_#>9mKTwqTy)bW^_qIBkcbqkTp`&xg@btXH*c!g%T<(BA z@yY+ZJkEOmG0k_u@E(Ya`X}C(rKBVuTXy0EKux^W7t(VfuK3&y@id|craGE6gR4E; zr5wn~0ou=se@>FVzqCJwAAm^v1Byyo^JQu$DDtsA_V`IQ(Cw2Xm}{NK-+fN+Hrf)I z0|pqs1YCf=mE}K^losw4#^`g}k2^**5Rqa374o5X_+6D2uJ7M#Im`a({Ff!4)|27a zsviOUysms&o`fg$--9qBZ^YX3H*Ig<{~Q?pm~&r*C-S@y8R_SJek>0*;g6?y=Wb>B zUs@ko`d9G!Ex7eyM7{l&$=dvj)Ia+;%Wp91?Ssg$e{uWs@M7bz_9tI)wm-7;pK7~D z?b?R7tn{O}I{M$Uhw1#1@TBE81S9f8WaNM2@uL0%B>yNfx3jFb{V8hcPS3b$&zXO+ z(l1eqdtYsx__I!Orhh1=dmJJ?A3;%h)+%?qLpzfLpWlz#1!2q#G>oh9AA!h=M65mk z`ujL2PBhvDp-etc$`3+b2qJAy^!GC!9(HJmMf$7lU#9Gs^nfxRve;9@zj##_@^6t=xdkWMp@MH30CIKx*R{l5Yd5zcNOFrxSA9dv? z41M~g;M+d9KohEwi~{;rmV9xzTwTuZ2ZUlo5r_=?ceOTo!lyb4Lt=hU;q)J2$O~ul zL2LA0J_Y?!Hig{y%l&We_v(y5y+NxQ|LRnJBHftg$9yl= zDAYR&ky(DXwv`DfZLKk<-!5*T|KyfG8s&~fWaOWCU!Wjjb;{g7Ih^w+V~`ik*1s(H z)+u4J?d0vFz1iPy!r*oE|J?e^%Kzsh?j5zf)6nm4W^&HI%aSinCw$=K$6`igATs(n z;`x)vg&t*{-}ti51lWqyA=leB7J3M2}|Iqndr}7uY%_!GuNl^W-`mb($?)lS1Ni@_HM27yw zL(T38$CN&IiQxb3_v-ZJwEtr;p9`y7{?*@qNYpaq)ISOJ zp2ODP^RUVre#=8c`Wgp?bK37re3;ZA=FMwE`ou%C)% z9bfPdseIGBXEc=6f1vGu7V=Wrd_m0m5+Su@nRCzenymge25+$bX&BLLw*2Q;M%?C8 z?srVyP{03j|ApIr>SVv*#A$zXG2Qdn=`T|`{h3b{ABgY0@5*0JKlk`&KI**%kIKMKhFH7)+%RjhV{(%LobUBqh`da;eDQmMJo~;3$&Rx7*ZN?mu(S|1Lqjm$LPz6n2)2)?cUEXj%;U%l6N`{!*v;D!C zfpXpzto|bgZ*co3(|!bMz!d+y4}z z-W%EaD@H0`6Kb`Z-r4WAJ?Hx62ILj7`MeHYZwZr%W3nz^XvgV4>!v?<|4SxcuxyZn z-6>A{*@Sv;X6rB5=X^z2sa{am0i(Uv1EZ_KU^YACa{r_CdzcTN=FvaJwX6)HF!osYJTEZjGg`4+p zDn7orH8I{u#wC>+!@e7*Z?8CLNzPIJa)n(ji2Aq?(*>1wB=^gnxf^J^^XzBE9u`2}j`hCt(Fk~37eCtf5@3U;+{1)vUT|A6X9I7C zH^kiQ75&Ff86HP;YLtH6nw*MjJGJqUegqc!_A)B9CV8iOEmn1OBCjl|tGA6UB+t{$ z5c`oqn_SDfKDHuJQ|9jrQn4e=dwJx)4(1bi6&0dkJN&JxTC0M}%-xZ7Qgp_|8_gQh%PNKZM??eeu2#CBejkz1xW zCxYl-?L&wC5Qff`&ku<+CY7pQI-?ewkn8;n22gp%q|uZE$uG+s$!61u8+snD5Nd^X zR!Ev;L-O8&YW@~cInHPkJ4duw=@mL=yU@px+%Ue|;gP2ox#K!~`SQ7jpl#p(rKw)d;n+@KcP?5E&&;LW-o5$7Ee*NPcA*rOI(5#6{^PJ9VqIsYQAsQuA zDj|uIP)U@?5E(Lu4EJp~mokr;L&!W+<}u&XIoH+MpZ2pqr@Nl}<@b9%{n2~xv)6mC zbxrG<*53QfBMwrx*;Z1rfrAV+j`fu=26XU#xu^bjeU$xUqgSV&1|T`TTi^u+14x}W zHl_Wy{?I2`=__}5KhWEM)q$I<3msP1%C9KxfyQ<5&<~Zeg2+48PDPyYFg{;t>bA%J za56>qstd;lz6M-8>Rjgy%Qg>tHYmpjf?w_Wxwqd)I9%mn$elX^#5&2JEv*^}zn2XR zuxiiyp3WRo`7(VcNaQ+)7V_?6^}gT!r9b>&M)>`HE^(vaO~JhQPNiO8^?i6wfO9Y$ z2~S?5zak7|ce?5Kcx;AxMKr`!DVm_Pds5$j?=e9!=@ya)6%`N_@WP>Nkr_IONY$Fb+KB2@Kl7e>M^u;od{?Qn z9(ul^Vp|{H^Gk&%M%BrfYJ;Vh6Zi4ot zp6>NylnIJ>dbmTUkAOZ=**o+8GDX*&Cdu}$v_%H9)bHfh+o4$!f4P+`vq3Ar%2bRy zXo9K}Z=KS)kzTJ%tAhdCw2= z(Hf;{H|!YF(-7^62{cPSV~kMmFykp>_0jahi;o=nX@Z__F|Nr`)JMNxe>U1Nti#o%D!KBNJI>$SUI^X#3D(|0n z)aAxQ?MCuN-jPtwhWC?q)TRIU&9?EkNKcPQ?t~Xi zK<=|1-;b;#@=g`67WD?16`gpSY0!<%SJ?nqoa%%Rq%aO77pSu5Qa3cA{f%=W{m*288p&w>^|&Ve zov}Q*Jxz?iZvQSe+oi8|2B^|5P<63Qd~wY0f|0EM@RpYO-$NP#;x2U+;UGun8wvTM z#(kP;mo);VBS3=AFOC7MPV~6%(xHXhhgq|}kE<)bkt9Z1`Sa(k-*S5 z**`fuBf7-mBCCE;e9Exv^v(05SjVj*`Hks<+9UMrqwo8X{g|FO{f{y7fdAd`!fq$N zR2js>J5tb%*YB-sDt{R)FNe_=Bkywv6OAI(p<#~C<6R2zaEQ)N6!J;4lEpm3CO(xb zo1p_@1z&15+?Wdc>HKIRUsU=Jef>Ri^RB6|m(CAg2Skl1zS@Al)b|EYVa&@3ajb*A|zS9e4jXM*Se#uFL!rD28w)(jZkhgiMn5e9O54ZV!D9E zMf+a~Uf|M^j~voZ3V1Rt=ReGq+Hm^=hu(ZCO0DI5zQXu{w07C}OB25@|2jo!V{GpK zVb+qa=Xi0eq@NIoX*cmTF;5F4O%K2Qqan}S)8#B%-G1?HDN^2ob79u;*&e~%j#r61q6 zjrlJe=L+s8EI$LRz!@Xi2jx}K9$t64L(1Q02Ip;G4=>3;uTieFsHy!9z&uNgwDj}+ zclX3J$M{?8;S!y1R|Hs`BKn(5T5^MiZKc! zMWyb^*`W(X3%VR!uqqu=>3mAaH^%ZN7-{~iu6LJmj`-d3vbXcnVK$v#H?2v(sPdCu zsWw>SdmPx%`NdO#m??^XwxdhmD;dkcg%BDM{D7Q_;`8N#ue0_a=J-Yy7@Pb5o}a__ zp!akBu>Y`Q9Y0!OyEzzX_0PBQx#f2YT(>-av=O|>M5j^CEWfGz$b88T^ZhZB`m^@p znlny&H$X2sKXh3W-v-OuVmvA2^WR&r!e`LS?z=aDJe}_=~Y8x|{W8Z53S2r|g=Lv%#*6~Bj$}g3*{5)~GeVF+d=ziz~ zxAzUdhPnF#8F7zTobtj4-b{Yk;VZnj+nD)B1MVDW?7NZt7im8#IC;_k0Bidd$>-a} z9```z`+nH|=Hp*Sk2^*Ry=+}G=|LqExX(q9EI`A0Mko#zxAKM6=4)xOpBm)J@43C@M%M^X9rzr$B! z^?!j_0g3w|`gr~Kq&m%BkbSsgLFM)>pxQxrh5DM=)PIe@KPO>q?!PJ9E1&hX4HtmS^8{j!P4)+2 z-dK#Za^m~%pUYfk9K5%d5jTd#snPgg3`Uy&4J_BI=WKqxVuiWc97g>mdPJ4~Me#Fx zf4a?Xwf_~E#Xf%w#&(Zm+8;dL^b_ZMN88yBcQ-QLThUVcm*2emdO`n)R=%`^Dx`A^0F1Be9Ej$}hhl#icUwiceVMHbOBk3?r@lVBx-wAY-;=>7-kG8TyGH zQRQd*M1TH{gw_9=|A@eLM`EP)-~8t;?uCrJQnS4E&)uc`uRM2mfYtwy`DX0@kpF3# z)tvaySNV%}t^hJm5r}yK_8Y~Te^apCF&Js(&mX^KEZKBNWBq*4z}E%f z(3F3o>hB7(2UU4VS*`w_TcvHvY|d}yd#{K&arhtsBdz@S{<~tIglF!THH_zGN&B0M zdGQ!&<)`-L$WxAMzt@K!-^^l-n-`V-$X5n2w^4E%$Di!$M~T?(X&7nc$8W!xT60u} zS8itLC+Qbuf4j1fg0tQmTOD^+Ecv~DSymRS|C)~N&cI0Q;+^vSuj$|iU7}xXghRBB zovNPKRR73+@f^&jm!DJ2M^474ehu^8H$Yc9KQOh4KNIs(nEcuXwdkP4l2} zhrQ{~XjT(H8UHv7BQ5{=>*r4rZiXjD&xd3>A58;tFH!kl{?p*V?WpNM)<*<9?-uj> zcKZ9tncNI$GMImZ_$K~r!40WYjI?axuU~(=>+!prN->cAb-ox104y$Y{r}pz+3uW~ z>lp9tYAOG%hO|bfxod!|^9XoeP5S5J8_mN=%l|URQ@Y?-u}WvpnIo+JKMnKJF*Z;C z<4r%fYow0=SzqOgrFsAs7n%M@&kYl+dGC4bO$dCnX)zx{EA+anSGGF;1ZwM8{r`My zR}My6`{93&_JO;nq}-mZP=>DyAiSwMW#Zo#G5K|cc_+E6Op`}mG+6>f4_~Y{xQV|2 z^AKCxCABgfF0}985W)&@F z^xs7PVtkN?kyiec{)k_k%f~_rEFbM-eeN?C^Oj(wwLkv)Z>Fb;qLKGzM%+JfhobDS zEnNHVWBR66r@!KeT*Si_vl-)WZ0>)1?u6Rfo%ibO((~)5pE=m-`a{_~n34P~p0)oI zm43|{`w!xm53qg@y8tI-ImYJm=Y~}US&BQE-}4~p7p0%bk@6Cp3)deCvA{Zv^!l^# z{0B~M#DZ%D(o0##Pb)BQ6-HY9;g3JRZBmHZB0h^Te!=3@N_VtL%sh#`Lq>-?H?xKex0Q+g-u5 zKl0hU8V)QklFmOkk}>`u`B{p2doea2KP7$g95X1-4V3V80oVaK-GUFcVx;9??%*2_ zdHw(8x!y|$Gv?2P-?H?x=ifGbBQm~e?tiG6M_hjunKS0!B>mele-}nt`{nolwYq90 z>LF$f|3&yaFmESDTKY>LY^>s@p7#1-7NOAU{XZ(iPPY0{>%T`QFbj?ldj;qJu>Dh3 zto+?L-Fukn@4fT;evZtIRZo9vS^weo!(M;NvE4_Q_Unq(|HXZNAx3R{syoQx>jE%s z8vpLYzyFP~dHoAsaBcgWr5=pu21$AB$GpEVHm`rWl0Li-gbZe^pA!B7%sa@`&!4|W zwx7PhA>5g-A>c#PCHF*L5v678F(`l161N4JlR z?u)+OdO3RdJ~QOAU~lKezsyk4&1F7C)ut#rd)CTc3rx}Z_xodbAO1nJ`aVvaS2P#} zaaQVloalv;IGvY1Db+<6?}-1JujUOkrxw2q*{p`9Eld=T2~kH^qWYqcJayFYYU*3N zGIeBlK=)CFy#pMT-8sv>H$aNk?yo~S4}yLN+PA;&Wd)k2!?#J_P=;rnqT^JOl;OOb z)VWFh)j>v`-kM3kTAV#C>~ZgKqDAzHo)T4O+_GI?FcM3ca{u)A3iO z70NLGEk9tj6i3z|9AqTk$Hi%x z6DnC28nac6_mWuiy_>qcQ-kWvO0)5c)RD1AnYi+0b@a;j)U(hP>L_HweFfvY2B_%z zuctHmm_qdqpCw@)ZYWVTV$7IeWAMJP|6S!aXF!u@Ez}>?8);{q|E;sjKV?N z;Mx&=bcfrpad(UnO5X9LQfk-$RI^0>XZsHRD1G9Wd!Nn@gR>IXo<06(jHZPg>$#@F z1f`$DK)h+WeeVTej^%D*)|p$~b;EvHB9!kBv`xmxxUJ~11j4P*i(J>2TpazSKp~54l12^xp0t8A6Q_} z(N*k>A?lo=k!oug1esZ0Q|_pZfIFA>RFvr01GRLSd^c@9r0J-)+&*G7L~q-$ATS^p z4i|-OWwivwSL;Z!eS%nhC#)kze*J6`a@~;Dy11413~=Bo3n;C(Qqtk#p@x>Q5a6M8(oAo=#KBvOs5d~m~b1SEeBPG3?M0k<6{f7VnO z4$$xThnyp4xX?+pTGr$f=T7E3AGs^Hxgk=P=H9v5kQ?{yg{EO&K=u0)+%A9PZolk5 z$NIb(oWFhj_CwHx>$^+)9^TmlWNuCArgBgnJ&#S)P*Uv&N`;ADL8<_!Zzvjm+w6yS zMC=ahdfpQKxHA6wBc8v=Q+X?Yw48%N=ikil;$n=>yL9Szi))Ee&PiB&_q9Mvp6rv} zl3{^7m-%EV9C1X3N0Pj(O3jd?a^9{x*=A^F#F+CHJUQyF+%11cOBA^zbH$8>Cdk#l zAEzuu2Yp?oujBp23|Z;-GVAn=_x-gJPqSV>tkI8dim_Ri7D&QWhnmdeeRwMN)4Uze zKh+fgH`8nK{%UC$ThNZ>Dk$6q8pvm>C=!3xTs&)NviH#(vnzhlo0 z;C)xFY}8tfb3HK@n4sVT_AUhmdRX2VnO$|dr(Earf9tux#VpSSE*3r)*jL!!kHO;- zGR~nW#Qz@CbTMCKQ@>o~_oy5&pR5y6yieTTtyThK?o+FSzRN*V9t$*rCiA&K6MUK6 zhs34sO7~6F)>;l->HMxjz8L1IWAw#Ho{KUYwL8Um0xu4h&Tl8=cf|7KGFe~e+0TEj zF6VC#2Rr9{cu${Lyx-e2ui%X~_2WZM){B!V*|V3~eMiu7gHs{Oc+JN)lu9b&dN$ zB}a?4BhVum)+kpde6CWI{*RTvVA+ZaAoDN2n%Z#SBk!Lm{<9xl{%U{oFNh}uK8^-* zDvb}iV{E>zHQsIfd*#Gz)_s+3m?uMS*o1<(u8^BqH!QX=0$Y%KO4#t38WA zyXn4-2TnjvMe)D(o0@d%rzK-vL-?dxk?PsJ{H`6iKINj=VlW_tMob+93JXt*0OFqoVrGEFDYD+FjDMib%fFu7_mEQ+IW!@$Q#2#4 zjO3>%`_s9fM)R^}3*M)X^if0+eu z`TJ7wFSlqaS!J-UOKD=B7DihA=f{=Jh=1K-bV3SaT^Ngt^#4ST*ef^}<{$B^I#`g_ zf4e%o{)-b)C)Rti^IS&zC-)PT|HE{?-Lel#X0%^omnc48E|q;~r~zr>5nA>(6#m?mIx$_yWvW2DvJ+T6wBfSgNyx^^mN z^}j8%zpd$K=UZaC0VB5e`FpVV11I&|B&`)g?R%p($Zh}c@_ns<6Tl_UfjzX z7hsKfHcY@x@Y91Oamn(?o-A5rCB+bCeX zh_(LMW4k#_`>S#^I{|XPSv2D=(|%HZqVx-Ho6D-dW&E->`oAjH_Unk#J(`*R;sNQB zP#m%JfamZ{jPWx`zZ2$>c{|O2@%#TBqfc)+e`zY~b9K&`?}o9t|2?!g&vMx7sjTl6 zaKXGm7@PZ_eIFh^(#nhb*XrM3tk)GIt^Jmb&#dOwCXD=fHe0!k<My>2 zvxd9-Rxfe;-w~|iCsFwytkN^etLuPP`(NGDod*`>b6D$-AGX^cWApZ-Hg55+=;~3d z^Y0;;HxwhS{i+Q=^^HSCw>$Z5zYnW^QR&CGrHH=}oD0W4ZRH1G1%Vi8^`~mq$UU5c zu7>ILZ$`8Fk71ZM9Ak6;VYGG1l|d?h`hBKqtp0xlwtFOt{k2n-RLidWGUk7zJVfQc zk;KiCm?Qp-@jq5ajlu^(7-{)WWxTw>p~fja{X3rdKJ%99r(%^(#VU1fqyJ`qE>BeY zNjizWf^%X09g78`FgCA02QEn}c{*=k{hnVi=7nLT0wXQ|eU%H&aQQ!HS}^SYXZqRu??`;32~7QHgjfZaKYrzy zwK4td`dgI$JljZl3CtAM|B2Y{6pYR1Ki-@Zhp&Zh1hT%u7fW?&+CPcLyh%(xfBnbz z(}W>Iey(PXi)^d?ld;}uO#S@0!~xU0OxbF`n(2!4sTYn`tP>ppD2Fu z3Dt9#7x=Y${3A#f`}$V`PIn?R{ReH#E^|^FU#rzWh|zvYK8v!Se_J(|Hnu(6VmN!FXr7BZd-!Qw6Sf9&md2ENfuj5I&Xf38jG&}Ls<^OcO}(*L*gC*vE< z!bq#XRu*d?bH>Xmy-<0)k`dS0QvHhk2g!WXn$ha{%fac&yQZ5hVCB!ohGb!+l^_4P zp5&DwDuwg6GRB{z{-t7G8b(_B`QL*qUFwrP|Ke(f|G?tZ9DFbrBhCLNg@|>8#|n4z zUQf8}+xf{;ZKkI<I0zD(+cieFGg)=_He&8W8%A6>qfPDhu1M zKKK2d=msy^)%f@xa0Zia2G1wX;C(fH(30L~8~Q=U#~0%5y!7Ezsl$iZF-EY&cevA| zr+O%Fq2Ki`PjsMPb^j5LarT(5d4(1aK5&~cmCZZlM(RID0mx^0 zkp18cOSHVcETOJ_`pPeH_CS^H&#&p)2dU=I{~`Xx4Tha_m}+0+0-guN>(g?a zAi0lrvaXyDh&#nyNwFUe7nZuL|DiJ)Qde!Tjh;Ie61o)xRDK@?HIh2nkBUcuv}{L} z68|7rO>x?PjGYLRETkm6Y?=aVwmefk@pA&K8P_X$)8;tPoqCS@HZ%&f&U8?Ihx%X zwsH!T+3j_b<4%I&tm3>W-)2DX$K9zhQUhUa-CTpqhfF}Z;%R=Ng);OQbKzb7ykFd` z$=3Gc{4Kz!&T!PEyLzb1sqdTIO-6_s(W~a*ByCjV;`#R6G%fHynccH?jU5aLUNtR! zlp4H$e`dRZr7;?HY>yJ8Z+q&RHpG}IRdt)G3Wd7i`AIK%AELOVN$3Dyw>vwTs7MWk~b^fgD%EUI3ak&rfS}*Tj2LoH-7P+ zO3?om@=65+=Xb3IINBVeJ;Y6)KH@~6FYx^2SHB2%s11;P9s95&(wt@Ny?(L>e2m`w zdD9j*P}BInRbjss{OTk5WAZ%j4hQMSHei zGl$w!tK{o@4}*-LPFFQY2ExsczkJ?=jfU-W<-__ecL!>Y?GgWP<`BL9g!x6q0FaS4 z)4$Jq3rJkm>%$?udiin0q3S4wQBXHXWnIvc(GdQAc8aFPcnCf9HNrzD1kkWUqvIpS zfw+}LoW`?IsIjx&-Mvo`7}Zxuy!7i0)W(_iMsku+*IDz2vR7aDKlNdT5S9SU5McnO zqR_FE1-KKqBcdqZLmwX*LcM9J!~v%QkpY-w1LRH);PH*nD4Q|01IT zFrf1dg#3<}M=tZS1pf&>Xn*+b+`B`g^PvwBXuR4-$nS)ur7*t4$b*_DcrcFeyW#^$jI;?r z;o=JvT$!HOe`@$H#s&ZxK#J0z9yUnr+}s$(1cvAr#iyz~rd8~)U>$%-;~SCUq1n&h zK%ZN$b$rS5jnI`;^hWtW;fwLQVLr)Tk}lrQ`~{R}5!u_q8kR#2ZDv8mq_?>I1|GZ@ zZWzi7V5akVFUG-YMNYu$ELUarQCSIOg2(3t2RHF$@r_6TCT#*K_@KMoje5Of2*?DP zFAif{Y=5G}gC%n=aajXcMU`LjY3-$tMjc};;9;|=9{4~BBW(g!8lLx%Q#L#+F|1)1 zV**dgsVC-<07zQ;`3qUbVKt}i^aFh5QS~2k#Fpd_8FPz&qk~IKDRQj*% zZI?S%uJs?(OB*+Ku~&U0>jbtpPJbU}{u!Mcd!3Uy)_j!1Fhb};J(vNEHhxoflFD81w>+xKIR!J zSAGXoPO%0+8e+SRnD*DUGkV7E>r$_*%88iKANACaPpp4OX{cdb%z5V#Uq`nAF|7ra_ z&02pg@cl_3C9VGP7r+&lY+i9TW?k#+j|ls%@O2VMNz4D#Tkm9nns3%W!e+`J&Odhl zXN&E3#YnTC-+v^1?Y}W$atPzaT%nK+FQLc$@oQ z5`gJ|Z`i#53O!;x&Piej>x;cOm`4nv)t}rFtH<2Oyw71 zELZfmHT~qw*uci-QiJfpV2rf-#~=R}@9X|x%X;REg$Q3%{s&(fQ1DjHwAJNb{44UO z;u14f|0_zrz|LY;|L2Yq;)k($`LFSxpTD=~d`ACG((i!}d@+)C%{vv0U%FqK6h5CB z07T?GG0z7ht)BAdPr*}qW-W0W%*a2&_rg4HjI{cvtBtO3saWUpH=nruVgJbINwMhAFclLAHX_)ZnxEP>t&4kNA5=gH;3W-G%vrAuP(J)uxTl4 z`}M~>vTjH#KgCG-8{GT%JgQdL{plA2viE-^a5E66gJyr~_HK_kl=n6{bnQ=nST2>d z{kN?Cv5)^p;dBRKZ0#k^o9pBneOh*Ksen;rJs{}1~g_WIk_@^2ZR zUH^Z1F;mEY>^m#+7GN7zdL8^4Sjf%Vl-=j*r~TYpwZF&utU1md{r4!x)R8;6o7bIQ zHEKgO_qD~6OmFd8?$3$6fIVF9KpA4=Ju5Vc5v={KwRv6FL?2M(}~3qj&M~xF7r!xH@KntzQ>ofis(dY@rw@+ z#USj?#9;@o_C@9j4`F$K54a+Be5X<$Zz$|XUF~k;3aPmcdWYWzgLbD=Yy2+-Lsb_U zH~sEI;Y7yMJA30oA${`-);;DR z;~2R`Y?1*K&fawK@=iPOu$=St;nktw|F%+j-Bv$vOtrtN`6~d**C-n8j`V=i<@)Y& zM;%~zRCd~CX)_3!c%s0>*9$7HatHr7IuwG;PG{VD?*ReXeajLG@h~dUUSh@Magb|kHz(xW5ZJh0dY9zXFtF?XypPlL z5Rf)Acf1iD0laVi7)EupL}k%icJ=IQj(nAL-c+YLqK#6JziylvN^lP-YF}WEp85oQ z-If4o87JVut{a9ZEzM5eZh#qbQ2DxL^JydW`LM*SC>xZC0$Z-2hB=u_Ya7dSjoY3qX?PH>^%+rCk;E>N{~8+W&f15iei z*UO9YI0xfq44k<^8#2Q;X5L?-jU-2o5z938gJI`)xSGB9fwvdJ9`gc9VN6Nksdl^< z{@k%FKh{yz4_p(SZyh^k43itOJ>3lGu z^G$^O=KG?}`_+AmABG+0?Q3?S^ScQ7&G$t&HtDDAh7ITjy2`&ij;TxsbFzWgcs*)U z)4opgebHr2e6(P7buaKvHVv@!oDS{jd@&)vGnOa&qBQ&Yfz|T)vJN3Hli(c@Xq3OV z5ipHvzAsApYu2Ct4`7nldfvQbtvR_ocw83FVFTI+{z@hW&rZ(vp#aGXM z9MrSde%2QblWdX138IZlg2TLTa>v-&zpj234@=0#Z=;+>NsH|t5$esvhQkb-XH z%jZKQH2#UQ|9pmC=0WM{;7KZ4Bgtq9G(zK_v;dm6t(%YQH(XCDx7ag>bzivoz9=pI zaP8C$Zgr>9(>lI^|Jt}vRQfaf-yPufkv%ZH`M&5YoF6<0zS!w0*ZjvArDKs|DB0g@UVb&-zsVY1pTPKFC*hOzHnJ~D zE58`3$4TysLus2=>v|8f(DRzLA*_MTqVkW}N%RTMh4Wfb z{C<<&*HG<;vhItD;tTZovCgZ=ek$2tY@UBRP4mjHX+#0pHxt~?rK$as{cN(o*}VQW z)Gp}vbVDHYB^l9(sl1^G{u5>Y?TFzv*J8&r%CDvTm$EOmZ~p1W`oR>kpQ?s$*xY_K zxwT<_L5^+Ae_=l_P}B1Aug!VCboV!4T^H2Ac9VV4`}mxq1aUwku`H^xV<$I!uFNn(utr~nqI==)i()p`|{O0?j4o!T)2fN>Abo#t!ZV8;B^Yes! zEi6y=MVB=3is8b-mLmXr61pxBKajaZ+ZI>$g@A# z+I(NMdHJa=RIcByxR9}~LhSmt?T2rRs5_bLA8aT4qL$bo+W0kV$~75SzVAoCsUGtf z{)6Oa^L^3gE4F4^Ct)t}<+1FE^cavE_Vi_947V*f1v+wj5M zV&Bx?X>I-BG5fkC*-v%H32I*dH0;8bdKs=}eK8`5XLZ4RQm(vH{`_OIbJ5hBQ}aNb zWLP7n3cue*_C*0-r|IYKD_uWO-1!d512R4kh}jcys`W{C<^Q+v_7azXe=EXHg;_Cv?1#;R}{i67~^S`}Wqrm=R1qW=1BgW?K zFX!T zb;AZVufI^P6(Mmyi{ZaXJ0bh2u9#1&Kd!fTR&jNm`oEOA$o|1eQRPqaiRcrY|I_{} zhIL=8W%}74?DxP1`ZLq-8-A<E*#Q$RoqyHrN zNA|PH{w9sje=w19^^3T&d0OlHzs47nwBf--L9y`G&v5x*0CL*0`p5oYcZ>L$TUhg- z?B|Zd2GQ)~@5^uBb@PI4bqHhqhvffo%nQay^M8UD)1CYF?A-fkM*l(hWIuH*lh5~` zMqj+sR_}3TJQqOtWIuZ(<~N^zmKl~U?lQxn)p05Kwyfi4vM)LY3)1SJ@5dR>xWV5Y z$~`7>Sm!TfKb7on()iTk*YCOf1-?XCR{tTg{CQzXIemX}$U3jUOhq8+62(t#;7M@g z+g5*5r?J*QQThdTCJ!X#Eja(D{-3@5jK>)<5hKli^4G7>{a-2CS^5nBOY8~3yhx0+ z`p+M~fo@6Vgh__1^M_E(i@-=Lf0@xzZ@5&0#0`nMq2(E)%m^P3Vw!xG{4sP69|46 zy?##Q+Gc<2*RKTnLs{$pBy3;|#^(O-Z>n$D>Y-_@^M}cpHw7at|I`+4ILU?E*@KUq zZ$n%%zHi&|kG=e3@%@uA(%LV7{6dy`yiVD}**V`yd2qvW?hn7D>RRo6oOR1>^#=ZRm3!c4 zMoh>^MdX+C$eKE@h_)X%(Q#yEFLWw>oxZq}5egrhFC&>V0QHMpIA?IE4NABdux!&q zIV65h%E9%z4!Tx0VyWvGNtl1fb6v#~GZ>JP{(eKc4p14N#Cs;b;$E5RHhbPj{I=vr%E1<{n-6TJXedcytxuCMEgbM0g zW%lOGVoTUi|6%0e^G5J^Eyu{S%nBa7nwg}hq6AT@o;eojN}xVPs)zE+KCnk()qRV4 zMNk0i}_f zGgEunLg2-RuLt>1@hb1NBtge{=NIbT^tJ1)Ili2gAOpY1omSwG$KkkaU z{B&t8D8@pf(C^MSDQ z;QHB)PaWaA(uO#(u0tR-@#@-R5nZ83{Aba(cVi&y_01VycpreHs0Y7R?ime=Be;p{ zu8f1ylltbGR3M~^X~(Q`SBL1cSAUd0utSw$lMXL>XOE1+keqz6I*K=%~GTgHRtVfj6mX9=xmG8(_m6pEZ7LQg>h9pZ_oehi;=|HP*kwy@5dVOt4RH* zfmu96)A`jxen-qB=F#lu&r8?Yh8O-lARZ>r`Bydprcq?QKnnlxlw6>w?y6BTAbIL> zXHA882qqcLzn%!>v@@2M!0099zmW+vCG*1BM|KP_r=@-?nzpd(_b}D8nIMDer@j%pw;ybEx4d(y7mNBj&e3Gq_ z_y=0~7bl{(T$xwlv%c`2my#g_J{q;y{+Jh*uh$=I{km4Wp-*kH64>J+q_JJyF*cu9 zoDQ2MrMzt@V_lCVhtyY+K3e)~4@kb_QoRCJrF&?x=AWqiCwl0`_m7@;zNUzb@3FtI zO%^MV!}y9Q``86d#%oN4v%VmCJotO2- zHzM&}wED}B>qN?9FaN!E45R!>eH5ktwAtFNo%#=9tn2TUk?I-bMYWRl4F5W4B zU1R5tL057!=P~w0iJS`NsbXy2{;g(|Z&vO!m+`?aEdH<0%L5FhHyXOmW!=|Q$A)NN zq?I3kUotu6nZmJ4>3?`$DIBK=%oNT`HL=}VO#9K+c1O7=L7Df$dcA+me`;gByrC5T zkCuOR9I^d)UG-0Yh#roR`YNzen17<$A74II#h#7dUvNW;?8`RypHd#0H4EFXhm&NW z(kP!LjH}bbd}oXm72$t~kZ*{2Mi^=N%=bUruIgN=$(R9~$UwPK&M3P{zo_!l^_=a0u*)=XrSoASV09w> z&j7`Vwl)=uU<@HNV(M@prz9?n#CMT)K+5liVf&A}UKPPTnq#EuGFoi^>(Qo>6~Bt$ zCY^sUqe;K0^gGMtz4Fc)&RCZw_M77a@>~k7{ESAFKj$Qso0m{j27^z^$pZ69TpW$h z|6pIHS>#h`*D%&~T~YQ|e;B)Bka}nv{TKW5(qz78gVRB?zgFF`o`VXiL;u<~yp8(V z{kN#}^UcZ(X6=7ST$mHKe-%cGDjc^n$rx(Ju8`@FyAOKM>rZKFQ~eu=cwUIZDpXRcG8vS@U0%eqtwSFM{)b z*#G>O4@R~~e=)_{f4N`-y)n}I5B>+2tX>#~n5>Crj6X?w24UV{jI?6n?<>`s3<~UP zFpA+nu((M7OXP??!MQO1T(N)$Mq2q*cU7n3Ef`i~a1Kb{U!-vsJ}^_Rr6 z4a0WO>Tho2`vxgDkHxd!j%Cz8EKd33g8+;)J^b+#6aU_yWY+&OB0xc;*5>y5BENY$!~YR}IOauQ zq}3mOTy1dq{K|Qz39SB0RQ{#5F|M|jub{0T{K#ajKT$Z{6PfAffAAyIf0N?RU2=ce zf3f@TN!aeW7-{u~AJ?el5h8vwa2V@z?UONYI!0Rk;qM>iTFbsQKWf1mS2YFm5-~Pk zKQB(c;#W1#oOS#bgLw%U>Ge-S>MfUwTbQ$9=qHXCzAgZnruk1S{++~k(fEPOlInQt zSLUOsgKHUak>qxw>MxNa?L}}d?En8uT$mBJ18@HWEx)^Te*Pcszl~V?@0O+CnUzoG zizL3Q`S?w3g09zq?M8pN{jfjRLE_ow;DV-=Gk^S*D&6zwT0L!6|4HHrlQExG|6)wL zyym9bNX8U@>ECMqDXRW8j|*#_|J2!2uCX^I+c&m(8{1#pS-%4O-m( z_Mfi*tp2}c^`AX1Hw~w|03*$R^5X|KKt;fV8DoL$&kMxNn*3Kf=H+8-UjKYg9ojIU zn+faw@jT31h>=$RWTdp8a$&ol*FcbC-M`7eyagDW`)_LZ+PFErzBBwMv2#A=Wis{G zt-t$>=YNBjc|6kj!{yIje_K}m?EFPI-MP&4Qyq04af`*r84u|v%esG_g?Wpad^Lqf zkGa7Qe8diyDKpwH$^UH3%fZMfztRVxf2qIy|9SqavGzY?zj+y3`fn`BbnEq;L*G8; zy_lz|{pDfaQjE0r6O+HOmP>6PD!qHrOO80cE&#PAzR3D>x-KK_>8VyfmxJ}S@wo=} z`MXH_`3A7hzn0^CA?wz({Ht4OcZ^e|xi|XNoH304kJR5n%wK_##-}WM@#4Z|FX=Au zkYUt+EZ*k%^GbZ9BBuVj!n~6_|JC^S?GLvf_Wh5Rl^=Wg|ChMr)&CKf{G2xecgil` z6CibpyMN6j+Xl{7?#(3eih<|k(Bv(_@l%}T(07ScC+V?rsQ!a`T*xS0l=k6x%CYY{ zXrF4@7uz@;v~B-VYLJ>PqJEjb_`cB!hJLR(SQ=uCyi;5^y31Rl(--{?p|z^$!nLlQ zN;8bnlf_=Kr|(;%!|y$Z{di@8X5PEduycehGMQU&d~vb?n$B6(p>nh~I(>P8?2may z=%ABq!`i*lsJlwuZ`bZJXi&0I@v`OJ&}7pXwZ0YIkoT$i+54xsLZQKy)F5L^)clLz3~$F({#qUA z27wPZi(PnV1%VS*9Db=f6z*zovHv^83^FedeG%HvNPt^-aku<)Ym8>_vgT!+%9tc% zdakF|An#tVQ7>@jxi>xGab?Pzqsa=8e@xA+gS8k;ycS^KnAsjCZ4TA(^zMrqrdE9@ zU95?Q*X0B#8pt5)4I^s$W*I|e?Z?IM9~i@;ROxn0os7}KWQ~(^V%*{4orj8_GFE#4{2mR?GvvJo^7^y8nhX6wY_i9Y$>WS5%~E2~ zvK2<48`3U!+&d%aG&<{pWr8uh%=*3V(xb1XUmO1va?Ue^#}(v&vns_tI>9-`t2g8zBdMfTkzF&;kAxPGjHq8ZI3LGl}bqaboqSiOb)2&kEr^eD-549L`&7|aXzhv2DY2d2%Fht&E_ z%R)Um12tJnYhai%ly4mN%YK_VvU`+fF79rQj?K9B)~%Z<8h@qpz9?TKq^|cJa=#e~ z&d(a5Im176>f7BIb#ijyI#?K^pA*-4i@i2N?z!VMK5o%Rsppc%i)UM*GK*F50qgCM zZ}4c}L(|MqQLyjA*Pktsh1;H9V!JKT)|_J{SAz#48Iv8aj-E5e=T@kqL&;*ZIcDgy z#f^#xO>>k}H6^IsJyT?I^t5M=v^CnAD{*jttvM=PwbOYdPyf5D3*%&X&mVZq_Mhyc zWPZZj79@b|n=X8zZZ}>Gcb&j8Ulh+1iaSP0{Y+;R7>P7$QUW@wbQP^hZ4> z{p{7f(+TZbm3M^WNf}(>N&5=!m1di!-`w?UYWbIv_{Gxtq;LI->sE zlJ{YA0Qsj3esZpYBRE%gKE~kk(J5`vb+` zkaM6h{#&k^DwMnTocpQ+&O}%9p{0kak1r124{( zyW6ol{I)RpDt9#jHj#{Ol=s}+RQ}yDUlAh*BM)+AGjw39-qNEAw-O+M&VMOiNi-?hfUm(xE&#Z#et%b4qI_=hbHmf^VP61_mTGe83xu@c){xvnsWJJx=y)0Arm2i~sBPr;NI+JnhF&M*S!H zwedkejI{DIO5A*lt9}^m*b*Ge_%13bKOM}|W%8@??mytZSUO~P4~r>`b!IHyvh>Te z{=0-V&Ifu9*&D?g=g=P;qQ|tK;(d&lYvQXpTg4`n;r~ebMb)2W<5MGUxd*YXbBp39 zM;Ds7EevL@KL*%t8>am>Vi)dHq#gG^(41^m5kzqj{V) zt^U+G8=mF{zv!)Sp(^74v;NZrr{5f7bN`nxz0ghX^=j7kZ;E+l7-{*(kCQv171ig0)6RxMIm2Q`!R~S)+ar1J!sJR zGIM~a5ycnC)v}iVAbg|27-{W4W{qJ7D36Q#{m3Vewf_*Mzl-s_3ZG-M+BW~>*+y$u zyfdNyaKm=HGwtWc*{i#aR3FKEE{dLgJW;^nEgOIEgxU0qN7Xd4@S}X(L%l-miNcleE!}^QTxa~<2)Ef=LZV;LojbB zMq2$>TRrtH=Uec5x7A;lfES%_Cgh7M|I;aDwdx~u2cN2 zx4=3=XhgM8Ag2NNU>L?Xc(&|4yPWfP;zs_%YvV<}JBleHSypaEaue_w5qqelm zg&2dyjP)nN7ghe5^{>A<24%6v*@)uT9`0h0bS0rp^*>d8D{K1`rJtWI!R?Nc^a`>` z*#Ac0d?VvN5;x0pQo9cRP=kf@Hfro{cMf8)93LR4ssD(?zb9aPDU^%p^7}1k;iW|B zghgjTc;7|=A%6mvkH>fuBX9i3-#_R+_wjBurAi?E6#p_B+N3`U%TL8f=Fz;U@iqT42>H=iehS807%ANU zK8(-yeVbYdWPHrOjD|GXKMBiE#;Aso@Qo=WCx?hiAmbzcc3jXzrk96Nxh202GPcO{O1INQhwO9yXN<2$A78%toFAo{pD@r z!&O#(BF?wz7-{Pl;3NBhJ7ei;&*-G9ppLKef%p9hayktkBw=ix|F`$1$YyU@{%7-_ zXB(UUnt|<}kC7(FpTDcW(+$~s`6}yk3NtZpE=Jn;A^2O49EkUO?cB%x3gbN?L{Bp2 z&BjRUzxd;~+-oCYkJw4p=Nx8XUJ8@XfB)tFo)^y^ie3J%^}nL(ubGGWh8ywB?|Nf% zsZ@M0hiQMNex)qz@%8q<=upMz|49Cc(ocQge64?4>!0&4hosCdIrCZTZyL5c9V4y% z#7r~z#!)NQ{x$pcxi*gf*z4~+tT%(1e>LJu)PP!P_2i)c8dm#7<{!Q<$#21_u>Wrv zzxW6nKNH_S8{;dCJmBv?+IP#-bZNN87=ID51^8egMq2yf*Z(oobIX(TUi@qMzX*vdZ_ z3oOA%Yd`$;^NIr&+Wt=tv^xI5efIk|!2>q7y8IW|y*)KI`ygZglBBC;^}mL-|NSp< zu1o(T&b5%Y0O2#?j#T*e{oK)=R?c==`HMSjSw+7^DzYebXOjAh)v_qXQT)6IFCMd_ z!@$kQc50%xz8CDaF4aUA0^KZj&(cCxuXbfi4AMdgzV{m58d{+(H=G8xGi-<4j*C5e z8?T8JZA>HdzG#8W$nP=r134&nYQ0;BKKh{l*2VbKz;0;7D9t$w3}sM=ce}eKAu{NL z&6UuOpJh*w}Jb>>O726m8HiQwKFR6UK zG6)U_oA_QnX$3(;GrEtOVh&1^@8t|uv4hf)${FIf0$^}}k;z>HSvdD;@SO-7Rp_cN zW_bGXYfj*??R(SiXrf;d8>2Rk>;m0SS7)5+X97x6U!#wj*un|P_bT~b1HkpzD%*8i zr66Fx)JYv_S>*kFgoG^D2(DXO9#@#t2PLR$Y5hO)zC5m`@9Y1PA#SlAzPCru=kfi$ zp8jZ^bMAicwf5T6+Iy|D&!`<2E_q% zJb6s+u#GjSl`e@{s_6j52@Pv*oEihNPYtq9O*e(3$(jX?M;yUA&+Nq8$6ml4vOKsC zR}&l}VypLOO2f~eA1}+^F(B@#?vhOBzie3I?4qIELmnbBTvuM`Xbw{+D2>{(!UcZa ze|10gtqU9{rgHWwyMR`Nz0-!LJz&<@8<9pG`x3>qm+UeeBnY>?Z?u-r?L#=f+o)iB zr5Eww#CglSG2Mv~V+xioINys%+3l2g>)Z^umb5rEzkCd#cI55G4}(V&%dCF&bnP*j zcoMOynZ4hU;4G?4^ZKSv=uL~tuhyPSbP0QZpljzz#P-3RC(StGN!(ZccF0$8C=BeJ znx$Yr6ps9SQe}Ke8ulN3nh>WZ1!9ZBWc?~7VP5Bjd*7aJVjsU+9k%|!7>N8f;*!w; z8_-#MS!wY(ODNgaWnqsbcc>qp@oJln2h>V0@1TB7A1n|1G^t+mhA`(L{_pR3LP(U9 z$Fmwgi2ZEnb3vPbe(?Ik4+&pcnESfNXvrfZAhK97ZTMAPqDQy$s=8Yop>%=4g_@C0 zP<&9X|4UsvFgmBPPSeW`I2;wbx(YEMcBh2Y#`3@K9#Hr0$kmCkam4*mOQuYO2^Xp= z4VOAVn9TdBLtGr-cy&+C>R$Z%JAP#A_8*SW@HK5=y{;pq2X0-KdDaocBTXb`?$IZF znvGvBofrgC9*w2$^A!ozvIVBg_UI7&4tdKx=R2=t;-E~!K6b=flh{*IZzqA)gJ8S) zAyYvrYGUGCT@}zev2XQCClg}(`VK2tW5>bU+x-m!2l;^GLYs&6J$zxBx#?4IafcT_ z&Bb~RwT4Q^L)#6ey1~?bGgQxIn!~oezI&TG`NLM z3LJO#h*PEOO0H<_4USm`F4nmn^*c-g*5Gv;ch`hK-3fVRn+g{o zUV1I>9byXI-*4HN;^+q9y?cySh?@0(>-^u<3~{NeTjElGe=HZzcR^^P*p4R*7N_Ss zFB#Z!UiW>Y=US2H|Kfdd^%lIquVtQern$%ZHK0GB z1vnXKEB>Q*k@j;l|YLukKRbf0HZ=`UAwouNDMn!1=hqK255+!Nt3XB(}KThb8n8zkkjO|wx zULcMwjQvx>s-E}=PekhV#7SY!Gf`-SHYLx42Y3&E= ze;C5y_)<#wId2|3=7H4B&3e1+{_?t7in0FMR{vUzczIO*5e)h>%{-cKf6au}{!wxk z-vlB5R1u}alp52!^<-2|9=PH$qegTAh)ppsiA_5LX=W}jl9b9 zysQQKUA{+JFpmG~2&YNMlW~3Ld-wD;9gjMQTq3h;U7Pp+KtwJalWGPzteF>Dz>x!na4kEB#1qt8HlpbdnL}P zv7>Axxll>10PfZnzn%_CZ;mMT(_p_|^v}|JDTlVeSt@>o5RcTA2dMaft$^8x!W*V9lG4hhe^(mg4bg=Wq7?gu+*hvW zcxcoW&S9LtMDgeQurFPky6PW$f8PYjJqA(X_`!J~_xK_E`HsaA+OG-5{)^*T&1iU* zSd{A-UY}1X^&9wc6|Ki#Jf4Xv|5}G~ohhBN+BtuFF!og#aKO|M081Z9~+%|}|wx7Oj^7gd9Qq4I2Ssz5F+C zu{y$u*S~bG8s1{8KTCwOqT|W;3ZnPyoihI1Tt@jt=?`W5$K$^M@55OCZR20Wh_^)o z+R@7&`6m1(JHLOndC~ACjQSggaN`lBj34CsjUOJOGHTY1f2{wvt^CaMS9|desN7D7 zwr;=uIpaojT2(~zYop{WM|3d(QQ`Q-n$!H?5&O#~U;P!nv;K1XW7eNDlG}|gzmNCq zo{;ZhYc*!|K}P${1>tafCuRLh`o$D|_PL!6NoKU)CL+8moxju4(i?0=^?^5!99_;h z{)?*reFpQQ?yJoEWBqfM_}JMFa-gjrkhpE!e~D!5zoO*FeDHiFxEI==I4(61C8YFU zGA?6*)A>awP4+YD-xJ|{5N+N5AM9HEF!D<-P5)RPFNB+hD5d_%{o9}S!iI6na%uAy z#!p7LsfbeKC&!<9JGBKXn>H|xUpSt73c^$RUr}N2OM>ZDLg$a`A7$Il@t?W>wXOaG z+Sh(y5hLCg70{2af6{&oPrPuhM0y)d|5z_=lb^Z#{wSjWL@D)GS$3tFtu^U>VRps3 zzg&Oq?Y~?z+};Jn6!za>RBjyKB`iPZ!O{WO*gDt3_TCLX2zY-|klYjyj1__|a9kXP z4;dE*jsv?dEnG_5|HJ8~BYXs+l>SHVe@>irep{Jk9OL{Kif}U!Z9RUN+b)`vH;=ym zius2jTsWeX@q^qymAt<2l>D7Pf3Fs0+ur`m*nis8{y$1G;%6cOBN2Ut1!f82iXQb^ z@7WZaKpVetvNrMOC&u~~;DqgO7Rm_6MN;aY9DnU>oU=E)rq91PKkTogVJGD4F7|(Bw zMYxr8JZXP&FKl?G&Q7E4KjZed2;q_trL=!?{*zVh9w=^}N{cJQ_{9jf6w%h>U+q&v zf1|DIX!bKo&RT*lIEYf(zpS$3Q#R}2i*wm4Xa42(!#sX0Lvkn3<%b8nw``{=dt8d2 z(cjC*`in!jctk1s7py;3r3UX`wuELsqU3F~znSG1)qb`3+qdN%nBR*^M1m|wlu~~Z zClVUj9PQ@1scV_{??my(<;40D+zZEVQFz(k0Pz&Y_LD5gkhKC)iu`FKF1%s0Zf2X! zteM`<_0ON{AAZXv72eMJCm6>cQTij*;#A3q|2J`wtN$e~GNcoW6%aOm_{b=NEiV&t zGv!bvPwQ(?--7JhJgaXOZt7uuh>VCe({_qU5aqqi9Kt5_A?|0qdeh%sf^gV%_QPqe z1o3I4Devxe2_g^f%O5pl!}qA8>-X;+3|9pEgHQb^Ud3Th&FMw zV$Ho#3L1p%*`WqS9rTIwLo3()OpqbAB~LSM*3>7y4w$v~(OM;d%9tk~0~BChezLjd zK7KssScSXg^$G%Nt0+br%(Q`*Xtj$0-UhwnD==z)u+} z#t#@!10z8F$h~#no+|-MYl2Ti<#AqR(Uvu%{EeVueuSwCxM zRWBG^>5x-%ygS5uaGaIHdw|Lo^J}jSd&2DWPnoxioQZ*_2Hw0Q>qtnBy7qeS0UKgP zl%wm0#gmAYnyUThZ<_{RCPh_B^3MmIKY7j+Pnq%1xb9xK!YfnQRI=xVMO-jQ7zYP) zZ2dvm;A2?VlVNbeQ9jz^f(`7S6?I?or7xVFI%N$v*c?>9CM<1K)Pg4B^P}^}$3u-v zwTf}VJg^&)kWettmS`MSVB@6&M9-Cq&54z4!t0B9zge+B{MwwuQF=R(Sa*B=+gBT$ zAb?Z6(_GdDDi0mqACztewL4ZeU7a@pQuP{dttfGZIkBVU(jVIJ^|ZOLaE%rCTy$Fh zL%a|8e6!Un33Gsw$hE4GELYg{!83XMubHs0*=TF2uN%ztJM=UCt26AMQk_x=6JTw5 zeUMs(D;S=0Rn~2uETG+|2LPAFt&5-Z%gy1>ZvALqC-Lt#q7y1F}o zG5{N|XdjT3BdR5y>2_v}~OZgNIzbSI)0#w6@JKN5OMW!-W( zWeZ(;R=mpNx`33H*1qgzhCob%LxJL=7fVJ>1+!Oi&-%^rfo_3r z29^~*pye^^*idg@kkwVcWNt782Icga*}UEd`i*3lr0~x(%}-hRB~Zx^8kVoD9R6(z z6x|>8^Jvo)@C@@hmHB-Nq}!zX$9V-oCwuMHLu{tQWUDid22TRuQ&RsmBI6vfpIfR0FNiZNoj6CyBq9yQ4QTm+#TqA!Qxrpwahw6(_vC-f zHDXD;1`Hgw`s>~aX<$sn8w>IL*@OHWf+)_9?o22G`M{P*8SQ}LsP_|6E2 zfw|E+;QSoX*d>53y7ot8bcy8pNg$iKW&*tQn4r!o7#VZN%T~Ye( zh~j+*{GHvsH+~);@*@?bsCX$MUL4`NA&S?_EcE^^_rl08O2<;6GZo)ih!-`_tL5)M zcKUG&d=xs6S*(u-0kIQlXKoyL@xa5+1&r_i^gtQ)L=?A2{w=vrGh^DxyJ{xeXmO4> zohbRI2579>vNo5t&S|Us@g+;7cWW(Ww6l7njQTRjf9h_jqosBnW1Lzagp)wD^*X6c zBhl()}QB~luzF>z5lU&4oSop$176SX|4fZ!F}7;Iim15K65ZiNReM^^C1bS?Dp(_KJj?t& z))mV})Al(qemKI(B1&ohjgFV=c-1vkop*knLfa=q$wl{nlo0b1+_t^_5L;@ueccF* z~=lM{9xyEeIa@zcd+mjl?X&_3e|1*6z ze_=(y< zIcL_NDdPKI#5uCWj@RSh*jQ!UdC9px1(*H<58H*EK=C(BSFYAxF|BOR&+aucA&z|+U-m%-|5}N&rlC#F6 z3p+%q<40PmIB?;JuP*<*NXoqQJ0+mx|G52%`QZK{xEGGU4k*EY5$DHx20fv2M1Xi? z@d?H_FGqyO`&N|lXEiNif$Br|lpe9$Y4$so2ggS`p?oNK^8Cbj&9yNLx38nkzbJXT z_2-N-!tsg}{*YhP#QvW-|B$);wWLt^vEdG3t(Hu2}@ zjq6LmM%aG-cko4w_UFIxv$_9^pRI)70}03B{qFA!=DoNrqg|MJg(q%)a_p!d)jT%a zq3NyOZQhn5_B5x5_jsCP!$w)8+~E!UGIGf1HxGC>?jGqS)#EYm-sZX;S>0aowB+p6wo?fcCj)iqTkyJjq~WXrb98+DzxSZv|l}=Ey;qAg3ee8)_t3o~UVz4=>l0QZ^l=KD?>@&eaE-~l0@WECDrIFHc-=iGn$p`4UdiT zHxBVI=6}RSD|LBLA42b)`In;mvWTh@A$4($zQ?4A$}?RbmCX}F&lQO~o69EoB!1xC z@a|`E-TV!^s959L#G<~0#~sNRBWhF#ZszvM9$Um=Ppx>v*D@~%|Mr>19peZCcd5)) zvGaivCA$@}L;c{1hj@wid;WPJ>ys0Hbn%6t^`i$I92o$OdFc!0)lUQ0$y;Bk1%|+{ zV=s4Hko5tdr0Sif7d+tjz&%o4Yn*|rH+iVf10Ar4n=`DDe?Cl>W6jU~Y){C_8LQbx z#TBX#_kGOSh{Wf^t2(KUbsmb#hvfQUS8S~@YPvZ^Z-`SiNezy(#ZE*G!{+0W0 zUS#jo*#OH|E{9SozEp^B?YF`DXFATjtu$9?KXXCW^mL z>ZzHrjqvAw4^mJ#!DM%0wPL>wj#Ff@IGPXp4S-=4y~}rIu7Iw%!hh!%8QD^QxLIJo zO(<3j@|#w#yO0prv;xGacr77bRQb(w#;Qac0)gu5$+z8 zbqg8ad_rdV_JRl6|Crq=O8y^O{Wi^?t;@J>!~Pz;|Bv^vSS*3x^*X2P#T(=>D*f+|kc{9XN@%2JH_V-}F)k&mJ{`gCto4US5rsRabTz^74rFHogk=&yYrL@1w zmpy;5Yh|hyHO!t%+jqeF#Qr|)f1s3~^!r722|YaL@jTkP9kF96qYD)}|N4Vnp76Kj z`uAM+U4?P{X>a}G@do=}TJO8CpkbQv{+oZ<@4@_icy**VO}hSyCR=`C`&<~f!`XrU z-7{Q&BN0vmQT&{LOWI$o!Ex!2){pwf^e?jh$Z=QtAL~EZZ-eKp*6o*-_~mCRN8%sj zFS7h(y)eI@t&8dn?|<$@_k8>5K*}CfNWAR$e7{sV%xHPezktat^RFIyj{O!pgz3n0 z_b?{C+>8@p0s*LsQB@XqWNf9IqDs*x!Zy9~3<4 zx7TrBb!Fe$a&V{eCnf>DH9!~G|MCp~z!H3Ss?%GKS+4_Y{&?U1$;BucnfC>Z^HlzrgH;_OS;Ue{F39#Mqu)#vzUbT1B~|>mNxaS#6n_9NF3oQl2Y4DEf=`@6;JsEIWH;v1@<1 z{LJr{V}FkqlE1b6?DExbwAHpPjPHlLA)F_ol=er)ZMt<_kQy9M*t`|plleA%$P0x^aCzisU&gmL_yjLJO+QA+zE``_Zu&t@7Xb7|i# z!}53|Tri>({gdNg=Y{)DRc>DfgV65+V$foLOhM0s5T)p!wT6?(OEbwckI0Fk#XVvE zQxR?&q7?q*{?{T)r5_<hw>R$8htdBLg~~mf zUVfjA6YJQKQUz1XWL^Jq`I+0#TqO6r|3d!X=W`X^DVU&h`_O-^{J-Ni*7@`nbm!2S z{N@{?A7W_7O2`N?UY_BSp~?^5nE$T<9AYfif!$xdXP@8Ce%dW|K(CcYcz5Bhz2fR~ zye+>{GVgqC=574Ged*pYUwL;o%_yBPVE}RWc8>#>#QGEatcL2mD(y!ED`}5jlhdCl z(x}K-yk{Vkze@Jk3o{^KgmIFZwLbANCS>`{abt+lUsaT>hbR#BD?)-K+!Y85?FO+< zJroETBaIhzKW&JtrYzZa4}S5ue%F`oa(&NMUomxeu!A_EG0s5FAYBnw?lZcat)v8{ zQ5T&&W-5Wn4VhD+7ZhOOa2Y$-Oj{_ix3QZ2!I^lyJ2^yO--jT2-nn%7x;oJ$-Vo+k z?@U;J?VtYA$4x+C3X$|)MfpaD3B&~LjO2iagwKCeO0{y6bUp+P9Y-9?>V0Wzv@>k#_1Yz;&>5aPskndb=>k8m_OIyI%?*Bh=8Zpm*OFMP zZCvOw9iY7b4a;w4bBQ??J$!G9dBEmDeHu@7^?*8=C~@&%clhvaxx_ct3tnozxBDeK zY2ss1;){yigFtC%*6~pi?+V%ex*(NR^};5@jPU7N9vZ7FPb3wr z>EdXkMQ|=pvUqm-Cy#YAM*8gyZ6f&Q#wAAGCV*a57O!TL6>-D=c*FVU6Zu~ktIk>I zGz4O<9@0o&=?=H6a!+iRm<*LmowTy|Tf)dUzH_3~tzeEM`*oRtB|KQ*5I+JU;N_*t z8xJj9AY)JTvFm{@054S=U&*d>Bhbq$nAn~PN!INo*VE^jQt}j>R!Fc4P zUpu|W0QZD}<)JH@1ly|1Jj?E8V42h@`Pu|i$da;*TXsZ^C{cR;CQMP6;9QzL$;*Bi zVf{kg;L2KCkot7IEV9G`@~5z`$XgnLw~3c*<(2U;=l;e5^%)MJ72CsXqY)dV(yBhJ z27OR0mbaKFZ3%m;2d$2}?+dJ3HkAv-o#Ebz9y&Yq!~Smtu%t2su%rqDSQLZ_FO%?)e*N zZ1QxC<%S}K065Z?uf)eBMVkYS+@&knyhadfZfcvwosFBRguB3ySw zwGrjx$rqQeyY%Vg$Bu`ERQy6AUL2+GhA7qti{*6en zTzF#z2Z&Jg7olN%nx~ehw%g7poN)mvN`Kq8e(1$MZb55*n7=4I%jcDI$*^+94an93 zELbo6{K@w3quy(PR(bFr%g-HRz1w_1*dNQ!nN+AD)u+7&G^Q~wfN=l|4j^b<{>Z7; z87Ho0GX_u$M-`!nD5d_TKDj($%O3U`diB&=M*YbmoE)O97vNp8uJ8BTAJ@(e6rr6U zU?beXlt+B|rUdy%k-sq|;xfDD5+^8gZ5(apZ`)OYoPjet3cJ1B(R6-fy zKoE-j5{4@8*pWZ-203k6NaK&?S4MahL@E8B+(7afA!``F!|yMTf02ysSCsw*#p0a6 z%VPyE+Zb>OCyo~ULndS$o8Ym;|h^Lg39KYh; z%{!ZUr+^l~htp{yJPw4Q)IT}?zw{1#_hQs;+6Fq79|vCPpa-q{?-b7-3mrDCp^YCH zuZ1qK-AHM_jTeTzqhG;#jMOhyMpd)vP#JlCWw{jgsAAKTA@;;m@k_`^+S96xa25q2P(BYpDMk7NK; z^lO!aej%p;Z!nWT6T$!{9KeDd@y}ZDf&iib53_Ii-A+T8@HvY`2m_dK01FNv$QPy~ z*PmiH?JN3>AOJfW1V0P$c)e zonQ>$5``D=yT@4nZNood#9N_qTO-kxs|4hZ+;dvndJ)pExvi~ixygY8kq*&Vi1x|+pe{diQrT$o5hE?t9@uxv^~!FkM}PyA1trnzU|{j_4v;lmUJ^@v|oJ@ z13yG5@;9zGE9Ir_4JJalMERU%A%UaaE|HW74e?0!EP6=&V%s+St`w0YMiUSh2 zjq`7NKQIu@IQ|A9L1rUL(O=Q4@eORw!qh{cwgT`zqafMnmi~+Fy3qduFZJ^>n>)kW zzv^B*WBbE)B@RTP@aJwwJkP!m|33QKv}LsVZ)^RL_3JY4kLyoREMU|hwyPsh`CIqj z!>1*B=G|CI+y6qzS>fnn2BMVmml*3+vAGN%*luh2$!uk<+G#&HF_s^%OR(Rm_4@yr zq1FqzMN4V*hs!Uj|KW7Fyn=h-_%RD5z=0?f{Tb?SdBW~+dsTG)nb<$Be~AY_)t_tr z`N1EgJ}hGx^*;y6zYtN1{E-8W@a>OEgVMUnWwiE#^)VOWV(56;bs>%Hv?Tst+H~6Z zjq!NBG@p(yl04ABE*h5b%K1wet^P1xRQ(nGKDVnov;Qd?@m)aYuQjwUzn)12{`D7_ z7~8+7@(YT^ynh*s%DsqQexDm}$JZ z{Lzs##)D5e2)7(j+^+byr2Uq3{`OBdgO#-XL!53Y!X+X~=|8os?dwZA_P0F)rh z)!y}I<_TP10yPQ8?}kDrYC*n8J!ujeUbD}o@vgBK_8F(;$?LnRzF&- z1L3tb)$#J~4g~vrnDUT59f*q^2b$E(>Od^YoxVT!p*_rYDtc1C#)Rnqb!p(Vp<2YE zFs~9ZPZwejd^lIP)(OrO+G*^x84nVHpS&UpR6(Bg#@AEF9jpeXsC1a+4$-!!y!1Rg zpkJNW$IHoXpjvv)w_e;5+@4v5237*hlInWkP_Py(41M^3n<)!jwmv%^HPsU4K+?B{ z@NsaW(&f{mL|fRHs@i+-aC=z$bxxDj6JJ=B-TUjI#dh#Eagf=JbJnn8@c5E9jYhzA zIWk7Gv>U8{7F0ZK3mcX^dO1UU2mb)56HUGw{9WL->Tb*1DHEZyYU*U?aZYe=Z-&ti zw~63Aw*R;B^Tz{6?XlzwX)hRFsogZj$p-=l7VI~k{I+guHepWvWJL- zlRqLlIl_sUdu}^^s6xK|VCnj4lEASKT`?!Q3vvEov58g3k#J<3=^?9zkzhJB&qHaM z95Kr%OCsTv0jMp>svDZ;2DQ?bD=TC?fn%AIR`Iiz_q=wi{}hAC(0Ihud+DjMgx2+; zGGD9Yp>+I+`<>Fq1AF4(SFY=A;gi0NOJx0csK1co5~oO-R?Mm9Pw;VIXeo@m%AO=DHjaAA0F;|O{ObhdurvxNJS%pH3{OCZ@%XpI+C%V zY;pMm)FYP0g)dy@%?D;9h19n~i|k;6it-t0_>Ki}#WF~y3| zKjK(!+dGQbHsafj7tj5nCT#EVjtzcba&kcOBjW(*2^}{NI?n&VNZ0p0`t6wvA<_M` zhF+Qm+nY^(toj%MO+M$p?K*1)V>>=H?Uri<10Ni|J!i)#a99vL^i0SI$n#j!^G8Q( zqG3z$`TeJ~K>be08_%9vAXf3YHsi~1;BJaZC=2Ka%^pKmPq2`Ox-&PcK7P=L3t=h8 zReI=x$FoOSlhsV2rojEV%4Z{poVEVT2m1*yT=(4U%oKpk`#LJi)b-)Ro-|iqM@2Zl zpng$AjShgG;r4SmhD6CMtAV5Un!$0^e20B|Y@l)ST~1x(cyK*!{@hk&EJVK=qb}25 z7l`JOU0tWyz-#BmfG8(bke&DBn8F7ZQB)g#?`DKCsJ`#5^)6~06kp;l2==sxWmz+< z^@8l6{^#|=jTM;k>yx}6*Ydn3u=4o9RZb8e=s7Wk2f(uW5STQ*H&OU2Df7+&XRt4= zRkusFhNA0nkHsgCgR|z%W?gzaL)w#q3+EkOpkiQVYN@Id=*52jG<<>!oS!<)C9jh` zxE|z*)y#1Ptr;_ieHmyAM8lg4N!Lw*o5CIc(^3vTqzAFA%gw>*Zm0PP561v&ZS~y3 zezm+TjeDwy~*dDcK|y=~p`pydCp556=o#9cNB<1YEZl6d~(pn2~lqI?qB z?bloOhR!UP&RtVP#$Dol*X=EMLENNiQ?le5-$by(foZ>gx7**c?|}DHv=HuO3tn(= zPHgwgt7h{PU=$TUN{HvrCgh(SqUMOQkl(Ftai&hBRRVOP;yVfPol*J$h-S3l1%4~@ z&eCu0N5sQ-fdM7>^?Ol^{9RD`UWk^r-~|VFh3qE=IgE;jdsO^AA-*e0-yKn>7JOuw zR)`!tx~&we6%`NmRJ^?qFOJf8Llp0$^21KAcVD9qHU`d3gEiv8go-y2;ziB-p}u3; z2AAT%kcu}f0xYH|yw0#w+ob)A8TZY4pp1GV+S+emywp~wdd(_Y+*@1u<8-*43+{z> zt0?*P?w<@k%@69P7N3789^ia?qYK=;D169u&&K_C?ANhoLmCE<)UT!e^g+*Y{^T-Q z@Qi$MY4@6AY{!)|0NdAspL_wqMD9B-mXUmuC>23lx3v{7^XRK?5HB3CUx37MrnT_z zhcd!pxs-LAMBRZOY!!v6kTWxraoct2DIC8XH> zWZcxRmE|(emaG9;oDoT(rT$vST~f-=N_=^f?RI>2&h3HAXfGaPd0NL^wr>C4_6O9r zg+$Zhey}*A^p~;V**sOn490ycQFuqcrCb0bhN<{9DIeQp#T|X8wdty!~;< zbY8$ew(b)pKdYg7ix!t}ieZ6CD&8XhQ1o0DQHuN_C8}LP#(l9G>)lS8{J8#xA>438 zTi2h|vmJq()SMXki)3PqjHm#b{e=4?j=MBO zc#8f=zxSL6kyvoJBa{Hg9aH3Y8k%{57qax= zft0V%Uj8gxUI9Cy{`gB!^3N1e3V*`0(`jD#@3>iFEN%S3`L(J1?fzhiETjI$Ah|6N z#d7g)N&7#bMtSh2;s9Fv!|B)v2Z*+||5>GdKg0zY|6}?$M|{U3O3}X{?xM>qsdJxz zrhk;Y-Tg;Y{Q-BdO%G2K#_`h<31UT;-}cVlO5P@3+S~&_q8ag`_~UZo`V!m=+i%A&eT;v^GrqSl4&lZl zO7WYJadU4iyi}j-#L(;ql)T;bZ-+9nN0ie3NWT%M$zIFpHuHO%ZPP#V{3i-;>gP9u z$XUYJ{vDCr6X^1%rCzwe-uPvoite^V!23&rWO{&-i`3ty4g5dpg^c=lLK!(DO3@$b zcXpjS(z~>L2`%mow`Wo1xBdEIc7<^aZT@Ym{Eapr2M&yw#VG&3iM!;c$#wwFv)Av+ zJRUN>_a{nzEGI6n;Qqhce``&d@NS4fAfm1NU!4Y_|3ER1w*JR*;kZj5^ng--rE|h@14aboxJIB zcUYg35pF7?l<|*z?2a5wF$;okv&)W(SLz?hXB_{75k3@A%KYndwW*P}bYJ<7 zlQWs)4nq)bI-->NgR+rtcr)Ai-Wkf4vHsdy|6zzhIHIlBkA6??_S={oN3)-?Trzm;M~y=;=CeEA71_tbZJL z8H@0g`G?&9ul*R^p=#=C#t){>L%9DU?hzjF-m*QG_pLL$w3ab$9mi|p_(=+Xa{tAr zXQB3u1DtrOu9xla21XGyDntfw~BKdZ8x>nCx>`C|o=e}asAyklm6bgl`nTVE2w)t)a**5wH2FEhE={|^HX9T& z?!)MK+PNuMpPLbG2coUpFZ*1@n1n~MjN{)HgxiK_>-pp3AZy#zKZ0rYD@xAdqKmDF zQuJRLtW+;(KeB=UnElk=_LGa`-cFaF?7!Ao=3`QWLTLMsSpTB$9dYlE|k8W z&HUb&sPezO_)hQC*IBgn2V&R8^7}CMA5r`Td@LFDw;KskNH0I!xbdDXAyKweOyQri z|Jx=%^Z2(H$z6^pu2=poX}?a;(zm+jy$Lo`2k^%DmicEN!kt8vVn34~uIrOI!E1g- z7JQ>*%qm*af-ge2BZ#&hKV%Gl92sPg0WYZdw8emuv-YElVniwY$@T9>-6y)gBG&=- z&kK^-x9~rJa0d~kv|nOS#dY@l1@fKjo7R99`dvVT^S>zl57ON=K|wkW6#oT37Vxbo zybl!XDz0D8IDQ^N868HHBEOSsc}GwU3!iwmK9?51gw-jE|C9O)PYX11Y5PZQm4E)B z`STP5S25b3B`Bj~IKvjonbD{y4eT5HM=$D~0sFDQzkiol*iwI`DE(1HDb19OKkdJ% z$B#Su8Bj>Y6ET32iyS}B_IT|mZ|6tVsQeovTkyw`ASV!| zv|n=nWYxj_doBA$|FQlB+5Y*5|LV@XT(IX_9Ao_<1CMnM$uA^=`a3js{c+ynqtH+I z1OG~=rTz%?ybRIS_1C?(gmY|YDP#QfDTF(XC`Etdxlj3%E>54TbDB1P;OY?7{>Mi> z4l_tDV_biU!jobZXEDw{XOP@y5v9z(kw00A(Ce4Q=32j^Keiu+jo$jC@AJL1`5Unl z+5QFT5*g>eHkF^nynk~Z333Zj%J@~OEY`sOR6$JD|C9^Z&LWff1hllD3kX+-rpmW5mNyrXI(@Wml373A9DV%Jz3koVDKv1_>0@mC4{S>sA6k)Ojj{@*|u-9)st{M`-H?iZG)fC6Utn{vzn--_a2 zC9O8**y~j^`=PD)-YZ@AU5#8x+keFP8g%gxQL6mE-`gK%(4lthEbO+(?BHFtB9Fm#JX*0pR|!>{UAC#U97ol z+JEf$B}#v&SS(y#!M$+({uCv6i6|umg`_Zh;yK$N0?miM4x&}q!m zWot5+KRo#y;p*vlrz2+uf{%aEf(1Fp{y*1$38Vdn#~VCu;CsG0$a9w;#lZA!*-shU zFV;71xA>lqw+wiy1E!;1ri6!9{eP~%Tt@rx-<-S9@UQ1CbY-!6mE{F1A57+1J*$pP z-0_W9)ivyin-`17c@j2OBcUU4jdw+F%CJtvawpfS9cw!i9%4?_zP927%hzM+u%d3n zs~TU|b*|lsM<*P0*M9Q?!-)rsO5a<+_cOOgWWO8_GWYfkHi_eZC2-J?JgsOM_#nkg zIUX|vu6MJ`6Epe3J9{SW#c;)8(0yUH^z1xkn0#^9*8R>ecrs_ADqo6w0DLn~DrD)y z&vCIXnHE|wIx5aIFGvxFbsj$}`jsK*7KCafmCC{1TW`*0xQvJ0dJ@UevHbVPopszV zowbG@FI`!Rk`o~0vL<`{{4wCfE}x!TJr*iH{`_e7fFDFXC08|Mmp{zRJ@}Tp#tR-B zMVOU8w+8Nu)r;)PG=RHdcDQ-2BSda493nk(68JQ&-s<#rELdvr<{q!|h3pY}MQdcI zL1Uj^amqLN<)5sQtB~sh5)v`HRm%KRd8ISepgPeZy<_%xsF|eJxOUALusr9puv;NO_qWwXp{q=wajU&i^?eJ- zsL9>Ekz)v~RRwlMlZV2Pb&qt_jK)BJub*od2b%Lg7g)0`DOncATn;;|Q)LC4hsV_H zKVS}vR3}8~^>&0>w}(lG7E2JE3!RfE+w~_n=V$dD9?*kG)c*2m*;gA#KBKm&sh=rq ze6jn-#7!Bz%CfW~ZB=dJbz!u&}H))4I-z^4)8>}BraMvc*q-^~> z(nJ|pXF2b@X0kv$Vxd@%yCcBKuYP3ljebO<{{Ewj^HqqDJDqiAN+^Kdk*tC*MHT|; z3~tkB^#~v-5~Shd{*g456F9FyyeX!FNn?TcSh;nBzW+FsMay_fc+I3 z)8+b3g0lQxN0cx6K#ujLC3D_Sg*^wS?D!St55Fq5z1*~J5?l$iatz(3a^OW7gyqpb_LTF3Mq*4rMspZvJ$BuAcjJNo+V z#~)RRH8&UCvEDL*_$vEZ@919`w$s|`PqI)O9{F_Lso^m0&>$V< z&<1wT8=sDRb+(6E&wiIe3&#ugC&t-QmUq0UgWy4YjzGg(NRn&@NYq6o`s zT_vRbm7zD}YT4eChXb1@8~g2)hhGKb$2g=Y!W#*JkZtLv8??#+I&D1OD=cA}Ko{?zuK0?=U3Mv5!2FQ2S8MUu_5x<#F%Rf^({bON>^R5QPau{-Ti@y-#Qn z^1|q1VHf%DlCPx$MIQ->$g;*YT!TT(}mb zu-`=#f3Sw|Go5#9xH&+tgsofB_wmo$$y)xh@thPTx%=n0;kw}^Mw;;h2uD5!=O1ivT$9-Tu`0-R=;9?DEK^^Zf5mn5u88z$;DlL?EkHEM^-bO zJF>dv+>zglX>4c5AiH-cqAXTX?{i!w@bV6QD>Z4A$a6=gAl$|lJgm51BLfYUaj{Rn zt_0fwEkCeWw#?sq!}dQvHF@qygT%U6tE>F;j;Z)jLVPEb?GQw#3fZXic9w)Q!^U^& zJthGp`U-zwNzl(7!TY+{{^h48&nuJG9aTPkQUbh^px|E#&+X`f9`{1jvn83}+z;;& z?mi3R;-QR+FB9VV)*$(Z_tn%}@Z6y#8`U9o=jk~SM)5#U@q`dBj?#BSG@}JCI5)-W zQ?HXF?!`eV6<;dEi(0oS-S0PI-0nEoK*et;0?bAf{@l>x8;dut23ZUsDFD9hfi8L? zN?A8VUz^hjG8aoR&&;`OyP?6=k$QFh<|{M-p#9H#QOO@8LMoBoJ_6ryIBfKw7 z>;ISU8NJ*S!dU-!KT{UvL+QUsd2cFtw(E8!gwCgbZ|r|cemRtpJff8PCnjvKWpiSd zZQj#C<3D!a2FD|)(Df(ooOy~p?bEcmTR-~%E+?6cBbuWjxB=Vt3Id|Jf(y@0m0e<{YeL+no&fy#mR-}twr-%mo%=8RrfPe#ABDE^A9 zj7RphZj63wQFv0U?S72=X4u{ti{x+Jf8Du-It$NjhT&o;!Ef><3Gm%WbTJyy*8Pv$ z@2%DDhr3`J2K=UkJK$RlbfJeIv`~THUtM~Z>Vv4GwDAMiza~nrjVON3za{srok}i$ zJUsFkWB(t8a9W7Au0QGConLiwTuD3cAM+8Vf4!yw$1<}P(EPTDoyhTT`(Pv4xAEI( z`@R^jgD!LtrHmh>-?Fel=Ah+;GRC+~QSz5uF{{%|&G_T?7j=ZYwPMSI_St`hT*mgR zkIHRAFF*O-Lhq{;CO?L+0b}&LfH(lYH9!~mcgpy~nwa~Xml?a-VfVTq#`m5K5#9(< z3Z84{`Ie`!t+Zy22o1;CF4dzE)CXqg+#{rLsa>vIrwus1SiwZ-9hX`_P@L@ zBf5PrnakMz0cB*4D5d@-#7jQ1#ru3JmW|6{{N9Zy`ByDH)~9BA>L175?9F!FI6r?Y zqu<{G$?bw@>+$;K>K5Z{Rt_wn{J=_^ z--5S7I9o(1<1ZQaxv%!F)}Wi&a1s4Z5}4kCw?@xx5T)q9()#d2_F|WBQUg5J!Rdd& zhqT~D>Hm?b!H1p_39z1uuk{0bD+(W^;qfBB=T63RqsF0(#v@8;|B)6w27;IDqyq=X zou$Q1V0DV(e^1Wg=!8qBXzTa3$}dQl&)EO%QAQIGrRbkXJJ!fPUX|PV(!kBI4>SBt zYXe*K?|_~=B1)-$(tcVPtF-jdqBW3?ekX~KUkhGT`Hf;$4n00%HO!#mVKU%bQTTWd zW6gy5nY8sQ#yg=4XGAITH{Nhi(Gf`Ann|Xw$|VHL(hMy?>xvD_aaJufmoLq z>u(~G+Y3=j{e7|e))%^-jH-3mz7cG&z`xT)&S}xVE5f-WN@>63{A+am?CLbVUb zC;{Ggq|`szeq+D6E6u1|2MW{-w4&N9|JuO3VKdy;LKiCDClat+qRMaMysoC>?wx?w z=K`Er3w|=n$Qx0L{>iwDdcA}W2RuKjc;dFRi z5`^%SX^z}K%zb|v~^)JO}|F^gN z!KmEfh_+t;ZrmCrIe2F1b098`YF{6X6Ph0?vZ*R7k*xc-Vj zxLJr&`VaTUt$V!coF>=3!I3omF|t8UM-k zOR=LRx7Wtw?bILh{&(Btk7Km|79zPo?5JzgEmLHe-y4ZVxJ7il&k^hE zyzub&V+qY^wEl;Zx4Zrpql}i&`8SFktl|y-U>Iw-I;oxOA7=e?5Z`1vf8(h$POzgj z)LvydFQDze;P$u_;Sv#TJ^m@qbb8}`YbI^{!T4ne7f0t`>EKz#ligy&QVE{+kM*B; z#5V!a*7g(2XYRc7JCFRw`mdHFxs&Mndt5)9;8~s+Wp_Z{|1bAn=JwaN{vXNM|5u`N zuR@g4{vzjVd}XVCSu6kcDDfX#{(lqqyZT?^enUF3ST%P0eoQta*d1?K+pbua&Hf&{ zwb?MTnAdxQqQuFapLz9jZ%vgN_m$V*B+=Mw$S0m$+O<$|E@su3lrj_`jAOS-i#r3&s6Rn zpk~I8!+SJ;@&M)-qydwm_`q&;*@Z5IUfn&5!(y zmgF{{)dgj-J0m*zDgvj!`YhRP3WP*s;HG4bF63MHSGd2xknjmiw`nNQBN|oGe_pgT zC1PZPy6JaPg$(VgXFrBZLGsH8?M_Dg?{%@Xein3;BxZRn|Dydv3l53dvKs5Ofphhg zok8h0cEPizSv-qj{LL{1*`@J{(50i)j|+3uAW(C*Q`&nq_~|DzOmb;&!pHvX4*%}I zcwsA74Y@6&NX$GecW2`m19*8PalLdAKR$1EZBoo<7tl&xnN*S77hd$7`>NomEWCE8 zW$6@kCzMsHrl)ERCPI2%yBkfY5lT}1H0oac;vJpmRxVd=3R{d<_aXF@p{j#rV0XuF z>?=P?8u}elhdZ~74wuYUAUr?R{xanP6n`81y(Y*OV&p$xk?S@P&Meuzsqm@{I4>f0 zRQpT8PS9MQ79M={2RnCCyailQy{ORnqyu=V zTSp%2>O~AU{V2Qjq&Os*y%-UBr!&!cW{uyNd(CXt4%4U4%QT674O>ns+yvM(*85>( z2R6L+lt?xX_kv$D%rnM+l!XD^FO^NQl7UAnZ1U{;suT4_hm!kdYZ0-1g5O;HGzkj& zpPAeLgFFxs!0Tc)6nZ>yj~M#d6k=DEW{fSG0kRv@Q*BNKKsc|VV)KOAaAM1>sQ3Z; zpmE0|^N{*T$l_MTU(%3<-T#lgFORFSdH=tWw4f|WiB1Xad$j3X?WI*ESxQnQTagOk z6cMFDNVbq<&z|*+EwX0MV~dczY{~vRoio$9pYHGdIeqkfUY_6Ud;U1@dztslHP`Gj z*Ua55dT~O!JQTW9%Oa0*khzgu(xW|^uzm8dq0dfPLPb00h)zyjQM7*MYTG>mJ8<=m zi>6L7g3Z?-9|(DG0ml?R@5;GlEU;I;rFTuu4uZFtmrC*6vV8#MckjmB zF|&cqabS-0e;!)sXbm+JJJ#fN_l1Wx2XEc=3kA3R(^r&AIl}n!nXV~M#zB3hG&L+z zJ5pzASd^-uNz_Too|&y3bwQVo9NpR~S6Lq#8T1K6#hZa$#0w6Qm zRMZ8*UDU<;zw3fO@2IQwm%Z!Bmjzd1ch-VO-ceWn_ROaKS)`{&b(FN=O5pV!!D|nN zDBF5^eXHzI9oaY1(t}FLjKJML1NWXQT6ICGB`n2p#%}{WpMT{~Q&l5}Pr{r@u(!py(!IaMDOlb&T693-fj6|n4 z_N?o4@>uS+7?Utk6!2cEYr%#%`Ph~pLt!b&DE04i(i`+ADg4Ku_7@EM5DE+FeBX2+ z!ARnx_eln?3OrcX`PyTT6fn~Aukd`qqVqoYJ_ht-jlZPuiJXEGP5%M8QN$M=Fw)!! z=Sh9X=Gb@KZo#nAA$&>U!=VwS(jn%*Jx<{q{nTdH6dl(6p`EZGsu&yVZ(qWa&uxZH zV4TlJWbx7!T1uR0EBkp9n<5|AID7n?QwRheC?zIcOrj# zoM9ie-{`_+_VZ1MeLArhB1bx^!-72YCcERg&mik@{t`EP9J*f{;qzI601 zGmm1dGY~aNNwG0$?P(*hLO~tdv106 zZZdlsSd)gL{(Wp-gZ?zIdu@yb7%3_*T6soK$oP@^Ro!74n9=#8#e6{*Lip>2Q3sr?(F@nFiW)zOR_y6T8>KC|(Z}?Xx)Sw{Y$W%W2S-&hIMbOVara@l zu5(C|pL3yb-wEmdtnC*`FMTY36b7W9 zD{|Hqu=9rRtC4z##xDv>E$35-2?zBb-Tc?iGg{z?^u@%7Hj{-5zFm@kycKG_{%hOM z0a$Jij5Iw7^BJ3yksZ;$qxxGsM#(Mn#M5WW6zu zj2mfuXFxUJ7M?v{j9Q6mcwQ`zakvStt9!|v{nz}D6D6-(^#>`;b6OVvvG%8IvWwolE=&Hg z_9G0(dkRKc`sEpE-sFe2NRi(MJ}G_dn#+o?og zk0LQPE`PpL+Il}-=+4+@M#3MBFUDY`#lOPM>ak$_Q2(>~$Mi3${EET{*77%2Sxwa$pIW$m;-}S8tnF7k<`H{E8o$Ck?FygbZJJ@@ zb&yM6zM`n6+lh+2kM7T=zox~%dEZy4{15XNGjRNgy|9ml-}37S(bq=JOT$ zocPnw>@kVx3K)>k|U=m)ViWckp$jCkY&EYlO(EI+b=8H_U(T~1t*Xx?=+U{$OJ`qoW%TcvF;wBh;D`z94Vk*b2*(9Ji^Q7G?4ud{1AAmfkLqc)qV zp=Z&0NwFnz$l+N#`Kzl9(O<7s4d}nL8w)4f*l0+k< ze>EZWZix=kF`F(o?~DbCzpw{#VKz3=uprz-^?KX&oHbgmtGzIDUF^qZZaqW_{a z>#fG<+^buU4Z?e&Ne_G9zNzYqT<<9>s_^a6+c2jd)?*#e#f5#B^RJnqC_|H9iv7)y zVU>-+#7J|r=UusLpDixvqD@ejTSr__&gLQ05|+E5qDYmvO>=EfRgR;P+&)E!ijc0V zlxhVhqgu&^KWznrvQIjMnY9L=q`@X%Dq2Fp-45Lb{rb+;oA>O?mmRj??7d|E&?{b$ zvMgc3jRbcH9oS_F_th|Pm|yg=pQ|&nk-xS3V6h8w+I{O`=2at9WL=W+NYxv8+t+dH z)ErUjuge=1EzD7QOIgE6bx)M%b{p-A@I%9|*je8`;)kA`nBz!qhr*MH2X}uR zN`TQx+Lxj~SfQCidUcqaVTz>Ud|xj-Y>E^MzIM_`Geu8chF_kt-v&*dYFc$@DB%0P zXhZGf(eo;dkvaB*+b_KwsS7%vDV%5LqeU=kIAZw)0G23>eV=}QN4zM??~;ED-QypICj^K z+Hu3++vDhbUCTjG_t>cA@Bstim3+;3*BnOxJB!WRF6uznsHB}Ybq9dVKDV#k75soR zJ|=QfKfy7({3@^Pb3u@x^zdO$;SivdzUZXM42IO0Z7NQj5&mfX z7~y$=GmY&1Lgvf?qYl_XJs6448x*t-!k-4l#TW(aK*IC>j%DUNNW7Q~t?B&MVm=w) z5%KaH_`J67hN{5^wV-VYF}Hi|i;14~}xJR7{44bpAszUk1CE#YpUW1o5|3x~~B)Yq#DSv@8j3(fPN; zd`azie2T)m`xBGk44r?b2#A=H_~|)@DgpA#Snb&4u}5t&Htxp{H$FAuvSBW3KVDM! zyf)XbRlW84?SA~>BlA>aQu7%7XcGVS_=04w*W?97<*N7};TAf{y)QDE&aeX^{Wt~e zo~V~L4iSz+A73dqt$H=L#XWwrqi9a&*%h%jagIV?05zF5RBTatc zetA^hX4g$67goNc@QFG}d`0*F-8x!5hmEg<15m{%PCwp*q|Vp4k4N>9^O(L0y5RRB z=nLeQJXgUFXyFLgQSL1;{xyF}EaSW&;!YX!NV%oyPiO}k{(Oc0o}F>Oo&V#O?wf^pd`Pvw1>0g(0sfLSO^^%lI?VCN1 zOG}sfkN^iKS^wD)sdMgXvX&oR?2#Tun*3!;NBra#+25<0fR4(lN+704YIUwC6|JpSp;i`p=HV>9_f!aMG5DM+slWVHj5#2*rUV8lEnSJv@M5SDuwQ~rvH znQG9&|Fz#xqq(g6;D%t{P$pk^USo;t{LIq><}mibk#v?M|BSw)Qtui!&&pYr}sd|-Tv&X+gU!q{d{eRN08qEwpA#VL&T&iMt zK|xJl*8YoR{q0-la4WT${TFsSnn)~n5=L4)h4pX67~NxY>Q=!HTE?OxQyS{uv6vT! zv2p+N%$&~edO9wLA2g4tve|&0Q&ISW*rU;c5%wSVrNq71`Yn^yj(Z&DPb3~TpvVro z_{7*V4|EnX=KqK|pQQA=t(MA>zr#FlkccUXzfr<@ z|C0E^aB8Ah$4}8%kSQ2x$&$D@_MiZ)S?xgQUQ>ZQdl1w}fa67wa+|84$xm&xPi!F?Q#5c0+W zxs}9UKYNB;bV&h_`9UF%=iX$#(EadM$NwfiZ68}Q79@m$NDA%-PQK2gI~lKo9r(Qv^2F!O&&AK@V|*ocC;ZO#h_?$~_d{!8yZAXp z@x=Kr1wWsMv2pz&HDra9)6JEP^*^EyN&0^fRrvE)bP}WgNW_uE4|m%hyE%?&$4U69 z_+kM@n*NP@t}N#c_U(Q1X3<($P6+jg!W#0gr0@&Qmn6iQEC$lg5P35cL`X@jzbk7G zsI?rw6$}YMh^|fM3!TGV*7BQ<{msPKIQ@~*7UQ8;kFxgP7GYinMw`FPDZa?XNca zXdlfOKM?*h%*(+@i@$LGB~|_eZ{%SvYyKhSY6Ua=ymd!k^M&90QTWs6SbRB3;wutU zJpO4~{$W4wxoQ07=6`nnYOME-7-{vl(0*os|AbYB`zJHTzeFEvFmD4!TK<`6V11Hb z;G~_iE-aii|E$HlbxeNN471yO@5gE}17|og@(*?{vHm3Ph`geEar)(92kSA?mSZP z%`JcFtn&~5VIRltzwP5lZB0=p56zj-{>MyizTS|k-cL{PXHIIH8DRL4zgK18bB)Am zzWlC)$tTs`@gI)AHgQwcNB-HHQBP{#eB$St?RecLyN+L@wxI2)$}jwP1Bw={)iDFJ z-aG7!ru)O``H`#6ju-@fa{d!ys{LR%n*HL_dVo}^UVfjpT7k=XJ%fu|9Y9g*SG(yu zT0;Kxvs=fs@dVCJ>8O4C+(6qk^_A*SA4oa)>|=b13wZ4=h%GiyhFQ~YPTAPI3v_+n zms^%LD#9@3&-8}5gcaVv3!Kj0MObIb%fi&3lelwT7OP( zhUdzKmZt;!;M}z;>sE4hXjA;OnXlFY(z&Otx@qG0sJ^Iico#Gx$ue)uIP%F)DKjS$tpy-YM*CKmV zc<7at<#}&ZwCecmnh;HtXZG!}V+(tr_Ud-u#`(;>kvgyMiF{w^r}JuxS$bDUib+#x z@1%&fx9F5BwXi+XozQyf7i$@`zr4SP_bhp&eQ4bK5AxkHcEhNSV8_=flmAkL0UG{2 zwFkFBcem)au#ic==JD>DDz?Wt7`MP4~7Q$8O*i<@43S_-`K8+LbpC&+-LMR z?#K2sIQ>SMqs1fC{1jsq(df|+Yl~ZJpwgHn`__c%p?r?v#lx+1QHu4(c_rP9QD-M^ z{@DNxbbNgN&mCu4h>yhWb!U53W+|<4w1$rKH;KG|oWB7Gr=)qiQ12Rc&7d(PnfbsP1qfgp&g6Kyp z9#uY6K-%-AzK=`Qf`t*2T{fN>0AIcJP1jUH zuxa@F_di|$L_a(HGbg_T1k9bCYPyUAA1wA%XoQr0T4^6GhnpvP^5mOZJ3| z{g1r86sigj(kGv&JJ|-(jWSx!t!@Rk=iZv~j%R?jxp!DU8h-HmEGYc;%hDN5>KMK& zO{p_*LW@tR{*p&e4)@qx>t+d*oU+?C??Eu^aL5>q4^dE-9`Zi%%LIrVucP_(#Yk9v z%l*-8si`noX~e*&XW?)-A;;`&v$F-i@tzWeFdSE3a(($r$|M7OZvS z0N5X2v`DHmk!}8O+6{9@C&wSR9 zLGqTMy5IPXUnc{INIU=6you@%`Rjn+;Tl~ix|;Aw!J;!z)qBG(>A&LVDdu0eSJew{ zAgy5)?)HMojaE+GhdV$*VMKnfyVih;EA=k6vjpRuDz({#{UK|}#y+N2o*mV3(%5}F zj1d?GAPnDKw)***WAmXko!?r_Z-d>-Vbp8ji}vyS*y7#l^U?WG-KpUPB`8h}^H?(Y zu`I@b24|vuG;0d|`kY)kA70S;FT{LF{phnEr}aw({D*Y@!@WR)k;E^ASycz~f>_rP zG1BHCg!3@vYMX*z>uqAJBam^7r0{39^WWcR(h5dDzNzvPcO*Q~y?7kj9y{oO zkv0wxj>E5Bt2urA_H@>HR0Yga#MpQq56b3j?S9Mqx7U##cut(TuWJB9e>gaa_O9$a31SK;O6y*5|=Z^LByS;^aHo?ib09Zokw8b&#i>zSHno; z65I;qzq2gi{tLT(jQA6GT`*4tW8?IfRc^H{M`t%<9|GYEs$k)-D@I!W7ur$W-12ay z(YG|lJPvj)G5rdAwdgvyJe)BP&{Y1aLbZ`!dM{<9AK|Owi*6Wc@(a&%qNKibh>)4} zhsS|gtm8OR-}k`s)8>&l7e?IVp6VO2PN9xDk51w*DgP38B)vuV;`&1!JK$h!oPR!Y zo`uiyKJ^duYdrftj^?Ic6Zx$9uMd`A7bC6w+ zj>De+^syi&7{&32EB@NAxY3E;6Ff)FW3+!ne+HOmjFF~)VgExWb+<;?Iri_?8DgFh zlP|2lDaU|x*=>DT>(8d?k3Iep`4Q6Tb{R&$UH^-s#coF^F?^v1?Cq}^)|)xT#^t|X zY|8aF*OoKt5A0lG`$yc7^cLNV>t74(zyTvI{e|h*dFJucn@yPCT_*na#TPah8_y%J zSv6F(R40(pe<1vR_`(vSIR8?idIzid{sSv#XJ7YXGJ+G6>+7-{JzT*nMJc_p!HSTL*p`eU9Q zMq2#gl>Qt3@?TlAzU>|OhudHFbx6Q++cV`)t-W!ZKjL%O{70Wco2P${=WoZqJj(gf z%3@tsz9W{~4I?f6g8JFWLhPxov#yWIV%Wiv{O5#uuFUxRN{xQUb-QC(yS6-;QT_WxpTn@D#LgwwKfcGWscEd8@!R81Z7RU$&FZ%)|vSM%mRKh$%o)rPcx?>g8(EVmz1e&Id{ zxaRjQF8@#0f9&J8Cgp!#IBWhLgyS8Ekv9ISE7|{;OMR^V`lHtWx5wYuTZ-gY(Y?6; zF&H}-&J16;j-02f8D0?X$69`ZFmDJ(TKN&~qo;mso8G;pP4nu1f#0-pRUZ=6|JDD7 zihvr1krsaR=;0r@JPG^go0NV6zuENHTz)W?I|O6n{wH;2#m#ZI!dcs|=7!%iKD!-5 z{W|oruJR)FL`@PT6Z12eBmTA^T_UXyDuS+?-=%aF&pW8F= z(}Y)7_?EJ(*552W!8aMAFx2+JRetP*>-n)GOZmHBwK?)NqKt3SWw+^%;Pd>f{r4Bk zUa>+(y?3-&kn9GhkYC22w_LbLWyzLb7W6udPI}IkH$yA*;`9P5^w5~ygFckksiBmY z2FbnLO^}14iDv&+&d8HzJ8fN%Ir2oYTUwqTic&4~+l_nZ1sxw=+%U$}6MFPORY}2? zFui@rDW8=N@TLFd5rbzKz}X2WPh3!lfWvVq>5iAiz>V-b$#)d`qKwl)34;|3&|Jk6Nhyna zq8sNPO2=%}L6JpHU(9}~qSDcKhx&ClMEb|8ykCviMf>+JyWQ!$J}Qf?j<>$h1$;** zFOaivMQsm1vCCNIiavbw>{ycNfCj9wDt_SEAAL1lzk7aAe-trp{NZnI{gLw7c~i4g z2cnauZ!&C#1feGmV>zSs`vY}trTU(6SGkKyK7S1gu!9-ODU19IU-B)Y&wuz?_L%=< ze9Yzj@A@FGt1`ubt-o<=^q#EEiDoW=+|+{W7=6_O0LXRXtHCf8oTQi?!fFx@&5$bT2q_dX(Gu5xy{H zH^W%dN@{}?+>x_4!s-@2VlPc30q0&tuJ!uq3mF?m z{0b=b0yk;RV>QbD;5*{iIoIl5F#k=wPT3<@ICsxu+tqsx@ICj&(ys^I!1K(LuageB zK~1Ubfy+uBP>A^44#6%^rsmVK%?&5ug&WW8_RJNAyX-rou-^@2GGBh#tK$PjKV~i- z2M+(Y764DMEC8NpSO5gUtOu!BV{rvYYXF4{7*-nXN{;8xmv|5!>41{~C51nz+BYGy zQ}xFw;MEQXP!G9V8y2uy;m2eFkW2^&+8E&nO~=gnH7WMz6wssd1I7Ht3xM|;fK-@Ok2@01{{fldUx{*8u*PD0BH?q4W(uXKDxaZ6+epxD>{F&nBRB-@SIpo z;Xx?J(p;QI*-ZjVIzL*>m(&1l`q?@^S$`53(fJ_-K!TCPkG|p~dPGq`Zq@JwsdrzI7ZfGj2=(h>#m<>ur`9)hw4WQ0 z8%gp1p0@O-%A81^HF$1 z{*@&E*Yc!`l|5$zY2QWOi1Uvm{)=V7wG%xT0%@N`e0Lz?XyS{W7~hZ=g5C1jnQ!^K zEzXa)b;28L#m@y--au|8g-_i5t@zV6;%Q+AdKeqmA8)=mTi(y~X5ENQ77n#Bzp?&J zek5&L>+Z`sfk@Jol&{A5PoZvaztndgzny<1#b1*CdOKtt{dU8Zwf!Xvhq^c*TK(7c zL7OvtUPL!^X}I)nm;dI@9k4CHW!d!An)}6rbtAX|<{M(9#lPan*HipJ?b>5q zU)V4{Xh!m*B>hh_>5>;PvoGrhDJAhmVzF<8AoUtq0BxNADh8$%U)3{UEFk0PN}Rx^ zUM}0yc5#p2?!Wk|+RvT7q8IB%P}1Lb!2&fdzd5zjEh^NR3ur|DWZ}^Me@MS?p*Q)| z^SzxtTLm#D@ClzR0FwHNmj1q$I(PYK*;p;lj$IiOfP_yL0Li$A#?OjB_>fN-X{djE zUBe~g6p@&UfW@W$!vbKI$FB-L#aSDob75aI57H2i^F-l_Cm@@a|JeCt;gBqV(&Ar{ z=y;z`xwY_`+wR04mY==+kOe@JAT;?!A7u8M5MHHxjrD^_JeF3aJg0`-wo?+EJm9CYiBev2pz`*qaldqOAR|?SFV< zxyb@3P5+?*d*ATulJ?w~cf^pj|3?-M{h0cTmTUKx&-<2reB7)Tj1TgW^z+3$vXDm$ zKPWq)hEJ9CO;3K(tPipaL!hNg{XGaD3jQS4A3U8>YqiW~)_+}D=MMs~AY>tpCZ}-z z28C^Q{kFoGu>eo>*LVStrau%M`GQ}#Rq#7+#pwSKzQp*~%ct0}nfaH)TK@mT0$@?H z%?m!&<-Prt^VgcGfA;pjN%5x?S>-1Shv7IK8~0zS=Tr0eyV@}hLL~Yhj(MXn($X(_ z*(O2%saDSWgLw^C9={hs?}qU+SpW=W@~L5;D*4pUV;>)NeZ`gi8($O1Em=4mfgjMq zS8Uh&8J}l#U9JaJ$J&38tiP-lUJe?~O+QxskHm6^G3C!|G2{`S8Zfw{(wDPbX%b-} zc5Tp~MET1sF4=f5W^Ml^@`d5q9;21(`X?ZKEck00Uy=2LjuF_SNQ|`f<0w}?;q#V# zeY=UP%Ub?NW8N4h-#0+IiVuT~b#=5_H?#czbLFpT`lDFu-zXgKDHv(-_l(HI%^-+At_`0?Es?brWS_%Ya{$rx$*A9ZefgHN?xlP0t8OEb%FGY+z@ zKS@U6eKYGnb^|stuf7wVMabL(f3^3O$oIQ?Q-+uu|ycP2*C4;9=#h$(LmYwnJHIgHAOsU*Sb-TB5hl-~uI zmyVINLlpiHqWvBxpJxm6A(GDL#WnC3VqO|XaWQ)xa%+JZq}~~-Zv1c~gwy#T=1WRH zU%x}=)J|@MQFOj>9N^%Z*#2*4&HszAM;RDt^`~$H){RzCwyieoU>HymaU{v#URKFu ztL<(^|M9<*Kay4cEbP%zjE(yb{nnZWTrZ!%YCyjj^Oj(wm4CNyJ6pivm!Ub|DyA^j zkD40)>~kHAhdVp6mOn}QD^mKFHp9)Ip?@qcm5nc!G3ECS39jLq`_7ls|j?E>^5gF_Q6!p#S!~-7PIh)s>}&$sPd?elG$se*=EL z8Dr!6NBU>Uu!`+R7zb$+?>6F#0*v0|1;zX8W@txs2dYxWExi@>hwG12*7m;;$9o$_GL8@=@`M^K6}akkv~2yj zL#!XN*n)XmF*eTsYCIFokjO)f51C-+65C%+L2B}uH^0Au%szCDWpM6c#sL~l4PWH0 zm{ot0(qF_cYaTzZgq6PwM+9Mfh*3~}gbp1)_CQ*i;1bw<%^pN8^Vgx&KoHtzp* zP8@61X+;5$bxxr(o_7O(H|8D3NXCN{6+O;4QUjFx?b*NfRRP0(hm@Z^n0F8(c`mpW z+8?&qE7kF_$7Y884RN;@^A2F_fsw-F&%|5f&sZC60-c8Ef(xEggZ%sO^ZgiU{Wo7_ z2Nn3ZRc-V4-J4iHL?|i!{X2cEX}6X6AwVLIB>vVxd#**F-p#0gn#vctgH8R3zC=86 z|DzatbOdAL{(C3?AvdmGD`ePz5dRKg-eHU{F$y4B_Sai(a2u!DnalHk`v8DlrvhX? zS!Dfo{PWKxPkg;*6T^OkhRLPV=o!I& zk#SOyQiA4ZOW3$&+9*x&V z>qqSR9DG^>ZF%Kw7!uwA9q*ZT#Iv;miZdF-?U7=FuHC9We#6)pS$k>(f4gapIz7D* zL(MZp3zpbd{TytCN;~wMbuG;b6_>^woZ)VYw&z{WOma0xF4mDc-Rv#Uq~)JqDK4}? z-5->X?p0@wI<~Q>t@1KMz8%`;25mD#H@^q_#n+gk%x%lds~n8b-DKN!3N4IL`va4% zIdnEgzUw-c7vD8P@cC-nX{QATP4i(#z?)}i^w9b2jSL!3xeIs0st>}qlXSG@IRi`%^-M>fw1=@ya>~$TD zl5|t__4@OE^ZNBcrv{I`ur*5yNk>mz$h+7BC9WSC=jO&i0ntOw>$T;ejn~F%M$F|P z(6Vd6J*tdSKCc+4bVLV*9^HN>ELaa2hujL=-QEPDgdu5X4tGPgWeGjkyY@lT|MEH8 zAy^yzJhOhbv1xB4)kfuX>L?9l``0;LgF_nVP%ve4#9k9|r!HN!{xt`6eC6G)O`#?- z?qn6cMW3M$ z9>38-=O#QXH8<2oLB==VXYJ5HoD7W|#W`|loR;xI|7u&bCjXP{z%nazd~<9_>Ox~Q zepXQ`HaCa0Dzv9P$GcDnKXw0R|$~Mq@(D{rC`A=N=?^*IGW8QJ^7|(Guyebd+ zTS6|DYRSQg(i)Fj!Ls17&}`|$6Kz0hxZ*K&$AOS|&UEknGrlnR%1Ot-D1UI6iD$9 z!VA4V!C(6ff|{WN*8X?}Fgz(WMrx}zWRKi3a*}s%_|RedN39)lC_7rEvxj4Us7STD z*{RL|IPcF#B)Rv2to!r*G*yftVAq?LIr;t&c=ffOfrT@4{j7g$e}Z5i*|zOT`R`mI z`axBmRufR4zmu0_`L{*BH7ruR)+?|{(HJLkKF?yTBh^f z%f5rbE-qJQ*q1<$9wYfVRjf9`C>4V)nmG$-HT)%_R<9ml_xal#1= zK39{aDjf((ZraBcO$UMY)Jrwf^11NsaGk8(m_RTMd!RGtLpWH6JkxvrAr#UrKHbsn zkU_ZG<7 zNydp&V~cL?%eYbc%^DJpb3ecnE>ilSqB65zE70!ps&a&mI@&${#i4zb4(PD|#Yu06 zE5qd5QW_rL0|X}z|JwU*jz8r0mdnVG4FtvIxyx3?TcQedZIkS3MHs#1+~_$`{;0mu zm>L$T9jP-lEJ{@{WucRlJu_Q7>WrXQ5>-1sz?3bCBdzSOw`$WXc={`9$G|| z3c!_g0irGl?xHT%|6LdSc}HEXzwBL4zAU&ByR#NN@{YRlw`Vr>&muiNs-vU@R|2o^ z2wrsOsTs+l`#TL`w$`r*QLwE5Sg0;Etf=ybpi>OpWY9?>6}HzwXc zYH*fyU2bt-P|tla*;_UlJ}Nf6ps0^U4Sce^)egTV^BEMCGjeBw2^hP)kzM~e3Et89 z@5KBzm?wv^mpB;VL8i&QJ1WY&N`g0Z{u?o02D>MABDM{D(FfJv?i**Re>({(>HJDD zUs69T&G3BY`;sKMPv_q+0uqcQe%z_bC9mDs4-%2b9<{~Tcpj&)>ziIL1}3oDu}KP_ z$Vt*$bT1yqNaEKh4Sx8#;6EEbx0F z@CG#0pWX0t4n{4Ef_WI(R7*uDdOCgHl^LrT`&dXisbTl(7^55boL$A=IG~u=eOTYL zRY1ZKy|!rxpR{*m{^w!?UsQi)+zikeB)5WLhfKnkRDbk+e$?ZaJNrRylK3KVa+^7h zZstKYu$?u0O{}jz7&kZQPt^WzD5~k$ZPf%PBeb(wJb@KVmoCnTeoyU+Az9>5E zb`(wG!xGl;$^51Z)*I1_;8s}wg*{+iFa zkJ13UH^fM*e_`SN)=&{xvS_Bj4v6$qM9#!^ypr_4ucUv#g#=zR`!91@(@#?PB6)kV z@=b8O%`wvIZ{a~u=Vf}SnNC;)*7&^$yc*Kq6hAk^NYfvu=l)~d%_B|yr0mkb@^5_4 z2EHWummCf*mNw@7_CE65505-{PtRr?L`%dW?NVQ+{AEYADada7^<8#)`oFgQC3@vz z`5TuXFQtv1rvsLQJnaP)!~+t4D|{gyH;^}?@-z5K)dEf1m2inXuE#v_IR+$O*x>h# z^Uvpd(dIuVRJ&`WM;}81Kk8 z*gZKL?1;ei?gVx<Pxq&Z9{#*H_y2rid zz&q@}5I7To+)Cn)I-JvArC>elIRH-BBWH}X_zUZ=kyrbCxZ1mjwf`q6{Qd(6?F>6s z1Y~?83dRg@a1z&{{iRnAY*Db4VTVrmWR@rpKcMM9^jhvwzI=9icPc@P_nr$2?DrH2n$l&&j-3ca!|)KrntU1Q^`F zAAp~GV5G?(B&A-#AC`8OV{DxSL+N~8Adp*0`cL_*V9DBP;}~`%P36lRyYRt8E(J(E zC*<)w8^ZU(9(iM=$**{M)J6W1c}vT8>Sr^?f224_lAkJ@xAW(#+Gg63i|6S?Vv6T4 ze6igAO!?8d+n4!0OV?^UD=r2y&J{VcXh^?-nCFMFasTb`@ZNnh1}tUWM=vq{*k7VA z(XCj1N&MIkRNU5;^BDWEu(wnIz8HkDasG9Xn|9!>KJy@U!j}|2are9O?{a-Kz4Omh z)^+H?IDin0jrDJRY+0zzrFk9v47$grB4$J+lKf_bET z(&`W4IWTAD-tzDn_NPCj0ms<%KODL;4~!ul^T=D_H4LpLz$U*eyn^iMT^?Kb@O zCf4+m#GmOuKWkm-5=Q-j#ioeeOc*o$gzXo~O7Hb9coUF%TIdY?8p>}d=8eQitG~*s zPyFKgjGScFv0eUe_rK2{v7h@oU=|cuRA<(KV$qv_+-2ujvvtE zuPM{(0C!)v*&{c4Go%0B)bvx_Y`ok}v*5SwNJL_7VC{d6#&X9n<{yDWXDTvk8?#HoTz}kNvk9iZAd?+lc<>t>lvwELH zGHdy3uKZ2no2IdjA17hC$-E^k{$&|j(vWvO&-wG?6o&jnpG^v%%3=+_Y5Zo+KT&zC z_4gDU|746LUV>ZU{L|MTYco{x3mNSfaTkkuNf;Zqe=$bt%R~0BWt1PnpNe@27+Yc# zfN=iFT2|}Mh0Cd|`9BW3kH<($KWOph8oyB4OjB1T&K zDQy2w$4=QYU1=_B`!^l)W-#MV9d%mCr@9+#e&wb7hvUz#znNI>SxouMChK42PpVt! zr1UD5QU0*=X4k*7u}3^+_?6Gq5r30c@P#!6e|jGuhc*8+E&s9We-4iKT#Sv&@2#}z zO{E+5{%iBkf3QPL`I{Z0wiHF}?3Qr9DsvO}%cOh39m6*9!-8_;7Q8*l@4jGR?`JC2 z{5GlAk1k$U#kZcf>`=M;Gya%z`ztZBPx(uX6IZV-tm5k&pE~X?Lz+2Mcyb|&AuZ0%>Y!kW2{eUmx1Wp+P_MYQ@l|^j@}i1J0E1LxyK>g-Wzq@ zpEKFo$`uuzjgUQ??}z3qW}HsyW{x~n?h7@A)!MU<>cVKgnXA!39aLTV>%yilI%xHst_B;n_D1dO zvf58E(nX3-vR4+4uz{fRT~5d6x}&U<9dC3@?1{RDcz;@Zv;(N+*eBQY>jK3}YW;5& zb%e_H8Jk-U>WZxAPIq@7+6~q0&wP4vfew`9Z~p3w*a1uFM_(QU$1bqVMW@-L31*!QG2Ovfj?bskzBx4SIR6H zt^2v|uW_F&(5R5S>sRdhBK=Q8%TnSUP=v#k`=`9kkX)U0o$Y#UaBge6vWu+=L~6Ww zR_M?LX+6okZa>W!%40jYF3+_=;~#yw-C=dMA1!p(HB3|dZR(x zT?@TIx^C6=4WkACmA+PY)Q1;*Q+_9(jDFr=Tx`_BeXuWV)0i(k>arJ%>l}5`Eks}! zH)dBgRptiIqt0#{zsUurD*J7+Q}+W7$K-9{eE~{mcZ%BJ3%r@Zk*SYHfZMIfu=9d5 zyh!`{z-~Dgx^KxHs?gmON-Q$U_l$D@shnFM0^)su-Ay7-vJz0;I!6dm?LyOH}diPZz||P*3;X*gZrbLsh0N!?e7E?FJ3)*G^`6s zjWWFCQfUYklSV(>Fl_`}Ow&5~@tMG0?PRO>ar@0-VW%gR&c5OQx6X?n$6}{8uE9O^=L^I;NqmvJ zZLISY?XgG1-mLLBCu-t2(@^7`|5!hlBufV@2Tgx6&nwEgGVjMbeD=%u*Y@*BwiHxF z!XFtw3T}ks)N`Iy%Qlv>e=wC4Yf^7D*8lkGTVbm;hco86aBvivzwd${(DYZ~X7!ja ze5`2tuhm~yEVl~A#{GP$7g>6*j7Kom8Hk=G<^Qr;pD+7E%~|IeCGn~9J5Re6d~W7> zLt(7tkJzboXQrQUp0BOx%N_3HQW^7v*m<+ZnLV&a#7>H)f6m~uU%1+9W<)-Ip2Rv& zqK^5RO!=ex=KkQu?zwx_En+U~JP8N$G?;whJY7d?>%U^G{=M^bJ+a(c7#q)%Qazu8-w;W;46Jl?hn19&k`TAgwNWX)Ye}wDA#p_nb zc|#K8dlMu++L*6{k;WIE*Kh8iu);rY7VGyKB*mY^lY}R_7wbl#*HNA7Wo;%p$*Kxpt0%{&ZHpr0}t~ z6kGa9;)j*>;w;=9$Ed%EzmoVucW4%C{cVOlB6d)snO*39ett|L|0DO|F$%M zmET$tqUAr~I)m{pm#?+! z{8-DcJ?4|~5iR}@^OxYf+>#izvoWumao%lx05#3D(_ud^*$K<J! zo1Tny7E=C*ecJ%cr^TPQ@8AM1D0>Nor#J(^D`$NmW!tZ_M>0D|({k#_Ic^|%* zHyC5%^v^5qH+x~QDyyCTK+FroNYB5Suix{b=F7gF$sHN(Cz0O|^N5`oogbz0flp;t zT4wb8&U)UoKjsH8!}o1(BjD$*6#Tw0&dbNno7n&U{rtzP4+wp1=J=Jp{b^eM^<&Nd z#7-?3D}<(h#o%^t_~5%R@a<$x*7}dkR}N+JYxeTr^Qq1|T^~KY+RXT8vDQDsaJaVxyKZau7 zD2z1yLC@mXe3=ffR2R=@elGz#r$*w7FpQ1s4~mzYUexE0fA5C1{}ztrj=)H(e}&^; zt(IE~6Er!D_LtOOP0c?vz0`*UIJhR(KNUwwcp~0^+kQ1S|E03(Z!C^T6voE+&vL!P z=ZwNX-G65w{su(ZQyB7 zJ0I?A_w94FVq=rljJ)6j>R9j@`OdtF$5Lh~K}{hiyvb(a<3 zthvvIx(H23pHa8Xt&6!5 zHz*%EBhq}J;CtqKqPv=0GDoLNKMYq1v_Ktq>{eX)ysrqgZA4gTitcrYJvxzNfey}e z>)mUk0aCosM!CS&5v4+c@`7=F(6COkmQDKV0+j9qB)amR#XFLgbGzN2=d>0cUrm%*tUNz&l~*dGN9~)TH#= zzwE3BXs0ON{&vp<7K{n%;908&p>3x=cv_u>TuHVr7`y|)BvfOY!3)(X%yBa5ru(iL>J4jg)_g(bSA zaJ|kz));9m!|(kHr3 zA062}rfyq&A2hB1u@mn;X`>!5`c|A-u8mAIia-2lql@lc2wPh?SqG!O2={1<@V!3r zH5qa1 ze!4m`z8{sh=0r~f74dNYT6>hIJ-*j07Y;Ics6X*6<%>*rx_P{JvPD^e$|ctg%+Sl0 z{Uc>|I{e={|0RuOT|G^_uC6JruSmZ>n=}{{TCk>E1@2m%8u#(3Nxv{P5gy^ac{eT`uneVFc>=k8=nsr`K6ot)sHpdg>eD5k0~mAuHk_N9d9AR zH}|XK{V72<)cG%u>+cy%xygghbbMzKzPVo=ue0zun$N0^tui^x11UOQN`x0TuXtoR zJowbLsbB>0X)oYAad>FwsT?nt##k3({D1MQ7Y8~taI#$G;-3 zc%?=}Fk@bd`HRB~)A3m6C7n=4*so2Se^K$nCY~D%mHY4*=ZIqd*dH&CerP@~jN5kn zi~geoM*K6zw@iLfI~U?wKCiP|arVa9p9ze8ZOk8=1vW3*yo}n{avous*OSX*oWqRg znd0QvZx;|$;XE5uFhh#k0KOH67p4nlt-t1eb(;REeG%THLz>-*c-ACLXhwECm=b(YNAy1KJuu^^z6_Qwkce23#9l+X_^@dFgs zvQrijNNEGWLaAil@?P++x+AIQ|qq z`e7+%Xaem2TN8wl-Hx z|FQbhM|^Qy0j>TvyT}~nKWvC1e%e_w+8?%u=6-b=zRa=1b^c_{qpl|x_Wo`CZzwGN zp{e<&zr)FH|9HH@esx;?8T9p*gO6JZu4`q?XS~0O^=E?gkNaKP_(jb>O7406YNwgX z8drw>@z}53y#H7jH}r<}lvLLD&#_+}`^RbZ$LZ(!lnbFH@sa0;|KahEUH>>90Q<*j z`lseU&)0FT&m5i3>X#AQ|D6i%JRxQgWB!h+P3*oTe47)#@pM=#+wUsY{zI(%je~=2QoK=6e2xo^Vjep_Vqp$f^g5wKzDeC@V`+aML^(7QjG=FeFa%2BE zP5!Kz#y9!*ZA}mD=x4>~KM_o<{o!UiIVCclM$?k%poZgusL2hI%p z#rhN1f03S*C5q3zTWNp5+W$58tJCU_8h^>CE8d%xq8RfZR9%E0y6|V#AIIuPJ(n=L zoUgrKzLoN`>tCGygkrJpAK-Wd9M?drKPVjil^dP$a_0Om;eS|u_VWK1zq*T+@l$Te zO;?xNoaqev!}ZrP{ju{8L>c`Dzk1!~A)mQq;Ufatj{d{?V~>k&S^3$|U&Vg)c}Ne< z+YdDS3a)uLpLPE%7~!TPN}In?amB;yORlfV&wq<5=ikcG zPXW9?E=*=F2WI|*?;iHH7B_xx@kHq^JX*lUornsgbQQhd5@Q#;2TNn>V~Ba zW%U0TKMvt=Toa8yFVnT0f9_^#-xoSQjQ$7Xu|FQiHPG;I?d%Qyj-Kl;gn4`ZWA-o3 zegZUh*=0znx7Pky`)_glk$PG8FIt9Y?>{FY22&7yg&7h=@TK-O`~io?Y3cD(Sl3^X zDE(waY4ykZ7=E3fJH2L_wnlDi_1DVsv-f{dNbYG&`GYHK&+*l6yjV6jY9{OaD;nWq znfR<7`c-_{y}^GClVSQ#P;z1_x`<)oy@S5r<~M!@eKybQU#q`3BzOFOkpG}lC4Zam z>Z+U%k&ONWC2#foU!46@&u5Qd^goz?0=h_K%3tR&u#B%cYRQTEvRMrIasMTbKb5U< zGAsWU;fqyEF+ZW0qV?AdBzH1XeuIpOXSq@V&-~uS&t%O1QF3A?x=3Q;_s5!T<&yrx zl&0xf{9*fJKR;&{k~RkY5gYz_IQL2hx2QZ{Rr}=m8+2xH2!P+YZ=~~b^J;b zW<#VSN|WC^<z>{_Oh8KpD+NwE6f&oRT+Np!xV;yZ+2Xa?eMU zroZ4(v9i$pQ_o3DN4NI;Fn0a5tp0hd{m*}it6T8*xH?IKaEz+#IX(Rb_ud5CHlEWi zac{UJSy!(<%GI}=(6jchV*V*V<5?RAe&C07UQYIW`kpU;T5Um0E!ZyU)%GeKQ6?<$}%a zK6+RH=ZUL9)^Y_`+N9#F(arMU7i{G8d zEbhLXheh_}4PL(gA#XRb$MVtd=D6mFY#Yd%88K_%HfNHTK46?uh9ViTOAv_`VoVNN zqy8y8)fOgnzHcgBDFMXk`!C{%3Vum&dc-6*b+Rt|tLBJu0)j_P*wR^B8Ma^bROs~f zE|+waPub?!z~xPT8dYBPm4D#d%ryDRu3#|iM(kCkuAne}lTu+tnq`ok9xOn z<&FcN!}bPaMjFG#dzM4Fn+CuXTdxzZc5B0nh)If8 zQ@mQ*uL}@QY^n~EmDm9hM zwcygaBGn^2BUtDgLnciyB)gw~nDWKg9f+Hd@;FEn^tGPOlIbo9ux;>BR|Ewh=oWjXybEo8sJ;OXhHqSA&TW72%d}Ui#{;LzuoNz zH)CNU1~jIN7UA0=oGhXRh!TV_F4Fr-?ejZ5<6tZuFE7HkN9kn{#r{cxDC|?RLJzKd zcI-BwOB@8#@q`H9Jg)F!6MrH8Q|zbf;SXbB3>{w=-&B4nlwKN9l_os!UiQ_1kT9n> zLy2e@O~+S@@Z!ex^#g<7=J%cqL3DgYJYY8B@WON_S?7f-*RlE)TU7r{&?f&x_;?1~!3N%#?#|w({u7UPRtR5? zDDJ;sWq&{MYEuT3)A8jZJnnA?ARON3BhdJ9f8>xja#aSLpyN-7@O=@kAEFzZ_zUCe zD-T-fgip@=bP=WX-<~5>fwB~(S;78&D*cSNjaqu7i-487RI+$esTCWdz5#ieg($(hxzNF zi~fkx=8pm9meSyBvTRs_+B`;F4c4bP{;(?Rub6MCjJPz+UmTuF$6^02pFYY6$EP(P zKOfzwdiJt%5hJb*^B;&Vj1YZ;9}on!FR5|n5}7Z(j8%UID7_(~STBNGq5ZGOEt9L} z{^5OD_VX5uk=!OM@?V=Cnqtv;^&cC5Rt+%#nX(=Uo(V#j~pfIhB^r@dsIe~7jJij-KV{Uj?M$0J%I zfoSqmaYfqlALfrP4f_50i{HS8@6VKe+kT<_{oUgPMDQHV9{nD6Ra3SsV$-IzD2~t;C@W{x3w+|E1zG z3PT+t_e4+rWBt!_i^Y#Ero=Mr2Z>9#pbI=dYHq*r^GoWI_bgM(`|2RJngdc(^&3=j>ZmQtNSr~JP z-ZNSC*IN7cM0~xN`~woIkMqA%3<7?;|3cXkxV*yq|7rW>v~K@{V2`WvMFIvQN~=Gr z|0-_l;l4Oz9&22LAHt19lvaOr(sN#M9}K?WRTs|uE-%)HKf(=X;)4^WpXH`K*(cF) zVl-?2Jrv=FG4U?8uMctEJKpt4s$$v?<}c2Ef-)y={_t>0E9;;Ayq^Fh_Xwu^g}<)f z=W3h_$i1Hwz-YfMm4Dc!Nm9?fhB4Y7VkdU~AxsCX`)A_xSKXLkZZNC?#PvsOb&P&GWf)Q>!qRspNHpxA9 z&ClG(YX4&qZXBYt_Lr5~t%mE?u7CUhsUk-IiTQ^h9Nsse;i>N`kq#%0x|aUw?-F|c zw*8^vvG%_cP=d*b()z#XgaKc;yH?!pb^XpN*7i3M;UbuLYW(w>?Vnua!hT*cj>il~ zc$)r&-*tLfRup{WPse4m&%Y)ixg(kK+aJ$3&ezV=I2pHb8f*I(*MFdFS?jN5c=rCc zWq9`TM6W=jKcEj8^x^c5AQclW$KS}e#~|5=7YT!R6mXS)B5|z+TVYP zD~bJETuFgo1$gF2!Oy(3eO!n4;~V#^W8||`1!2S${T;j};Hk>(qm^+Ih)Tf$T}PCtf-AxzLN0dVE)6K*Uh6nQzf;^}Vr>^Q>Zc z=s7NY-Qy#rN*KV8pcV7#eszLq|Il@dl-dI)>h7|=@7qFv!kXxeNnM~Ute!vbMo*|% zvdB(KLa-RsK2zUz#|M6}WJ9S+zAP-XNYe`(rvTo$yKM%BYQnaZ-A`Zh^vLHs9;+)| zGC+Jx;pBGhkwz8z&<8Hfc@cb_Yj)n+-%I)uw;FbQ(42XO>mQfs)$n>d*JxeJi*Fl` z@DB}^hYcgo@E0gfYwzuLmG6_k{rb^&3Xu10XwAMHE{w1=H#QICLd9rPMVXTTUnag; zzd;bzu<~AV#F0MVxxBgAMILU?xUa?rlhx1oxnz0+Tdh27vM~Mbm8g9 zKID`>yVc)@*~9184?3J!KLj@V&w8xb$sV*#+dYV~1mMJdes;3j5wb=}$t{@X0~d5+ zzNF6@3#Y>?c|B~LVdl)3$jE_%V9^fy_&G}q;k(2Kh4STUpj;()zwgySPV4J zm>0Y)eR+`)wC%U@>YH2kFn^ZBwLaHvA>qlav%xoQK|i~5zD{pP*pXKmCb!T5iWj<{ zbS!cN`JPAo*K9C@Gh3A7PgL4Mcl~`;-!59ir%6MWeOPP<8#m7U)&H?Ql(x0$yP%I9 z^mE>{=X0zT1n)EG_M^}Wlpo3YPnC3p{euVp*SgaM=lla>uROGtdXp5)=n&?&N|) z=iy~`Z`^=bC%rQBml~)@RH)eA9Si#urbG=t#sxncpCcQ$>wvDbN{x{@7dWz&%Num8 zp?9juaO>r5ZDjF~1P`{4%i3GRQ zc|#>*jud~3OBeecB|I;qjVr;8`|6#IP1kM=NC#K!cy8q5Dmt%8&|6Y}*uU@+-3tiy z9U#vq0mSpIg6~Ms@f}2XNt9k4(T7cV;dxD4%a!Z`ck`fDzUcu$)D{DtSK_z~oIRc= z3sT>oTGa_mdh!(}Y~;afI{vi?kK;1rQ1*C#QgBP@uZMTk;*~piu$+!xF2XmD%gAmL zQy7GdD+2Q&Y-nV>T zW7_&77ma4Jf5)T~V$cQA=JMY@>1Z?5Ii2Ab#B$-d46I(-x{~@1OSfMsovMp}|GbvW zaG&lzdXs;9URG#iZ@8y-HY>g>DhQ4Xq3M}gR|aodI9Y<2!s=K0r|U0kAJ04B*CfWe z2WGf8cmB9N*A%`;3I^xs%W`W3=M7>2 zMU`7zeuM0*w%dFHTiJf1S=U8auWC&B4FVGh=zj6n(}gEu82xWc?QhXqpIm?AxK_&V zT}o?LjgkTqx9Pkm9N$3G|H34{j$n|@jqSA}oONA`<2i6#46XjD_RlFOI=+qoR{Ixc ze^^eeFX4U5#~)#OcE5JZ__OZ|;&=|+KhfuJmp|3y#Fdp zHXKlLqCdL8@eMRPq2daO^3)P1sgZ#DCt-5SCj0<|*GH6APt^F8T=AnaC}4a`aAShx_gjQEZAZ|BL(j!`!PYkH7`1dZBwXEOGeBZF8_zk+@`xDiq>XZFDR=6VUg&7mH@(0%#Jm9~ZYdLm(LM&tci|ff2;p~`rxUW(t(4XMX zDS}o1;_Q#YX9c!${2b9rJiGoKDFF$>AJOLRkDPb7LB?Yl?4xx|L_s>B_XLR9)C~f?u{MubzW)HEk-pbm4xgZ>lub|aG%--L? zeb~ddsQNZDt`pb4xcbvL;?SVRi3PmQ5wbG_#8&M1RsC2aqh~F1H zt}xcGe&OKQb0m(APn*qp0YCfWHgp7wyyPHoaZj^`MG^1*f~xTVIwsCTyq?CZN6Y-tY& z`M4%LjwiwK6*T)Ng0_6-2HaLMt%+I&`%(TB;Z115i>p7!(XfS{8m#s;r{zu2`}?5A?pB|es8=G;c;9B_OD|*5G11f2YbeA zJUYE$C2;9@!TCA3Iwzvvryx4HDV>mi+-RlI4Q*Eeo*xSzi|}D6{Uk(jzJgn-|M|S- z>8P((s{qfBsboCQCjK~{BLd+sAd2<(_LHAU+mU&o*YvyKg6G(T7iYiWPb*_KFUAbFG5SB8?=*BV9Z{P75o^n`xJTbs zP7GbbJTDQKCjsFSnfQWRe%JV%H+6hc@Eth%^h1yoP;#;TKTe1F3Ge^+^w+Zb3ud+7 znMgn$qBQ*})cZc+`c}AX8NOvT>-dp`aLI_$^hB+{UY~W6x(|k|<44QnXScsui0^Es z{DVhNF6EkSe1H4y6Z1b@e_vVOD^5Xj&tcIY8T4zJUfHC7On<3}ZyHm7MYqS+aSQi` z%REeFkIQXs{k06wzJLB-;=QFgmHt$c6irAun!( zf>oDZz_GS)nO>{{AJ<=6b7gvOQuo1&*-}GPVA2>h<%~NjP&akN)YoJCK(96rAOG|= zgi!l551B1Su=KQfi@Ucv(ZQ*=|$w zJzdE861|2Oq}h`b*1FnED+Y2`=#!|!0ZybsX_c?*J8$yj+>frN5mf6o;ydCytYqi@yd4J zxldJ>o>&eYz@+lb>l0Ongd0}h`LL`HylQLPCA;Dy*H%4SwJ1!HY-sQ*?=)s8Y~0ai z)Z8L-$k?D<^Z1M*xmjvT)#V=JVXV_f`=2+YVdwEXd%I1MA$jtXL(`<6@+Vw=xMQ3G zhs;e#^?JI-7~)kb^CFFHVOgDa8>vf5U@;(7n`n@S0WKF#nJCHu|6N6qN=Q#oEgaE< zDEY*Vkdk>Mcit9GM4!Aq-S9oPyU`fsmz#ToW3**k5BSVKn&0=?i^6WOHXwS7x{Nd! zSFM*(^pk-&>us{XjvJ7~logvaLp@>lV4aO}wl3foVRLPp-%yzK=I&`7|9+%~VlO!< zFC8+nZ;yeeZt0WBK90NmLk5yZX9RZKInaRQ=OlJhSUs40+fDEF!%u_A;^JQRKkD2_ zzvQ}m^I}v%WBIP}In~bO;UWctj9%JMeEibkkI(u8(YEB{wR7*dI%nHE`dg2K3#uc_ zp4r*~&!k}8n?AiDZ4JDYs_+JtQ&T_R(6)ocQpd;6JY@?pGmh=EV0I!3%o1H0}`4+z4JJx;CpI`u%->yEQ!^i0Pv53O0{Zqs{Z=2koop=Cm89!daUJ(R6&Y z2rq7&J|dM_95yHkoNz!=qZm$m0ZSteUl_IhOHTd{(4|k53uBt_GAJWiL}~jxRGfg5 zweLdN!P6M)1e~2X{$;K`Hm#m8hIOA(9G)Pi6iOW|X7zJ*LUMOOl%{`!pJo!UziNZO z^WAB%1U;un^;p32cSgU}NiG)X)i3xkDB$eG zl|N`s_{w9p5rEfY6pk0vgvVxq^KUNywGAgXMD0msU1x~nkLASr65h9bon_+kP$@e+ zo#Cg$`Sw5;%81hVQ0r`-*@zj{H?kP}{5V}tgi}PcdHK&Q;oh=cG?&#+-3#FaT`~37 z-2O*5tXZ_T_Zo)$n7=svbuE<{a4}{$2xiH&KY746;_$+BJl1`R-Y6p_M4PYkpQL4u z`jr*Jc>k@X{I&N!?kZjG&nSOO@zH0?u3m5rVYR69oiQ5W%rY}%zoJU zw-&E~ad;#a>pp7>@vQsg|L@@0 zzY8)570?M$n*C7yU&kdk4$H=6Fyhp({s$wREfY`KpXb(Bx*zy60MB!T$;_MTzj>V6 zE0m9bP~Rmn4Ny*Z7&U|SyCitMiT!Xi`=!21a-z?XADeprd;KKXe+j7EwD|`W=No)p zKctw5XN?p2r|swMsp#YUnt0avn;nwd9?|CYH(}YjaO;;d80$Bbyw!dd2b7T`qBQ+c zaX$Tyr?g!)H;EBv|G&jwoc^s$q^3UXID^suV*bwP0>_)tb2=S+eR_*P*nVh%juW+l{A{eupf+Xnf_Zj z|2JB|YJbh+)M)yzSgg?=o)>J}v-L1meB-L5bLQ?Jx94!j-#GM6b73(*c8Hp7$G$oI&n2%nXY}Ip6Ia>K+PL8?zvjTj zlLw)aU+%#faIc}7?`bw;dlK&vpFiDHCOYK{-_+$+Cx=pfkb~ZXm)8t}OOjrje+V44 z`_C3XQ2yc$leUzA%#jWlE1J`fea4Nlme==Hg5Mi$f&zJZ-)$QR4B@25z zP9N?E#n*(s@c9)|w+Gs)6rg!z`r-Q&^ z=;t=wZyCZ3Zm*PgbF^Sc+@AdHPOb-3 zk2yZjdb7ac8uWI-f;|S18Fwzj%3*+2RUt=UeB=IX0lMAU(y@-waOAcw;ZIKSRACAnjEAc*d4sJ$O9!OaC%kr!%O@C z9mFx>oBqb{0okyIzC)6j-?Ts$^j6d#-e|`g)&wE^z{{4!=|dh|T?8HJJN(*NO?dn> zc66L*;xGKb$kbnTsaow8L3^CA@wtKskHzYQaI^^ubr4B0sc${+=R#;p$IFWFc;J^q zc$^oV-$5)8( z%^jrsksJh3oi)sY1I5!cm#pZ&0It&USt7i+0S+$Mhn|sG02OpRZ!ust;_$@H?Lu^rdEwFzqpvD5COBA3 zar}kp91W5+6XG}78XwZXN}{_#>-*X^tuB-pWy#|@hP zs0HQ#^V)S)G86x``ooS@4r&lI`6>G$h^XT288=u1H2!q`sUf)?5yf^bxTQ9j>gC4l zSnszCa%m3;nBLU?s3RP95H;UmU18)X9i)*Dl_(uWf+GOmYM=}3=%Fo81NQ5^<4R5O zH44$4$9Rzti-Y^6{wSa3_E#M{@*7b#g>{1h_lwxkNUJ~U19M6DYgT3n4j#bs1R)#I z1_ADuasN(}-=ILDhCk2n-UO3_usy(MZ$(u81Sm-0@Gky{$N$!oXwu(MNdf=%nE}*DVeS{U0#;Ut52z?LV-C z)Ew!7R(_cOS39^?P_xFYEBgWY#t8Qx9JCeR1>ch0vEx$iM&)U&`p1sd|KOl44s>YX z5|_VzYrlQmAJ+drx53)7`eWZ9!wymhR1dWNFWU8fPZ%M4$~xjqKAb_%DME%d_1}Zh z@3u_5cNg4u|dyi_7nW@#|JL&YZtBfs604H#|Mk>%^jqo zWWs~c_I@6`q5GQ!uub%UAYgox{NnWY%1wSpc=AHnNXPTW0lpQ7UpwT%cSD;5*8ab_ zgB0gWpo82>$7kIxu_bUqR@ZIw*2?XyALtT?7s|sPAZLdJwnvmU{((%49E@lm z9q(DR;SaaJ-yc7yV!>P1`M(n?cPO*`yj!(hA)sI2n3W3(;5d3t5st`yv4a#lh?>uT z#x#7>ct8{YpN_Ad2>8|oT?|2#)_$n~;}C^MlIwPDV!Vit$1hie^FWl={tAQlNCKI( zvQ}zlJmVlJjCVsg?C2EX3qKdheBgrNkuQE7Vi^Gr7%$HL7RMH~|EcEBn7<*mt#e{bTJ9J4o@q1Fihj0r4w$RQhIIBpK_sme#+`4-;j-&8HdV|DV-Adw?2t z>|zHUt^H8zPsd}aJsSM;U@K6X+&>1@F3Gb%aHrN#1(%$1O}f4T_p{91^22E{nw(k2h3N*?O_ej8iz6(k0`DFvihIw3SqY-l4h+<`N#S{aqv=Wn)hl>&X@sH==i%k0I?I>f5}QuP)u36m@$50 zd^Eb4is)PXKtQW!&*U5Q>-H5QoEYt=rTq^%J=5_;H&xd4i@5TW$A&CP9LZq>NMkW$ z(Zw`GY3-L9e>?5pRR~Y=8S-O%9J+`{wE6s5qMOQ#v+L6s{a;JVZ@M5#zcTTk`#?R8??%@Ca|V(-1yS1gS2$4ZIzO&- z+oa%e0gQumu>NNv+$=&4u*f5S@wz7>n75(co=|6G(&7NWHNn_55K=v6dm zV9^3b`^EJ?58)Ou@l^kx;c)bxlvyT2{}`W%a0?No>5n>y$ierh;_?LM2c|K8KEf?v z;;Dm(cpe3P>%4oh_8%?NAA9}(Y5ZbT?j?xQ?4Mdc#JrmywI{#e|F`AOLFHbJXnRBj z^S2*=<#XVxT9Nws7uy&InPK}`iqfw_^lTGec));6+7!WAHj=TQVf#uPp21>d*SIt^~Sf$@S0mOmfimLd8QQ30Vo zL{xrffzfg4Le}|q zzj6Pcxayv8VyD^v$L&9hb^Kd{%Dom*TK`S$e-oEt9G_ha`PY_z9g-XSH)!%xux^tZTd?RErlqPU-y5tQ*0 z>@zxlSwoP;6V)%g_LCvqyoM$A_mU$+Utch~wN{q&v+g|o;J5bVzN((RSGl$)6IX}d zFP$z)o(YeQJ{H}Md}-}4uU^vwyyT2hcTcw=ZH8ac2`DxpWzY3oSUAp^Eb7&%_c^U$ zSGWwD+*=gb#-&ey7N#)VUdt7leBMZ;(Qq|i$gq$gz{nl0A z6F9S$-M>AN03vSL3^}`jP`BS*hSN!loIhk$FPZH@P`xkTvh9^1FnPA_L)Y{mI1oAE zO=4C(x71)%{GFNYp|7Kfcc7P@bxA#2B-caeMvsNU*or@P?; zU#i!XIp#$@p(^9{oq6p#!3Fa~jed`{Nb{G`LkBmgg5Jaf1{c%&LB;&|*uf*akYT3} z59+g1pEQV{zwq>?-hvMjPDpt^*b%~Z#q4YoZ$j=n^Da5c$$|X1-{i>Wa#u27`q-PD zgX~F{hSbYZ%HCw~wVUma%`hTeKG&+azOaY)vBM88>LU%8CLB<()*U+@+hmYt|XAm%AYsE z$H5*(Iga{1qyI1np0;|IhpiULGubxz{9Zw@Vvgo`t)3P9iH^mi!w%o!F4L+xJFbT+ z46uF@a#f-y8K2c#VM&?{>FMXd^~zBp8_Eu5pIq(=-uwL>CJ(eFXYKB*?BQb%`!b`{ z`*HMO{b{*X8Q~UW+yU>ESAvIuM`lh(n-UKw-e0%=vETqJ&Qh?ki|<)RW90SkS=ZhN=(~i zOn$ZL;yduH8AMI`P!<~IP3lSngj)m*Bg3}$@lko_K+3NPUFX*BA@{{nuebL;J>*{Z zUAacf_a2w5O)as`xy9`y{WvY>+kLKL$nq0bzE#|{^G5ziuDHWpd7<1yd)7^^&XHeF zw~qIM-q$8R=+$6IYD=%btNBu!JUrn5;ge@UPL$`%nU~u_k1Y=E!g_WhyZ1Y9d-tvu zjE;G$banyTSiSV((h(Sj+`jo zf32Hp18V|(4Hu0zf+EG&uj-!T;85t7zjmAtjIP?T?5Kx1eAkmWXrBmh_RZA#A?vN6ZLQMaaCrmh+mX{I z>60oLq(2Ld@2U!xm%gN@>{kO0f1;kxtl^M9Jt#k-?MQHtd=|L=Y5+WcTUlXb5(qn_ zXGpvnG8}x3UJk!K+l36SmEKaj-jj5QFPAz!%8rbB`lhD6g&n!*<2yT-{wAbH_T8&R zOZ3RN!g%GQS%b;yd#@~NtbNGFPBlIxOgl^`J|v=d8-mbD$xY7HjyNrtbw!+M{MSeD zV}wfMzl(xfcd3Z8jigOPStF5%I42;^Xhb3+&I|4$E;RnD6#VmyxYBspuMvDna3xAN zSn!i)#O1&JX4&{#n1_39M0>%NAnRL#$L^gYtQz5sQF-pQ%r|l*1R?eXf^?boQiA`~ zUt^KnB^qDZX)Fj5+O-iM#1f|;B#P7TB^rOQpLho@9Z@iLSE3>4ba3x;lh2IP$NUAH zs6R(UY3n?L2cH#0eUo zON#j8b%`9pb!);4-xK(1yUJ&QWeWTdJs^l5qJzXbp!6LPz1f84xwyXQBltFNxzu^n z6nIO=zZK!7PaM0?>RW`i838zkpkE0`0FCPxOqz71j*c7^%OWq$Di8=n2k96 zfgI_}PtRmC);Sn2gDzwdrO)&GWWVFi7;{D<^>x^9`x!a6j7Pnw2xtA^r8xPoUUU7? zvuq4worvY{gf6-uN}K0W^VEL!U0ug0MlXD7anA=Mt{|gO^yuxVZ1o` ztNl`EOna>H+xv{8j=ZTPgGVs-36Z!&S9F2RgVz3Ctc;&>2{)e7t-Pq;-X|xB!qatc zYg-wo9L>7U>Vf1}MwBLh;?+1w*t0S$;fSK(v{hVSii$p%*c1J($iy2cOuWo}AAe}X zs&9h#g#LzC0DLRxf~h|RL}~R;?Q@PhzvM)x1M_}gf4Sr5rQT6%-8!i_jCG%}HC-AB5->X-izLIP(cZF5XIx6 z;Fdb@ySPSaQNg=~tZ{OE5l#cq=Jij0?+{#=8_U{$IS8lD#8dr8-_=_xlKZ-`wqI3* zQ$v*2e^GJf&j)ICD+pkJ&#JZhYY{&9sTG_4TZ9LHR{POJ<<@5EkNV)Tx31)ixY5xJ z{b70fA)FSXH2depuHMI$d^l^T+X3c#Iw*My{XC+1nh+tfqPVt`0yDWzO5L@x~H|wp` znd+Xcv){BF*8blV3F3e#E|=hzde3OwmXL78x>&|OJ5FbYa5%n&*8W#0`W@kpY~L{d z>!EnY{1fBN5#9<>8lKm9kej#6PK!PZCNcDf@fHYYi72i9sQH7Wc9_N}l6jCR#t%Zc z!HClO3E}v)MpbQ^8T|J6UGb*f@y-YAT33Grd;cTO{-|Q{hO^ecH7d6aOZhJ^ouc#d zb95`^XYYSnB)>p5Twg*lMeQGu-1dml>Yr-A4W62(qrXgJ9lvZ5&JIz!{q5-dgbSxQ z>*Ss?=Wi&v`1XquvdQ0~@^75|hxN}Mr|pEw=ZEMttQbPLfAA#4XV9ALQbwF2)(74t z@{eZSLoMvt>~i9rdGt=a*D6o^2D}4dI3$x&l#xfcf{TltKAn)WW36rK}$ebw}wv z5Pi~wCk_;(v;(&RRmlboM}Z^yU2xU%4^H+d7_wz#bP3?~oiH0Kz}bnjzlz0PUne{~ z#ArV)#S7D&VC{drP)6Q}(%UcP=hU?vvNgou58FR`|07O+RI%VLYx!G(cXT`7D!iaA zvEqj!y$2xLeEjoX{bRxORQCDXFoYY9D6Rjj;1yPLvu?FZkaGF=`e{cXxkn;Ovp;J7 zaP;6eiB3I|7~?-m-s=885M?xq$)8$(Rb1MnU@-De>yJIo`oH*TgZ}2HeJ-%9o0&h) zwt0GxAMwpBr^AZf{C;mvDRtX$mtS8teeB^65BO8(Dh^HD@tE&2@FPD}>nXqOW#d<~ zzdYhU(>VFYfAdqmreyERy8+Mm*2i9GdmS)^3%O^O`UpA)P2;xLjtsDX3){1kdIa|a z!_TLr6R(+*=cgX*&$l-uyOkz)SwGfD;HMjU=6z>*V>@MB$@(uGrR!7d$&Frt zsk_yD$)BAy=k8wt5ZL>QB5~Ffq$WC;@zyy&kw<9yym_8LOs^z9O#aH%Gd*wdb9fsd z3YJWo_(PSfJAa3qaNh!=db-E9@CipN-=a*6w4lUM#Lie|Gk4in`S16di z{I*J(tnh7j&v!s?Qt&;~k@q{E;1V@6JuD5sb0bH&xczdnfLB)2+)GxN1K}<|F*WTi z-|5l>Znt-~P3?Ou(z%9%g&>1VC#j!Z-Q;qq44b)FY|OY()9TF&l@v!KyJjG zLGupx25ns}uSd%r;cD@n+oQo5=G1@tnmyVL{K-$xjvaOb**qB&88=rT-6n>t?X} zZ#KYtU-VGzq6%m~8b8_jRyTkPU;3=?phcS8+5+WF6@ki870^5+06jb zb=Wic5q3Z-htAPF8)-sH&Xil?>FGq)eTkWnxfTQ;j7o{KuIo)s89C0*4V=kh^4Md4 zLtC={N9lE3uOa`p{A}l0{A}l&{A{FPagFC&c%AtYcc3Vq>uvDRQO>u;``Pe%5zm_h zV_Tn+6?zc<@{{zaZ?nL;izs8lc~8?k4g1;fJ{Mju3Q|*kwpqNbr72~z;BNtSAi_(c zY_Xq>wogKxXLWM6=c7+6W`Q}KzqttC+|NcECpqP7+CzNI)vr1~lA$9V-%*6e`{!~< zjuTDA6#Cf=`#yhjDP;y!V@FEk^XlTJ@^?V#@%)-5KlMIghwFtJOOj{6RXYBv2;bb# zcDjkb@O_R+bC;Zx{hkQB==fbCytsKzq0agxrDch*jgH?|4492Le883@`MoY#tn*YE zl#wi=<8j6Wkux=@4+Odn53(AtiFKVIj{hVxjc?bkZDgzyFdK1rVLDzZZYRQf(K@#i z$_SgsE1WSQJn%fSb3`&{YbYZg6DMo#XQS0W6^~ZDW_DXI!FgV^`ClUxFurB-i`uym zCz8Kqc=mmcu1Jvo;AeYRq5Xk-VBD3{5s|^a?I*Md>~P|69+$Dt^}khq>}SLNq70ld z!ON2!+6y$=zfV{>W)I_iL~IYu{cI1L@L81|v&|srgwIPy$-S)Sne{^Hv7Zh119+Xi zqV1f>0Ymn%o@XYm{(^G5>m=OX!&s+dF~#APs19;aEA20hwf!g|LGU^l>s9bGwa=;A z<;(HSkLI+Je{1cZ9gqENTBsaWSh48C>i*VSv=lEbVtpUBxu3132~TwC8zB#BzkKr~ z1}ujDqTdBqPEF$n2mOxsK_)k)6OO-UJT*71?zM>3epOL=HAI{1|8CvQ`zlWtHXfZR z`s0bt;}d5;eYE;_*pr<(YS!}Odd2<%TKR(&-nWDAYo1!WT%XSBr_n`v(?hhm z{g6LGE+h)h55V&jVKNS&Zcok1kp#7R{jF@8-nwc zR+;L2_f-4C_0Qh_7$CX-gP)C>KU5!>pB)q%22?kWl}>aAd})X-1WN(xkG9W3?b8#Q zW47mw{= z!2UVBZlldpDL7F$0%XPf?G`m;rR?U?+%JLuo$6Qu{ce<^?VhxON5 z{j=j8QMt1aZEpV$_igP`pdol4A8%ANrVE${C^_MTF2WIQZvS!np3ipso(n-3&`4o8 z;9F;O;g2Y8mx5br{`+h7keq``>lpKYjK_X9?5}Cwe`_vr9~m`($5?-2KF$4XI9~#t z$2MW8OWR3t(Tw#M#=9ZF5JYMAOPxpRwm#Y3K{19gf5Uipg!5qHiLTe4ag&dnx!}2K z0_*%kT>E=xKKLTPqxU~H{}9JtSS)rwZHw@v8teSc8|e-Ed1?Bm&ZAs?*2Vhe!dyoG zf%Wf$@V-p_Q|D1$n{2qZ=2k*0$3OP=*P`+h9<2Rm%kb>`7ei6GLzv|^SY`U1%O5^k zYsuImMw~a+ANI51_DvgqsrlC(or$GqJLUl1XArV6ZCbx!{~Y#niRzDMv+Mp9?t*HW zT^=3BGUC)Qf9xN`{xT7sFqmj{j!*V5zBp4Mh_(HT(_e0fF%}g%L5%$yq%N`Z_u`Dw z{%>QASnVeeWi$#=n*OLbx3Jpjllc{Y`aDy1`yGws9?O)U+P{sda$eYW!#2kJ8`s|$ zgbPNLR)1wSCqHsaoneJ{_-5AqQ*rf2@Iu-V>p%bY`2Dq!!O7OHf7#E22u0-%W0v1x z+*2bkc~N+6hTuF;yw5L8COXez9Kwxf;)}xCN&u&DSyrmn1V;adl8d!poDSEQ@Lsh3 zn1B*YM3h#4g*^qYM8fWXkL^agv)aGd`a}7$@oyQP-A~*yJiGlzAo=1ErOiL6I9avI zEfd4`W&qw_5GHd6l$@A^E~X$#)1QlUMjgLLp~1KZKW!M}KgLI*i^)tpZ&t7Od?NCh zdQ^|ozit1RPwVtA&pLibAqLS*`71g&*YfX&Er}WyYrt5)VYymce^XILF--o2?jzpv zmHjh0%hgp_*MF_$AB*_LG5H5ePJhF1lRxV8qk~F}{u3o{Vf+34{Tq4rvqQG`f6saz z&NL)QDx%HDuWE1Jf{Nwy8T-Fj{seR}3sIW=!|)@O{NA_bz1OHuXFU%p5#eSs@r8Pu z@9~pwJzgsRE0VSSOh>pGOnlwXoJV}>XPz0O|3%4LsQ)&<-Tzfn1}4FZPeOtuGv%+~ zm|W*)bsuCzs>Cwv2e)T&_IuejKCNz7LhH)UGiIH?&PH!e}qX*XhH0;dUe#F(EuvqN-pYu_<7a>aP z|ETrP$47(PRLo_*XNJqa0O1xQO4C0)GkV0e_6l!M*P92}zbs5<+_ZiYC;y?f7v0p7 zqZ#Wb#7=Dg6+A~`ckOWI2X8TcF}hfSD9!$;{d1)QJFP#?%V+dI7%xtKoDS`hUJ?$o{TCWM!3CjClQr=l|^E?^-1HW`_KP zyk+ez{>Y!xymt$}KhoTPhwG^j;WjYw(Vfg*^G`gqe1Bn1FsuI7A>4W)bJK!s2K~ z{2jL6?FhGniLZWn`W1ijfxz5vcOyUzJr@$udp_dy7je?8-8;eg^*#TFHv@bt4*%XZ zNJ&92_P6&xg?!leUv?uwiV+p{Uxd+>F74p!7*DBM+1BpAwbp*eu%MRMG%o}{vg5~LzI?`nm?rgQFqC%0EW{Z5G5jf3Bny=@{hKc z=>cmd&dMfwtN=IM;2P5v#x==*2;mMRO0&PZJ@s$7QLD$tCm&c2E_6IkgcsL-uFAZQ zR~3BExIG;o91Vz_*!hc+dc~`6eT%^k0~#sM8}RK>bWw^ZjSV&bN^Iy-d98Z>zqbDu zZmb&psI0=5$#$d_d1B5DuB8ib?^#6^9?U$;@Tk&upl}0E&wEpG3c(LX_5isP*HS!#}T`yR)4!f5zE~ z8tk_W$G^CHnpw5xTRBl*RgOt>}W@?9cOb$OZjx-@NcZ z@Lt=oSBq*+aLGc`2cy03n2;OQlSbPNbtIR(NE!6ukOArCK4SWe5qhM<%b^R_Yr2w$ zhhG>r{EGu5zCU~8@&ZSAl$>x(^OX}w8|_Q?ka7VyXMXy`tgcYv_9@Qks~1_E;@ zXJdf1o?%CN^dt+0`YPpIb%b@#yuYmOYexEW=LU2wG9@kTY672rF(LiRlgI47WJ)SK z2fkd9W<~b9|Nd^@u62CxZlzORn&^Us#Qk{>8*E7!((CbVV@X(lESX)y?>J}g&htIb=eeh=-~GDZ z*QY;P&-0x9-fQi(=e^e6+hn0Mpm)nNY|JbzQPzIVuE^d7MNfV>c$1MC^1gpqO4Hm0 zT|TnC@!4=oR6Jh3)5%U|sIIMhg~D+gRC6z+Bba-lnu7~FIuCY3HQF_@PSt)W^zFUY zTe|m0)59zMH-Y{?3bHc7o&_@U9HEO&26sfqt(Tj!)(nbPeZPeV}{mw^Df%G3vvn+H`b~JCV z>=I{GlUj5#tG_Q|DL5~)Gc!hU_OVm;egQadGtZ^s0}D2)caiOrY=pku(|3Ik*#nsj z+Y|b(Q5`AS94;AHtAdhL)U!5rF-2(I`>|g0+rt#KVbS%+eN-?+son4g)^O*M%YqRBVX%36cI2e}{!m=+ z+K$^X1kPVpY*U=+4d8h~dw-cb1O>-cZ@2P?De;wE_lL$o-q~FOy!3dR3dedc* znsG?XmTTH*Rb$S8r1d&z(`bb;cUoy9xsb~vt>!fH!awx5^?pDPczpYLn>j1mpu+Z# z^*U_phHk{Brr#|3#$#<*R`Pb^2~J|4HpgdAX^*bVsv3=yl)&*-^7acO~33vUhzHc>Gg#d++ zcViYvBd=ZUg4!Df0E?@awqmdn6fCj++K_92;>w@;e>u?yY-U{kY!M|3I$7nX@8-y% zH`n&LmRQQ8{QmXUh7Y=;gMK}~_B_%F`Mq-+Dx0E;4k^0s*zVCAy}WYm!I>Q&c%3c} z?v)v!0KuQ$sV-O4hA$IVhH4b|LJj%556S8|pu*_M&sz0xL^joRbGzBtqrS#E?`D+C zK*6bL0TwoY@@B60^H!du3eh#@&TW^z=VkYr@FrZx7`8jR+pL!9gKAEz^a|LcfRf6- z7rU=BK|{w{cf22L1#2F!z4;@(Bg$TFmvd)WJ0yQtd*^LV7o^tvi;;m%2UO5{_mtX& zY&2;=zNYjdC2)Jtf7cszFI4k9rpE|*2dJ%bIqQ-a#NThb`26(Z-e_KGt;UD_rkI*w zYKGj(l&=)-RDf;YxkvVBbb+!iZ;Q7$D1fX=uwPc7EVTAtVwSs64hDSMxOCmNa~zvc zsYOM8X0Re+edSn-AoMywhXwZLSQH8?o#U6z{a0U59E7=(^dgKo?2s_|BNfmgxItTz_@f!*(_ zDEhk>7fj;7yZCu*^BT}7^jXYnctCn%1#ViR_ePi11zX`3lW~I*O8y2aXkFV zSEAB1Eg03N+mB6KGQfxg`1!k$2+tp_2>v=@nv5xb@?%upMG?MazI%RXV+N>G@#-SH zG!EYZQ{^VS@cb4Bl`&Q0&t$;Mu1!C%ST9BAugc)h?J?cd6bzqVd(f{(*?|nGqT;JW zcuC{JL00EF-OS5?Q&jw^y+GJV!p~czp*=Ql7W5s}rg|Wzy{On4QFVtuS2k_mz_Rz{d&J1&q>9`v!K10&~LfC*^trdF_lJ zX$ zUGM`b9xuobEaARdyZDr6=l76clK2O`pK)>9wEnbp_2%NAJV?H=<}I~OOjub{#uG>V+MUNrIbIxy402-6NgT$US?rg}8 zJnI)vD?cQhCdO%DO5rak|CgWdD?AY$|F6|wv-A&kjO*&!INds!insrFirqA>pIJiF z9}eEk{zo)U6XHbmPZvj|hbg7}awpxX=dgp$c+am&{nzSWAIoimskr|3Dm#r0s93;Q z{|zwC5L5B~$JKSCv}WqEe@y>In6ELWl=fS&udmoAeaYQ9zk6Q>bNMmFa$7LyFRv;y zuF5Zi*8kw(EHnH-#y6Dm7j2hwpU3riE@iR0g??px9;CeyvJ;j6X4PL7Fs@5lV)?Bw zrL8c!FHifbN zJ7An6rWE-FalZp~-xHU`yq9 z#(Z5c71!UoIq&W|Mh&CYf0BQa_?y&pzT&@WV9VOyLKVjPD~Uf&Rtwt?=KS-(47}<3 z6U-lKuV!@S9Nj=mKhd8j#(B~40=t^a_f?BFZi)WQ?T>s5_0K$i_QmNA$5g!j&l|I9 z#ptuCG`k?tpC88cr|VBp|3}Iw%*}ejrL`Xf?~iezn2HEDp`o`5$Xn;GPO3?w%|8h~ z00ROsrL=znyRK(~?Bq2?v9$U___VbA2H}W8Fr~B~S&x>Tgif*#`i+Dn{FH|-=Kp$ z%#O!fK4hcJh{e6rH&~;RKeH?9d#dW#RgNjViL_pp z)6N3Ev-;caVe7)QKb|Ol*`W;Vr(YkAK#m~2o;_f4wl&1RSff=k(+t7`QZlcva|7;C zt#$8bJ>%6RUF$H;zZ>F8FY$bIyAvD=Jv3bl0F;X~f7Bf}fTg*1Q3v%bz~sld1{eOl zo;!0jTJ5%Q23F9AR+Gcp!OL&kjw}fB2Clhl__a$~VC!q2ypz`tUM8E}9E7|eb>RKX zzWj4g--g9)`}2oA%AWh`W9CeAR2($-!^B>;5I!x(8a;PIUdKY#I*heK9hGNj49yEb zQMN7zeTdf)B$QoLo(sB9Wtp|rY1WA{4vV}69N8aA6%7Dz~ zEIabn9j0vWpW=B)4NfX-c8;8CfyQ+8@=r-L1h&UG&dySEU_BgFFXMKdx1d9zmS0o^ zuxj62l)5?qF5l>TU;c$N0J?biNy#@(LF$BI8!z>R?8|81vmsij`02B5t=~q#$T^q0 zn)R@OrwgVJi&j= zB+d%IFk8zQjxKSwUs$XU3p_q_m>6OK<6_GKv|hS_edN9n^*_B}g8zmjr^+D6?%Dg~ z30HvA#|C&+FS3Ls%O`v&x~&VW9d||zK5>n6`wJ@#(#)Wv*OpVs>Bdla&8Wv2drKH} z=~mdE)4bqkCHb$pw{a4K-EUHp-4FPSo}@h@?I#&W@Q;%nZ4##eeJz4Vm4!>T`~8P` zmtfqwdB>hVa@{k)nQHfP7TLYT?SAB)+>d^7d56;zXHA9S#K7>g;T&E9L~de_;3q}! zN7i5XFM{)E7nucI3mGvLBB}UD5nkNxw-Cp}xBCgs!`-d_WvKFisnCy#?l_)_t{BD}cW?}`|IsaidQ_gy)tl+NBFu zd9r;*t4;-VDqdZLmo)AP8-HoT)6P>tiHcV$0m4QSo|_sceJgwjZQf7tviPAR`Orj# zWdf$at31gEnp@@e;cq zv0sVjU$Ks7!3Fd^!?ZbPx6J>{lw?JaLw;^=05pQTV4A@xvoA-k;%TMfu8d!cx`4P@{GbtJ9+ko0Te2V!@m;A>)vFY#F4Zy#J({pL64zi6B!6j#*# zh}-?d>%X$Y{y{d8qg$AN%>4ht?guyaT;qiI=l?B_{%!4tKwt8~jO9m?-EZB4nk7a- z^z-OQ`7yu`hL}?HFW3*w9sKg$;q;7uEd559FBx}|cAfuOV0V$3rP|v>{de1qn9C2b z`w{yQrTztVoma!LsW5-~;!6zU_{$8Z|3BFM(AeTi9=F%Stv}>{{X7I5ebYQe_%5n{ z#9nEQ15)H?t-ZRH!|HtHs=u5%E&oYAiQD}s_?kbXZ}M0t-|G&#+VGp(ALjjV&1?Ue z_oEWKAFJf*Pd+Axq0Y94lNWL_WKXdsbc0Y&zkbm93@$dcaQzW&jp7}hw zmhx{No_RkEu~(9He~SK!9Y1t}A7@9V)_+?M_eg>JnNBplY5q#=egQcB!!hL(!F?L_ zZ{d}-M zWIchu{_<`A3N}b5y@>zfSODvYz&|N>Sd;#Uy^z=)tDC|J{f4cg9NxxQ7r>gP@B9Z4 z;U%TtZ|A(zs_X(-O~tc^0eO{#7lvcr4@T^MemFu({fU-B-#IL{uUv^@d&coY^Y}Bj zKmRLusA0_iX7NY&8S!Mjj@Vs@|2TjBN^tLIRnUbtrU#2?ey^lD5W63-yVjD7WeM-i zd^px@-1vaqG{0?v560n%-D`Xk9wimlDuL?542{Cen;FkzCH6{UKdWrQ3)kOdM)it% zHfsy*-h0BI*lUU1cU%*`xUSQ!-Y{9Q=Gl~in`rAF1TRVdM=#46kE`4C%jXdY#mR9b z{DkkK@rxw>!tmKG#IIv4Kg8}w?01yxU1yTi($ zq}Qr5X@2WCI4cG}jKGwV{})ErHE`0xlFxg!qTdHb_z%UnVRU@)gUw~UpwsgT_vK9Z z$HtGbm@gSOQREL#t~tRI{QMX5&*s&?mi8b2oZUALr=PUDl=UZp-?xl$_LPmg(-{3` z$ass`4Jh+xf#1yOL49;g`RBZ0)xUKg23*0(;N=Vg6veAw3J250556`kt#UE!c3Q|!l$Jr z^jIrlo}Sb43+tT{J1N8hY*9(~FV4PB`w%i3lSm*zPvQW@+B zjSokC8j)xU4cslcTkH+c$&UN{zs&A~c3Wyc-&DdzLD9EXa_UXcY{Y)I;({|$zWF1( zLxC5H`LnLam#%eIO;0qi!-gxD>OIkjy<^%KJhX#W)eTlfOU)qlZC={q z!PfkHa%WYoUaSv&edjfBtN?a?^}klR-5LspbzSJW&I(GGXLTEM$OdxWOq;lEgbUpB zIo;vFJzx0rRrOAOniHg^$-N5XxeMRFTf>bbgDMmF-l|Wnmirkpt#RTZD^Uo*fb}Ze`3n?c*_qd?ogBIoO9Hzav zKN?|Kb|w!6BPY)ftvcTF2H8}L4WkNt;F-yMj^z{&m^6RcEZ(2)u<_uOZl?9F{LQ6% zJ`S>Wh2q$t>-+EbgR@O_e-~|i?@R{#p~0iY1qSN_ATof{QICI7h5J? zweJoSbt|5Tw;%cQFM4U1|%TLRixt_SS&Y-7W`vt?LKxYB%pL?CJw2pb9-3+p**3aD39`ScY2ealbV4w;`e$pgj& z@H`Lj{Yf^(818y#>j_!Q+Qxof=LcN59Wpu|evqvk&Aas056(Zfs$3Xk{NLp#62agn z5+U*v;Tt(ge@oVTh`$BdA1)oZ#Cc7OWIqwI-b&_uEPU_csr66)xZW=VJg9ym9&|qu z6Wq^eVoKJz+=|RkIkPi>L&bAMcqts7*jt}B;aQ38f4t@#4xXWLSt$b?sCWkvzAX+< z?A>JE#CJ0h+#70CSvxO!+BA??5Jk+AXTEp%c2h8}m-n+?Ftx_9*KoaQ(20ugB*KgP zi8zb!0zVJ84ZS*L=uU%=@=ZUmSRY0A28;WNknskK#ok@|CmZIUcPZz6Nr8GQzFvfv zG|njH3}4^6AO-GH@pp@XNFxdV`CUJE-pjc_RX^W^(u9}A5p~2=e4f_3+Og=~j7-`% zvAO)YGm>79o)+-S=&qrRc4|raH{Hze>^O_Tw0TBz`3u7hVVtLT z#S!tFBEg?{`a|7UJsWgqD{Y)i^he57H;kvuGi2&&DmVi(?fV|DoAt~2kE3mBCx!2S zcb!Mn&i?<#6aNw&dipDTq*%bQ&Wd2K$N>ZXFtzC~dM*(Cso;-nOey*U?<*U4zV&`R zUmRKt?^`#aS**f2O?cv8L;4NzdFD>d*^c&Cr@>mn@Mko|Q=9POej=1$g8E~lw&a?v z(j+jV{J`Sx*C4Nw%5TR@)9X7O9S@Xp#a}{A0FoL>_>WfaH%`dnf-?d9q!0w;mH3IM z;|~-*g8F;<%IMnqxS5bZ06!^2He3F^VO)*fuhW67g9@U7{ve?If0E=sTrRDl)@Lql zot5A<@I!A*#q+Om;fB*C#j9Z;QTWer1(N^=XOaF|3x5!AzY8YqwmloQ;+M}2Bz&ms zsrQabO8?`8_?6{7SJKw0NxXgV1M&9|m;cn!XF7S-t3{4^g76c8;3e_5pX8~xx@-xM z_=PyvX5+8T@s=&KTmwC*3Md%ggeQI?`dA=J`4jjlz4m?EtGitZSmWOXgzMXc*TdiY zVoG5nsDA|~E8lq^^#0ejp9WZNV@yRv=x5r_dF0vLWhFqyr-I+PK27z{5Ce=br8IMb z^If)^wK{pCqy#KP5%Zr!cuD!s`L2}obm87#&i|_W#R>;*7ya`2E<&-njQy`EP8Ug^ zc>c$py18bH@^r@j*9_y$F{PA0zg|n;a6Y{~^QLI`#D8u1k(7VJWHI|`SmAV&`bFtK zi(5rJ;CTjGn`wrnd&Tpcv(-Jv}p9t}{py0h6%pY^We0JLS9fKL|^u)i! zkaBix|&0aKpF|I^J$b!ZD7k{nv)$UWqh22PuE<80Ukjc>8bl zX7ZSZl5vdlPY;aq#*~tOf_*Y(x*AhzBPTJopPm>;{5>dmft_Z$v7yg3+5hY34qGsm ze_x#b0J{DJ=^vJpf`Dt)7KF{mY`;U*B_rrg4{i!=j%9~J3 zQTrW;KDQ%AhGQ;qL}GXAgM+riv^ zk$DyIlcAKK#1Vtua?Z}^I=26|r8NDM{2YMw7KSOM{tC`lxwxR?gVp-0eslRtWE}rB zul?pS*5ALdlSTXwJK1@D%R0wQ>b=4A!<_#588;qh?BEp3ujxD}IfWP7Eyba1#xl;g zwh`Iq^d9im>YT2O-}8_+IVG)neAr{2)6%DL=`)}5I5Jhrh%p$h`V%A!y0{? zGWmixe*?6N*3f6uEIF`RX>((Zw;hZ&zjf2X%LD3;o#R&2_XkV2txMC|dZ3h7x7~_+xFsgmcT?pf2@AuIoAu1ic+Kw8Rp?q-(2W%_~lzJJnY?VX!xN zE%z>qY46Y1vw!rIJ?>DqduZP1&#^G!$)8_0xXue2cKDzj z(t)op%;OI2wuOd23+jU_{bAGC$bEDB^Y@4QoSk@gr#6IcKI#5?#sF}W?Y=iDG339? zjE8&cpOu{Q*=J3bvIa;|CV#*bh^ZIhRHbYToay^>SiSk+U=Z9 zJ?5o@iK6HSmWjxYLzXwme1uSbXo0`=sP*2fMmDCy#;z3nM$tLB#EwMP@hJU3^nxQF zIY&E7k9*UQ4)dw_`69fy9f^$V`P>BimBY2u_8T@#g~Tot{)wXfy6y1iPMC_;i?a8> zlIjatpS#8sU7ZResrZp1yfnsjz_boi{$ibAzjJw2_MiFZra}}IA0@(z+mRNE;U{;{ z&mMSYDnwB65hA>#e&o68$@h`Rra~|kA6x>2jU+tWsc#HF62dr-mczF53)Zc&Z8^x$UN%|-0B>aT$qH(Mw{2wYiq<5MR{bl_N`7w`UNVO#P z5Xv}AFpoI#Q8p)bNEU4#NYX``6(#(EqJLKY`E1U!1QVQ0<+(>u<`r zH2Fz>O5)F|KUL_NIhv8bM7%&z%<~{NRwP+R7jHivuGBgFkhc|j5`lk)FCGsV#?rtK z#2!&ge!%+;H0RIUY`wgIc1}8pP7{YG_L!t5Jai2=QHGj#H^-iPp9jQVA^4f=*0hdK z>`%mwwXX?ZlRdzO4LQ#XpLLp8KwF0={3YqHfj!{se2eu!;ul8m0)&kuyvaL$2#ynD z{*nG(2S-RLKZ0{gbu9~?c()z->*eQXysgJE@|PsPP%IP1c_hgf1G@Zz^1o|BzN&NW z21Y*wVt>-dc=7r_bj&H&LY4Kj^yAi}1^%*EM&wO= zsFg$Of16wW`XAjmqeO=8um88w|85bZ{!DO0#EwDM<@uil<5$!-WNtslZ6F#~{sbg6 z)jx4NQWTDlPpZaO$iek%4SSt~w!st8cmC91OcUM=e>caJ5>7#VlsuIGsD0VF-!^ze z#YcK&R?GTnYB4Q5`FTZ^g=iT0Om8OKj#z6lsFKK|WzqHKBfv53y z!#-k5+wVoni6_PpJC^wPEnDm3>j!UC8Sg3a!gylGqVO+_465N3TZH>64(igv^fT9A zN%_ZiI2OFZS(>r@`eOP0==$R>-(16MSnI7R->oa-_(KwZ94(9JTln7m_RFNYdrjFR zdB*u?0A@h!K@|PN?svC%Z6h@YTn`CjO#eSEzohgt+mQ-ZUOe`Z1M}kAbhB;g{N>ln zk5GQ*`A;ZLU^=Fh_ET`qck6C*3MyTbU?EY&Pg)SuG=AxizmLF_f)|`uW4Z8I!MdpN zumJxqAlw)ruf&c-#!a;PYjy7R-sC`9`61OWQAb#__{QobJh(QpQh$@vq9P!>L2^ z#zQ9lT|lCvo7%59{Cymz;^SZS!wxeRoE!_}cR?@|2{IRR!Tas8mx^X-e&x5v=d z-w8eeKa9mxT>h!KQ#jR|=QH9Z_1^;)CTdQUn@y{Kguf(wwrS^;=93pN;uCR16ELOp zUxM}XqWitnb<*O2v~z-B5C%9nYdn4+>vrPlpO*Cceg!)cj0iwLJ%PMRlArxxh2Qm4 zPQUC2JNn18jIYOHfK3<*C;)k#h#w|lN=d)KkIQbuY=hO?#sgU&6$ImYHq{?V@~4?x zOL$N@1`G+qpOotX{BSoH^B)vHh5V<>u1mFIe!g zHCzpd*7`Ah>MyT9>bo{<^S7GHIDV8QKg(qAjia4^Fy@~`ydYis8T&uduWiEV7w`XO zYQBEYJunS4@$W+7+*E&O;_n+VrIi0f#e)r;%^H!nRGvQ&rf08hcX-E7Gp}0U$FkMX7Jb7?*}E*)_(~9IT$w&Q}UhvD(HXj#SSQaIbs51 z{$*j@TudqLpJ4uSG|orM`4aqc`Nh$)D01;XHGlpr2|phPSb!-d|Ge%LmGNZ8j`DiM zru*TNc$-)Ln8$AmaYTzSrRYy^Patbh*4@qHe)oBY%;z09EB##Ndoq{cbg#lxy#I0U zabbSn>|`KzdSNhgz`_u$p_G2{Jc<)7e};fEYLKD#jd2CuAd zJGSXLm*3WZ3EBg$7i0Zdf#qIFmp`c23jP%>yiUOx-v8YENmBj`x?goaM)_A`xeMs> z7r*eS=j@2@q_oJ1OIv>=?ZFz1%f(c@{hRbP%kdV!{glPO3yC(6*R}Xz9j27>)3DO< z5U-(i;;T+7hK%w{Ne&ewv3FauzMj}y>%5AX$8XK!&)ok0ui&{EjQO`2r@I(a zO8E_HZP^~W?7F{gd*v1>?5T^~asO{tjnDhXaov9Q^frvT?MG{cj--unkl3 z@yq$^9UrKfjb?0rTdM!^DXYG2laXQrU2cEfX6h$l?ZYuFe6(FQI(Fdum1m<%eoEz@@KtJbJy#D$sf zH_M{sBbPn*$n*i{70I0R6G1TL$id8fX+uC@Z1|Yi*FH{|rAUf;qQ}xzHFk8CStI)9u zFmAxgd0(@=;Ch>pdZYcrq43X-e(K7$&`qN%?$|a%#BEhO=lPooo|m~&jGnABYL~L+ zRY(xu8!zB=-**bS&`@2`Gg3|mG}JOyvA*j;Z-1zC%;|?>3RZNsHur{xS$_WVNo-Vz zW(CcA6#_OjN@qiEa!|H~!M@0OCaB>|tCxMUJ(010j$_-^rf5a}#Vgk$jFEN8>b~a> zIik$a(gAz~CZ0E3GUT>3QmgC#rhcn63K-YAUPjLv9U89M z=y09?ed-9k#)qNkN~pQ+F$YcLGJRFr$)Mf{smxlSqtFYnU+JtoprwVlhw_g|O;$$H z?j;#z9ko%zVU^JP@AZ+z_p6GgpSMP(8}jUfje5bSmtACsbks%ms}@XC zi*iNBSp}eod{AOk(FD2o!|X|9X2 zI%2Je+CFnJ|JL_PlZEzn?U8;vv*?2#x}zHHt4XKb+d^vmjP55NXrXA^;me-u^*~-$ zevcLv^+gbE(Qfy+E>OKq_VSJlzWh78BtD4j0iH7|uAR7~0(w`oF0M9E0JgeS?AaY% zKz~}VO@CaLhXb9`UPX9o0&CLq!#&qlavly_n)d3UDLBteoP9RA2Mmt2SDTD9;h5E$ zB-JuDgx2+o$X%@kR{B%+PVL_r=I^yyGUK)kyz6uBz;^>HSQV92VaU~iTz{Db)mmnV z`(sZ#=WqkG;9ZnFPu&9b&5&6&uAM2QTlR_`w$&PnS7xq0GOZ)Z%WqKZG06#z9N&>& zZKDQjM(v#1_GT?7`wt5z^=mf3e)VSAHcwwDAEa;Jh$2nSY{E%pKHB<+e=?V|8{4@avd(K-=GPj6SO*g@7NP=x^K=~ z;L{dZ@8;*9{DXhHYUro=QBUOIeb1D~0}uBBllhx3k5Msz@Yvcn*XC)0)swTC`}rG^ zR(>r#xZ!YDkQrC`D#fWc6b$t`II>zFYCe>EsoJZ+=sgpoBJAa0&?oknHba#Ff{$IB zouP*kWy+PT-Q9t8=>jY}?G82WRj==yaRZp>s_FC26b;)nd2bIxdq@FIvtU^#K-*8J zR-S7GH(fm=Ov0Rj{mwdpx62KpUp;#5u@gWs=c#>LTmFWsXQ>DKmO27!e&n9TKltH} zx^%P}&p*&_ue|E}sfhsXbiVP>h z1FYcy)Tj@Wydj2z2P6wHB^US&FurEAb4WV4D>nVWV!6{d#2Db8tDAxe4-ik>x%AeW z;pt#b#hZ)pQaF51OgA;*g%<$4S$`&BK3{$NtDFba+f%QFtuckRy%5cfd5F2`@a@ z&Aw)^!ka$naGHugEyBy-@a-|B3@FQ{A7~GEQy(ne-zgnVQ1K^3cu51IoxOSN((P%m zl8Rrs7l@dW@B;#~rS6P40DTESK>1Ap{v#9Rj`&@CK!03n>!S+$-{(-9HvDU!4TUop z2c&XXZUszVV9F=af3$nTyWS^H4XK8JhUh!LXo$|~>5RY2V@fH10)y6p7Yp*{XL1+~ zl9KeF>b-Wv(&^eXg8~sp5}t%36ByyUXhES14nT^Bc>V=BB)<2=luz!Jj^+lyWLCDEQ8BI9s=4 z2IB=3L@&KDp3;7@tEA8H9M9_yjdJ1AE}+1{S!(!!)Ne}t6&NJ+a+fD~&Gu$2f9e>| z##Fri7_!V>ZvW=Y*#0z6f1-X~$VOCun}`48K+!8d3K3ot%dLeeMSr>2^ zrR2ZBARiq%|K+72^!h{eDJlKjoZ8Y(ru|x&|I7;_dRT7KKU4Bg{?MRC&LLP4q-f2h zIW#m^{to+9S5NIWnYN&g*)}i#Sj-25Nz$Ky4}>!2zabXH2vhO?TeH`;jHtyEX%}Gp zJ^7jIpD~We4pZ^+V{qt7$ItC1(fUuKe-n%|$CQ$P1;tYLdFAIm9;Xf$Y1tWu9A0Lf1RxQ0AI%T z*AnBbFs0~UF#bB7H;?o7l0D;sY_sHNyZ^HOg!3C_{o7!<$-F~c{)YWA7c`d!(iX&t zJ|)TDIcNNK`>kQWp8o70?vKoaj1Cp{Sbj2YdWGNlM6e;P?Bzw4*6#Qgjz5^ok0a*i zgegUT3x3Z3Y)lK`xMS=u=O0N9(YNqjRDLDtUlJa008dQC`!8MY*!WFZUbOiGiPsrF zxL``DKPIoAJmD4In0x!UxzVrZKaQ6v{jT_T4?2H&xr_IC(ThTJcP!MSGl&BQade_lA<{+LqgkKkZcblhvl)FKaB|BZvQyzzq{ zrj-0=+kL9zl~tU1G<{|OqyBv`&KFZk{Sl0RS&Oc`nWNWIhpHCqpHY9!)4vmA{srK4 zN7B*YXb;BzD+uF4Fs0<5O~}%lyy!ur z+AdqumsWoX|9%)3Ovjs)`Bw8-t*4&Z-@P?s{!7$f?9Hd6Mt@;!|0UwFTtr^s>)&lZ zndguFas1)*^cU})`-m5wSYB6R;X~^`ad6fE{18URqo)Q>@%YL1H}@aRyNKp zm3(RX$HAL9e~Mr%e=#_sp>+N=d)7YSK+$*ai)Wa}pUu<%Z*IS{Js9(UI8OIidiopW z96LbC*)7F^`BNF!FGgV8NK7gHpP>D(i?m+9rEWN5`_WSU#bLgq>HG!j4`t_8)t|f- zO)Gymc+-ZMQTPL;{8nuH@PcEr>0xE}Q@`7xg!w?AF<9;dOey0Z!Tdqc{HVs#`Y)3H zmg-*;{_D>G>SGw|AF;P3()G_u4^{xy`uA$yyZ*f!!v5l5&GG-!4~E|Z+zQQDWumo~ zcVEJzhJI}&<$f4Hzw{j};2j2QxeVkM8 z%}Sg4em`er!}gRNhc5HJ!?B2Gi(SCbMN7$S6#pQ^gJDkQ-}nacu*2t#-5kKDwB6I$ zd$iHEIMs6QRdocnCVuyd?uiC^bxvP+*$#C)_AT}9Eh98NKJH-QLKD=*OmSwxK0{<# zUU%f|2t$;|{kmjJi2=&l*Yi%hP<=G>=z%cydqcEi`iS^JD_--aaAytMs^Nmduk2Qs z9B7AJujIm27bB<|UpnZLx-o1YrW|}lQy#^&*;rm|AcZd9@2NYyg9eID)ca^wCJVZ% z9Tq&_tbp<^O)}cMNfB|mjyj7MJm*~Kwb|oVcY8?a`_Q)cI9rHa;)^=Zw+HT^&W8Th zme75z18eA;3LltMh;#uUpm>$jLWFCVC6|9evpWxlbw{ z{A{Ti@>17VzZ=>Iy)GWIJ@b{RkS3U8YJyHzbtUg8=c;BWb%A>1GHn8@|LR68YpX6 z@~iIid*JVy_+1`N*?e7UR;eBuzyICDV>eBIUJQ686PclsS*)Tp);36O)Na`U*R7Dp z`hG#x>uk}K!ed6^-s(tu#>~3?%T3Y5b6+dx6q}+m9k$jNXapRz0jL%x~)hHFaNiji2oQ-{lAK_b!+t^Dr_lCKs&D+LdV;=qT9_!Wp;Y#IC@9 z6&y^IlyvvdEQ53ir1}vAiu?%3_}B>J$-J7y0`7D5-eC7*R;p>I{v!J5k7TExFC=1YFg!S5^RVKd@NoB0mCgKM0Z@ z{^@Iii_oWXIh)*hX%I`r$BOXMINA=FQpQn&am)#8&9mbUq`^QcexL|1T<2l2h#v%5 z*WmLHUKFVb*K?1pv#v}AD`K$z$;Ybs2ZQdZOCA5MIvKR7cwIQ;w_l7PHQ8i$<9w%2&GxBxT=;3r-_34W5F zf0FQZD-$lc*qve=N687JVG%zF@pZ^4^R09)3>(h4j?o$8w z{*vU!(f;x}(5E>uBQN+SGmhg(u^`2hQvU=S+vVL5>@D}F*)d6WNRZgsYa9a>Fg^dsnw6-@jfDDw!f^g}l}h2LB4D!q_Ilb@tt+z*11 z|AKkcC&SRWg=zG8Fu_aG-_8=N(&QoZbxcw&B;keOm=87}{v*T>jgtPLpBKc`n8jrd z9P_&mwgSfdCw>rYtPqO+1?{h;*~7P*t5bmFlQ5WdQ~N{wAc#K$HT^&Hf1;I=<@6hq zXa|!uH~+$hH4NODoXlv4my~}6DW}&cD%vy7gC*gG>1DP4xz%`APaE%8vt*^a@{_ zUw^YlY_8H=>BN|R;=e=u8N~CCYw#sMY*ip5zNPXL{|VyHK+#`81p77zl|E8MoZo#x z8?zmbgYyS4rN|#-rqsysY%q+w-5CF`ZU0=b-2RwS#!rIrtKEkKm(8-0Y4aaa9$hic z4^t5lUJ$x3Vhh)DMI7V!S=E`Nmc=|kYx^KQ#Hy=UnSaq61S z8&a;h=)7_n=V9P285Dbi(`w1*`0RK?bT^&tYpC7@?aV0ii&0ZV-2z?V_BnT$F!1!k zr%^VrRdd&km^)TbkdU1e@7o!&2N-r8s|V1nrm^&PJ6kx$vh~`x*b3z3wi?~4a|P{H z?wR-A8-jGq_(b_F`tWJ*twDE#qyb5F2pHqs$T4YL$_t*t1`o5tb&1!Vp=08n)g<;pJX@&=Ntffk-`{EnWxN&LR22hY;qtHV zrFQg05t-cf^SAdv)orETEe=yfSI&Da38_*+b8;T(czsnu6O-#ai*MMWf#nBVtJMXd z3ZttRPiz^8WL9jbPHbz6xFf3^c9c6oL)Jzoj|ncoJ~rv=g_Aa*Tx8WphwX!UejF3O z_O1<}?CBrEo<8U8aXtQU$4xs}J+<`N>W2>SamuGIGTJtvH}RI*tTC1lKFY&4$Hf+G zv^tsZF4uxH(|btIueO7M+%6j(Vtj!eJjV0MGE?xcn;qBrq#H~L%-4R!a)#1z7O#c?s$WflXrQq8KN4S%yJoifnCphhU zOm+5mQ{cV}vpF7S0caB2*8aH-n3VVVq-Jgo$YjOHPm5&H+d-L|Ch+V)bN!(&y^<|p zX26TM2tPaEKJBb>#?=sfM#-jj=3gur&8qP^&`JfIa>|yM%Xz`@&tFB{F>Ji%}A#S?kcBmTSWNXZQQX_K4w(<1&N8fjm~;0EI&X*lpY{`u*v z)}vXH?MP%ilGuc2?=Jn54bltuT#TKO4nD+C^YeEfksXKFUC2C|*hN?@#M|Sd0M*Y9 zo-O3>r?sKtZA5rtMt3BpR=5zd4fgMjFNO5d`|8yv$;>$#MN&Q&7t<(`q_jEW*#h={^B$<-% z3u@c%yv0tT%_9h2+>S&UhYK!xEf^c4FsnR^aUDVue}^5H^(!1wX$L$J{*v%4BZKKj z73>+uL2@`E1xzX9s0N+IH9XbPt;@`BB{7a8#qCHGe2trYEic=prvVCfWaKYVek>QM z=fc;&JC0!XXZi~}l5ic!y0ve4fwzo?xPPd~9E5qk(l|Ai(dZ#c1i66<`tvuN{B zqR;MFzr@ZUJ`eclxij{-|39}5q>T9!I~HXeEYSa|oldq=+yvS@62m0gQAs$GUg3N5 z%TLWS?YNXBzkWcgkRS6!$;AFg>2^S(m%p$h6+hTq#>e`MsQ99^#yPm$q^J=gBnvk@86FNW>mQ!4ERDJINa|cjT70561p$+n<)U-{N*8 zaXXB%dGLyFvy&P3Q?`^pvHuy;%b!WazBR~8X20y4Fo?1LHo|ffdyshh!Ll@R8k!MKTL;Ckf4u#L zyS-An^UsrD(w`|7gxE2}%g>nmMT-?ji~|=U@K4GO0`f}iNdLi(!`kFn%30w$vghtE zF^u{%#}N^G5T*X2vBj0V;5E{h8;||&@lP4!1s_&eeqs-z$e&$m&G(~dpRhnxm-&EK zN#&2|nY4Gp_vZJ%lJLa-N7kb$;|IYyTEgM5Q?KO{f!G;^@dW~rhuD#vF(dKvANOvq zrAF7$K`QvPAIb}mQqo1ICXQwt zze$o`z(+p#m-~O8D)Zf|u8&~!gA}(TQRMJ--0cRV?cu>_$Q^DrzA=K`Mq{6 zN}N6Pm;H!Tr?Ln28#Fq}S0{&5Gqe#RNy@2PoYzyezSk^1M0 zaRcc1Pvb*R^TsX;@V88kp!qT2;4DA<&<|7b_D6qTu~b}FBU=3@cz^s5fGI`(g8ZW| zdD?YG^Q-5u8Owk3^v7KP#O+9w@*~&}eQvLQcjx|^zg&JvI*Go8?|--dsA25?{=$xw zJkOO$?I!l^qvKl65;8RPhM2*yRx@g_&zR`XaD=@UHmq2IipoVonP zV7Z6V<+lmVspOzw<4<3o_WaHH$1Hy=mU}p+l=f3Fel2MI@>_%F0>=4IOWW@em~T9$ zl=177VNz{@yVR}2fsS(+%g;!Ri^EjB{;*hP-R7WU|Jw313d=p3o_=m+eHTCjy98%i zwsifEIscoNf6V;RRU%}YPC{>EeeNtjZ~uVDSOurlAH z{rQpqSpAuR`A)=?qCesKb>NYziyIRd>rYG5F9}~~v*?k{*a^a^Co%6Ax)*T<4Xni3m78?-uXCq3y*hf^YCLmS4^|SZ0f2Xvu{-jcZbHaH;&mc15;e z^5nWoUfXW4g;VdT-{=et`vP2_?hk>9virvtL|O39^FB8E+>h4K-$2eFy^SK29#_sd zpk;{Gv6M7Za}1$QW%KsiZLFYd&AIzaT-0Dkk#yU2_IzjKOdS)sjamRYRk?nvl~8o2 z{IHn0wt%XKaVv*gpsoi(j3-7pLUcF(p2HJ4ptWMO*AQbzke_zVw)K9s3_!hX+SAT>D6!f2^yT7eJ$Y=C8)VZrW*kn4Cr+w-TQl$&Nw{q$MsAJ=T zs9UmVXXpIJiu?Ti);=aN-phY**5uYUTwZMge$OW#ebB=O%GPi4Ni@}j1-yfmS}A?t zB{yu&>~mVs=hN|d$IAOa*BG_$X;0W-)c(_r%QamADGh&V4V(OT1VZ1zA@}w~8ZK*M| z8(UdspVb#ac9fV$@&`e++qbF3xdg&xo@S@wd5E`+!ZnBN|P zYC{V&dPyTL&wkG^{{Cb%X05BtxA&acCElaH)R;i@Anxgv7p)+iS1otK)PXNYka`;> z3plTONcDKK6|ijUG`tR&g4+n^D_M_pA@%$r*~uX$P-amZ`r(x^WKVAOs$sVYWZQSn z?8DZ8nzdUhmhV;q6TM3++&FFU@yS}3k`xGu+h=b6Ho_jxJxV>N`lcUTv~{+y-WU!x z(XG+&h2b!$E4NVQP&j1u9KT;G%>&S0sVUAut`L-Yzwz7-Z-`9{=(lZ%6Bx6Nc9+@# zjCt{_`O|FdM0BB&h&f8!iO% z!#4c|i~L5&Jj)RONY?N9uL8db4gFEsjWt~GqT;|L*n?ZCB_@9XDzcB2Y<=MUyTgYG3PYSbJ zwC<~h^IsiPO8FPme@IxSvU1@x#_}hr{ld{U_0!_~n}<(iocCy82AY_P+pVu>*m-MI zC;oE#BT0TO9Dw+rh}Xa3&+{%Qtr`F8eup@IO1a>F5#=8lZxFv3O8yD#2Hgkj(D9y= zNL#lc>1v+-nadCHw<7)@l=h!1o4kUzY1Nqzcan!Owm)RNriTTh;061i5~DiGx%1Bf zC*vexFnMUM{0;0u=U(R6{CfGlKJ9fXf9Org*PpDL`0Haq3@{aMzu0zBpReu?qt#!M zpAz+-R$df8T8ojtM7%&QU~GSku-vAYikF|zh|FM(cQK59J7m0Ug7K96gHr~tc*yPO zB)Q-go{jgzuvI-@N>1_S+TrTcPB?VBL*1)xL2`(XZcQBT0VZZ$$h; zDCMVETK6u8dwJ5-8o4N1{U`b$ek;WPgo1|~d#-V^`tZUV{Ud4hkI2yqXC+l^^u;XB>aKW1JTq53Aqq;RTI$UFnzqsEDMgE2}2T$_2qaD*@ z2PrVNpUo>jEiHe{epAik&usT4ek;CMf8yiEf?m56Pqd-mgM))hoWGKAMBl=9QTy$O z1NdV~(SLS)%{~sC`XtxdSNC`8pK<&Uh~*BV%g>5P`^;I?S;4{iW!`U=|NoKq<#91~ z@BcR?A*rZHYFf4L+H0;BY14uzYlTWep|Ur&WJ?mVJcN)vd)7I2vV|lHA!LaVvj1i| zr@5b*&;3kaeV>=l@AaKO=9>GS^FHS~*SXI6KKHqq`@etSO+x?1n`H1>rkvxEgU3HD z;I@0RqfM|*68pj8fY8mi3%IUR{6-gq9^rC!s2`oBxu3f#a(n4eC&ayZd+^izR_D3V z+pnKmP+80^SrwO@rF)aRcjQ!ilY`bUS0?U^+)5XCQR)*ps-p|Ax>~9o-sujzuLW@S zrCY&^wWkgpak7E(E@#KI?Ar~U>KPOe{ul50$`$@~kZA;*6&F=^2k_owy8KGu~A=ODJS{l ztF1oMU^w7hfK4aQEWKKL!s4)omvqkk>1g`$FKZ5sOb zfMQcElj^eoCOQjm_?GvA$CYy_HOd|K*haanba&=$VpVUoZ?h-(Uj15TRb&TQt3U3F zN;DE)JGz1U>o59#8@*vjpWCNLq`DxEiQYRXyUgVzbTgm#n75gibLZx*XYaU$ZRd~L zrssj!2Y0Lf%yL9Cmplo$>C^*d-)no_YlRa!dyEsFyTb)Ve#zR|$Pc+bnuf_km%DW7Z zkH5edE#oipMT_`LJkbl+SStQ9?<)QZ|LYd-D=7X3|ED1ze2w=@6waA>$oImOfcq{p)@fN%#{9InR`Cjt8Z^4J3rGOUvSCR8G zf|d5;<6{|kfY?SJ0Cf@dFMV))WIcuO0B&)nw{mi&Kfg-GGh|-Pi%zhPANOe2oI{J5 z&oL!D0GUsCU_B^`voCX(5o}&J#B1uJnczZS$955|V++QKJPgshs|fGw_o5q^tA1XZ zJ!>Y|(D61Ryf_cAw-GNqhs`oGW+p6|30>&;E+V`*4?yO%6n_495_jZ`oXnY^OvfvW z@U3xrZLy^FV-Q+;m#Z*$_%4(>6WY@8Z4UrZQ=A7N^Ge?T0{fru^SQhK{786BGRg-Q zu58?YE^Qo8^0`&|y@`?Vf{xE$3H)gIA8B~BWy#Lv`z$2JQ9?9DwZlIYuslotz~|`s z@Bew~$KrI*Qf&N#qFi@2S%1H@^mX|Q(?Ok%x7Z0JHfj2IPEI(he`&15It;;+XbBI% zt9j%j7>9R=t9h98ESnK8&I6Eo&5J~^j?8*6^@eMFHlzKd=}(lQ#ml=T8b?XRFCUpP zyMlTDtO`zm@BnW}g1icFomE)x09yS^ z9Q(0^o!`Nu-)lGK{Y!)g;5DU!4=w+Kd0gZ+Q;n+|CEo`@%7gF+WIbPe9KCwqw3!ng z^!@#He5@BqPk7n%^3Qth=}~49CQ*JkTB-G47>;@W4r#B+dOpqmoS#v(Y^uN2rj%&v z508UI{iL}42oFH|J@NVvk(~=B-0ls;KZJNE5K4+7{DCgML0d->tV5T`^}MC)q|0c3 z7RKpdNwXia@~Y)h1M6j4jQZp6Lu2GI#CZUk{#6%b9&v@)D*40ffXwAj_yf}K)ASDs zds@v+@y-vPsT9h{gLlW}_8)ivtF!H1adq#f1cp!OBC(D^>hnMF0G#;TTCQx`rJEP6 zI{kM0VX*R7)(jW*->!dw&pi5-wr$_c_M6%MX4rmY+#}w8*0CHvk2G^+e4na0##>-X zE5EEq*Y0uiln%VTRADB;LlOH+>%Y)6c8{T7RV2y}CnvT26cm19Q_Ih@){LFS=s(TPzchTzxG~{_%hDO^pESI%czqdp_@?2R$4`L$Cjd*D z|D@Y*+|PC0dSY~$a-0N@K6Xs$$=UvMD|i{zKyR#y@(J8;w$Uj%u9KhA-O5!Od&GcyTi6-?Z}6WSoDH zRU)#UPP4yY{(xT9ZSSt{B;kKVAHrY!2OdOlj%iJEd36 zgD!N*%xSnTO=_-y}bTKM2Bj@%{%^-z&ME=^$Z$9K6~7{|`Jsq3*FOY|ixm zjeQKv_G?=CG4q&B!!z%r=!*?GLbCjFmt3X5x&0Nc?do|F&o7hm>xXf}v81(sRrQ)5 z*%z;vpBSQ?Cb18L;KML3S~7is{}kBYoHOC`2*&oaKgJD^Oh59l&n@mRt(r@7D@QPn zUz%n==JE^2=?;<9U(kN&?dd=Nz0VK{9u)_tBJhvFSkmkVw{Prb8-yz#om10CqW>lK z8;Eg(B=IG^BW`fRdTd%=_2l2<0j1e*;OfP@Dkptu=KPVF2OEm>Jq%0n{_EkuhBc7O zd=9cS{c*I6{ZAwg5QQbJ`~>@mZPR)@*EbmWueD#&^nW}y_}%@J&duz9qnbH>Vy-_U zvE5=M?Uxuc_ye0G<@`cv`Nz>RmS5BG%;Ud*;9+C`#=|=Dn3hb>Ev>z#A$HtmR;Re{ z2iT8CEY|$gZZkV)@B4!{awl`c+a1x^^J6bp<$loX%M}~B(Q2=k{VF`fZTmgr@pMO3 zw5)8o!p~?`)ZOOj^*@0&pvs=n(WCz zIx4PEva7}*J;DyfMTE`ys^<^#)t9|`ZS#SW$oi!xWj&$Xe%sE(fIi@mTCcigVGlIS zQaN+Z2^%Ei{(Pmns~OsNVUxqK20OIVxWnVxYep!S)5k2a)*GRqb-UVrazj<>&T+fu zxuU$eEkDGLV521_Cyho9FoAA5?^NtN7(#sN2$mx6{fY827O$;Gc7~AJz5cU%8A3_% z^j1S3nP6#*r70|Od}?NGWD0d|?`!7P%D_N#_qKKsKiGNs3QKz&t7W%3xc6KtM+R6e z+U!>9q7F|MTN(gZwJ#8ZQGJmIAI!{fYXN#NNM_ET9aPbhJk5_j0r30w{>{}|ie8^HgV{gnAVfP4>*2DsT*B-fYuI!t-E79 z;7nk4ho0TNU~Tz4m-a3IW$7!wME>Os55)ZYQFlWi!OwgRfg?|o6bDmDrqo|rI&lkA_oDcKeRj;o!m z4`~Pf-+F#*0t0V6LBt#L7VAm>Pv(tNNJB?aoo}tt0O)25vxZ6Mjmf%=IPcmjY+R@8 z(KErG&U@O6cvD_$Cisx`FEWnd(Vn;3F13fTk%ieI2{XZxj<*!y32&^2<00!1yh{OZ znq*U<+%{?^n9=cOB0Ql($=|eom$fp#l)Gljz8##1nV?4k@YB%~@wRd}-S$|LeDKIw z!TT%c{rswzY#Iyu2*Jw_H(~=2yNmP2;=HL>%V7=c3}Rs;9q%o|liN(sj}=|pz0JF0 zEUYB~`RO}~@Y4FNVI{?Zejj6CDIKr70r=7IKhp3wwOXuQyE|55+%7~*^2W4vKLKwd z?>gwm+=S?VZQVke{>RhOE>9UUgmK+M5od&nH$Luu;CY0MFXOpW;=D1<|EPQ1$J}yG z#F**`uRk{K<2>7KP`yc>aoi`)8`Jd93iwsUl@IRPI&F=w#JrD`zcl;9>VvCfA~hK8 zFAdKL4|Y-BsKn7$aXRo|%f6RW_sxf-c8z~f)Z;CU^;euXChOo7 ze*f<}DkL=`c0P=xJT;#`Z%RKJj&Q;se_$68?kLrS$O+!oL!~;@uYPyIC-5;r2&%DU9nj1{iOMC9V7* z`STZcRRA>H?;Z5p`r~LD$63Pb|LMA`9b@?!;RH;vr1hVI=XYfTALHxuV<1MhH z;j7lV{bF-Q?e{Kt7W&)uH*ZGixEXh?npuAX8OvW<{Sju1dEb;Z&bJ+wH2)Di|7vi0 zUcYjMWfJ-m``KU|>Gx>%6TClamTQZjxertRu>UZ(|4pnd0e_`5NJ^Y4+oUXqRxovU7dtlq5#~bH$1f-deo>>U?{0 ztGJ~9-uG@a&3;ad^&fElJ+P$PPq6PUf&Jpw&d<$UH)k%trs>a&_riMj!BX7+XRND8 zpE_+Ikny=Nm@DAmlsEnniY3i|1?`vf(uMD51doy!zmWRS6XOE06!)J=YZW*p7t9#z zuMfr%{+DKdB`=RMZlo7$X{%7hf35!b;`9Ts6bT`3P8}US@T}YmHd$v8{x9Fy{`g@4 z;jL-WcQUYxLiK_%7jp zY2_#AzZP8^)@fpjhs60kB(kRI&)k0X#}N_UmR5ff-^{Au`YUygR^fOsu741|c`%NL zhF2>3R>@WF^=_1mqO(N*PuefS8~+F1HZd#ufpFh#p{hjtL-1t1mGHl`^eLI+Roueu z{EyPV=Ks>{uOzTbb9vupw;zn{58;iYaQVH$k|!ds$vxx3{Mw@%NA!^Be@HOGH%HZt;o{Btu zmrJ!gCaY2Sj5ESTKQ2CIx%=!>*)61s{cRio0#yoeG|F7 z5pct~lec4)FR`;Zy$$;*-e8+-b<^vhXPi38Y%h#f96| zN>&i3@aEE57fa-pIl|F4*%}p9#Dv!u>!2}O(@%Cd(F1j|x?bEa+5)8*t*BqxP6x%u zM>Mn>Y>SfK3~NOh%7M1cDE4QcR(T$X^q7wC?hqYn9UTh|4!`sOsw_H|do#s+khFU1owcqOP|NY3b^O@_OsGY1>Z^ zB_4uI(>ym6*P&wHfm}1h>A12|Ro@zwe4e+{?S&y)Izrv?Zj}eBAE~0Mpx}%K6=-dg znd*)>ZWR^&GmKG+s?leaEq##A>^mb8^n1e5TivTGZ0!I(7mgUv{T-VMY-zkeB+yKKTBlyVBBl1bLJ>_(mTrK zt|juyNLSmN;f!APc;4y6bZZn;tFq|kB@dJ_cHwSA3suM%ysYE=R43Fq%G!nnj;LY4 z$NG1>oq1E6I}V&8WAweBfo4^j720~rEv4OZLsZ5c@!Fz;A-WjQ&RnNR8+D%`+s27y zgw`G99c5Byh{_K-pR&m7jz)0fS671}a;%Q!u1qsQC&nHqPw&+oaahmevy0Wy_xt^} zZ*DL{to1jlY{u)O1jW}*i?}vO$zxm8&ME%r)0fJ4+v|pCvvb|8H(hj4;jkS`+D&hb z-h|0=JABqblRntL{xM$#S)DWIP?cSUa&Tvq`&bPq3mtsj5nt<}xW4(r6;7(a;)ly! z2gYz$+=)|{Lx%=M@(b_&;ZAaZSMPIvh@KX#n zM^(pcTWjAnLJ#xNy^!v@D6ZZ#GVqHAviquPwPl(FWgeGMM$-?g|m(m3g=&Mw?jtLX5{3pbVD^uSDd~lZz3W8 zPd(2+gkfLCkj8x(z#|1oe;0_`WwK7jyABD*H=lYU$N!q+hupib`(PU1_ z84mc-Csux9xUl!jJOw7o2BMz3I!Y zb6S(2LAg;eUjMYW(SFkU^)`lmCk!{A1dr(WM|*+9CJmoIP`kI|p`LtKqkSBJT(rYK z6tJX?3*sr{`CR&VPMWdDQ^XWxhy-4^PFyj`$D;^qJR zoLA1lma`<*RfztiUUbGcX!fh)a7(#@+Z*RG+Fxq^alAxd;bqh3br?=D;l=l5(DX0d zH|`B@%CerWr+GO*+j}w$Ypo{Tj ze*-Oj!MbSPc5TOjNqQ3NQUtGu@nnC6__`MAZ4-RpxSj+rf?-nUwVceW@8%i*`t5ZY zwDhRv-cbsS^|xu|XT`WK&?G#k7bD&X8^RPzTKW09+VYOjvQzsoGcQ(RU6t717~@Q^ zB=>ojf_*L2#+J&*#{Bo5r_m()QOvx6InK8Ymg4RIvO&RXt0vB7>_06q&KgUa{i*dA zv)C^mPHb^?TNI=H$$k>DpO=Quz1x@9{?A=l9pd%)xBVBZ#n^r~&3>YJf-t`Sz5c@% zD@gctTKgg3RZnh6aT|JNzC`^eeoDp_4mck1{i6X^rD=4}8-fOVW=J{Jl+_MQe|&2mVQcjh_+`-V@*S!*W7npsK9?jx5+(ZJc*J ze?9PzJ#73S5#9^m^u=;dW1y^qwX!CVJMU7!()H_se|BQyr%;3^`!dMBh=j&K9EEoS zH6cY+vocHE{J|u()xeF`jwB(-WBFsCQ6Kdad0XK|LBV)t^MR&dhms<(f`TTMCdQU z>yZ2eV_Y9ee8$y*@7OF=f4yl%YK-l72*!nCDc*lld78I_S8n;k;|Jz_wN3ILN{O-j znucdF;>muF|FAD2%Z8GL@bgAvf+miW7(bBmBl|M`!@h{ZLEa7QNbZRX*+Z-t%YOha zH?qHi=0718Z$7Xo?uGjwc&}C@>!iZq@_=Dd=RYJI(N}ma8o&L+z6`6eck0^9ulBgjR_hv@7e2n2?RKqA=;g?h?EM!kR}?tz zWNTVfZLpbV3|H1EOulo#09u7P?0g*A8M++V8|QJ%3WEAybvLNcg~VT7W-b4$2Mcnp zUfvU`1E1Pnk)OZX3I@ivoiTHjE}YSeW4C#!2zpySTLSNS;+8L`>zW1GgYz|R$n!Dg z&~l%e!$vO;P|7-3q})wYcr6pmBLv6(HBYU9U6U8Aw>nV?P3yJyH5Zg2Z&LL(&3td( zbG~1>S91b@6Z}{AJG}Qh2KV;ga>dZfKiA64bfu{)C>2kJiAlTG^eL+7fMVTkYUTxt8;j2@| zr~hRK-n{cb?;Hq#mTzKmZ4Y-uG6CNnupX(PzR$k4H%#t`cI)ms&`qWz3f!xEx*$dc z{ZisoTKrT&AC%Tu4N+A=g|;Qbvs?pFZvKt=pJ(yx&TTd2-0nUoLv`^vuO9)Zu3`TB zR!@Q;|ImlSWBW!RYDa`&_w*j9-=P&7OLetT`>F*FyKPL+V3t+4fF9E<2*Whmr!lPuio9E$vgE zK5;_*PU;<=VA=y;+oA9>r_U`W^gyg$U5;13b4R}Kvf9?}5B|S(ZuS}mo^4Gd&xUx5 zYoz^+#0|3eI3q=a$_aZaoo6HC`~#$6r-b9|0~PVIAM#US8d;F%|36K{6OsOd%yY?l zGjE*hs(N1sdXBggyJm7KBTq(nHo`CEH>NKfXJ08>zh+dgREVahA1z9s@NDF7!q@Sh znLAeh#1h7pIdxR&mI{6(06%^|5nc|b*B(ppaZbmrM~C(9mytfE1&a>UY@erOY z>`eCDb{CW3C?RtA{~s0cWa2yUB*Rt-rc(b$U3+H$MI}3e#_nKigW8SU<64}AS0TL7X;6_$vDpG zh~p)E6|Mad@LZLZJKI^;FhBo8=Ea0Bqxnx{h3;eC`)^jKu8sfG&+m!aSz&fX{zrH= z!dKDsr?jfpaXGV03|;*qB*xjqpGkX3cs?4w@ZAW*`Ta(n9mU8~5q?ewXjj>v!E)3>+8JQW9T_B>IV{ySENpD8e5wjXI1{{zn$_=UZVyKQ8@@8cR0 zCF_g>9Y)jp0cxYs*BoNhyG#vJ2Lj4grBp;`qSDE z0Z&yP)GnP9AjuPw{=*vMY$WqvcyiKf_SYy6>If`h-2X1E{%KuE(!9`O?r)dh#I@Pf z?n`qR@pf2m!k3Ba50zznsg?~LGfm1LJ4vi_Vc5Uk{wVSDp9GBh6Mm41=Q%n@RW86H zOXA#jqQ4{lL3lP=`3w5L+?6{%hdh>C=Oy@m;MuCaMc(F8;1s*@<&HnR&PJUe{wma4 zG=3udEaA&&p6sVuc1dP^JO6{T8QTwO`6uN>>?OPw)gQu-5}uWw{>={cY!26K)WqnhX6B!H z{?j!56B+xzK%BwtHGxu3A`yb)i2wz6af8o4A1r%JxRm&DsN`!VNVoM(GQBBq4T@0O@t`t()1x$Pfw`c2cHx&0*k z=n$;8c>P6>EB(t0ITHR)ve~rsne`uvBN~P!&3_IKMqT>9?YwL`oF4m;YD1py7%+eLp>eO5#gozZ~km$tKzuz@PUqx91G-9 z8eSOg0^|6*X?Sk)@aPJo|28RoPB9~X3^qg}mg4Q-sdLM^c^NMUnqTm!nP9-dsj>LS zI4o)PA0@eTfU&#U=^d2$)AgUZ{Yt`mr(j9?Bi`i>pE-t*|9RAg!X-IC=2wDXoS??~ zL->wlj3?~@&q$-{6T5=Rf(4c{*5&}2rwN0J@Dng@B9@|XR%6rVn1lVtW9u#r%KW8Gk^7OX8V1B(f_3BFVvSAKM7}K zK9*%9V>|*d>uG!FsnUUpK9~qF8&1zOmr(kFZNCkLAO1 zIzCT?pMvkt#FFq}6h8koeR_u$ch2U+QaYX`!cWEbXJARju@ogNe{&gw)~Va`A&ZWu zMEGg={&Xx)h{E}W4_1V2w<986D&)gr(S2U~E8^dz*&ot;}>cA!!5O66|KD(^_PYhW@j&> z|Ifzxor9%#{~z+U{;w#-Ise-DdoE5l9ZOpKEqG3)VTGRG$ib4&N#Nj8+Yb_sK766? zGo6P6WME0lKj-dS6+pLDULCP@Yo`4viYfi3m0vUQtnw2~>63bujq@))elN2xT)5UF zg^_<>gmI*Pi=`mZ-nP9!oHuv~RTf zFL>|cseTI=>PMyi|6TsPJd*qhvn!haFT?rI#ggX#g7LpmweF_3+%b&ne>oVp5=)x> z6R&bxK*rDeq2uq5Wh{TvuaW+dhOaX}`-_cKE!Wqly8dDNH+P@uWJdj0VY{uCw11?7 zOB*P1F#n?b^iQ9^r^MKP{KG!iHGkXZS}sdbX8DhFcD6jt?*7J{r8@6EyL}s~u*%~u zyK)`D<6WxUJfFoMa-XhFj!vhUB>+OGcsW0kOyx42*ek&NF+eu^f_7;#F zF#2-H_;$$3$@u*JfKS}S!6)K_WZNNXaY***M~~T4irfclx_3e)g&m?-zgB`PeQvfZ z&gh1w_U;p5%CZI4B*)M#KiCkGc=BjPv@vkBwT{KiS3*_|b4T@<>jpg|6hDS^at8z5 z*g->h`&K!hww_U)@r@g@YWu!J2kil_>n>SCu>qYQv2)XHGf=j6X;nJJ1IDB+m47+j z6VCAx*|XOM8fvmrzb^^^h13aD%rrKXEIydqYCk~5OIDr5U3c(w*zz-D81H>V76#w< z_qT%Mk;5N+yW9--wSHZPwW_{+#g1yU7Ktz8v!YmJMQn&>I;=i zL!W4Laf8FhTRvHJ)e?+$?kQWi)dUti+%f09w-tnpy;WP;zBRy+-iIeRyk;96ev$Gf zy(1JZHB-@hFOP)RUEyAR)!sqD&S2QW%-KxA7F2z@S*jg#g=LglH#IpA$gEjzyimm% zvQmr6`u70%{^;oDINtl0CRq>LGeso?N?Ud`9W>DoX0-8l-EcA#W=-_Cb#j>x91s7X zINUZIes({UessS)s@XYv??Zn@q`h>_qOhx-QRgLdCk@>skMfV|c%Sdm8YP>$Cp&4j zK{H;>_*_P{MoJB(0XG%fpzylr4FP9+gO$^?;=;QjsA2f2sn2qUfb-&R?5u zgFIc|z3C8Zjdrz~UoCgW7kPIst!fKn@6^@+zqP}!pFS6AwK!n6-$e&o+6Fw__C<$oc3`Gj5AL=jj z>f3^q#zQ(eL)8l1V?Ob``ZHZ2cfv_K$m+FY==oEgP-9c3{^5=ppn1s?PM@`bkp8E9 zqYU-&d!3d?brklpaYk{*$RvkdNm- z02a_P{vuzri03~}MkpyNp8s%LJpT!~_*=ZMp!gg7pN4!e|FJz$IA`9ip!n;5yXV5c z7Z(`tHeQbRix>4>-roTo;$8W0KAjx!HqJiIF@Tzz6X!fHr%#R%zq#h^P0r8{h~wI37xP zdiv?s!JtLQPZHsI-In0f4NLI}{;Y$n(lg$J;1>zV5BGgpWBMdoC5*4ek|z%3&TIv* zi^4l<6b^)EbbPJ|FNedo$C3=xD7-*$KF|2PR`@`;Nyqz&@U1bfEtX`!##@D$|5tez zNcwhRa+cXZD52v)gqO!Svao82uX#eSKpVaNdAGa2BH$Vw?kpM} z>uzOeGY&AN*^k(n)ED8kXoApOJXw(Hj1v-H;4SzNc-f;qit&JD6^v8Gl2(5OFBW$? zr;Jv-?}8K1#8TXUqg*WI zIP3c|PB6*F?5-G3%YTXM$>&_PVoulM?)@Y-xRU%x%YUWDbkFt?_4b~+8+8AeurFi{IYKN}mj*XBw$c*4w7^jCN&HmJ`)z7$J zoMhH5Q6DC;!J6Q8Fisasnx6{lUtHVXYlEixF>bJEn*BuM3}G@&_uo@>>9e0X^p@~H ztZw5Ao_IqU!AD$wPVutxHA%jIxc)J3aO;lsHo;Q7{@t5Y?wMcTM`D8wDL*5OGscou z{)O8nzv6yXf0e&vUD$7z-xB`$)Q-P@5ZI(Co6RNEH4CkAS zd&KKcLj3OR(taKi_QNpB9RIMul4d^?Rb9oc3FV#eJfWEfIq>3U(!Xi>XWrmph4r?U z)W4{5?jtS;4j5-M)}N-O&#b=d*DEm@zOthw4nidU;DEyu zVwaRBc|q*$hKZ9;RgDHRzYzv^YfPWaw+I2;Ta^AAl{anR#-7OMcLpa(9OOyTC&aHa z#sxLvIrnZysz79p|1;M+NfHM!61+73x%JX*UT*9JiSZ*zMjD>7oRd{$)TNp2_Y}tV z!woCqjwP-B*G==f&!u#42FRT@lBhpT&3{&>-Mt=7F_ZBBCg)!eupi_2L#qAwc+MQg z{5J_tMKY%Ei8Im@OPc-U`Qwjj&X&z5uCHMvc)T#q8%y#28%>bcd@eV!ndQ&iel;!s z%p2^Rh-Ym7$tqD6&i_>`$@tFPIHh^$9z3c{X&QAbdl7{phRuVO^HtcnBg3J^XNvs~Yu}R{n0+Mvpt!eLQ&4 z@d~Q|Cnt6Oine(#Nk%S=^Un|*Q7D##sG=xXaKBs=4)%X~zk~NeSWFg*_~A5~{(^6p z+NVe4Y!<>yI=$m7+On>I1a+N!C2Dj|HV0-FLBdh{lw`%y?(p@O=`3N%FqaF+G$6)kaB- ze@M9D7#D*j&3+|2`d{YGF@9yf=uKb7`Qr$T8!3s;+i6kGtuk9-rcG5aj{l|FAID4d z6<&(!Z*%dnIQ}?E{i(!WDeTC*IpbZA|LF%zn%jOb<45CsCrakO#QbUz+i=$XIb7#n zjPs`ij2nZc`24@Liw*V5(;mqBq%fEZ;NVTHKg{}%#Sx9eQoQ|pA2T4k+nXLh)=7oI zoSQs;DCxPcn~tnGbR-H3q%Dw3Y5rIJ;pmwco7^SZAA(Q9KgMH8tAA*!-w8IlZL#dy zE}eg^|C6RabsT0rzEHzhee|mDOF^v9`jKj~8#0wq}UVm!L z2zl)x68=NlgA|OLj-`0{*H5~{jbAr_asHf&aZ|9Q*`K8;Q_3y&-cii@)|+wtcM`@; z#!}q>Ll>B9dCcu4(f<#d734tq0>Kc(R*HJ|mH-!Q+3Vk*{q8kXYyPm#0S zP+wm&#`a%o`Z!*aU*Tob+wX4&_TBzeEct*Sj+P=Dv(xYmTKUzL>fYiy-o5c_=8s+y z{U5B!=7zJK}wJ?8#n9@cvSmg4^Z-P!cRGaY-0 z_Lr1j2FA_DlGgqR4#LfPv84TjVEEJPClt|FsAkjapD;Z0L9mN(z87Oj^B<6Z^MviV z4|W${Pm!=64&LnkKNCl^L^6G9^y?ZnwRQ3Z@vW*h$ z2eDr^{;>>8S~&~G|MOb9?|pf5*MDvPmt(zGU`eY#g8A$GgmZE>B{=5ySIZGms z@7!h&Azfn2e;S)X%;uo6FB5E_UT@1jwyP!Fbo7@w=+XnC+q8c*YkTKM!qm(^X3S>#`IgUQ3vTFL-Y{CU{$>rHOu>sA9hpSFW*;SsNUXP81C^M@ze z@D|-xm_ECC&|DENWaI{U{7?Xck55&v#B@aGKIdvgeAI)y>$8f+Lr0iNu`R#8GJ&z131F#-9OyBiF)YJi5uIrZUZY~gC^?!)eCrhqzLQVD4NlRZf{BKifg#P`j?b*b6j ziB;Bc!nKaIf2bu|o_HqJILQ(%*zD~YeAp7DS1t~F&U>MvS>!I~b;g!xV=MWiE%YqV z#feMv?jN*6cDn;izV~uQ9jz29VtQJjs{4J~%-LX$(nsE&9Dm#j)g-d!J(|%S`5If* zm)e=5@TVHTo?h~T8QTZ;>228^R=3gVWjDhO5~p>!wZ^3j8nH`xd#fh{;8W7ji)E%C z*bC2x<(|oS&we-gx?g{VdiEWIxoZ8&KC)9+g+2{d`OIeTR(A7F{={CBay>$3lrlW` zxqj#RS0xxOJ8rOQ8$0;ncDz^2wi>SOra6B-`TUyOYN6^r+071Mb#!xsW?VER?4Lg2 z^%pCop7d)#$75b7T=|5TjfyUsG;iLq{`~_`xcZ%yy;t)N)cx%6aF~ieYMtjdjkT;h zYG3)6XaV`XB9`c(@`8ykDy_qDNeeP>ftxBEit zcMG)9gDo%1B7D1|U+L4!GZ!16Tp4x6Cv}c!PS|y`xJo;;>E6*9tZ&X}fO^680Ll<; z4b*pt570*MGp@-T>Y|PeTsFttJtBi5x-RZp@xCKcu54`(8`=edvROoci40gx9esP? zOEqvjzrdp1sLo&>edus;yc*0Ja%S{XIcqdAEn-w^dq>n}`?2zw3oOu$zxLTG##2=pT%C4xSqG9TQ{XI~A>a7{3jvi=qMdwwU_UR%jb~|U$ zOgU(Jga=e9vG&~MpCcXI@1KVG^qULR?W=-TGlWiO-@`$OIIFJt68YTI_(8UBdM zuvjtolP}8h*XKTJ6^IHtny7tv;{|h87!0?~^#jx@ZC1Rs0dh@E-XG~c7;<%nWRG0v z3PaTlowxK2fV};Qvp-Ii!5eu0kL=qGW7xMF*0^t%|5ilO&l3J60QX;nH(KA9BG_KpU#<$yIIkqvF@C7LL z3+2ML!B|*B$J>kWgidLLamO0*!WW>voG{dTnf+MEq2rB2cxm%CSG)B7UJ7F&gN|3) z10)$~cz2har+bU1GV(Uw1YxQA-XF zYn{O+^-PHG)ad`x%8$qY-me;G`1|@()SJilU)^bb#aE$Ge_j(P_>g_8hwwEy*n7E> z%;T3H3*jt10#4_Q*^w%2(ONDov|eA7(5kKdsisK z=m^=8=U)~8myU0k+nByI`#twi8n0-)5Q^w{G#7AkQvJu#{N+Y-B`t~iNAP4lnyib{ z%3rCbs+^6EeCuI$i}x-G0uV|dm(uhn;YfWKUjI+${UMC&Mr1z}*?&vZpA}>Ci)}Qv z&hXWn42k+r^pU1NOQ5h*GxN`3)L$4sMHvVUL($f)1?$dLQ%gS$@Q;^R_agf1V4NxOy#eK1L$K(OFv8NUNx8c&QIYwnxVlIbHhtAZQZS0lZHl~ObPpE>>JmcKdH+eT9V@V0O6vVE7NM%158mhgY#PZk(w zi6za?1>+a$bH>AtZxtlk4;)--`%A)+^n}+U|Fyyatg)n(e^p1j3tS2%6}&vm%zHK0 zet#Nohx6@+r8kxoer|4S#()|5Q`Z6i$;!r$mFQr#9{8pwmNffiMLySpUH%zYhxc3u zH|cnm2yc&Z9$0R~lA<{KGItq)Yu{^6zEEo!U%=>q!;^iZs~hpceOHuh^jFijYZza^ z=!nC+U^%K0pE%koP6rh0fB7BGU&HtUMJF8I8Ow2v_`;g@W%}T^sK4&iH>-jFXlvsq zr0Fj}+`Fw}l=aKifarK?8j!f8`OoWO-#G!n<0bkpf+zc(-S7?Z`q%1B_32M&kHo$g zqK>rmBQBKR)sEaJQU6K$((r=+L-QHiKQ@jCu%z|hlP>Q zE4&u9A5Fu@G4@|g!Yj39+;``N74((Nf2I6V7FZntnM=hxCG1b~L+X1kj3?{wy!tn$ zPQMF)UqH>TPs=6RUxM$6aXwhm>c8))z#fpOdrYZf+KNAHf9CODlk89BGL9dchF{&h z^5-zWn1-x3^~3h3jei9DCKWcY?@`^-8S8H##`VUMR(}M~{c^JW;qf!`zQ?B7zqtqV7&Xs-DGnq4A9%B{zwu@Tyq+oKPDXZK z5#oBy8!&ww_XyW3KUiM#-gWkD&#KttQ8(H5r*>R&(6W@R*&$`;$${^=omS_+w@7%$ z?a@YKz4@~`?yUHXJ;|Hiar1v}tlv1x3^Jm=tmu8z7R8MIzD9Ap6H4g2oaNQS2wf|x zcN=!r8g)2!_VD_4CP?P(%>bD_W=M6ziQ3vDMrg(v)r_1VXEfZuWs&AcXJq!p1}>U8 zqYZnOzCLKJ114Kr*Cdv*;LzP=SNgQo0eQpa4XHzQAhswW(AifT)jV;rUAxQ`WzBnT zCwJHpu~-*7cX0%?`2LNavIqPi{0JvEGoK9wn7dt0GQ zu}80u4pZp-+7e3(eBTNM*>(3x9~^)(MvMzOxX}rHyD0bhT3bW3Mdwkl!Ej@gzjjse zrlI<%^k=L7Tf$jrqO&=B!w4hfYZFp7AkY)F_Vh@Wz3+rB_UM%vGt2=Q`ksut)zt;% z-}sVz^ScWwI5}%jsk1Xun6RhcYnxCs;_B308Jg|Ujk*a7ycV}ZFScaX+fgd$aNfwV z8&j0gC?AjgBQ~m_RMU@9w(*@%a>|&~y$sdR@Qt#o;;R5IS?{ku^WGJL?%g;&AkG0I z>zvK5$#_F`Le?ctTrhOH)!zBWqzHi6w(ciSI)LS?^YS;=grJ){21MCy8UnB7?gsRn z8x8kPC(Y_Ld<5j*n{VxW=F5}15j>p z#*_vlXLKg)*cYGWW~g%Q%|g~v6ZC!d$Auwk=E!uz;t{LDEm3FvlAYs^S|G#Wp5qTL zutL={yCzQ=W`+uS%f?Uew?c_#<}Fi#4UxY_(IBJ9u>V^xaExN$NuoqN32$+Zw6|ou zLH3!FdB)U|uY>2FlFpNm@jmG<$N`+&WDf^>Zb}0$LPYTU0WV3Ogv__&8~X|2JR|Qz z{_3tX(!iCDcNO7fad^U$7&hXCJcCo$c5{xTq=79RZ!5x+^;_~ct)Hp-@bU+{=L=Pn zH51anlmy_%Zz{r*_2c$pdhi-W!3!V*uNFCeAsyhe69>6v;3jl$8Q}!T+=q3Q7S>n*M@yzL&f7GShd*0U1vV zf}xN``$(r2gCEeAbfFAB}o5@2~#{o`j>+ z=PaAzyz{sobL0m>}KJN!BzR~~0d6H+M zaLU^8N^tSJk<84so8Y?WK1EfHYQ&54B;xb@bVtSW8L=Con2rY#URwFb2YQxl+OieM zK3qXGoMAwslZJP5KKt%L$TA2d0D`v^CYzTD_EzXmRVm|S?u%M^@o^^DSc`AmxgEI0A#(LmX2V5 zVM&@Md&s3kiSr#uI30{9{ib;P;}su!Y?|sI#`a4W;|WhA?!Pe&gVYb62xlyRah^nc zo;c;K-{2WhK@#g6I9aLv4+%%|E4&t!zcl-2J#s9yqH{^=4W*3H-Nw*GJQSwIdnN=P|>0TP$hyS1^9Kq8QRS zrfV#t|C4cn1;*3-UvNHGQO&a2#TWb}{2vEzw*Oh;hzL(ZOJC6cTe0%@Q%~58^+%j1 z5wCw)*ZcTEhV^fcA4ooF<-)tw^!gKdp>*~8VGhl#zreUoVTTnYd6XGKo`!B+iknyp2`JWuqCn?5rxdhKj%2S*t5wAaAvo|i0 z-M#W(^MAtc05%jYeZlX^nb#W5Way{e+2vVf;QH4sC&kIz6Rk}2v0@x zAJ89th)s=;+f!^x{eSL1%>L_v?e2*s&3==H%eDfm|CJXwFsI+N`U8yq-!wdP|4Dcf zvQ8~te^yxfurJxnVtj$B54KwXmNfqnya3{&9B%}e+j=tcw$=mk@~Vb*=Sb4isgHMfBr}GB6Xp|zh`W@l7@ zx}MnAzDtik+faaJeIS;!@)L}IPMVKX+`t(iF@D3rsebs!04!JjsmAKwH&Q$-xvEC8?LI304tGHCdts)1# zqCdR;!pxHm!g@zyN%LPp|L=O&ztVV6h(!4jdkn_7Az0GNzp91RTXu*`+L-o50TS&e z4&LnX`%oOwFv;{;u0KAqsbIHk1wHvc>OZ`-c*gqI#P-*X*jt!QQTzW7JYm$|ctUv@ z-iarpui1Cc-p=(sQ_X#(%H^J1zfWhu`mIIQY5&~}?_k_^bWqR*9jwmK$vU5yd2h^V0WBFm26)InR z?~X}vC$v6)H+`Is!F$t zDqRwG@0x8dl(%#?r|ye4y4fn~aKR@)>!uCUrN9mHN{?1+IRorejxU*i+8PyIeF>}B zJz;UZrO}vjKbVxVfa`LT_hyOr#usee9iZ^*%fntVc96S&R^{A^K~QHXcjeFlSBUdp z+^%h+2PhqR$BCG44|$IcjMHqd53;L#%|HEcfRNy+XCCo*MqjVan@YFafcMUvEFb=XofGbISQbZcCO8=N>>P(e6@?doEJD2x*!VjpLHKQhf5`&_pBai3`$pjecE}^2-e(t_>FxmN=ah`G)s9fOrv2j1qk8~lGJEEnGL8RR&ugVJ@Q|sEJS5^R z!jkqS61SsdJWS!|jeL`bY>$)UNW5o(;K;b0jOWR?h@yo11;e!xO1$5vflnu#0AKis zcsyR~B>0eZC~+QghWyu}nA$Y3q2p~tc)~-H^~_y3K5|a!%+}*t4S$seCUm@s2rte< zlKzAjjo_SA*`M`KwJ)YYS316{2rte7)H;pLL4KT_gFa>W0nraw7ZM|)ZBm>maXcv&Za6NCmRqCm$8_GklN$6fJL z8aQ6!oSvqZ-_57)TfXXz|84y#>PBTse-FlSxHu0PO!vYxw z+kr01;1@UQU@goiYfOrI5>R?gMbJbG)6We*7+0tc76j-aHp>a@jS=5yYp*&nry zcz${FcZvPdBz+6~gYaPD{$u^>M=3aGNvuPY@*v{^!b6h#yl4eH?4pC$dbA#qEn$BW z&I+e*jU}!8(7=k_+_KBQ0qdu)mRQHZ!KK=dgd^z*uSNbN&3@k08l`ZSA7lG(ixaTJ zlCD4hoK=dtSN^rzdB*-*TKdh^Ux;Vs0h^XS^L}p!te`uV;{B(${|{^v}szgK*xr$qfD!e0)M^uI`lj%93RJG3HkR~V!JN-MvM4|aQbJnQz`pbE z7WMzq@Pgw$=0!5vkMNg6aYEwtkE-7}^JAA*e@uTWWH;yirkBke|1zH!5{2_k*4@SX zf2Dng7RW2kV61=97(blBerId<%#j%q@!S57qiy6Vgx8|-AAtjm#FD1JVEkLtaY4Z9 zdA(SN1+ zKaQ5seoe#cGmc-IhG*{oMq>pNuoNFZrBpssE6JTDF@GlcYHs>ta72k%ir4?FPlpb3 zmyG&|6C<#!(EeeTOYD?6F*%$hZ8+FEO7Q;vV*5pDvag!V7- zud8G}&n%M=89K3x+s}(Kjvy8BJ(0|R(H!@i%#Y{0u@m=?{>S>yBvfuXx%_#wtM8am z6VFsAPx7biKWPXznT#(Aqu*iHec2?{<4aesf2j4pWBN-Shxs>gAXEMl2U5!Mw668~ zxcNZXIp#UlmR&1yOPTMV#?8!B-ORkbA#ioiu?LuqKjaQg4OqtP|IO&(_?8pw=@WY7 z^*nr;?X7j{@xrPqw(<|jxi0qA>{ILBf9dAw0t!dR`fd1R15TcZJ3HvJ6}Z*kSo6aa zH(9lC7w3l05p_Y|2X155WHaJSc=u!1BOwq ztkq6UP@%r7yYyL2VEDy0J1OZG`^L04p6Lm7Y~$qkvt~zLvNOgsg;c7@f?-z;PQBV< z4$sA|YmHcI4IR5bbc_x%gC$0_&&5`mfV^&l6AuL0fDEU?8{^X~!M5`sX&)JOV7-=- z)PO3^_0UuO2jJSTu0JvI}`&YP|1Bu-WchHV}Wk*SujT297x` z4oiAGvbL0P1aDRjAMmb41=5pW+3afMEDG$xuItLv;oHJ8&RNg?@ajtw5r^f9km>o@ zX69&DFyMpYz2hD(VE*zWdrL~0V7r*jldQZjaA?ZT^vB6`@Y#J%U6#5h81ZralLG;s zAb)krW6$Rv-~@BaXe;@_AZCrfl#vYQ-dpc&O^1%@!gEG-1$TBUK)aGBKAZL$!W9Y| z_s=OdhiB8RTpA<#!B`W;?%95Z5U_TO9H`cS9~b)e%_?KUr}Iw_oL%DxgFTj8zX$_x z*BlXpyR?DuhUbPkTPs|k+}xFRHKnd_g~XPd6K^>~`4{!(5=mwt^u(y?JL_$M(+2C2 z*V0Tuk?SnUwT7m^=X#pYr|s{V6+21~dPOUN6`$rVn)zNEvYsz{Q)QqGUrzDZtP$8B zKAiQ@^YnXTP?}@^wEVt4SmAznZdkq*_|aXx;a8>wbXs&l!$Fc0hw|%!!z)Kk08fT| zc3Ex(7GK*rQ@N-Y01-z-PyJMe3kPeh{eD*;Brfv%R1oa~iqf>t=lTu;0W}qkl_d_K zvizEP^g1TUjg*mS-QW&rVSP^6Z1w808*8*YUz!8wUrNnWavZ?EajyM~ z7z{vfwNWZd`NBLn*44GgV@t60L8OXd4=Zrg&Hjg9wIxX0ZyWa7m~#kIL;aaT4?6&) z!>px)H9^1xCl?h>2k=s^+&Jj6GZ=f(W#^gHVZg}Kee)nY2Qc$u{%xq@1On10wghT; zf=b`1`6pWpK({%C^QL>-gJ#*el5*yBaObS|y%)v+G}82~e}%XJH>vvR;d2Lp!#~1} z{FB^4)M6d)^t}WBx8hdfDB@P)+T&K*URsXVPuTvTg2sOut;kXNp*Bd5W$bHwn=LeM z1=~%r9~0lxslD;B|Ke-ez(uJ&V;aqcANRo-O}QUzwFmB{-?MhpjGugn3h_~Y7d!X|1-x@9wM{S+grP)9VCusX$ zijNnJTiM!MoPzQ`adxNhAwO{&_%D~=TRfbqi0$LX-1^Pc(p9$|Rf)`XVBFUfH;IA1yR zMFCO%x|Q`PN2!`wJo{z{>umOfM+I!38dPk`5c@|dx zhemqk7w6Yp-d2;4sW_M>snpRP$Ct|J;Vf>eL3Pl9nPg7sIqI3lk#Fo<&BBN(@W z^X0I`wL8-eer|Lh(xZ#_J=EtH@p!L}zI{Ty{7{&?R*@2+}oyh10> zFU;%g`DJ6ueS2S2ZxciX+s{sOd-#dPSzrMApGVx=PQ};5XpLz4_MWTFAIf zql|l^BYZzZ1;@{^RqqrFlc!V0eP|<`4x)ti3(#D3k^NDl*Q{xN)|C1$tpA-EH2dw> zVhc+B7l!AtB~K}TUBtH@ng6Kfl&kD%A*X+|M40;%&c;5c0=&o(>!8s$lSbzEZJRW-;U;pybr%?7^9Jk_*>P^r;ZrrM9 z+5M$As)9)CcdUOn-UT2$q5rTn74NYbd9qtyjWVT-8+1fC9JeC4{-T{jegHZW6{)E6k*eT1oXEY`EZh?LkDeeu|U%38iG}hZ>cC!Cax4$#u-vv=Y z`LT2#s?C#m_K(TW6_x9TC_#Q#^uKcA)}n?r{Cs!f&*jJ3=lLWvwv+Os9{&a7RtWPK zH|_`Cio8Xi+1dL;sM`<6t>E|*g8U%;?hZChew?oA;m*G2g1UU+`rFp9)cXe?)b2ru z3hJMNUe3hbx{E3IkG=>Oh$un+^pFeRm_Nq8ojm2@T*~=x2*TmG5yA1Rd9CTV8QsY3 zhx@M|!sGZ8g8aF0Gc?_vGg6JVc2fU3EB}8lJ{ZX_22nxz)AJnH(Wfsa**~!Shay}w zq6GODwdhx{x19m^j^xBro_iXGaFJv@J!MQayGBXMzn3`q+!HSUZ{k*pewuNP{#xAD zUOqgIw0=j$b$b56@jm|{ZX`fdtB&0oayFOgmO#1x!f`7&{)8aE0NUp#Y_Kt7OxyTN z=$CD*ga0f3J2rk$>+cA}2#!A?@LzY$;VxU!G~fQl)l^dd|9^{ryCn^_OI)Xr){nS+ z9B&wfejxBKuU~MT&9yHFb@BVHOC%}xKOJkop_J>#(Wu_Bh!Vzc?zu(Qqh$f1SB7`- z`k8wD`!{~$xWD*~4LP2U*URrTL4$H;{NQh^e0H5+N<^C^&KrD|>8vw0{NU>IO!_jd zFO%0CWv(7Asl=k~WhT3OzaDUJ1>0)Z!MoyOE16H0uJ(-nS;W3!eLPz8n-#Eb^f+;@ z(E=7N8nIukg$@sX*Kr&C#S)h2CIqwk8H1s4-!=1w?tm2+>u9|84m&2X-<;*Dy@2BB zbp_>TY{2E%z2|kjEy4HGGo@}X;TT13I27%&9|%75JAB})jy=fV@P1i%f;}iXzp1RC z!WN`Va!u?b|29I$perb*7NcE?r@V_f9YL2`v4oK(BQcy z9#CfNyz50fc1s>xnhVaNO<>Ywuq!QVCCga z+doqe6m2Y}@9wJ#UYoz`CbyV#-v38)+_MfCT8Ck}rL%mE%@i?c;b$hW|LWh8O)Z@FuzEhPRra-j zKWr?L);O8NgM)^@nlpuS-@@7K2UWM|P&46!%lJ@TsQ;$>?sr#op-g1;#Bme)LB(x* zG`!~zf=T7il*7N+!w*st0rdU=<}aDIT;ZS#+#}ahH4-?$tXTT4;}=c9etnOG35s^$ zR&neU_hKDj%$(ai_e>uk;Tj}Wu}B33IF!|Rf9?&6N8YsGs?GpW@vMkpNu6v)U8gh3j#l)ej2{|ITUvA8PmA~4*j~!XCcoDl190l{XX9@#vq1pS zPZ_}XQ*uTx?#CEWY`3E!KWX2XHy#qNvwDyiOR2n$ z<0obk@k~Bm&`*o)HMsoPMbih|Xv_wxM7$~=FX*S0Y%ibpKFC9R*fM6d*+7AaSK#9X z{j_+$!4cn)H=+YTu=9*P8TYcmZ|n$b%l|ju&noDr#q#9%$+_=y@(MfB!-RwXO2mKV z$8u)&Mw}u<~&_tmnMv|H4kyQ)}9X7jBg6Tsc&L0-}QJjQBy;*1x|bk&^&MVnZt)?VkHyJ^)xYSM;tHz+et#^#Tlx8mH5)uB?PR?WBUn8M z?MF|yZerF>RIdJUJ%+SS#q}4)zx>Cjk9oZ#JGoAyj;~fm{9}J3q5Zgi@~Ekqqttxn zP}U#&X|W%Ou+QY)lRKc#@SdqFMw9B_(e}gXu)KKBeEr37HJp$e?uQ_MmYhu!n>QZ( zd*dsye;5173Hw3r`EHrWoQu(+3;r=b2afN-{#HW!bM0(l1I*>ru1+NF^Kg3z)8CM9 zH(FaRXLPdthf?m7=&0TCyi1Z_wth=a#b|*2z`W$H0KsV5=nJ0r3Hr;mv(tSWA4o_4 zbLT_)q4ISR6_h`O@~`6G^zUT<=dW{k#qj%&u=Yc2wXc%|@mQ|d-%8-0JAO#8?pzFc z7!7bexpn1|^+Ge=S0PlEls|G`g8PjkG(9_oI?_V(&X zfc1pOKj<+3l0L(xTF7`&&Y!~SpQU;`MtW8x<^49o@H~EpQ`!kkP($E#AMV$jpSf`| zdWR~2g~%e(_>a?>B0Tof5&91|&cdv^`WItCKB@i~kNvw=C?CT3ZQEM>o+-C-xGQ5o zK56{JctJm{VE>n$7PNWm^AOVbgYo95Tnlpfi$3gq$lNED=n?5jeLky0^5^7@%i|UE zf7kyyR=yZz`(r;X_O}w`UsZmsm8s_Tb5ZMzye=MpsLvO4tp3z?CLCXj{jG%hm+XtTZ88%t2?>D%M^_RN+JElJjO8p&z>g`9a|GGK9IOn75 z%|$1^o6yDer{2H*ji12(FMfgy&dBI0_Rc-tt&}}E;Kl*=+Cyw<)|-+Y4^Og7elQE0 z^~%|KSbhG=<*8ot}U%13%xG0D@>VlFF$60 zfJ3@DX>=1aKhX60)k#V)W#0{k#UgbOI5wr14FdqxEW1qyM-Bxgiytq#rDg>TR;;$! zu4fH=GmqtsYGr`=w+HT@u}TN%-t2wkbd)V%I2et56lefmCx>KgFB=3_Jkq(sFmeWa z`X+`p>No)H`I+W(X>_2o{#w!P7z?Jgl)v%{B(or7xe`x+p_h^3-3ZTQwn= z-QRanH+fLi$8%X`wFP9^YCg93*20EOOOsPCyMwyxN1yMw9Rz4EYHfV?835Yxh(oS# zyumrGANAd@xq}VmNp!goPtY`N;kIvXZeaTU)9(uwS^!3K&wIH^3~)*2?DarR&U;C1 zo_sCf+y`vcuz7or`3|7&*vQGu5DCz)XYbzw)>{H-FBxug_XYbc-L1@!bB^h$`Bb?F zk8Ob0Y}#!t0}H@<)Z)2jjRPoDPMj_o>1xGf%uI%OgQxP38UR*{{LI=7fq(HyC=8X-P<-Zcs(3|#+`MD z(r948!&(g>yR@>k)m6CN9nW9b4vycix#8Ef2`w(!z@BJ#w&&ZOyQA{({(&&>F;<@a z$rNF}?q;V%eZC2or;YO2+Ri`ke9|4pEB#pqGe8J747U9r!nZs3K>Mlcf-DPdk21^u7#p z@VIqb@}4~zK!u1`;o}AE?%0lm&!=VOEG{hDo&gkzctt*5*u3@A0TdA zDd$}|lo7VO3$FV?g4$;zt4PZDd|`HX`P8k-r)kC{yI+U-M+tF1=RJ0O-&?e+?L&Pp zo1ooY&~K1OyS~HsNi^wRsgCl$CC5UfSNWgE7b%IH>k}FoN{X+-v(e!%tOJaX-R8UBa2WW5~I#qCdhzCZ`@jqSIB`oHen zEv3+*Qz_4fVtX{U9}CtWG<7#k7#d1C--y%cqVn|+73{wgf{hk0+7?FHe>>ZMgxTGV zV`{xZzeZ5bf5OVw$+#_|*=OJ%kN+0>3)RGwVmqn-HkADz+v~CYn9%;AZRc~wq^}nl zoS04W8{_sfLhWXXC}I4Aic?V2$lc6elu4+qkcb}FubVeTZO$VV=4Q;Fg&k%)cvnRc&}K>_QQ5}Hzdcah~l`D zgM%(uYo6Q$9=89^`BF5lUH;f!kL|aw`RTaliL)x_SIk`5fAxzVe=lFd9 z>lgQbmTx;A=j()kgz-cEtC14W4s$Wo%-sjDe({p=@xtnFIQo5&dHo)M^^{k>H$cS+ zjc-?(J2>SVt%S6H=_sC;ZZl>3V@Cdi-8*2edw)<^`a`#rqknjx&C5@sU4G7p5o|vv z$nWb(FL_WjO7><-QCt_VKd9G_!rBj2kA~+9-ZOvw*&#gZ5vBfPd;Jhp5MO>^|BJNO z%xi~kIP`JdOd9_&KiFS@?dO8?m&DjpqnFfV{qg)Stp0yvcZZdCuCeJ34q6da(IoxB z`F2QtoW!`kJRD#CJ}4t!MEUZg&9T{hh~3OBAoO3We}0H>e?$e_uX&1s)b7av|62Y7 z5#Qm63feEkDkgT18Z#N-{V6Y*EkMa>LFh{`qJr!1abpKIjddo!9~$F3t3N|gMq!8& z^vAHMTnY?T4BBmSbrq@qV0|2haG{72+K(G|Wn1G|we}Vu=|9H*&H1R3n0d8qR?s_^ z_WY`@K3_yResxyw*Il`HC7jZJGy>s9B1%|)aP2R)mf}-nHima{ z|3f`~MWS*?AxhA{s_EeenWZ%!D$jf$N*e!Ba-r*oid2mYsT$%W{p%=Rg@eA3O1>8p zzUxcN-sw%LKVuLs9#Mk)isnYtvIoySaAZslwf(rW{ikF2 zPmXxJ;<3q}e-jbkNo4+Mb6(dl6QmtC*7h?YtzU6|V-ao~8PC=KsGOo{x_87W<=-*> zsr#QWd|fB|53gDb%JK7W{NBlb@p~t5R^VaAa<+XfA+t<&@uwbz2bderpV9dJehV{v zZ++u>u}|2O2KIEm{OK`Ux9~_*!ty8VWm&zxSC!YXL-)V&G*qi+zuPxi z&Ybf;)7A4_{Uv?vV3?+lWnsNJJfXC~QOVi`CWJ0?Pq5GhG)Bw3)kZo%&UK$$wWJOR zxHV$LT^k*6_{#Q@O@+FEAyyIjYK|G$Yt+B@`8gWEBXscQ)Rh*{Th@Hb^hbtpdy!d_ z^?Q9N!g&8Aa)~h}v)!`&<-_PV|6_ly%(oyqPeqU$=NO(;?7I+HiN`PCY=|Ff!iy#%U(V9)4(; zZ4H}crESdv0G)R4_{2Iz}5LeE4`cw`Mey zpE>g58tX`~`Q5i1F~>mYn^PbqA8iE&m~L5}Im`w`?i;rMMTj-HS-@HxW^WEm-EC$m z@AL;Hm3ravlY)VK@U^7cvkdrgBHcK%(hWiccAK9M-z{jx~ zt3G;#fc5SpR(`9p1AT4T@m|muJiV+uA$0C=@a(KRsN&rJn&7^Bm-o~mU~4zUh07f| z@8RvP-`im7AoT1FZi%N&P`ls)RVs4~j@zMf2TOX6n5H`75)2z^F2mNy1cXm z>D{W=cE4#2YAcxAmL^*QR_Wn%g{Vz+n24Gdvw&+!_?11dP(|60AbU6OraWBIehf^*Hg7YY0^lg zD=m!wt@CvwDg68+`F?(mlL?R4*w4Qdjn~-DXMQ7h#rT*RLhnJv_L{-%c-}pps@_WU z_rWv3VC+b5`+qRm&u@%yJKFKAgG=@rf`m=y0xNxIP@azyMd`H>C9Lzfe&TtFsv|%7 z%%HqS726dtdwhEc?|j;mswIPT`lW*q?9gm0C*&Z&auY-4$|8!_tuz{se@|C+hl8AZ zKz)gLUp`(O;iM4d+mm?mdy|{=Sx+$?xDxTMe7pq0Ng|5vZJbB$`NoLr@5{z1q=SJ( z{6Icl*gUyPX8$y$Zt1{;h&MS1P;o-nsoQ6p1^WHSB;7-S@zUsv45EVT{5_{xm3DUm zNb5{2e_{Mz@qZxppu6)QuM>G}b^QIkgmqs23Af8^mq|;-&O|0q`Y8qd{DS*z`PD{i zhv!(4)>&A7!s?IHVR`YM`RhDkc>4Z|!kZVRDc5OOEfi5fg6m|%CDkId{c$8b=0{lh z&D&ozyh$7L$NL-}TO%m#q=J5aLHTEnT-uZ@A5W=2f_{EnFHX5!KP{{Gv~k^6PA2h> z({YAi?g!gZ2;&zwKAG_{=xXn64P9&}Xr|mJ2x~u7z4m#A_srKnb(8@6`3d#s?$h&o z0*gldNYeQhoUaD@qKPQ6{~1)(vJImbG}e`p?KBwQS^kCLQ+h|`96V`EY3I{IjL;Dk z9REr#4l4}tqkeyxu<~&|vA*%1`SKTrhrL=XPiF>``Y+B`2YoR@6#ENlH2VJ1?{qL< zwoLA<{6gE7@EC9ux7+)7$a72xow(AEKQ3 z_ulQOUf{56mPW6J0`Q24ujAwOPn^_2#q$?6|Jcuu{nZ5iHMjMpftPv99TzSeL25rN4}2~U`=JHb zKlzgl-)_(gCG{VSABg0K{m`WT`>0}K%fN8T`J=P#*D*Zx`JRs9spa1>JoWh)?B{nz zaui&@Iavo?Kb1d~a{Y$m18|%Hq5lK_UQgH;Tvi&)uE-;`A1bcX{TJ`o0LqY{e?|91 z9y3Kn??wN|45z0 zPo#QKYw^2{yh;D?Ei*kvfuI~#{99L2W3k+{(7MVLl7m%&#?AJ9kcaY zM00`eSknFx*9ZIgeaU$4`_I6u*u<-#A8NcGk{kB(6Y3ve(dRw$m&CI*@d@!=Tz~5E6Z`qGznq}I+&IaP_V==W_Q|2_ zzd@+}!H5cuzatW2*DhR|-^KN(Za?hj$NqZ3`Ij~|<@k3G>id;Ct3M$~ZrEQi^pI?^yd$-{bi=e!h`^@$r_Hu2Xu%6ln^*dSK>#=B&*7y_BXuV!nR2 zMY$N>XU=ijnd}s41!}%zH{9QD4j*2*ChEV}3>K@O5npn}1v-3lZ4DW24R*i!elBdF zA*d=h+A?ge6)+Xq7CXC}E*Qc7*;q3HfJ6I63_9iD0uI-odF82M0|r}e7iI0T1S=i) zKg;i74nTpJ;!n+dl=<{ z3bxNNh8w2#ExYMx3YXk%l+E951R0}rKYdLb0Gomj=^NA=!!K5&{A(XNKz8#`?;mTK zFeAJ!rtb#_SZ5jXHd@6MGKTbem2t!zZkN-NelW=u7In*xPTI+Un|4^-{*wCl>r*zgc?pRjsotkUut0^2jO;kR{f4ZE{8+xTCA!GijX(NLXL+;Rr(; zLujz?E!k-;I*s*G+Y+yN?*aaAH<|hNuP8!o4^BUPdjNo<$1g04e5FB3+JeVmp)RCbu(K*v%)wFR zjeVTw4Fpxq&yLtn>j`yjPxN?PIu2o#fZ12$U6r>>C#pyXp*OOL5eK*^2Wx;NArr1-4g-q*wCf6LD{ zg~HD^rQOd4ImSu6Uc&RtWITY%CIb{&wx%Sswt!&_c z9a(MpJCOZsrl?%Oc}8tr;49JkEWjY*8GJnUvtc_c-uH8Y=JSW!a$K%2iYI0&WP+*K z5zto7RQ`EV>}M177jUK$)@vWNeAPHW8p&A6g%Kv>w0$JxrD3<>(vyddi)`_aO4xObLdv@usKMw8BC;qvjYfc;g3@q@ch2+-|LkNGs7a-FJ-GU|;eq5p90EG#wJ$eU+< zNbQf?Pni5!ZQ+m?WJ&u}%)c-^PKV3mJ@fbZ9m7+f$5KTFV1E^%|8e7i`>tvXT>rz1 zvj3?eJoc9n9lkPZuRjs);`v(YlMSO*Rf@lkv{_Rra% z|7-Z^O7fq{f|-j%d$fkG089D5(`fXV_VV$1+Zz3k*VFhsZ1Ov^w`=yT0E>zEqUd(K zCHmb8QM?YIq4%9LHg4S5ZQ%;Ah=^zL@xuC#?BN~qtMpcYg+zQ*G{BF-@Vs=(DBG_? zc-8^R`2+jeu%C}Gf3WVp>jgrql~31x3Mb89xc_4R9QN}O^pv}PGF<7gXPpxH9%76a z#=nH)$Gr_VI(v^ef1k;d=YKnY1W?Lf(9iZ5H!RYh)ZJn)mRs$hyvG;&*#N@f@ra{; z-1p6=Ys){}Ja`A`9$zd!?4QH_GD7=t-}hP5Z6PeG+yUtAe6@W6?fNfF{tx_TT9(Hg zAl-wHvlE67blfE0G;I#)K7x+odFd8V%3oOdJp2ht{dYx-{0Bc9tlRvBnf6{=D{kr> zlK%g9{8Q^6_77rz8FBpFXx1GRUiU4NS~7=n{_R-(smsUyIqWYJ)SrY&nHF1){(H|e z3;Njz{B!qDdmP=0?ekClW9v6xqzJjnkf8 zZ0R1hw}iBR!Nqj8{jq;;D9Vtq{t8&VQ3w2*wlIA2{rx0A7ao6be0(s%KgEpEXh+xN z^Z-Adbt7+hA0VwiF+LEb$NsW)?RegOdhYuj3w`?TqFg@;tN+qjHO)bn_H}aon9|Ad zr?_)?u%B}L5>|hnII}77*w2RjRf7AE)5Yn|?>D7T-p5AmXJb9mZg|YR!b&|Q?6e|$S6-*4N{1c2={ykyqx^C$LCPC$4<|Aqcr>zFAaOxkxG{(l#{YmHR~p#vEfbfS?zAJ#pBNvBaB=?uf9G2RyLRx0!!|7jr11me zMaZ-KCmf-#_-?jQnt183o#bfioUBA*O^*H`q|A?S0>LlKx`+B!o*N<5^QiR`c|arcKg6j2Bjaz_q{Yb#ndQ**H@#%K2Xy z|2(loQH~#NaULsE`trmvb^>SkNU%w;^`XsPkzhY}MbHXEPO!(6zXW`gcBj#NK1^y3 zp0|vBzS#S=$%Cy-rdEV!&rSQ-vs?3$n?JLeyJwAJ6sJ}&EdrW-SsN}hXC72PQSEzy zsU_plGB@cgGrr-Doc6{R=A3ZxtMBH1V4KfN5@UU`0P<;78|vLfL4?-Oi$Pc1foz|v zjb?_%;8;U?_8T!nz-YSI8T@ z`0nm;nSw;li#z+XwkwG1L3;Y3!a^?xnBcSGSgx@*JT#Ers#Ty32YtzEvW6OP&cuKx z5@$4^enFbODO&?FUe8^kA3YHEjQcigdA|WrY0nHRW(^${sT_SacBL8AxVwWnGu{$P z%+TNFFtVZ@I9Jv<<&1kzwOe3q2GZI z`@J7nu{KlohVBqZFRYg}k#T~{wRbPA53++>?c7slEE@<@TGDS7-*kje7rHr%X}H17 z>gh(a8udVrC38g{elY}vexbAdi<}q6PWdhMTcI~Bd89sI+yc(w?1YI8 z-*>sf?e*Vnj$W~WrS)#kavwaPy6IX6L(WC?m3xlX#T>N+SsHV%UEsW*bq%~Rb8fID z+!MO({^dI!u&3s@iTAg9f;F2quD$Un3bMA`tGXQ(06vJfUXr=Md6B5qBdgqzG2q}y z?bVCt1%PeQ=XUmP2n3T(ZYq^O>H~&7120>Cc>~c;E^)VYgTRV1N2jBbaR5}71=%_{ z0+nUIUygoY1uu)t-tczb064z)nIjWZ?4eYBV`ktQ9|(`{32K@y0{o(+L$`|=!c39* zyA;Q$!;s8}4}%iNP}O*$EaWlaGD>#)fW_JvCmvWT(_N_8vA>5svA7>Fp2Z zR%VgyyK3L9@{mVWAV__*ZLL=~2$yJwk2xj=eD*w)OpB+(x{^C4yWY#efDKa;^_S`J zXplal_;~=zhjU>)H=iEpe?z!NwQ%HyOWyFONA~raMq4MVmEH3_W#vAAVtqb87Qv|RqZVzB-dpj7O2=D@iumRw1;IG#>nGG5> zUFbn^yb-|$dCtJgJ*a$8?QLQH?=+BxBShLpwq6|V8@B;&1pcDSiUO1 zeBJ_|Mw3K%!UD8Jw&!i;HF*ioU%MuO`3fjO8<~HgeFG?L0^M9bH&A?25@7cv;IsDw z{3HzjtYY-HC9MgsgOhrVF(3i7XDG);Vd;&_1diK*priap!Kbs{R2WfifU#i&JI(~#uSwFXJn}5{i==uZMsNTP zzx`+|`Ji)58m!;x$+;MeurX~z00ir_{DsMnR}QrUNHBnfF#dA`Fp8C054onfkv0&R ze>L<)9Z^F4qwed}v#Y+vygOg|?>#7@iTLhI=D+0Ak4x-;ytAJShcGDhr(^Qx&$GN@ z{%ZqB`#dd(rz5_N5GBaJ$V}%p``6JqrlpgI0Ia9HWH#;Nzc#|@B1+Ixt^?FX>xW^t zQagahCtflJK*?!3=nH2l!Tk`*=LXOe{VQJNN2lCC>LI=j5f$wJR);Mj+$*gq$1i<^ zGeDG3|DvF$kJ__1Ae=+z&Zk_sDO59KeDDQ3&PF>wE7h`)iwkds_T!=O4V^VWN5pj-S)Bop*klM*Ttz z2ZS4hD53uOB0p={QHuATWF}L;PzMLF;6M}tz9`)00h^}%w8sm&SQpDro^t-_SpT73 zKL8{*S40KpZ_QgHjXbr(Ne(cSoaT(axFAZ9U;cK_N63KOJjiem^g~@;O8d011mEoNn{~46ypC{r!08zp9cSr-P&zIaZ$^a%Wgd2jW zVE=nLJU%BeVkBh%gEzwYB1(|o%W_}HW__Mqr@=YMgY7K5Wb*CnN5KFV0>0`{@dY;R zlDQNeek094csvv)e;Vt7NB4|!%K2X?9@Pt%$9v?Dza7ITP_~~R%HJPRLj6IvH`Q#$ zHHAcz>XD@R1M}0d@&h_Keo+VD2O_?4AOwN`d%;e|2zQf>CFh&WovXv?T6T< z4M$&aAPRy1q3dl9GOM+jPtFgSO6ort-?8?m9{+{mo1@nqRy0YcOs&y?)q=*VZ&<|y+=|8(BS}!M38vuV9S+`HoXE*^iW^(PkbjRS}X?av*5LPe)tyFE6dbK?i63_RZPisR28 zIPhs4S$-wrhWD8nGcTLYOc_qnADmx2!r=fGg8aeF12>o-LzLz_o(QJwzry-I%AS&c z9KeDDQ3&Nj$HJRTFYW=T|F6G@ox1&!k$@H;%D2<=0@#0#3*QuRZ$0HjgX0lyHllbv zKtmT5s!M189>>8yzzyD(4)QM=oPcmFMCpjqPyqe2>)Rya>(-Ml8pPS9p!C>3f$f?2 z0Q5&+v7M#o2r;nx&_&6xyUQu(A7S!G*;0-_oyBLN0;VHMXlAbc@AT}GjOqUK z{xSJwqjF~;O4z@x$-7DeZn6na{gnQ_7ro^mzGoszXn$Jm`WEK!y@T|;1~2=^tLU2wS)i-epDC36cMjrvK3RT?65fh|y0icJqE)P?a}jPH8BZJ6^pZ)- zxN|qZ=l|C)TA~iXTZrnth+Kc}MRoKu?&mGvx&Ld&pTD^%YVlv<1`{|Ilx4?H4VQZi z+5Q)0G)^~GGAG*?7DWs%XRbbK^;q@B5vKY6pPyf+oMDz1j*omRd!AWz<<9)9h%3yw z(g{C%dn{wu-ks^XC$x#(@{{p&TvlJ8EFY~gudFY4=M}Ny;%p6Q7MLXNldKDZ!h!2S zwE@s;wNvf-srGQ&dNr$8lICzE-N99CY!JNf=_k6=LKDtAknrRLtq+{|Vcg`r)eIQu zdEsK*8EaVIR6fW$%o)b*T~e1h%^8j|{P!whIV<(Kc33$}3oT;@C7iF!~>9yV=xtpRl^ z?>$&oI{=>E?e{7=n*l3rRbHeX)`drYZcxdKQia}97N6Gp_J%19-(%*eNx>tULr!mx z(}lZPBSRm(?hCKdo3%qH>Oi+qs#E%XREE9Ar<>{gP<)4p5d_i&V^_`5g+njRZ?3<@fbx$M}1K-HYdp4!&gS6cdQ#~#@ zfjv2mHX1vPz|%s9N8cT^!JFl?bhL|Q0Bz}7Z`KV%Kwnh0;NmzDIPbV)SW>kKcocSh zs6w$bSUkfqVk+l0prq5RROxLlAVdFV>6oj70o*fUXw)|=5MFlDE~(xEyj|xOc4V+F z0INq{Sv1fH*gAz=IeAhI+;_Va$F3U)?5&d$Uu!Wy@q>8^_e)Iy{fFY<_yz`e-KU@V zzE*p%pjTfye|ryzNk9`l*q9zJX@{} z7TJI3t?x7tfXV%KPB;a?^P9e6;g6(Xi?8;MeHoH)uT(d=D|5x6l2oq6B;y`1&wE+x zr*7hKV4_CQ#YGbEWANnbVpqkX`*M12&Ic)I34cqT5On|nr=Hr~wf2OX=PTyQwAh2t z$OF3zO&I``z0B0^4**RnKiE583g$b`KELH>061`S)dQp10Aw6VI@G7a3v4(aQa_Fp zFG}D3`_0i0DlqCqA6Wl_a|=pNS(VEoFU|{rlG&DQ1$g`O(rnxNfiTn~;#1UiADBHj zeI{ra28(@<%zAsw4gNS~ZdhCH41Ikru6mu$5jSJq@$>SokT$l=Nxf(=JnSY@X`k)^ z&y8^?6|L}wTXi1ZNzr%x-->hm?=I@Xb{-t>!`Wv!DnHZ)y_Xf`xL*<;=jemxsk4Z3 z_DS4}uI`=BeH~FY9sDKG3-B-6>WJvd>aN8X4I024P{)+y?d4Q>$e zH~4r7R36@6VtL>=%?DcXgQYofa+O4UB_A(rpRvt)(N0F)ba0l4KYIwEVukJ#D@@id z%Nf0na-S%TGLk`5aGe{jwbQ$wb~2@%Tp0fzE!(4tk0nz2`GnzlYz0uRbL9}<3W$mz z$|2l1A+HyUpT~@|2Kay8-{t@(qmFZ=y==2HrYsofofk_d$q%oSh4Ih2{Ptq`L6J_{ z`3x!R-wRa)s|R79)Xc7`WY-OdO`TQjK(aG;lz*ri*F0vX^&hui)Ro4E>l7U*_h~rJ zQ3KV3pnqID>6UcEr?O|m!2sM~T z1_Att<0J97OOPMy&BE7g7?C-u+4%>_Pl)lt+8?LG^5#AB?X*Ji;BH7%#ZpQ;w;Cz{ z$2k(@$MrMZV^367E^z_)e_nD2fM7z$4_0nK+$-6ZKdyiA8TpN3Pu(bA+^mThp(85T ze}lZ7)_uz!LyEJ-^2F_`h4A=y&Lh{((#zGiDq>YE>7oFXTxk7uBE@LuRgx+7S6KTw zJ~s#-pD=>b&!LSN(Lt1;fBAPOTx15+MNX1+AM&r=XX+xpO%N57|9RPb#~#YFN%hC+ z^bijBZ$kZTTZ`W_lY(~!R@Toajh`5=kMIVF66{>uIAMnDzO$!-{y9H|Au6{&qJsL% zW~qrR*w$G;IklfanEr9us#12s^5U_{AAj(A%^2}dkRSJ)O_fI2lc2QNF4jNl`QH@r zjpG#w`ctw;?lO}G{@oXXnvImCCX?J zqJ;M6_Me6Udb1^ug^(^i^g+KON2QGbz_!IL^@);R)?Wd;ItYd(DK@ zqd%V-QucowABp1?33z(GY6DyTwreBZnmSIRv+@&)2ZxJw7>6k5Z((>AS1!$zczYx_ zC$juld5m-H4?4plrQ;na=T98x=t#zwWJX+KuQ)$tmeE}MKVCo1`Br&7rP1z>=U*OM z5|ry-Ve&)OqSSvTO5lblVg1Bie~M^dobs$9ic)_8!nqioy+50ous{e{Vo#Z7RXQvZbEaruOCq3tJte|JY;ybvX%@E`BLP_{IJT-$yE_;+FT|ERh8tXAnz(*76YebJXdLn~yQN7bY3zd}M;d?rugVWc z8ATvU82{kmWAmBdW|)rTNGDSN`M)ZE1j=Y6xqO!GvqQ`jtGCvP8O(pJ{^0n`iDdqZ zL_fb_ex797`f$ihQk**;f1(gB6;VE6B{%D;0;jW)4*k-}7u{ogGy;rAR8W65i;k=~ z85K)9Cxr1a2p5N_;Q0HozIx?)^C-&sb2P%mB1+Joy6;i9*))lu&&GNMou2uR z8DI3%tbr|l;-Iph zk@dKfF9dg^+&|zrM;zZr(0@kT3k_-M7MiQR%l&J|FJbM^ZB|wU<@#e1YWFlm1;>w~ z90QwFnSg(6{=o5>IL?zG|Dx)iADOK87aa`T1G`xM)Nw+86K6xdpX)$vkAV{>9A)Z` zJ3H^x`5nwTmRsk}@i@Zl6X$E@UVMgm>h-kn`LQRNO+7QG1q5DTzCN|Z=hmw;%$1Dn z*LSy^V8SEEZ4(Y3Vn${A4$^9|0X9s zfOdZ0_7jN)K=FRzXVvZf0b}obld>r)K-0}3#;j}r@U7^RJww$HWPS8~vgZi{n51Xj zbLyr8KLK6!5p~M&+^`DQS06N>)kevd!;_U^Md-4lIbn3zx;%cKVjpFAs#0=#o}~gD zJ>;h3tmVqkT7UH3_qWaApx2*o51wxdN6mB8pUAX^@UHO|lf?dTR=9SWJ8q$Dn-F@qeCE5@u zWQ|U4Whkr zb5}L=e)ym{PSlBecS{q>uX?yn z-be}H=QZWkIeWgDLSqxz(c<|G7$-G1PH8M1F6#AZ>WnHkX!mvBsA+))y$|HfV7^O+ ze*QvNIIQ8u5V>pS&?DmPuY=cYq4Cm%HhaU(Vac+r(Id10RKM!&{JWbej2e8_ruKpo zT=+e@$JsP+B*2$;Gm}@r7GIDWO0wu<&XS%;v z0xX#|D_Lt4L2xc)54qdKesplgg{hgMu+P4Iew()cWCvJYo_F7On z@bbe(yWWbuV2>iT1KpPm0Y%N`1)_O_LFpGchg?N}!0>)@yrduy$d8N=+15Dt|9`<8 z_qxIM`?-iOn8WK&><7W|{UtT7556rG9=C$+mUtb`nT8&v*2;ks7bo>rWK9R2#JCSn ze%wcQG+$xA(K+;t%fEQ#JuPA5bnrp3{SO-L13&IU6#d)}Q9S?9(D{a%N2m7n+Atlw zAmU%}@jVa@vqzY>kqY1{X@cpwaFYi~Hz%Ml4IjJ-p zT*DP@1Ewqic-<-(w{jV0jN*PC^)->#9~lnHi1@n2?RW{4UJ_BlzB%gp=VtZa52Kx9Wk13#ive<0B)G!HXumrF#c7^s#IsYP%xRWAfXlKw&SJS^5cAD zc!WmSH*x*mbuE5w!9(=_v2}~E`j^ZM^e)J!K3^w?_*OtvQ2w{-Z||)bU{Bh2qU5xm z=!-m}1pSM;tMG=sW)&@I$6Ixh-4Hj2F#b=ATD@zsl>KA7iTsg+zJ_87l=AO|_{QCX zz<=F^?oZfN0~h>O7^6$tx8eE= zPYCs|xkD2H&1?OvFXry);(aT%-5jsi`lEU@BFZ7$xVZp5hZwCBi@TVA7Ny<72=R;K z1_b+G!h=cuHYiUb^yP4Ox##Zd zJV^5|F2@voF+-G~KeU~xFWDJO&dLw(Y0$;;e^2>>1ari<6{3Ru=U$(${wdYgl;b~+ zcd;bbzd0o3Av=_|f5xeC{Ym2oN-i{R52wTJ&3o>+-PzE}|I0I3V@mnsxD^{R|7-M( zpRga8?eM6Hp?4YopvP2^gLk@7@-J-s6(&C%?}Ot;1lzw#-)PnKMPa1+pD- zg8o}+WxZz>_cL0Utv~u7 z5*P&Vqci&Ag(#tX?)qn4QG~&cZE>Xi3$CXN!nq?#X#aePGuPQ$W$YE-Ru89q!H+A# zxgp9Yyz$%l(M`S+-2V8FKejpm;IZ#m4uuE z&iz*7-3LCIs@ui-&!E&_ZzKp`ERc4}lmD3bg=_bFvMBpMj(5TOMQHzkhm{YRRa$wI z=A^Q^xc<~}r^4EwCk|K2^@|^p7mnK?)IYS(m~P;V9b?gC&i(XwoaH8G`L_38e}u>J zAA}7;C6ff!UrNsD4&tp?*?0C($yHd?n#s{$P`xp)L$u4jq{@^ zKjMcnr+0Dx zq27N8Ykyw#qMQixQrk~}_dAV-<6WZA4}$XB1s{p@`Y?gC{>I}!j$6TYXM+3~5g9a) zd{@Tusq_?*{RiW5yh|i1pMcN*QvZS3B)?frHg6_Le=xp7_1`?VbM43K>(#Z1nO$>d)OaszW?gq{z&EHu5u?UCbKM3|$Zrs?@ z^q+~$VIidbAA-^1&=(wkLTLZuoU}*m&)KfsK5PV?Yd=mIm|tFT9pAt3(*K~`za=34 zCm>4Tzj^i6E$r;-ORG$c{g#5{mWrrg z`wb5`tuQu}EPs?-`22|y;`ZV_^7R+T+f7302>O?wSa+BShnk#lSghT}?ML1JCL_Mn z5hcivdq0qi&W6ER=F7U6f9n0`e-*dloLzXu)IW;3_-=m7FqIw5b8^}HRmBdoZ8Bf= z-!R}5``LtUS{tO#vYWO2GVY7Y!!h}HPgZ`AhpzQ8Dl@LiLj}!zZMQw2*$c%y&C2KZ zhQZ8(TMIQg@d8%LQUOE4uI$G5h}-vIdK7_%5NK3DS_EDl27X-nS(*o^b|5Ci56D0FgD8U!oC8l|MKSi&E1xq%Tu-mrF0wCNoK zXRvFgx5!M6vsOxa&c#*-Pw?{h3;*0#v0(e|>pO;NyTY%A%cnlvtqJ=~wW(U|5eO58 zN3L69WC{+B=;L}^Q4`d(c$N)b&=b@KZI=5oM-i@w`fyov2_4dxO;KKU;R`z_{^T9g z`Rd?|eE(RPTwTy)&+t}1*dOefwyk9r=Pj(X2=8n2Rb&9|!1KMTPUURT!trM!Mk#|4 z{=;RZTL9R$+*-T8n=APGi?!7z!WGbZr0LCH=nd*x)IBSQ*#p|CjcRheU4i?Vgdl0- zzF@fK#PGK_`hp22hkCmfsDmMAA5K-fEe|4|eU_KC6azi4s=qz>sg50TKl;UN*$?cm zZ$?dhb6W!J(QsdL&e;}>Sle>3AY4$7Yy)yXtot8XuCLR1g*4Inq&zXazJFl*K z5%-ES_@H6Tl;viy)182O8l)VMlGql|>$x+iS>Zr-t~3SQArDiM?(~F3HeX-AJ?jjL z>N9MND+dAd9_PQ_jWYq$LkkyG`x=3WH4TX`7V3hmk=HLteC5R-rFOGk^ooGx$KNF!(N31Tf$z$-n@~G)`wv?qSQm?b%C+l<7W8s_U~!z z^y>KBd~vXK=iC9TQe$|#&ZKgOra9DG*150gR5Pe>aq;4zkMv+=$+BfhtJ$zItnp2% ztSSuukX~;!(*f2z+5S{R-x6*rSLinLoi^lJ%63&8`HsWtSs8cToejO^iZ_~ZEMT1t zG4=6A12}>_|KMVpH+0z)f7SVH5R8fnb7I}I{@>bfC63{{a&f}A6<&}99*_RTyfN1^ z@;&F-<}t?J*=ZubD~H#g!jS$ah@$vjsajyj;mWMfE2n^;*umX=|EKV~XdO{{9JfLl z_qd-q_sG=l;qPx3P5~dN_z!ylf)Sn20rvmq;2T8zcy<&oc1!lUneFfq;AQ8Q8@!O1 zr3(AzlKd$8jq&TkwMYZsO&Qzb@-I0-U4b zRfKp^cGu%=-QT^H83B$`@h|fM&PEhI(B$+1=QU0=zZ1qwq5~;JDf13~+)b=oO-zNB z$KPJJ41QY8&cEqEoA==SMe+ah&Ab(|yKNZl78&#)9JfM|U%Bke$7Jq7%Uf^jofzlM zIGjK*KO_hWKG!|`ISIOlL`L6i?}vSb{anDV(C!pfenPqV!^X9Y?>pdb*#p%Bh5zEH z3lB+PtXLMjT8Xj#MCOm4i}loh%s(F>$2f0RM9=SuD20FicS%?Wo2Hc}Ft`7Ihkxew zQ$l>>_zQ~N&G)-{_EFun>6;Vdx*LwSQK6Tg)$em18Rg>DU+F&myHvP6TF0%l?!ScQ zs8!iEb&T@!->E<5?<%x0f5v$yj$6?}^+#Est9ah z;(c;}O;4wfa>k771}ucrpyS!EpFJakhwy%i`m}Wel)T;ZR#ElGmlHYp-`4-NQ9*Fr zO6zq`V#d~A1+|WhadSEd|1aWJ*yUaiN$%la5i$F^(CQD%zo_yPk++`5jQ`qB`Db3Y zXdSmg(O>Yn(Q}gZv?}pwUkBQ{)qkt~{dTBqQ|r{5G48<-F#-_9{&Rv5#O>V~yqYt0 zQVQrQjXCB~`Ry(Cn-RK<{pJf=k_qHfKF7rgb;6n(&PA#(iXhHew%9^u$S;o0l%bLZt(2iZ7uxcco#OheWWFs-_iF^ zOhKh}!{iw46!4jfZxrH1$=}e|pEGq-Q@}eazIGeH*@(htWu4Z2%Cn!boh!g8wcyRs zgDeoG=zsqE(&6Uu zzK(gnCG1b_hZv%ipOql>n!`;#R$G0}?zidhww0ebZV~GX9RGpql^_Iu_pnhbBT_l^ zxJ_K2_+h0&0%zk?(RAJ8a_Gb?(t>ZxN{d-QW z4*JKIe*ofp5TdQ^uhPw9-*0;FPV-yg_IE`%9DjkY^Dgt_j*?~#O&@S)5M%!zi12QR zQsjs5&0oqXI*@TKB>wl!-*CJUjz4Lwe+UJ`-S;lE*Zyd){4v`vUZ~!@5v7bD@zadI za2^)>5PSA&{$cs6WAq#PAii;6qW@|pE>Z!6_U>^n9qZdU|6!KDw%HHN-}P)8o;m-KsQeL# zQp(TXzo|DE2HCc8`9;77S6Fkpnkg;vgX3+&5q>|Sy!Pk6_tc}m__<4u*8+Dco-4$M zq4c8>#p{U#5vKjCRuj03J$21LyA}+j;=_b^QRV;P>YZMCVJ&c_;{B!olwBLw5B4+K z-(%2&#vXY(I@deB<~JN;UEA2km-J@0u-Z80RmM2#@1W?xJ(7 zKc*BXmn??em}Fr^5@s z2h67FFZ|p#<J4O zqMwk*o8-@aaIYnc({Jzf+$|2r%r1PD)z}#h8I|&6poutqJmPXmtLX`brjv#oyatRPh6CWM$R{ZN`4M&vsQJ0T5ql-TE>~f4F=nu zY}jTE4^=jvR_kvMR|IsPJZ_XFJa5=-y|Sr3ERde$ZJ}cfKYMKW)WJ>*zCLXxv-5@p zIP~k&j2<720g)XU>a*Pz_(Mwq6Se*VdZJ_|z! zg&i}8xn(b}KmH~MFRdp&ee9?MHSf$FR2rlN-9KLK@~J@{YNtM*_3eWO%ze39_Vt}k zu+m|e>{Ksp=&A1Qd2N9{tTPpJIP;nf&vyKjkn_eAzMC)WbgJ4MhD=)Y$|_eIMs0n* zBJ-;iOwhPDT7EkVRz&wS)SGyRlUX@9{^i?B&b@CzO>ZyV&CC0WRN!LR_i!6U!9!oWrTAEq7W zz-QvtzR!j@!a0%;=Si<{g7D+6?2=>~s8oKY=!%;&w3J`E@??$+bg0(xw(@a@!MVhZ zwfT2TVMdP4T&cd`%8_0UU0lt9-}4KamS+t?nA)W4KN2lLZcbg2;|VLk zF8wz-!W{IU(r>0h6z@Adl@oLA7uoLB2CZgJ-ip0KW7VaMV}*0AWcLCl-eHjw@FXM@F0E11>jvyc24 z3h$@9xa+@@1#~VAepx<71tP%iahuW6Sd zfLQo;w0XJ_xHV+1!PdLOLD;9#UJr{0!k51W$E2Md4RY+yCk*}W^1roTMl?g*L3B&p z0Z=w%-5fPd>uMj-aR+$)2HUZ`@03(@TWk$dJ?&wJlPzU9FLVJD3H5QVRO#hNmsb~0_<89z-D9Y`UH*Z+9IA$8KXwSn$f z`4!z4uK;(bhDW^cd#IxF&tA0X;_93gwC}m%{6*pU>ExL04jJ?y9Ctujci{VdcRfB| zF?neQquq(;3I8JQpm-{LO-ih;mYoQ^|FGSy&1iRFvA}T$6#3<^o7_8E=1@O<-ru%6 z<7~WDLOT@v?egb#O?~3Dhk4yy5w+jH@Vkc%deg-5PBc1}Bp%NAzD7@k?~P~!qCCQX zU;V+<%xgXU!)Wr4#km(skK+eg*I)4B9rLPgjQHF2huOjT3C`PYx3f>x4pfR7#b~$l zh7kUb7sAH>QRW>rSMBeTme;;Mh*&LR0ZLC&)&wW&C8JeDSzNsegT4c!Ok( z+$x?}XG^PpT%Q^UuZbwW&O7DLn`?Z%T#0wqf4l#o$Nug16X1W}x>4KY&z({K>7oJ} zBTCW#{CN9~S>vYO8a9Qo|KoTG1B9ov-!qx6`^im5@4ajoG?{Vy_&0F}N>K{8$;LZz zfl_Bi{NeUv?!Shp+(z{Bb9c(ta&F{piXJv;5>5V5a*^v^xjof)?@s9dx69AB4>!*E z+jz_;rC;$b3H7fjN??v?>;C`!Ud-Vk&OwZEGdNxW$30NwkMH-c={c#J_-L2k#(&%T z4|DtDc!huA_l7a|ZjzPWfs&^=!x+b3OH^-Gh*HYWx4*ImtjZfx?7-N6+RMK+%GVCj z*80D)e8dOctL6aDGX%*LTJ*OK!r^%XrT^Eg>v^C2{8?$u)4O_qTmFe|ow$L0AN=j{ zk5zH@nBF+4-zGmeUI@nzP|8od>ytwg1@<3vN;>_v{M*+4%VhzeHV4CC6V+%6#YkKfUhW?zm0H@!tiN8?WC}${#lV)DzB+GpAh> z-i!v=P8TG%YUw`%5Pm44t^41h0xjZ@u`9sy6G1YI7Q8FM4MeoH{xz^w`Fbj^KcoHD zHu)h4%5$4@0w_BI$17mJGo}1s@Xfnq-r}>evzFU4#!cY3gF)zl6nxRNgAd7^%$Je;qJtom*n*3t^+gg66@y`oA$eW&jQS*L9g3EG$`+aZBCsY3I<=+Qo z;7jKp%H>v*gin>ss=eL+u>N8me{sA-5S{<5c^((ZB%(}Q+sl?V{^0ubM>xE0NRhwd zQtnMMZF^~bMO<&1{9rteR|ur%A7&YFn>4S&M{ zmsh}#(Ee*1p1J*6#~o1WKbO3Hkc?Vjt0;NKl4d{Qdco_pIPQRgx6K=Uh9p=;M%^DA zrF~}=m*?Na9dP~B%SnPe$1LZ|{y*G)ziO6o@qt5lKF`{`MCA{+KXcsgzwvuV|Hbd^-jN^%)Vp$=4xb?R zChRlOPuNcmIJ2c*LH-CC_9$;9yjMaF%B;WDYFi)%b(4f+@K zOO?s71lP6lI&N8Q4SdJhB<$jCcKveZ^J78jX5dU0|6vzp9D%_l+4wb&%s^6E-Myuj z04#hqV&y)29Z;j9-f_N*63|__CvTGr8{7;KEA4mN0_1HNUzy+40!UOh^^d4z1KX5Q zpZcrlgZE!;#CEK=0z1t^B)^Wg0eNH34%Bt923M|lOqNM70&&Oo_V?_e3u@**^9(Eb zLFNLVq(&7@koCCBeD`^M;S#42C1Po2;Qf*gZWm8lg0PxNHdAAa09Sf{!#3W_PWAcP zyA6ujP;N!~-BXI@FsZ}JTJb}AaI9G|nC)u|!+QFRIUU4?slBB8y@}O@xlXHQ-PZ34 zp9b#^R@l-P%I3RWu3n`J^P}WfO4k{|tW#+}clffP+FotfFZJed-~sIe+YfSJ@#@Q$ z_ih8w$gKFrn?C*FkX-MVmy|f5$f4BUX%DYno<%5bF_nYC2c$a~9<>8XBfQt2e>NEO z^+@cs)Ws0KP4B;H-8yY}x@M|&;MP8nSQDP*$$mvjb8j^&&S1f*m50V<_R@juhu}`b zC{;uiVL@C`!-qXA8avV-G%4V4dCXjIY;Uy^WJaY@UEZYOhp)GmGvZh zg*eo{xKnZINO@R3|Kdx@qjE4wVo`r(F$D-UVv2Vkc*bF=alFK24dBPU;j+5ljp57c zCdcWX=5S8Q)(x2g3Mj zoxBsp8=jSr`vFEna%*klAJXKoWKd1@1GFj zTl=xswZdB`kH3azF9>jK0SE~I84PK7UEm`vGIByjzfsG z^r(@&GzshyRxCm6DruR=i?XB3?u(f!pPvK@sQ7{sfQu;#e{2hP;RCC2v~>uKZ|%pf z#Wx7zK*7w;;LMIb)lsF3fD|^IoA1N;HuLX(S!Jt4)gsV|iU;ukXCsP#lWz;Btm`nD zaULLp9)zoh(tiAPWOuVGKkwfh%s3Bh?ZZ7j1w-=AsmzeyxuLs=EcX|-TSbtcp;B_vl{<%Kk8Oi-NOKKT!%Nwj`1m%$c zxLob!AN#SfKbn$%uG+m?l9=5v_>kJUKWv8!^}L|m|9A6fWmJ)U5v7#hQhwD2&VV_M zb0qepFz$bW{ok4hFNP?O@ZUdw7I(7<_DyA6N5t_5>h%1}6O68t@2}R{acrY$^GGbu zIQ|Lyqg(gieK+3d%(smHZSvDL`D1>6k%h{wfha|P@Z+GM^1)1rUw_(<#q0;rLVRO? zFhzdiL$$Ax)k}I#UFIH7^F!hG(?)n5L@D@Ut1;DN?3NJ&ZHGtD^an~V(hvINW&fh2 zHKu?fm(5VnR=oJF%ctzcqZ#qokB$A&6#mBrXdNV3%^7j^8S!nCpWoO2vHu~9A6tLss36!MOX0tK)va4(Q4if!J+4X7 z`X8=m3xvo1;09bVgdh$KfCYZjS9GK4UyN_<$EM^DpFg`p5;0j9gYzE#;qh0FF%GJ2 z{g>5FJahio|L%+gtx_!?)Luz`Tw+0F@j2V@{%T0<9nPewME# zH*hT&No{}{;rpkqC_VNE<+b49yw#Px!Hf+qtFL>m1tX~Vav>i3zXu~6B^iJGaP-|Y z#BSJH5K6g0Kp`IcvAq$#_4qO3;Esz=udD(xRD6wa{)+wBUI?$*!vD*Wx93@aq4o0h zhx@JqX)V{A4@R}jpIiH}qg&Dm_8-iY`O@RtuazLRk;YX43XvuxqAx8_-gJI6d~GKWo7Y-rt^O zcKW;6uZ;k=6aO|4;sa57>_=}s{tQn1wYzA*Mu7X5Ab9{lFp>J(dHI1)3w#O~?LSfV zZ$g0N=Z%{H9-sL6a(&yJzkttT#`+hPzW~3}k*Yra$`$vb^s+OLeW7aqOb4`o|anaxtBAy^4GPVH+*PuptwFpp!DMqrHr4& z-F$D684lT%`(FCd*8eab`?2x5IR)>x=lyMRn&-n`l4jnt{)h3SP`+d7`G@g7SxU}Z zsTp8hLXX45_%MVUO~*s?z{lj;-VNt;c;6q!>)e853IHV+DgQVf&QEYIv|qwef-#6v z${$vHrkX5x(JSh(RZm9yUzGg5j99l$bB@Uk_?TkZVG0Lwf{zcVa+wit!O!Xgy zGQi_DrT*E&oG)?W-FuAs%=**&monS$;}QQ{L|gY?uI%Kf3iB|=?}o)9+;l`K<>&U< zdWY1$cvx&!ETF9);`*F`a8u~`u!mkXWGB<3Zc@DU^RDQ=fM^1IIuRXAMzpp4cI?#Q zh{bZu@1evYTmqsL{y}2L$K>uoj!$yMH_-iJX%k^h3!%JpW~G z|2D}#SBz2q+l1%6Ig9H{P)$Ppm5Ays3DMT=$Bi&q`YQJuhe>}n=$Y`<@?`P|Fy{mV(NS=LZyg{FriH`AtG^N$!61 zhs)2r{?Ru1Vb=fYsQfeN?O*QN2ejKKb+CLl>V)t#Xh2$Cf`6@jVAoiu^VVYI4(%@&l;__eo2AbGfeowl|z; zlr+-%Oiy^M_~Z3~d5-Yxsawh>TX-)|es|5dnPLUrMXx-TS8-l#~4~;@gEFhnnu@SX_JLgYXP#w+zJ4@~M-JS*ju{*I;^0p&5Q?S)MVVE&Y z-7shFby*fv`qJT-T7oJpIzOZ9qRb|a(L1x6^2esIY3jWB=0{m@`rva$uJ1J9=TSX< z9e=68##sZ>-F}KeVz?V69P0Ytn-A#x7hU_s!CwA?zR0t7At`#wHcZVoRmQPv{RN!+0R?e(+ohgvRA6+ zJp(Z9=85RqwFcnRiw?Jj2AKk)fA^#fhYaBP(auc;dRQ>pYjU=O5&!+!^!|q=sak}oQD8bt*UXG zxn38h8XW16J6#cG)OX9QO_76FD_40OAUeTm181g2TJ?YikAALZP3;U>;#&)c?@)s0 zjfTAb`0YEH82vTBV~38A*gWP_c;Ruf(XR8Z1(!|W_g?!ZeOjXnie3!w5%9tUvX|R` zRXeQ>Yx;}|>c3wd#uvF=ShK4yZ1l99wq=nC49nf$;of;2_|Ww21hHcp@X(f_OQM(c zf_@-xSB8lSH2*Z=T>3g~IM!g@*OEXTNSyAM=k;0(0u8<3NTV9E=BUd|hrEt(_fGv_ z>FK&q;fK`Q?z-AgrQ?gkYBsu1>XWH{XGKjIefeqOC@FpD91>J4;im^J_cbhEd08L& zbv$u?YK0Cww7b((>CC=x$htsj{|=TgZSA!OQoOi3lMQ$6mmji%-=CT~nhdjt@1^c- zUr^!<<2$|1u`08H#l0LCac6r#xxG8IoqWv%^qK`^jUDQdvBvm+D{gKAL)_eimbf|4 zM>wA1bz@BN{u}j%EIo%{(Q$JYXxxcFlt=h+chgoRS^o%21+EIh8-y!8ZcYW=Hfu>H z_->8aX0a5@$*I7IiZ>GCd7}aUhvQZrwcrK&&%C{yy-FrAm2v+SY!AyLoMsDNu;w2r6kfl_WA}i~@r?6MN%SBoM1^(>@O7|w%85IDIqT9~`u;K4J`vg}_!}YEgFT^u`ccN|i3;U@cJK?-f4&~n+QDOZN@SD>k zPNvwHh*$2TY3sgit-ti3b;IwD8qWCLpf>T(9nDyOSgf#kwywWUy`Sr>(}|(28=&I0 zd)*Jm+x0{be2pK>TX*%{Si{L(;8#<=c=8{%o5L8_4U`bSJXOyBQQAKzEub4H4jg~0 zJ|m4*f4KeedNhuIqpVx;<91m!eSZX({d2!}*(UiTnENk|n`5E+Yb}3yN2eTiJ3XGZ zZikW+YUn^6QHuQV{r2aRw{LeG`p=Df(Lj6~G4Ox2L_yKhGnP?*;PFxi;VJUN-+!U# zgMH_+V}ls=zZSx2BPxa{kMQG;>Rjc@f1F|c;r_?0e{~VReHr*Scq6V?W9CQmo8V&V zp#yzHDg757cdQ`e)g|)3snWl9i~Fx=`QPgInA^9V>sE4%`r82UZAj-|u6h5Nje6Dx z6$UeZZ&?)oH?psmJ)EFR(_bjNHtK&iqy98T4>CuTBEQ7Zas`m%?U0genaJq(F+n&S z|3<;{^`~6N`a&Dt{yQBp!+a_M@TsWs<8-*a1?R%?AIIBayP1-|yO>p1KxmNLs&@V9 z_XnB#Put3`%h-OFsDiNHo>EWzbvqe$%BGj8Lur0joX!g2y%BA#zje0|+x!(g03K%r z$!uHv{?-VGW2H_nLrSyNk-}Y;uYlvBQX1}W~!eP6gg6I2f zCx@5poZR1yX8+>y+aWxTf1}{}e%p^~&pJI_Vn_44V!WvKJ3egH$|bsrwEly#ZDaps zUbhyNzaSrG{na)+bN)Eq&J`7?_4uVwr!ukfr5(+0kIRqaDV)&-O8xWwW_2$PlbmQ> zTK!`@KnG5Ayufc(?U)?A^*}rIe|!5cbN#y@z6a3xKmW|RhGYT78U7PZew+Rj+5VkY zjY-+V{N2QXh;I)%|9rn~_28xFvkr4;?T7o18^YoEH%j|AZh7&53@#d9`;}$<=gO}x zC;#KX6Gr*L>m6S7^7H*h+>|u?4V^mtW9_#=h;JM>*IIu^tx0~a8e++4zxg0Mj+>*j zA3tt^Fv^Omp7^Kte_`%_gAxBh^!DTXjabL}$}js&*FRW(aok)0!c*)Ie%um~y+M3W zrFJ{@KePS`MET;lxz_rZu()~hLg6o(-xtB!IQ}r_FH(P0&Ds64;Ui=J5sBwBI)Kss zX&auI|6!;iLJ_6NZ+vsy$()(P&SvfQqs{+t{S8M4A&9o_Ke17RYjuMRX!;Awk0}1l zxd%bU_V#{vidp_~+*~-~zqR~)Tr%cKqNhLO_>JS{aQs{A^85MT_fqp4LMuP6KT+k! z>2Q4s&V}}W7)mf2(bo1Wk#<`4xm{&D<&Rl@+QvWg{AI~Gxj{Bb3x<&z1Lx7IDb zNuNLC`WTCFiuUqfxiV($9RHc+ zr)}~V+)n*z!ifJjaSIdv61Nb=TLE};(5imB=P6FLqkNA${m*d*T`UeJ_g>*_k4}0o z8F-zeq_U<+qvQr>Ow{ae?nf&)kID>+e#l+tlxSK^aej7#bH;H>pwF(GoNxIyR*9cX zV0ZnGP0xxgVX<}gs(~jAp=G~?vHdUjz@Tpf@~t#X!D%A-tE|Q#kUx9whU1I$!I`~B z?cV|;P_*eqdeLz$SS!~xAZMXH?6gNBS+A%cyy?^x9`Eb`8xKex+PFmYu>YQ234? z7J)V}*zVbIvAM?Z^wuX=p4D>T9{H?3Z$9h7JKK`09KI>SoJOmo>!oxcVHQ(xVU`*! zIB&f@?2Z9UO|;x|*;zieKCgtOJkb0R1AP4mkh0Wk> z^QMbO7z~8mqq+rqhIItQf!XtNrfS3KYMy@K`!t}1>Q1|9ca-6h{Y^c;ig$xvy2Go& zO1_XQAMQEpepv?AnJ@GFy#6yO)xUei17ltsK)=cW|9)CP;?d@g#%>1i&Zfwvhn+Q{ z)}54qC-N##P5xl0>pTs3lkMQXTtgE^HJMFnYGlD4UyP4Tj_L)uhZ6VfNv|SbZm5+C zWobaQn(os(r0K#D(`_U}SE@p;QIB=wHWF~Et(&E-x;E6DrxC2)fw$j`ex6%eFH>0e zBPoYF)f{e#<_rQ#MsPOpe!XwA1}wf)Zo0Ke8L}0NPcP;9)n&@8D{g7Bp_^7k*XNzh zVDSmrlhVa{@WjFsvDKtG%=5c=u*ldFRvJ6HeU&hWe(u?CHH`bhtRpbFsMr;{9*dhd zH$)!}nmP96;M*#&DEZOH52F=fp!@!Y*$;J~fr*&PogkhZE_@+-$hj}%e!es&PxT(B zAmgB=tF8qkmh9_&I?EigCm;1ad&&atPZ$zY+s_D2nLoFaZwEHK+I_XzqM-(`ZrA;y zZL9R*8uG{mO(PSiy+bO)sf71kqnlCPJ8dzB=7mHOTT%;_`VBg=WCI&o7ig=$H|h^r z<6fULFc<&d^7Aic@bfQi@$*C8;(F`xG6ju0Jfc*wN*N4qY^*mi75$wTY%d;e!3(|* zzGCo_UZn%mfE9M+HQ%=q`k8s!kN?B#tdwys_sD=t)LoQR8I)yUTT_1datGsrbeWfY}sRqDeceqlXMcl>oq5KEEr0~?-t@k)t^qs)Gz~? zG2kyRIB|;rW>XY?-ZHaiFGF$wjw2G_Y+CR*J^#Z-|{g0KOs4>nh`n-Wr|Ldc6GeopC|4I?Fw`^0kWb`xQ_yhxb``4W7$lGUKLUZA` z+D(l4x3~Ya4bQwzXN361es+rd=IULjA(ei{d|0e+#Tch!jPNFiw(dVscI$?R4c24q zf1>yYRW%87QWa?HL?}Cv>&$?kP>xalTl@Jb!JL2*>O%Z{Udk|L0F)J0f@FfZarl8^2PngVzX+|l`ak@T;Z|pB` z&3~47$t1Utc{KYG_a7V|fa44({g-WEAP%B}_I&W$od37^$MuZ!6P*9w&3{DIzaT&6 z?smmyHD3;l>heDUpUHl3_XAL^SA@N@BAFx?J?wdd)7Z29$PE_w)&4i zd{05NwfudTy0RqO-Wy>5f*_eAK*@=5=wLFUt@T&1ws{|rGL&)sD-z-25pAu%_gh*H{LP15)TnPj%cPw|EZZT%4AqY-W*qC&!*(5T%TupC}&oEO@i zQUAsuz<5L{`4bDC^Wqd5zHsZiD*QJ2i$(cPpy$8!(I(z^rt)pAqz-mu9Dmy;|IF+E zZNoF`pSIzd=Pzx;YclHZNvPfu==G<(`|ANt&BgRzK~4t$pW7eI_J1NO_f$k%um9w~ z_7Cr1iQcgjD?(ey7$E^_{b z(_wutI2YQFGf{#JL@DiGt~{uUBz8}pc5KqacFf;d?Hj+jOV?>$jb)Ud*@*ACbpC6; zh20_zdgy@A{q~IGPbR|6L6kE7^8L>eYo=CDefOuoGt8_%M9J^Z<^<}ljQV>XD)&Nq z`T6sw%g@eKp3rn=wBNH4Za$(E`B@T?Lz0bsN0m*R3TWdmO5Sey%|Q=ZK+m7pcX*s& z{w62SSbkCUhxugcKW)S_j=zgg221Gt>vwv4n0!BL&6V;>z$m}D2)CGyXFuq2hOF87 zHFUvQqd#4KqJ8zpE~D7x%_Rk>xI}ZD<+3aZ!Q*4%c*&xyqins1%)F?6bMyT3^m)OS zOaBsZS-^8;>l@nO62ve`#qbCgu*^!o6F*3^^WzpTRxyX+dkt@|Ck^43LESZ7d4YPd;t_LSY~;Xbwj!66qz3}E z3m1mfvw-{4+b2WJKag3O7nLe^4gv04hWxTwI{=99>y&p&TpKv=ms{E4trW0KPQUo5 zml)`CId`e+Gy+Jlehqy-S{`uSqZB(0sONCGZgB^`hy$WBdT7HwMW8U-SHo}z3slZn zb87qISn&7+BlgjKsO1@EpW0zcj#sV1Ca4`&BV_g zb->N|gLxeS^+D98Q);KC^#;`?t25Gfnt)F+Aw_%V7=h8>ky<>0J1|3?!%00>@n>d<9PBf$PVIZr>^14M_r zZyI#Q8Rl)b{^0520mJTGbX)seA8z$^lp3lV#0#X{qv)-p2P-G(OMmHT16D3`^!ioH z+qkRZ^3rZaT7bQIg`Of%Md$k9W|-&Z@84YknC~0F{iO;%>alCKtC_>1F>BAs-&2L~ zlVVk6>2vbyy$3$eH|fCdiM?-_e$s`XIU6sn3DkyQ%(IMhD*a##ndn;flmji^NIJ7j zZDC1Kx6N3vDOFN%wed0H-A_l=%>+4bz&Y@5~vk1uwnm zesy@f4s6($d}V*NHmn?S$>~9)Dr`6~By`XV-Ud%gel5N=NFNpuVs9O^w4wLeg!0$N z^mz`E=>8&ZBz6f_HYsH`i;zjvL>1yffJd-oL(1p>mc! z^iJwQDE_p7T<3>sd(QDTHfyF`bRdy=+;OCAZ&-99!RB_PDV%csqt3~@max!xPTfHn zGw7WdIp*?4TNqsPNmE}%=YK0ebpu0y>IPweDlfVL4;*-cbP{WR^Z|s`V^(mMu1XR4 z0Y|*hE-l3O2xcn*m7+)A&TmKo1E@2+0m1;&jwn4FQHp^Rf92f|&RXTh_?S~EfJMc# zgm~U)!~ba@%0ZMza^>gf0lUb)gWV&i0*@ZT8-&Nc76(&jbXguzO8#;`nl6%s`)@v) zG<+&>qT-!|cyWZ2q~qC&H{OsoBP1=m7)F36-B5yNa&{BIXV`CqZ(~O_fi|L2bU8PV znBoTT0+s+5+QPpCdQewHaXs)(cMP1Z3+$y1xe^-(0K9<3PX-fR76s-GY}x55j?_RQZ)3c#90ax5&cw#0bzAXV^@+16s;2ivO`wi&h@F z=?#>rc%mP`r=sxv`wsKD5HyZ4KnQm${Cwd;upmI>ThD_od1V=l0j^jr^g;|3W5!Vb z&tEn+=tF4+V}Pq7O5YPvo=QYNLH>bDpt0@l3@`+DwC20p+a4f$cI({*ob?%C5EZ|& z2%ti!;5ovacK+G7_Wp5dLv40{|@mdN#g1opK&Aq^hQ$58)@OdRvhR_;lFZM z!V`|%o0HakRJn{3WE@zF<%WXy{=(TthA+r}S5o8t+a}1O^ z^PxPKcS*Rw*Iv9H%D@0oO8xQ2AI&qfx~(vdq_sch3+pSa-zoA>tUaI039cU-bl~mq ze{A^;Q9+ClrSKo6zV{Kw-mN4{tZV!~mVXn(w<(=}Ia|HAoSeY}txrv4{(xtD<)^)P zGsL$KqIkibXC&-hxJw@x8Q=DLCA|jRLHGHjCZ@%HFh|$1-TgwCF23up*PO{qIsWOd zR|AS&#*6(D;w?~mZ1=tv;=^q0y8=zCVB%A^rJzuFoyXdkmi#TzbsI#-w4{SK7fHwg zw$J-7F=0!<%$DoC16EiI-U?l}M)XljI>AP^vCqDB%nw}xxGmS44}^G8^>6FDL&5CT zVlab>hob;K6@?e1TUXXT{gcJ0zwHns4v13n;p@+WcRMe4kC@-QXEEhx-%@}5&{cax zDf&xp&3-vByW1Oqc3*OroAA8nGuEGwCjVRf=e##11=cvhz|NA zT83{Bghz0w3?SU=J7rFq#W?N8^LeT^v;X$^tN!kt)f$-$Mm#|Lx*^(n{G2t_ z{;{s@E`ZxfkZe#(`#B-p07NP6=hwWEo%BvyQtDMPz~i$ZnM(`a8R1+IrRZ;%CN2*m z4GVj7xg`LP^ZaC7rxv`Z`V0LLkudE*3F8ZnqVU@z^u)^G8piR{74bcg&VSauvjiYQ zuS{l{|GoezQT!9!hXh+iopJngM|^uBO3|O(yKm${+O9s;m!me)9PGHCdmx-Az5IR$ zPb&h0Bj=k6O*R8O&lDtMx4HdRnhYs@IBq@T{7+>0`5ERi>Mw7^_aHY+67tql4Wa;f5hfsegWe#YQQYc*zPQn*EQG69MQT z5K&70tlZvDNWW>yuclp6r?nr(i)ufd4!5`9Txh=!K?#BprQ}aMe0ZH?1xtmLsmasy zFMeJS!VRV4xfk~E9Q-x!8g+J`WpuE&m;bim<=Q8Igc76t4M*i3K`%eywdWjXM8hq$ zIm_r9@!T^zai#K-*%rD*k!l8anF!Rc^*f^%W}i>|-jZjVyNwzK`D z8S77U{>>cwG2+7n1tKOR+PeP*b#twld)A+3zoF#BXmk*ZC`JBZy4f|d>*~UOA9nSp z*) z$J6<*(VugjY%Dxc1jM>A+AnRBf9Cw#hOcF;{|Siicsl>ZDIpihlQ$0gH#N{dz=)C) z6VU@9A{@ zLEVT8oQ-;i*Gm@-p}nAu^-m(grO@$yZ;keo?{W)XI9;}2w11`|+%!ZR5ap4utK!ed z+ktXhN3AyfZ2^W!D8FPxDe?!uE<7lZzY`XW`m=5Q=kLFu1Nj+TW7J=%i0?E+Df3VM z`X^CjEj@#q){X#4!GkGwaq|TrxGMSuYn+Y=kJrmGQ9?@nH~L6abEdG=Vp#@*Y4$Ic zzZnRZfheW?{Ppvq!7@)w49sccC+3Tb4rU@s$v^i%m&+V(`l8q|`{e$d{p5Mb`;o&3 z#`d3u_?}JYpS7mnU5?!9iJv-8a`PY=m2iC`JCb$>(p9Qt=;hHy?In43M9Xa7*a;;-{&% z$gT759iD&Dn5I8*{y7M@2vJJ?^8<{vH+W}=#p^TbzXb@l5K&4$=lkD^!d+GRo%qfu zzirc>%;Q(v@QsZ2OD^JjF`|_EFP71{M~3b^lejL!@*gXIZ7csz2i)F*VhZi=JXG!# z^zt7v%sxbhJ(64CYiP>oKVF7#`E-2cjf3SR5L2H!L{sv&>7V5&-vWC6;7sUQ5@a^; zUh)6uegJqS;(HaHe^`2O9tZSuFi%vc&;L>KcF*6jUuZRYU~BuUSp0;aPv-CYkii<1 z?^=5KxwcRDadNc-&Yn1C{g3T`>k!}T>HOEO@p;c7>gM`?j=KJb^&end|M)i>0dM$A zT)I+cg1BFC<8;rQZJdWDO|LTQ_jAf`KBzj?D;%cs-fEdIdHG9$ z>j!e*fPls*i9S&J#nCk(ANxQhiyb>s>{KApXOCFA`ehE$=ak`l2@9a^b?V;o^>0aa zr;5s=BTeMno!*w@kQbzrbIC^wwg%kR=dzV0O_Vc*TAa`z)HV2Mv`(sT<~ z@P*}cpofz)NMGdrHoU(TP>imw7|rSe%DXJqeKxW;Jaof2;aC?nP_)(ZNB5adATxYK z&aE>5G^QN!J-62dTyZdr?YzPgEOTif+(w#%;u*W&*dDh5ycu7H<7_opwD|p6UXU`7 z@#@i|Fw_*ps%6hKOfv&TCpusJ7_9>0FE8=Cd*2=m7$&dv2pWR0GMP*+s{?Fgms-57 zbp%QJ4ZDDcJz$+aArUNT0OAiG*%5Pg07!}$+xgXWZ7^f#!JeyLYXQf@;foj4s)6*Q z>pQ#)(g)9HKFS|{P7l=m+*jD4N*|Q3)eK=)l8{wbqo@6juByS#7q)jBdr=Es@4NS8eV#Jxn!9!1R9hB2wBvlb(YEgJ z)aU4XJ@;tB+Ig#2Wo^-cwWB|JcP!V2wIu^yNYBuP#IDZ8<~P zN(~#or26pUuV+7rQ`YxLq@+2Tpy2zt1 zJVFxe__f31S8@pd59KI~N#Ms`OIZK)*O@LQY^XGR zUCLsfoK&tG>iOKr5>8q3sHDkO7qa>kpDJA25%90?w1r!Y&gqN~F@Ua516(^S)Pcv` zLG2xl-q7sMs)~tQRpG_E`un%c?F}6QY&OT#s=?qe<I%a@h4EXW$-pc+0@ z7W$E7%!nr52g&W-S2e1BCySOo<3;Ej!hpHzjtlSU!aD!#2j2%8z$}fJmqFUiarGVN zG?r<=#<}JGW!d`hUUjO)yK+-FpjS;v;uZ_|p=X5F+QG(fYm(<_2|E+0GVY!Ki~B~f zd_qNeMxYk7+>`ZUtAz#3h;_7VT4oQAapJE|kh6#GE4r;r>f`Xg6&D}J5EmaOjEnCh zwAX#mxQN#W34*of&^Hz^yLI+#-Yd~@@h%8|22tKx{?YeOOo7(x$nr5yQg|ODZ@Ix+ zl@P|YcSM&B5XI~3c;mC(fwR;Mt5QHeD!!i(-wEL~5M?2X;qm`te?ANJ2p&Z?ErbsX&)9;Uw5I0Uyl!!)!^R z3k~=NT358^y$VK}g#ux{HYYF#IGL#YRZP{KZdN4F=GAS*AKNx#_sL`Sj320xK@Y-l z`IKS`HvU|-_p!%tc01z&g#A>Iop4?#hw|@^XzO)>@@cYHPj1wwt!tpMyFW)&U)l34C)Cvsdwi#brP<6(-e>Rwl6-{%-Dl1#?O3mlIUvB{+DEza^9{%9? z$oO_2DZ{0$tKxMAQSDc}r?l*<2lK|8qVR**Tel4OxtMWY$Qy$AKQ%-t`j@{hmpsg) z{sJ+b_Fe|&Uj^Y*5v9mKe_g%0*UqGxYw0w<2ud!p{ct**pWs~B|3sBPrT?drH$hxl zToHb*Iyzt>N@+i!J^lcvZbF0OrF#i9zYNBU${(luyZnFMk-O@RbS!OMA3s+U9q1w2 zy8Sq+9^5w$^Jw}P^P`1uIBthh{>HlGE96jD3FW#3-iH@(hI}dk@M(L?uY(?>izp?3 z*u1WGerLMlB;G5+)b7hm3Q+RjEu@LxC2tP?1<(z|nO?bv@T z|AvTfTRQ)QW8G`cfD5ck_u^L5#!p-yMhItyXlwhy!tSb;9&h7Zs`)|?ngAsyjM0G! zqLlgz>o0eU+&z5wtGdx6f1CW_czQNHe>i>kUXHu-j<~S8KP`XE8%LQVzHJa~t$)7^ zb2N0EF@tgZu|PO$L@D}%Z-2Wz4qrC^2K~Jd-2RpbXN4%GpYrW5F!kW#fSKcH?T7KA z^hfpdg3e~P+JCnHaE%z(1x4}Cua>cijQrc7dh5?ne-8H*`ZtZ=Olv=soal!R91+F! z$~)!9)%yqBP}dl(64nOv!MQbejC3f&0yYm(;wmRyqnU0_;Cru>IIXQ_#FDf zezh7#zxoiwe-NUr<=@JE!GT>b-v43#^BMUMMtqM)lv4lv_nP*Sx4W5kn?hT^!tyf= z;X)CmjK6&QE39WhSFde}jPI2VN4O9~DgBpyY`_YVC=ctM7XPO|Fw6Ymml25Xv4~RZ zPj&HIPM)t!)$@TVwD|+BzmW(xnqGd}z`VPhI<+~~&Nppo^Iw#l7=;eP5XH~so$|*o zVBRGqTozY#<2x{p9}$S} zC_4Y~<3gJ_t7B5&vPn6NaaH3GE)r3S{O~`VAhkU^;h<~=WB#J}M~`i%{c6eBe$gm{ z7(^-U2Z~01<(xk-EdE-c0tv8bqJtxIT;qSI{y`a~U-LNq zPv;+8#`gO+aUpSki3>^Mt)MA<*}+O|+R3piRdDaVayqBmkK2!K9a}>7u2?>&=gCrX zPEtKr_TDzK>fP*)KEZD}iSc7Y)J@)T{60uzbdGt;=@j+w{fFMS$N{V`k~gtxMr{I4JUOrAa2v9Ij;ujI82_BCfed?TYbc@=g`*MeHv>jIy%>o~J! zM2;a`>_E|ii{|M~W?*B9U%1#?7jXOS?I^QjnqXy5qbHL4dH`bZ`a`lKG(hbF&+RKu z$^*Y22Ye$=nt|e%ch077(}8C~`aJU(Vg)MLA!}#x_CM_ScGN4!PP&lryX+J(Pzjt& zcT)Z~-vS;QQuFJl$sc)c|f4Gx3r3_Jt<4oNaxo{o(t(`yNjoxX9gs8>puG;W(&$^n_SI3uM2j} ziY~pqG9mVWAtFz!5`TjewjkKB}H>To=}FKIze+z`8YvBHdXR{Y!e53-ZJAw zi8YY4_|S28q&u*UDPJ+}Gyp$$r~Y{C!;5!$2uuqOjR3Wyv&Y0#c*31E$u}nKaRRS@ zNF7Y+><2P32X_0I?Fm@lD>xqtd_k?u;hP`RT!H(P8s(JCA;4*n$20A&)*xu$)wNf0 z>_8Yh5{k1l5dz!G1cn76zaNT_m??C0wSULIr3 z8ha9e&tE1km8~8G!pIZK5mntmO+WIIQKk{FP@NP1DPI@Jt-X1=lUx%gtY++Fr;u&{ zF4;4kUE2i^Cd$$NH>3dQ>~!Rv(JK;~u0K^3Pe9^^a+L1oE1cUCgYRv+Y6R|=MvGmI z)dyh{_KsRvsKHZEJ&iv1)BvnBpQR3(n&6B7rP9d8zTilyi+W|25%4}8E7rZ*4AfjN zpWB#c3bv}hh1*_Pfbz8Ls?EpsK$z9BWeT$uK+Ucitq*A?;CyANX;q0XfNOPsTwm-2 zDua6bl3qRt6s>>$a;Uj3h`+*Kw)lxYl#`rXeDs|)By_92MoRx8D-V26A3LQVVCN3c z4tmRrFS@^Ga>6GE5H)b{x7!AOpt+MKhDYf~^-T8zfvz6=hhQ9M@2VTfP0WaM=7YW`! z|JPh3uMW*yqc#@=G40WepTrP%FsUW(0PvhP_&MR|c?%H5etR3IrJq+hr;6N<50`dj z3m#loUU-$n(G^nIfq;i{Q&4Y@&8bwJ6Nhpa>X^-oK&{%GBE&VKK;_Pq95>+Iux z&3y1Nxd^yG$1fM*r4bH4eu}R7*jr%7hO;2X^o8ou{96!Lr8KbzJJC_cuv%51Huzy+j z*r~DqNh-gQLutnwMN?Qmcq|Doa#-BJQe~k>y<;pu;V*lW;r1pcV@oi&2$~JS~$6?ibCGi*5H~YR7#~tvOBEg^d z_=meU+kJWQr{8B{w;SSk2_qzb0-^-^;Ac!!knj1*nT+!^ar@)A14D%KZNz756|6A> zm%>FQ1ufEGe&c=q4+v`<{~UB*4^cc1@e}c0cF~7{h4XfG_&O8P(Q^Uei10e-zAmC^ zjp?96AHM3?kC;ECn_U{rZM@I_QQ7qKs8%oNb(-``gE@3O6$<#WN&Sbjf_47UM;RF) z`U+>vUnLvfhy6bI{ZZvh-TrImpC*-`m(N=MCgC}=SjVpksxMDOu^p0soauGBB@SS7 zarN-SsdM2vRx}#YZ5PFDnIataU!FkMd?Gl{$}TlI+&^J1l+p22^ByX3h4waDQa>!)>f+HsD9CZN%ev z1?z_U{688Sf&RNvBWuT<%*m|lm!$sltlN;xDbpq~{B}ZalJ!5FjwToXmT3L8MG0`+ z0Zo4v*zHQI7e#fPJ%e@qv_p6tcR*`DLEPQ0Vzm|#Ytk6&AC^Z_`IYuBI+r)SZ!_nQ zSl01}<27*H4VH^vEJ6Ee-t@7RS8Fc+zx0d0)W4+iqw1yitH0oJ+yNeUwDuF6$G2YU z+l8}}N3iO@IPL()J<#@lS&J_d5Oi?h!AZA=F!WbkPp(M7?ud%d|E)k_{w3_5-?UA}3)uy*_8**)n=m0ktAFBn zsVdZukvHvD(U;NxQF6)UM+tF#3ok|E*Bw3gV5SrF->%lH-p}B)`tABd*|PS(ruE-E zR=*wI*LfpGwEh>HWbuU?HHnxKSe*Qa-y^UjFX^qD)!226vvTlHq6TQ(7thdteycOFjNjQ7IL&vg9tRI|f zTKhHkJfg}%TwbBLqW;?l$v+5DTKfy^Pwj4(tlg3r!a9HWBV0d3Y4e1@e&ILa;^SGl zV;JXIq2vUPJHYV+;`7&nPD?H4PWtbS8x@Z`5SKsCc)WdpStM)Ra?{$Mef=& zl_#dO9X+8J>w6nG?f~oU;`Q&OM@=nUs=(ln$AcvKr3Cf+`|BTS9@hN}wzp#cJ+1u7 z6>T4LZ6-wZonO?4VZX!jhad*S5T)UXIWKQ;$3=Wv^~%Pd(f=@BQu#f1q!|-k`Z4+s zV%Nm=limIyiNBDKD{K9QB0<6srOp2W{W-|zw2X0d!XIA0*!7oiBzG*LA|m`?ao!8E zy<%xk*7h5P0OJv*wSRW7!#%S0+TsECGTj*Mhuc2_;UbxMrK24lksPC?b>mLUv5x=I z2sZ{%@%f+d+pV*CCHr|qO>2Ml`LDV7u}JQ5Z1T5Mw$K{~Rx+6Za7J zm$-*{tq9`To$~q%?bdQrH_EIWqQ9FP_vlnbo0@QLYV6sXtFg7*oB`EKPQ<PY22fGMvl&ug z1V%UeMRm|NfS)Nf_cxj8f}8cUvpZVrK*AR=bLq)}K#l382bHX${JVauq3P&$5C!BP@n%6#!7XrI%Vfw*~VTgWl_<_5`E)$`q5ypUJuaW9QQ1Po%Zq=5NG? z_oVgQflfIi>d5*dFBRSoc}rH$>Y)2%T~{hs+OOT^Fa!Sk^ja;~$E#6N1Jc*~&bOo} zg`e|NX1Y>&=Yo%w6=_kj8$amUsC*=|4Od!q-usbUazW2kwZjJzvO?UnK7SyI-q9Yj z3_p?Fb5(D~M(I$4pYPeRMEWuJ^yhM^BW4Z|5>j$BN5uw|{4>Mb4DSgs{pZ(c1~@|W znz?B+t^(u?-*s$VniT{%eX2_M7ywq^+G@2M(*=lFxrMTeH<8(`R~v3fwuHw;Mao}p z=}|xKnRSZbfA{Y`>9Kp~8+~fU)FVEsK8}>GvwT?Ea9t{PRk3d6I!}tK>QiO)zCDz_ z(T?ryZV8lMPN3AFI+C}}^u!U_))X;K*>mms`&_w8>uksF<)7Peu{>aYf;|M;Ta1RGzAPU%g;?m=1If z@eXz1>cG@F-W~ROsl%FQsvYmGvw_(3bM~s$ov8u3`|SO<>%uKt-Nbk`2N*MO)0-77 zv_b0Oszk?CHem3eP2G82Eh;6xHrQ#J4&+64SURk&3J^C98ZdTWOmO0CcMoxtQ%wirPk@+&+$xv*LF_AlS*00f!T$LcRYbIQd+9LyAN>k zKU`j|;sl4KdYq$Ntf|8%wAS|xv7{EBeD@`@k0CWpL0)t30Ap(6+owwJ2}5e0nXS>- z?WWYa3Ab-1^wg*F@~6+6R&9jt^S`%fJILkx5qnDULANejLT#yW!$+OZdE!8QFnDf# zug;mOT=_UOvBHKbP>{)ZtMNZ}{=x#5IEV#}aS)WQXnu@G^SCiyAPC`ixfFZ*3_Z4~ z>E|zCy@nu!-vyaA`s(|u>!yGg4m4=U-%Aw7z@Hrjf7lMV1YP4ejGptPcP+m(1%6>i zYs2$jqVEC<^>l*JLpZ#yE#gZjVOWqSiP)w z`^T(^gB^7I4iO%k=VcL2Tn{^2`@r(pqBvMb$FIu+%tq2WIDS~G_xa{i;UjLS24K$O zCgW8tXM4yGh=LvRm?NM1?`*`kMYr)|arwt~v*86rjbn}fmLz}X2d7)R4N`ww4>~aQ zZNwH+Z-yR@OQVQ>v`18YAG+L+t89HX4zRyen5+k&dXO?I2p%3ZJy5U@rKFE{zBoRvA>@ko=i1o+CAHt7ZLPkKcsJp}Ob!kh1L+}4YdZYZ5OF@H< zFP+zj7mtGw@BiM;_fjtPUkdH$_+$}YQvF33nuncivjSG&38z7{fXUE68vZ2V=at7y zUtPWkrqJ=(Ngx38|Ka$N&gceh9}=MM-U*@>zCClL5A(Y~I6F!FpU=-q9NBL!s~u4i zUMN;9s~tfL$<09&%f-JG*zwbhr}X0-$YS*a;&I&t;c4SnV23EmQII~{ZTWA{KPX#* zCKvyf$c`(i{7Q?*WZqgjoOK_jgBb8t0l^=w{RDR4fG@9a$t_v+$K;PP(l6_ynZYW* zK9buSQCd9-+RsU;xVF>0Wq{`=VKUps@rUClOc7qZ{64P}D(1VdWW4{6k`spLhY_OU zL+<5>HTr1leLo5}kA7uMHI5P#bI721-dxQmvAn^m7mVAyeRJxSufC+y0# zLABxkSo@nHxx2E|-=RJBCK+8;Gwh%!Ibn`|SRhI(f27P|0@iLEUGs@J#M*x(l^^rL z^(DM+`uG#3XOE-8@f%i5`32`sIETlgx^jBtPcER{wS=0gfjSwLkBH&Xb4SksW@li)zhdlpp7Z z<0l-L@(cW+Q}sq1zHJ%#hx?CcpC%OZ-|c_E>PPQ}%8lb0#PwIV^9dDc7m^ruWCW9_ zKj3t@zQyHtK?z(D6}2DHW|u-P>3zi~RwFj0ne!)m{o(itcf?teU z{KmhC0}<%&Jca1Ni(k6@WBnhH+-}VJtDkYXmJ4@EFOKAY*MP1*5`;|S`q$L)M_bn# zI00hU#P$zh)xVm?pMC!HM1o*Hn0Wu~)Z%e}SEEsY;~WIZdHovY$8ivN-%Ts0z>hsG zMI}Q{ISjC#C}h{Y5s&ljDSSXb|14Rk;&Hhqt- z1)V<~hr&Moe39J!neqpms=Pw(+Oq3umEuU&I4VDc>&L{y)J50HlFlQ?b4o|DoEU)SNhJv1s&iY8~+l=PfqsDi5m?V z;~$CL#PQ4CevvG;!*zk&UrH2op+S*OnW@@Jj@B9I`XnetOr&u@~PTR$!j?GVhmen^sEZRE6rXZYur zO5*|xs3zb`NqB9GA|HhTgIMvAD5J56inm|Rj@ogbW=1g1?`bN3oQ`e$j6(^=BT8$3 zrT7t5++Sy8_BpAJVx0ej^OIEmxMeFoC(a4`?fT~}dg8R`Nk`W9k4AFGFy*Hf#?^97 zc>AOF9gJt4za+_zvL$eNh1dVN`6m`Jh-1nRQU>jy`qiKt#YKbvu>9OkkKx?eNXG1B@Zb)KN;#)LiXM}?Cs~TSIA}V<$Y}jKO$WwB|nKHo|4*Mocf<} ze@3deS+b(^OG~Q4c(`B0K8kE}ylV7gQwumB6C8db*cp_re06^@NFNp}C>Y(zFobyJ zPggG@^$Gsaw~qT|Le8O+9`Cr>N3NG`J@bwGROdt2p5~R@w@1uONLN{E=_QxduSe-p z^|8gu8Jqnezi-;nlM6gxt$C=9PWRqmd~;nuVayQV-F$xf@xp5 zNNU;{w{@isG5k;M8 z{fIi$5(!6)V2wdR zf-Ci@+%W$V|D|WC4r}eF?Q#La+4Pm2wmq~SKHlH$c6Tth>R1>a0}wjo(O0``jzE1vw*k?mS{*YOugc;1kBp@n zzf8eTPWGAX9UE%T@@YNpuCM`Ln-;sqw0y`NdjCqy{jO3_Th{ILxxhzU)w$P+sT!(a zWiUT``TTa2mtNnjucRWF4_g*1_e>SwC08M1a2?lk=;mOZae5S|GG?XQDg!F=Mum2Z z?mEe~Tw$M$&XM5w^rN(HmH3%UU6p=BAbo{=?~ z-K*DXS;5d)zaHhsWMIWtThcS6Ep^S|y?=_G9>ly(+^Km)9jp!<*b%b839ff5?0adT z3YT}2379izF#}%!=ar0_VOg8&r1DP%T_tZIAQW@$`zvfr>fSg74 zKjs_TgHu4SsWE|`5WDZO)Zq^%)W9zKd#}b9lRjNq@Vp8%sG!0<(lckvK&W!h17_*+ z5HMPG*sU2-@F}sV+s{(|ccc#H)H>K`@xKE`7MnbmhqAHH-W4h6Q%aikkqggjP}!@c zw*7L@qmnZxBnN(0rC>qsXGJ+3iZbcg#(dl_a^*>-nXu8#K)psG#;H6>Y~FQn#Wne)EYpqi!9Xv-ipf9qPmTp{-BzZ4}C#PvN{BgK0@bTmw9D|$eD5S@?2Uo8ZG*zWHoO19g3mLVL_ zkz1J3b0k>Hi5?ImMdu5(Mz^teG`*s-&yX_m(42)QHhJ*vI&{3h2;TkWZooUq}!=Eg=m&Q=!T zX!7Ufr#~SxJ`NnK|1*g19&5~)Afz?|zLK=A`?^FXlVkeBO{_>Y0Ao{|jPG=z_?GLC zV0eiux&fcFsu7QyRleaq|4&@6%$^y&ykFU1hFw&cT5?LUH-W3>afP0_GpvAoI!XT%FAg}gh9!s@jpI)| zu28)FzHsjEdNeB*y3q0Uyhi@wafNsuC2(B!muFMX8%%`pNKOHvf*biuDnDobgV4y> ziGb~n0z3pa@|T1^Y5Vtn5e+0)XGHHH%9sCehg5CwGFYUwI57qe(gz@JfEWbdUN~(E&ZQd=`eVH~YuO6bbW)}FRuYX8X>32GSwf}ZOI9)_(#T3NF z&Aa~n)7XmY5Quyx$2zFHEZJ6H~alq0`n8H`On!!CG|g4EY|kZM+r<2 zrLBLp4<440>tc02tzF~8u*>7}7$6*;A87cz#e2%habeH7KE>{g^#|h(5#ET&KYPZ+ z2V|CmwtId=bK^>y(SGX=x+Z5m|82hvDpq$|zizk%=zbIZ(m|~4XNEHJL{xnKR488H z;@&O=df^IhNS8SgQ1ZsOLKk#{)_ySf_;s@P^uQuZjd)hSo(00$Au7Ipt=iefW%i?? zpo1AUP#yrj?23M{#kKa>Q0(kCV=!a=#>M%YxWa(x(N!d+(B&&Z4rcYMOBz2O87)4{ zI?#)C{g#Bs<;3y|uSMe@uj{rbA+7#P#~4(T#Dp1AtrZ7B^ZJiypCZn`x$@g1xt*Bu z*Zy4km{i?cTNd?oIICaP0pW05Bdwf*`5(UB9z0V+npJ<4DF1-z>Gs{Ee!Kp%<1~xo zG^JVfKk>LiTKi?2ZNE<*wA?(h?0X2K|Ds|`9RI^_U9s#K!C}~Sn~KlLt$q|#6UMrJ z;&{aF%=S}yC4HT&k9u0!#W9`ry&#G8kMd>f|2@!iHzt3dLw8Hbg8bGQ+Wfdk`u2;z zfdiDB;G!S+291yKy#`IqzMb6XFxn5NlO%sf!vU?g1oD2n{|LkbU)K5C9m(&3D6Rhl z^bWkpRln3%`##5((f&=9e{!3UM9*|vM)?stiTzKQu2$mtN`WXt@%djqgi5>WH5E8m zU_rWgK*5rFqO!esW1{3Z3DuVe2OdQKY2>erQoKe0i& z{pF9NSjV3)lG~3VKkrn$c^O&jKXg;__*l?I&xORT$?|Xh{JnKdyD`A|3myPpN|HZx z#4b(0vFz{V_@j()T%)-DU97Ct*&;ZOv3}rwg5wdf-Hq0M#J<)qNUL6BF76*Of$?4o z#!Hg_-eAYh-$sP9&YzO-)n6vI7@Zl&x_k{`#liI2ZcRj=-(Kbj6VaEEE2)VRj}HwfJyf+%hm{-t32Tb$-N z=1-puIPOf4j2haAAB=E8h>G_g>%ZlFBx#_~&&|FHf6ivuAUfcFW4 zYqT6$S{X4B$&i<(Eq;iJ0|rJmCH<#EJNap^Qc% zN-O`Yu*=!p*QuH}U%pLX%-^`5OXB~XGFCX36wTN_H&uRK@wtAA0YR+oHwtC65Yg2* zV|2dmJFD^zp1O14EH;!kJfAN*pEm-fpNVKkL+%&H{yw@o(|H`Zo^=$P_?;ml#Y)V;c>r;LAXbac;WfRZ*7Z9zs;EoW9j&7BL6`o zNlUmoNtp}7==fvVfZ0gGzgAsR^1Ti7d|-@^LO-Gr#r=|hDVTqGCG(S?4zXqJKa%)k zKD2!Kw?zBj=Hl_X5RVwq#$U$N0dg?a`Pb9l?;{!OAC@N;;c#3bZT=C&)$rbT>dW2y zr{h|hd%hg|`aKbqKLyd2i1LYG|80?Zed-sNiGcMh;p0HS$r90zWJJa5Z+XHwXV+EJ z8T(&c|C10d2~m8Xe<|pH7dk=tC zKPMwWrXWh&{|LS-tg7vDoRbmvhsTdAtNnc{l6yL$;`YP(H#bKHFOOr@pHdNS8lvLu z|I5PSSVcKAt{Jzpr24lU_F+lyl}Y7&3wHjpB{|?B@7Tyt44epx}Sk4 zu2=r0VEjl;GWfhHHJ+hA;B>PPZULg=?KkoH?$teK#WTha#?MB$d5DV7AHjX4OYN^r zWb9v1a$*kpF&9x<{aaleQNiUcI@WF914q{OlT`nh50+PW{qL?n>~V$Zh{1fO{Mk~U zYPbP~8?VR*P5Z<0v(NwkH}%K-vxNy(LWk#v7dZ-<91oNO3|w_y6+p^_}d8LzqbDIe(3;`pH@!6 z{JXC6+m@^N{&y8z5dtbYmt_sQzZOyP^>^x^j3|}E6aKOHn${t{dl03KAA$Zm`Pa0^ z8!}>9-)mZraM_58&;K(Drwq)q8OzZBP;z1e`mqsFTKnfc+Ez-|OYOfs^JVBCZhsEz z_}PTy&SA=*{j1^uH+oM%!l$ya4E+W7lg$XX4N=J6G}Tx8n8>%wN*{ZyM^@b=2O0&8&a+`DZ(ldk0f~r3;3ax!3HM zYxL6Y&(J?m@@CIJlFFZCHm#2I;j-#4JCPu}nDSc;CU=-Yd!f%X=kR ztqEezcaEatV2+?#V3f9t>i9@v<&TCQA7Sz ze%9&pfjV--t{%HB!`_jtJJpft3X0UeuEP_9vnt5a5wD|0y)l8zRUHj-wah{3xSCJ; zG!q!@Kj^IQi}ny#`cQ7L^bhX(o>SXYXzRd4YlnILwAYaP#w446f2s;=`kFt?S}8>> zYCCm+;(kpyVtRRSyItyVW#yG*qoEyP0{7R-q<#jlVqCzPQ;Q8?)TMkPO^ts}aiwhg zJrDTr2e?|h6k4gm%#$CVcs=b-QE^*d&iFNuIyFPh%C?<8bZ!LvY`bH3MJ&{K-tA8-!C?61HM&L$1SZ_g=5j(>kjx3@TlEk zKc@k$L8X0)`E%3OFt-1@oh2_Gaeeyq@%g^08x+WNR5b8v13|+(wBZIDLw&yT&!7n! zluFUK$IJA-aBb&4yVHKG4)t!&>d}h_=~5%2qm55q;P8*JCTp}ms{)bat!{B*8##05 zk?tYmwczYf`M_VvHgJE{qKIpb{bAFu=Peb-7{Kx$Cw62^cLeWe#Z!H!xkKe+^M~B> zwp6A1F<gpL{fY5Qn_KN6Y^v-2qDwYZviAMz@%`FSwF%4GD4fuMj?4Dmb5c@()4_at}@76ghFG>UKv0Tw(a8)Phm!8|>T%i&a$sEh5 zJ)#036~}gL*<-{%Us?Z1|IMu-aKxI41v+a;$}O@m;>#0q!m-LW%QKV7>!kVm$i;5Z z>Z{%+ojb13OXf$**iXG7tLqa_%fLFaXZVr%WvR6!FY2q|&AoMGk>;xE!8RYsteE2M zBUXPPzf#Lr@{B%`x&4C&cOCMH?7k}7x0+`UNssgsM*nbw`XSGECR=&J>#}pnIm@{K zCBJfCs<~1escrUO?QE!dhkHIQA7V*;H#ht$d%})_oI95zYI;)h*5`L}cT$19W5eD^ zt$EE2Yjt**&Io15_Md&JRht&njvmhrCZE@Z5B4+bi9YsJ-qNbwTxk!Aqfs$RuB$S2 z!pBD8O1c{C8Ie3qYe^UC+gTMOy;2S8_4l!7Q`>f>mIrN;OIWB2pDu=#*VZY4oyFD3 zXV%-n-PFT{%KMzbd+I!kFAE)^zCgxdRGA%Ae<9|nzBdAB=cMO-&kC}4=`HIvR1>~` zP%`eZvpZDAhdW5k)Q0Rio|}H$>IGEMnc0Tm29@sqp1n-HK*qbx`l@wy)VHk}6Z(EL zpsLF^zEB%#N>M+j=kB-CrkpCKPkVXAhJyK*KJk(?sAb)}XBxTopw=ntJFJ}CpYj>$ zzE|rChk{PYhxojy>_MIU?Vog}F7;XX^yyk-=zjFk2vu!k@R3dN{_xZmP9>GSSFE9kS49aLh&%JW97FWDb7L}|Pp=nRP_@lCqNh^? z1hs8^KoEJ%_i`|frq?UoI8;Kekonm!$3Ftx>G)Y9Jb$$o{9*APG_uJ&R3l{yJ5s(3 z*SHZ1pJf{#@ZY%E(rDLggKjGzTF{t`ip=iR1)QQSN6)_!3Uze+V-a2&rI$mrPa|IV zUeAgfhi47B914|mJSD@q0zIzF`=MN zQ}~DiUX$_XE8`TfGL4GeYBD+4&ilghNRoflgtk2WA>OQZO-cCV>cqr}x7=CxbsdoW8i>;5uWYgT9y#l(Wy<{! z4+eiMzZ$}+BTBOi3F0!SD3w$B_e}q>eL0RJ=){yi(`O_PLcunhkGrX4=uO9Gi|{zT4#MH_Oc0^^zn5Cv4bMYG{3X?&oaelf&T`4%MaKtB1k6SfUXYGD&$=(x zMH%TKN*h1at`__)&;7zR$t(4m*Z%yx>Ei#}aS=+&&9lqFUDp2Bl=|a&onfs%BUEqZ zh>Fku>pI<(Ke)}2^}CzK2xo#Qz5cB{YRKBY*?rGxw))5F-xTpRLsWeIBSJqWe$Yw# z!*(I|{$qjUc4m=3yGP*q$ScmQeu=IKXN#!#{I43_cZOXXB`2_6VS{ea+Rv(} z?JM#@sL@l$tul=D1CIwQgtKPidE>Hb$h+m)XA-nz{;~FNO8+Ma_P7Fx_)3e+?D{RN z{RhVzI5Nv`wYhIOS-Ed<{l)pl4E+VypFP4k{0n?f^}A%AwQAxR8CBN$mni@2ZPT>8 zI{ahnuM?8H8&iHxv2Hn8+92R`JrP3(sxNz8^(3`X2CElnuq$?N2rFtOTa74!- zN)S}2Uuj23T${UT{-xRQjE=t`!h53h{Sd|eJ-+@VU&lYXr(EUN%&K#<;Sn8wT7>sP zI6p+kB8tx?*-kv%p-?g#ZqV_$BD^B0S#L z`XC(k^AJQ<*xqDoc&E2E^?TNA*0^Fx?dM^%-PkLAHk_gJpR)+){Ni+y_^;V`c!K=2NsRfosqz!XMFv%ph?T#+|J8ndiW`@?icx=v zokYLxO_wKjRUtE2+fP#c3;E1q)nEG~K?WmAo4@l;CcozH4eZP-{+z=4Uhn{f3q(|0 z|Mk--tDgNhrkV2}`}#Ey@g0OHO@9-_b&UQrD7cM53}gMk?ccQe`^$MV4V(b6lh}U3 zbnI~fK`5i4h>FYqvB+7uVk~p~Vg5tVk6=V;?Wc5Nb}iR#d`j-5!Zb$tF}|tg$Mq$| zHC=zGFHd`<)GLX#|Artzh9OEDzsccJt>Ltm?yq54fsFox<&h-66928{;y7qt`FW*?c`FJ*o&2g@IdaN&s3+AnJ6#64s-_u5jEsofazV|*CGjb!3w z241H~;q7MV?rYbqA@={6{yG{lz;+v2{fEkS{=n_8_jLBN*0UJv z7p@Pi?~FtF(D1ceZ`|XSU+>>n?On><(P{OrTC?WHC9%(+ z|5x=-TNfHi45-*mn?GT|30&VooT&drql~5?N}E3fab@@Ve4D1f%$gBbj`NE_xHv>< zatiGCeCK+PBjL8Jaedfc8H@0=_M@nr3X(DoS?s>76{Gzz|EATy(ur0me<6_peAzTS z`+GI}34PYDQ@%*2;Ayq8^ax=yV6(?o}+b_Y1BRdM+eNfG?X?f6W~~oZoIg!Tx`Q z5u^Y7Tk>;knmPZn>n|xtkg15$^cO)~dTE==d-)MuAi+Bb~T4q_Bs27 zYZ6zs>y@`QRKMNxW7Glzh&=BX;c-m|7WP;bvPi`cLf&-?PkEvY-_onU&K}zu7H%J@ zJ}FxVY{LvVryR_w1FtPCH78n8Zf8SZ9Z55#9QrQoo(tBL-R(2U3kw~nGpl@mM&0g8 z5jufe^MACY?nX>#v$;YGq6-lfv zJbviIiPsyZ*J|s7{x55n#gmL7Dz~y*S5-@J7*wmNE@z9bjo~ucVngl}9k`$0Q~IQq z3S@S9)N*SVS*Z51l{+{}4eZQI%I1tWg4lrB#IGOx_%rFYTNG~_K;He5*~Qg0wg^HZwXler{w&f+rxzyQ)}L4xB#4) zoqoKYfQ+BXhdKm!P{9XU*7n$M1~7cZt`O@_+)C|-Ka4+h1!6_)f-O_!C~AlL!oe%d zsmckLoz`r(fx$IreH=gAf$t#WJ+=`5$#OZKJ6!!CvcB~6`*$`_dfX*xyR|V~H1B+6 zcZwAdud`2#`BqC>-=BBFf0hfCv}mhA@enI2>wLJs;X4yVEf6)JEdLOSyaQ6*VEh{0()R5DWD1v_TkoU?#IBV(Nm_Tfp<(hbjY@5xe0Fx%?|psw zo;uqni)GqU{XAaOl_nZOv1?d(NWLLx-22?>@(Lp;NL;dhbg=h&^)8_wyBFC@~!!E=O|yx8jU?vcwtnY>YFa_`wlaU%~d; zJiGv*_vh#Nt6b=GP;#6R_H$r=6F~^iubu7h66u&f8G7SDo`(E;Gvkbm5#QWK{z5yO zY}?AGs=1TFlaBWk;qm&9tAHT=PThZ}WB0RRs${}1yBc2ePU)=F++|Uht`3>oK zLlIsErI$q%?_2qo58`eqLdPPt<9qf^1`Rr1Lxh*4C*9e3D*fxD$#512k~Hu+n-2}7 z;ZG7?F)Cu_~%K{5B*a8^H^B>t5mR4X<6L+x+Gj~Bf99KCsms<5X6%!3zRKta?jGXpSAN=M_?MtD z3_TaiBZ+^G)Q(uS;@@vSp?CqTdU6LOzXqbT_RG%Xw1A*vPR^m5nCDkv`PC2($NA9o zWX|B?FI>~0%Nu0}k7U@1F0& z*#DaMT@l_(FV^C6kHAlv(Rxv7e%5r>{@dK~i{p%NypDMP_n)YKqNf#)G5_KI zfa8;#ne|_K=E_&D>F!dS%DTCKxc(iQxqh&>AC6D*WR|}&Ebk)8OZ%vIG-DvcPL1mi z$49v_@daJYo|2wU0lia0{TTfpc`fAJ0HN4I74 zA1tOj`r&~nZTyCYKPe}x6AyRXsr;wEYsx3$})5*!&5b1X56xb)T)VG zSxOfO)lTMqi?aFNo03z(X@*diRyJ?#$!?%|cEi!YW&9T~AKHC${_bhm)B^By0c4d5m6Xl;(a6bH~D|N5O ziajSXohhpB?lalPJt!h!4|m^3J6N|}XXg8MF5vSl`To5VdSg37Zu2fDjC0A;({`NC%(ASSdm_NF?vEyr zSVReev#;PA2a?h}cV<*eHlX5#059bHY%-PS7(sdD^%=Y>b^|7MAe$q;*bqe!!WU(x zejCz$s{P{dP2m%S5Sx| zOl~nG#LO!awqQ$J!*lO_jd*bbDlP{<(DcWll^l?cw5{qhGZOsh_^iE+cu5OrfkDy_ zrTLNINXN(Q1uUi{yf)`Y;MPk$83(vyytn~XT!DCS^w1Ks_XA-t1~gDgWPp{#|L_OB z4sTvZG87=3og{o_dhL(#L;FEr3=r@i0Qgc7{lNWJ+<<;Sh~$e-(FxdQy@_(~C8lKdYcdZl+tlm9pWvEL5Yy0aWxy=w2Z@+mnCc5no_5nTgTtIkkjpGO3$A(bx z@-MPevs{<%&iH@^&Q4PQ#p!5r@o$L?z}WC=j1toNPrwoH>tt6w^))8-?u-v;;rzr6 zsI+N9Fn^3*S}fPOV+Yn3^(Dz)yFbCJq{S1~7Y!ugWsFA_o>ov}e1HSj3)Yvg0hKm? z2pkZVqZbT5bxKM4!}V%X3DS2N2e@JW)`%}QgwpW5xJkE2!s$nL*Z!-2yZ@o=3CvG; zEgFB4`pEPV{7~AGkgw zm4EedrQWvcJy{J{lJLU%G6k;EE3CMb4FH@NcU8L}mBMK{+d%*?%-y z<;Q_P*bqvq|IGAW7f3>3t6%1zcg^H4+9&^+{u|0#en11n15w)iBXA%+UbJ|}j5!ln z*Kaq3b4OHs{vp2a^86L}ryV%#2Y_S4cTXfg?w9;af&Su(IGkofrv z*K>vQ?X96EzpXzZv6?ymv3~&02Qlb_D82vN5K<6OqkaF{kV&lbPcMY?W8$eNuRn9) ziT@$+G-VzCy%Elri4W-d<~^5pV^w~Z_xnFQ{@5MxO`AXex$%$f3gb}yiT7WZVfsEh ze#EmL6cK=MLlLDp@B{$_$3|}7Xp%mG^+l0>2p5PbZT=7haCv*noj+Q`VI4pH5pDpY zwEidffM4D7ouosZ?jIgMrG>P5?xa`$Pmj-NpYhwW3e z^4FS&+#t^!@;@FLq{tXQ2-d^^B=-Ingfbd}sJQ+zwg2Tw!;^~s@c7GgWvlG%nPjPK>cPUP0UH^t5+;Bu`<452CFEI4VN~@pphx;#k`-dXA$FRun!98@X z)_pi*{NnZqL%30h()w>@3#+%>@5f%A>~PPO(f?6$VkG(z&cr(fF2BtUIWac3^T;;; zwe=T)^taNJ{Y&452Fe;Zc)bv%+g z22tAjBRJ@w!1H_yb&E(=`#}`KMKjAEc)#R6w^I4XuMMOA^ar5W$L|CrcPz8~p$#7Z z$u1rCs2~3woL1<$kjMbOY})+E&OZ)i6ptuv{MT;p^O?&#_1vk4>z~&D+2#M67v&QE z5;u^=uR%wv%SS>o*N~kw*W7sQzMo80Yw>)u`ZjX$)#K})tV<^c&p9>Z>&YDM*22W7 zpnavJNsH5aCd3`%?%lC$XT;0%+-EyN)WZ`?xyG*|lg>QWqk8@-N^^^APf5wY9O-ja z9(ZFqY`MQnm3nwLcipvEWy;sOczx^vWvXUuVEf8iRm!h^f_i$E5oB+Bb+G(`6&$d= z6gu_eH|`8uZxz{<@3}*qJ-&UA|HwUHd92&v)Nfp)hr2EiMm5}zUF2NWu&-{abxf(ZZ`*R0poMEoSH z$F(Sv>*@(7ZO7Jqt}&+096PtU-)$XgvwGO+)NBsLsp|3|D#DO*JNPEBFo8n_X2rFV ziI%5e&FJF}LBGhMo9&B&If_((k-PuNFjFc~u~K;w*NBQr9(-=x6*DT+Mz7%5f$o&u zeLwHZ_YJ8XrX7^sJankFu4;NS4t1fnZ3UZ&`Wlo{#PbC6!5t~%N>N`^P_Og8q z535t9dLQ?;BDE;rHHK%k<#nhL#=A?heRZku5xo^pT-K%{mAfyj`eI6jk6LNwRHRKg zSZbXcA+JjX#QKjj>8wgcMiwtW)5n-f?)K8;d7LQ~v})_GY!gGO*5CP!`dn}7sYm$x zjL9+5&&1Y#*LDoK5&mI|2 zL})up&2&ZTY|-B6g}u5_K|PG>GvzEOt0^XTdaD>y*+Hi5JiYh_W3M&d){mb)FueVm zMN@655)IJldeM(6o_;yHX1O7lM#Y7vuIvPBT?~D~Hh4>7s>*q&~d$*?rV~$>eb`fqz@#q)+yy| z?gKLPT7HK1o(`b6lbbbhqCPkb->_6J#trfwYc01oHwVhYo{}!}g^F$=3HG`K%sWvR zSLVk7>e$7;-rD?0q{mxLo5}n|?$zRwFQhVrX4Lj=ztj|nxeAwvITk=Ixqe+|gAwHQ z9e(-ibbX2%-ELQwg)K!aeq*O=_>olFQ95}1PbVla3e}jQ?*?F~=Qe(gH3SrPU4AL0 z7o z#p5z?Iryi%3SNxcvcvkdVofsKpyO|d@VLCPi0|1({sG57Jh6mXM#q&7K1qhlbo^xz zUedb0%V1ix%7bLMK*wLm2h2tie%_s3x01>xvFa6VQAYBJitA+=Q|!JO^-TS3zp`Ia zy<6I?WQJY6sq%xKe7g$@>>nmnL>aYb$}g~s&g`;cwZ@nz27f&6#N#q(`$B-wL&JN{w$*#p}p zjvqmRL%ZYl7B4@JCovE{AZX*)r=`6t#LDW)#ZQR@Y`+#HS z=JvLczx@G&$({L)w)N%g;A-o~e4rlSD+y#+X4A80CGn2vq?OX4rYC$r8U zO~bSIA0t!{b3|$FC$NjFCAB3~uy`vWSJwOBwSI?$0I& zXUfDIPg_Ga|JeLtfy#~j>$Lh89-wtp`|`_U zA*^vVT@l_I(N~D_iSWe~d5`I}2g6y{e@m3!3Q=17Wv8FJL;mzSx_$i9k&O1kY$Vm+ z$HdBY?WH4ryZ!|Fb>>i3ybTh>mMMQgS;Q04f6|;jeIlLyvHoL+_~Q5qTKy4&THhr* zDn3)xovpwszoh!Z^^C`h@LII~H4)FcemEiqIKDu<|BSiaKP}vRAR{gZ%Y*l8IKG0m z{s{C(>c|J>XGwO9{)fxeMEM){iQ?sVMj7GxnO6Ut9Vf4Ht4|Rc!@p@V`~pqpUr*WI z9`We6^;h1>M;-cakz*Y{IGzK?Wr^3H>W;VJX~g({tpDQuGN1~f)nAT7`AM#M?aV21 zzN7wh|7C4|cO-W|L~+05Ukdc+CuV-_y|2cz_FoT#^F~x$|8PqEHR}DkSjPSjB_}-5 z4=+S%?I-Z7`3;D(Q*!^)ehDR3{h=q4I{;DI`XkWahUWyUJ3oqHj9*;OSg-5LQvMQ~ zE04ZEXC91!@mR0)LwH*Mt6daxnOj!&!u3K>Fk}CT@mR0*W#WmH;5pncj=dj_s&{0J zAB>kY|G??8qo#{mHnab;$F=l9a{D7ntAD}zPsp~uy}ja3$CdoP{)CFfI({Y9zYx#< zUPaUJ?D7vl0^;}v@$v6I?$H=0R86H-~SE1H>>{m zH-5sP>yKE8E&RP=W4lc&KS4T`st zZr^eic#X~@;~p42SDCYge2~$1$pqE?P@`s26K*XpMI@ptK)bopjl1LdBkbdtknwF4Z-{UMcdF z2jzN7t(SCwH^q?+yjf!7MtQIJer3Q7N7!tzBCNNnJ#1el_2%UZ3wU~Na-R)ShG3W1 zvv_Tl4aB!F_S@-sO|kY z!y>#rRsXH~?Y_g*px!rQQn0)>)DC`_G(SWEs#`dXd2>x4wk_{#KdVp&sL3BZ6|`+& z;6b%7Jbx{S99OVd`mPdefBpD|c99NP4H`7ZMcN#AD^o9cj(kS`JpA&=$6)@4XftkS z_u{{ue__DEzTxt2U}JkLaPWOAAU-_Ey_RYYM9BfI>AB~)wUfI%Z)2-NSt%(z99OLa z9Oc(7-gwwRZMR|BU+c_(7`iKt8?Fzpe8(0=N45f=kQU2Zc2bADbE9U2c4$w{vUNK; z<(55ANlTx_AGZUaw{J6MesloiXOlKp#{kTW?5cLYr8m?Edu&VdMO*q{x&40)VbFdn_e5UHS4iF+bh@OI;s2K3ZwQOuZ%Cux zuic!v+kQMDBfp>OY{vy>bR@rzjrUJ@AI^9C2|he~@A$U$Hu{nev@}P2Y4bLx zd*8M&I%UDBQGEVvAKt}&KWsl;A|`)untgfii%Fn_9eWMWmDv4$cN_6SzvafU#W!V2 zl0b%zml5G5`Th2-irgDjoCH6yW27PfpCZ4TxZm$&BY)xhxCi}?k6C*z2|m;DpGA0a zzaPFP2%+Ee!)foBl2b`=g^s@>!b@7Wo)8B0b=66bLC0t00~S*f{+iC2Fxm6rfcJ+2 z950{|-xg&gkEpobxAs6#roxO#fbEk)yk{d`692%elUa)jN3rf3CE=et%6@)bl>{6l zpO8Q!e?@e^J)$(dQ?PFvbaKHyqoh!V-ipVaB)?yj?Z7s{uUr^kI#ShrwYG~hUQa))(iMhA>x zwOfe${lxokM&06pQ@RH->|VJ2{>JaeYj~eXWA`|NHLlD9D zv(}#^{-}F2t~0`Gk=?X2N`U=mwEiQo+c=FH8ot*yfpy=3{k1q=g4TY#+;&g7T@U?w zsdJenS zd6nEu`9*q$kd3JQn^u1I@r(VXczvLiKe^;50huqdzf5V9zKYROO zf1w#-B<{B$#vV=_{-o_6?mz7ETOhfy-b!1)1$IB@;mV!!CvO59T#*9W3-D!E^urp_ zm-qqyKpfd$Z@2|2pTCA!rZMI(oJ`#BN9(@=yU#kE3uj$*=ltRNV~?A_^FaNGf&(`a%(tXw18!&Gs_Di_0VK_oK}}g8f6q znWqn~+C(t+5C2~Mv-f{Dlo9ryVY&FX1%A8E&i20)AcC=eV*c*v2ln65%FlDmJjYc! zG`#B-*2jCh5d!t??{uMu$noPoSI@2ysgNcAwMpE)8uEbf9&_e z{yQ4~fQ$Fe3eVBt{pk;1S2pu~%23wv=Zh*5`+aEZpTO_%vP+>{pRxef@#BZ^eGnDb zKa#KeYPQ_TJW%#O)qZ%s#eP@u^{+>p^u)Kh0gV0oe~Lf$7h}H{t^e=>x|EX1Tz&U- zJoXQV_CtaMB1)To1o}_?_1m(KpXQFg zrs3K5A5Fq%cV%5a#QlEs_WK!D!zEt7nx@>j?!Q+5{~N#4kiYnyO86tg*yga>=rO0r z%$7v7{Ha1xd($g#CEh9Wr-5Ro_WW{EV^yM&f!Pf*Dc-tg{Lhn1-WcT7GvcZN6LU!yhcw&x8^kp3EPcP+;XH2)uYZys0E*ZqOtk~B$D z8dREPNVj=*Rs%|dq*8{2N)l30=8Mdgkc4m%GH1%{Zu1l(^B9@O43YVFyLaz<&(nF% zb9?mr{Cr=(r$1WfoV(w9t-bcz(^~uN<57HYxq~J=33UCsr<*Nmz5B}e%&8V=znt6p zAXj6=7wp}CeS|fV&yU$~{v4pL> zbq46&etY)Ic2JiNFJ@eho&f39*S-l?SbG^_NE4PDZ_DieH!uO?mwYPHU=nP@5!H}Em0;!I_ z(R&vcIJ|Sho?CleAz@3YbxxoUs(t5wS?4i8va8PTo-u$l9(7o(sOtsQh8cZ6CfLAa zt8%Sb9_@gmch+<5;Ol~c?p;rxckKvr^FIfD=x_z* zYi5@BYLB+qUpx50(FQf|F+-DUZiVCr3rwGVGD9s+j189Ownum577r|)!bN+3u3mmP zv>i$u<(Dv{n>kX*`hKw{x&yk|%y4>KCpW|iEk9{v@LHhXb=|rjU!75>A1$Byzjs1P zIWBSAxHFwv;)-v!}qfKuY= zIwGHVrjE!Zo)r=@@^cc;3-1!k>i$&-{{<&ruDi6X178$gNz=Ir9|b2~`j=J4qn%51iWLOa4jbc0Tl?-&GAtZ{ulk#6)8Zj?g;F+r`};z-9OaU>+%v`X?J<5B%}a68rK`yc4Zjw6wERQ+|(yxy0nuPa7_D{-{fN$t8r zvW{sYE(V9JQ)vBY$dL`r;b4v3G7TZV6CK}4iYIX-;zzuJ^W$)Me*P~EVQ2sAftx-g zgBBgHCB-+z=}DMqwFEDIe@y++TBWt$li`PkLXBzl88s^#0z~ zFD^f~pX>#jg(e~Si<}|RzpQc4$)LlH&~?3_n2v`TK=P7>Pu`tnduKcI1K$FJ2n|WTf&K)^(sPe0$wB{e<{u zEs6b+I1-5m)i1y9YiH+|9lA2+;e?H>@{@F=pBCRs{V2LP0eOFo)_>$)mb)oH-z@Fl z|74E?HkNz#2!sCo-K}*)-Qm2D$a*-E-S&ylE3!noSL?ud>C=u|E~P(ehdqo5gB)A z7e?{U6&lM!|9I?0>fW_vJ_!Ehv(d38H z?@hq>A@AlQ-@%Ra!?D|stokEz5`Bs9rS{hmCm??G!vw(Lh`wvkvc!zCxU_<`{dB_V z$@?>T61+GLu;E~gr^d;ZK>BC#&(4zeXN}W4U`mryi_V?%Qu-x{T zj>A+KMjOseFo6@*dQ{noX^ee5M1QjQJH>5k-qL6~!;eVV$ij=$v5!9_jzr=y%Sgr? zn0xQ00q{E9)v%hoiM9QcIFd8QJ(S>cD^wOZLGt6iO%1wk{p0fg81enlk)xX$S^g!g ze%yxXZwIR%tYP@P#^KRqRy>LS1!29@+E2B*rwVB1skGRuJcRXJZnFQ;7vt-<-vz4Q zFGlz6!x+CvHIq1!7k)sSKZ^Fj%K2$=TeC(f%9S ze#Ggb8rlErvg+R(m;2wuk;=EGR8iyidGt&24|K0L)*yBJX{u#)WU$hUWbL_j1bFN0S&Odr! zTmYst`!)91^nE7mVe^`%wA6hRg_fAY{>z8C7Rc+{h-`q2HMK0(OM_paIGt%$kgks!0OlkHnvLF3d z5k|?Ab3ucS=SlIsF)jsDT0M#8U;a1WC|ul`1Mg`IBhGB;cXh%rZV09{`9L`CCkXu>y`=r?2@4U)H z=t}@~lotWyRu=wpR@v|~qsPK>0;r=gLx9|peEZ=CH2ra}w|YX|agJ(rfu9Ra>E#be zmgr9wf1_1fI=*{151tZ+brdB5xs`>#)p~@t;#)qDb+#BsN$>-3MlqPy*FP_%;Ld{= zYgo^Zh{m{qn9}TDH2!b>{_g8;!x@bJlc+Ybc2oiYAnb~62!Bpu-=zL)lY zgK&bun9}SQdTKrt1ZVg48FFwvWBx?)l_ft($Hre4ezwt={<{XOXI(!Lzv6JrsDAx9 z&D79))oBfob(Sa@Pr45*4&xFqrP(h}(^wI%rd#Z8mbV6opGTami^P88F>WZPQX>AY z*wK;E!Q1orK>S?d-`yp6S>;C~*4+Nkc{S)uGZtRC0lAfh7pF^O9sh>mj1n=Wl|SU! zT2)~vaozRpIqV-+mc`#VUFEUKw#J@+!0x|E!g7zow0`?Ll@}b)q>#_ren(*3NM`wC z6woi~Q}zHe{rk-GcW`o{g-&o=ME5YZzujr>`vHFk3U|a?hU#&dt71bj;)U85( z7OVegEXJi{THpS5gm%Aua%LLC{z!i)OMf2^Y*^f-peO5h8D!xD-v91-e(+q@@q_ql z#$)+u{l94bbnei;@I0Sof9$`s+irh$)}}mG`;{gCZj&R&3Jw)A#!oD+%=RZvm&Mxu zO~M&vVoI|g{(+uvso$RKPUzmvg;j)M9jzQ9>AxrA=TkAQU;lQz&x_>tX2LA|yNFcA zNbpnea~`HN{^;Dtr_{OCe0$Cx+i%Rd`0hrB z|9t##oHfD!#@hj`^*0C0KbKj4(Yg9jD~~ka7PFD@T}@ISvh?5Y>(|p7c3b}VyMSfW zZXP~iznE2jSy*n;K56wQlK;Mm>lV|gMXdAxY>dyxl$1+&D_Va(NgF;-K4J%>|0U^i zFm67k^~bNs=gUltincTSzc{(f_D9kYe&Tzn{paEYi!i0l6GZFBY16(nS$1>>>-f6> z;}&8{v)`Dy@1mj)m&a@@_;dTi*>c$Amt{XW}9?VzH80$Dbuw?v+gWD{Y>sLYMX0v4PEZGx!tv3owqX&uR6? zZ#Pa3Rvfr$lkLBrwf!u`_+?D~#)mB*P)Ag6^&f7}-v7(eAI`Rs_0R7AEyN5~Fy$|w zRH_V{p6v>$y|j(B|NH+&{xDYiZ5V%c`{CnqZ^V>7|EN2^Hm@k~)`m_C81qk@oUr){^)&~3+UJBj@3F>V8XJmwE9PtJ%3TA=ApseoSEwXV4BrP&%dlc_WoOdX`A!29k<;PaILbed;Pd4*hw{C{8jgnU`p%n{!v9$0-dN=o!$(4ELfN|y3<_U z7lP)Q89oOBnxPq2%4<#@ZiX&D+uEggxEbtB9hS0S*A2nz@#fdBXxud+R z+;`ik-&BQ>+dhY$%y=Q#S`<6=Zoexg+nfs}uLhnR6fFE6 z(#ZvdU*cSWJ2&LSJZ(p)wz(+O6k~~E|9YNvguw2TQJ#FmUzw54yJx?^Xl0KTNu*y$uU3A zR*<`E%Z6d{w!-g3P5!Z=i7s-vuQ{PrrU#_7QoImw_8H~(&VG7pUsWh~oohR8kpuep zWpRQ29DohQYIX|o6x2K|Y2i887j{E%;k8p;QSQDqT3=fDL8ac0AzfN{Ld??Y(575X z)PCd4_=L&rptjS))aBmB!fz2n;oB9)P`MHH;tezd?r-f4*BmT?_p4*@=3#Aw=jr{{ zvHGG5{3lCw?;dOioYcOb1-q-L1e0+^a&OuKZ~D)#O|$O{xOuxTOb%;_c&A?&9BQfx z2A8~h*9^CUeIML)Z2Fl(?$@q2N^2|t-59bhc&Z`rHv7*%II%P6CeFRMVJ!vdF}Fue zsR!))GP=FBpBJ1;P0>F0?K^ezcY<@LcfTmUcj1kw1vOOotdQS*3f@qcJ~p|xaBwZP ztna)p$K}KT>YNL#vtkE>u zyTKe5Tqua`>F5cA2Ui^*>}?1AZYUHaSC|2q9oM#9-xUtsYI^>GKR~73WsPhl7qn^L z*IxV9c|+9gpLZYEwnp34DyGNlRSQl{zFIrkR0rN(>*=?gr!73MZ_)l|v0PXzZ}RYn zdQZe{A($Fs*&A`r#}|HE2x$I?nL8sKI-wyEFUBri2N0umcOv(I9H24sA5ZIqK*}@I zQPa13phfGqb!wm91D&`u(KS<}Bf7V4)2yoAP2qDAmA-7CF*@8L;=;l{mdHpctzWH5 z8)SNPW1wPQt)Qd*Y)-T}g_3m7oH??|8Ra&+maP|Shi>z|;#&s0ArxrW>y7Z8w=HA4 z?}~SB2`!SMPx#H`z}H@?FD`XbgJVZLtnzPYfa&}rM?K}d(C!s{(@$G9(KmDR?;10G z(F6H=N(Xi;p{2EV-bOs(LddQ!AJ=SkMF*~_oGi-kfgmW>)Xn%Ob^6(=X{N(m;eNC6 zhqr8TfYM#d&rh`O1|w5{FX6W1LYsLH+!ma0fR(L#r2GG}he~bgdcrJA&`P+ZTPSRw zyWdnST|PMybX6m6B`OVokn&!A%Rcpn&1a7F{b{3#ddunOoj>S=62|JJ3kt%4d%W$% zjP_3OeBuH{wUK_XZ-Czho4XDW<8*)j>@#iPb-r4z(GV{fA15&2IQNEJiw6c~V+H~L zSCe0t3_HQqt`k(ftin-w$*7xoyRD$o1GSy@vo&mPlW~2U10e2za$BziF9f#pDXr!1 zsHJJyk}sXTAc^W-tu@0N68u`fe7nINl!Cr&U3tD9o==Cc`;ye5V~Ry`qrwxC^yb1y2>;d zSt*>@^5&^M625f!<@;JCw9Dd?zKL;DD7z4J=kmyIpy4?tDQTY%%#OC~;cVd#j*jQL z#7}cY#p5mKF6H_nu6>lboV_R7*Uxy`&eQ&g)9Fpgh1VMYTjxvmVRN5SqD1epUWl5#NRbLdHbO4O6_!5)=KgNhqFw2 zz9HEzWQBjWkR}to*LI-%jP7O4bjYLQ^Q3qMoW3olv~`8ZFZ^EpvDsq{=J|+Z{z%qK znizkl9{*E!7Zh$?Hx|yfCfwSu_@g(ecBicqN=(8B?;qio=0ckz8HafAf2e;f}G;jgIdo#mkzP zMI74P`Rb{$U`EHA?E)gEEPVX9{8_uL`-2$))KQ)nkXu!Jp@u1~{zP$^8Sm$nWCV9- z;7R?-;vao-R&7v~6JuXL;V%pC{oq)Y^Wx~^}5 z(`#T#+LQ2B4Ey ziPsWs|5$%G+eZ4u*}qGniy7!K<)2-5z6b}6blmxN$^Y5&DcWGU$-XPvx>mHWj=wxQ zWO8T-qy9+yH^6v9OzXEF2dlteT6e=5X}{8OQp`pgmy^~0_^879XmrT(HCm zY3;XKMN18+#UqZqbyx+YpAaXrm+Xr$$2c-?h{E^6_sT`@<>Xv=6S8dL5+LKd_-8u_ zUY7jj877afCgiimRb=7C{2KdRIv#8P*&zO~julVl8y&FTXzfpQK9I*rdxI+-qgeaj z2Jsi>%~t;%G2hOZ)^EQhm!@91Jv)RoF4YO+tTC-`zX?bEL$?O?{m0s0!^+QoKCcay z+W}MB_$PiZTJG+_xgTs9<3G_S7vpT1c+vbR=K80vk3QNn`cIs^(SB_^oRK}IH2V>~ z7sJ0leyxs%8>9av^2^d6^n6ldbJ+1O*B|#Vkyl(yY5(Pf%k7S7efzy0Up1*qbN2K3 zoH5P~Q(FHQGH~cUK}Pp?8Pj?)&$lD;xL}+srZoEz)jz})>e{RRb8#(M^@qh`ZT}6! zTe0fj12dp7rRfj0-M>sZ%OS_v0_J^yKy@O;zj&?OuH_IG`aS^MvX z>5skt^}^*2#+2Bx@K&_`K0*ChzhJ~dAaN^kvZ0dk(;MT0FeUpmI2`f0I_KVB-)nYa zA?(7xi%3ko1n+~N2V&Y?l1}`6iWvc4j~Qn!gq@P-!V8e%eev@EOo=?gTao-j1|1mt ze8xf`acfaBV=2BX#`VB74^s|4U)G>U%&E3v3xULK#Xn2&-Eew;Ob<%%zO$B` z$MfTW+{(g>(_LY0e+|N;HI1`hRMa>;XIbOq=cF|fU&<WWhy_#6|ZBXC_Lo zRl^On7Er#rOB5<9FHl?N6ntGjpqx5w6tUoBbs1%Ea^7K@{%PvviVN$x{f<-nd>?Ct zZxB$m8%J#q?tO~#vR1shY2p!T^z|tIku7au!>dP|dzl&_&Wk2F8&_(gxwnsI=^0rf z&a~0m^M5!2&*(zk?;YS+RbH^xCezLmf zcTXtor=w|eMi?Jm+I+Ru%rDe_f88E|UXIYeBDd!_?~ZWyR_5KdRnEXE8(47un+nXk zez{NEU>8tmKWE}NdEvQ?b}ymLb7!csIP#<*#ufIxOzV2L)(Kn+Lo7A9U7$GY(}~iF zjxb?h>+VB_*dZ#*;KYwsHt39dH}BXYJCru_&Y7xK9Z|$?BmVUx&ZuyYhfmxlQ*>ONAz5Iu=}!}-H?r0deOy2I!N9kaer>x z)~Hxjv4Xc#3k9@$m^3&=8@*ISJ^f9zP*LyO7fxT)LKBE41fzs~B#_LYFqw3}A`&C!EK+K!8i)rhH@j`{@wMM_(A>O0ptv}TZZQnfHE%Uh@ zy6B?cW95BI6f$D)+8)8CsP^)fsV!oyP_ohD;PD;JQAqKcgYA?pQEuL>hh;&gDAVBW z$HGJ|O8E4l`<8gW|E=>Jhq1(MhDqW!buS5${)CJh@wopKPL4$Lj@ak!&TAcI$8E^` zYpDb;o;Ou5`KqwmGXuI22W#E$-K24!COAD=f0Rk^+>ui40ugbjOqFPRYEl ze%ywP-@<9D=(}vU%#(sXe;W-PI-VoN%NjRs7O!}@@at%(Z7C6q!>Qc?T z_XoUL{XVKVBQ;Flkc@?nN5cj0so3Uo?Jai=0aNL7;gy%9{Id9OdO0X=>--onq2qY~ z$x8lmrFdEL_bOgC-_j``>JFrp{P89Nxt4_&rQ?2Wquff0@@TUyb`b1S|Ze{C?WU;ZtvC*Ke(?7@gz;^Z>@hTnEOC=4q6^SD{avIUR6Y!yzO2tyIo z0CG#>JtS^KTX%#EY+f!%KfFfky3o&HOaLO<@cu(*T1orp{Fpy}pKVrX-y51khOpv^ zT*Uugzy5-ouk6>QTX)8J1f)17_`(X)`s3GR%gR{`-Fh+lZ(_fu7)RnJBwr3k9Jh{% zkTmer}E_jlan6n0%^Tg6FKZjP^_T%W6Ncdi<(BVJ%tfUlv|0 zmJ)0KMcPF>EI-YD_T8QFP*6EE#OQSozuC zhavMNTP$e(_8*Wu%VVDKq>c1n#b;gvYzvQ>m?g-Z0Zj$pXy$d7mhLdwT z;R|afUSr?)yMk}=-}+X1asSwU4r!Yg7;aQ-r2VjuA0%!=;xF~>|JRz|pt{H2>lb4OdZAvtzA)5+@+>7n=TZ^-M|x@J3Fx zEWEMbg<>ziEc?gBW1atzc+bCy8yV;7RSCeR^|MLuzWnX_XI;N|;R1SNO6z|jo!ymz z!h=|AkaRyyN6PGY|#ZbRZGH2dQk-?}L%e3BU1 z#y*~5|Ck-88@}j{DGgs8b?1SgcISryKeHWK{nib#zg(wA_J8btXA*Df!IXdBp)2Kr z#~#y8xJE}X~LMBieZbp8^6GYZ6%ra!BdZnvoNbG_EaKWl9H+4(nC{$MP3 zZ>Ibu14n$OG};_3=91k>XW#c3hV}Mu;zpHYe*d7#^B)%t+xXY}Usn6?gXNFJwEp<{_T0mb zo~SG9d3FucAA9{pVZQw_rL{kfXWzSmjMM{Z&o)qu{u3wX^u-tb{tf>A^GZRgj?K*{ zKMek|{Z+Gm*Kh!qJC-Rwzkm130{+|PCtsOavc69ojd4Smc+tLL2!8Aq{YsTF{~_&n zAjS=5;`z6FUlpLGONS54QD$xbF&H<9iRbljxh{bGCdF~eiho)E|J=TlhS|R{>-s$o z>n(w)zw!aMPYF2gf$lZ%nIdrlaWX9+^%swELz(!PF_+2&oYxzd4GsQE)%QOUyiEB; zAB5mA>L0Ufp#Ol&I{%Z&U&P3d75^XN#>4(4ZtN$F^jM#dx+mv0TaefMcxo+`Opm{Z zR=!3h1oqcmDsPLFc$GaTtuTV9-qU9s?Q8-{tK>gj@^ePDkG6G*<0+vhRmCIrPi%&c zc2V2zFiH_6SNFK2Ij$#~ZEtz~Aukvi%tvuMJq@9vD}VgyPaTAtlinOGa_S6vIzb&m z%sar$>L;V)C)xq0&0(d2SY_m8>zTjtmmcWoq??qFFb3Yn1-hr*Zcsn^m1|$W9kMjmK{2D}_sll>EI@PGot@KE1)Vv0=k23dT?qU(NwxT~Axb{<288j1ku) z&F<720~BJssW^3o3DW7#EBpdBC}nob?i&Y~qp;IA-wl1#5%up@I(_^YE~=L6dh_-z zOJuw#&*Rz-Jybisr@4Q=5%Sx7D{RmOEyR7a&FtKCH{tt*Efa0x+)!?-zmlD zwQ`GfdsL=j?LVPX2hG?&TIpslEeJuUO<&oofN^QJ2^V8b;PmI6>vt*GqAQ6`;gQ1k z@-oLgT6yfY1uDNfvh+@_F5=J59;`FM2HB;A227dlfRvTSZtQ%Z3vz7z{bJAw;rola zL#C~Z*G92tH@-P_Cm8t&#-K1mSA@Ez)mDDdLNWP0jV!O}A>*2YE6epYP{O*eQT9ST z#T?S}&1+RdDL>zEzVw+DGVXY5c0_nn#IdRzvY=)u<)`YYA2>=I>0KGV&&10b^iWfCX&hMC zyNUjYAB)6AIGhsoQ+x~9wJhXtleBc`PRDnb;)%Q@jFs1W1mGW1_>6>HvLV~Z%jc_rB$c&)@1v%-UO~-3X@y&30 z62~TfA>reNqX!s5k>@PMg^Psmf6?(xr1<)AY_cvD>Mt~>pDCyf{Ggk;ES)uuE^8bM zC|$JIaeX@6B>~4edGGFmI#Ty13;%($&M{}a@Reb4a{QkQ)rAp-PT|X}G%j(A`&4Snm4KI3sCgkL+7Tb?$ zu<|GIZxUyr*`LOqr7r}W10k6wZeIL9>&GMUe-e+bU;oCJCj}(EYW2r)3{uZ*_9v_U zQ5OH;598LX>p)p}F@N?r8i~JKU_tA*zbQ?+oHP=i15ETIPUZ?YImZxRkT`aI{bii_ z__mX3GOHi6Ve(7ISus0l`)!N)n_^0{Ur`*P?Q6LUxj$1F?T^%lF~*r-O0(a}(QnRD zWw*9{@o&autb+(%mi#WI>SjBess3Z@U^6VYIa7Xq-MLhiSu^e#j)?xp_{%E4Sga7% zbufuzTVwfYene3mK4h!q{R59881GNwdrsaS%CH~8zhUKPw_jO!FlwC`q}rL`$07VX;)_n0(&Xnn>~U2P zy+QElXo1&Xu7CFOcgAv)IDY;9Lx0M&+SISz7~>CVfA!bsL#x7X|0VZBgB z{S*Dk(*F-p0=YldpNqE9%j=X&jQfUlA9NXbQhr(T8_SQW zyf;sd)qZ5*#d>1*qmlSKV1?FiznyG$L~acR*7_rHY!VNqm0z?ELqqY0<*-k!8T)`p z{gL>$3w}Vu!^Ysyw^(ZB~3^%il0OdmPgXE5a93+WbQl2d+-}9GKk2owfaW zW1J7BH2s5B zmfhGxf4TnH<9HLlEH(r=!})W6(* z*!ADA@+Y&#K^lhVH4e`k!`l8y{5t|yD6tFSt@!=TARYN({qh<1^Z!=;*NVKxw znq7kAz2{Z#m}mTB_DAB_eQ|+k_Agq0RuR#cv|Ot7o&kB? z7B3SV_1vg_?syhe@vzAV-Ci509G?emN`IIkt1R9Iqw^-HNA1|u#Y41Et3_5$zYM(4 zq_#GD&i-fz&(k|tXkPSy(s@_3$H`lQskyJcTPtli*vdnz!?_M{cB)4IpPQ{v;J31c z{`MAVcg$zs*_|vtKOyUM*Vcp=g1Y7|R8pceOx| zOE2!!Ukpfo?#Z2(9vZ{i76$oAH`;;m9@rkQ$AzBfnvKlrXbCagMa7j--vwd4O?^Iv zw?rs&OAAgfHAtG%XX)K;T|g-*a?9o}_K?uKFvlxg8Lgx)(X#s zJrG*lXJfo6RCZlj@VQbA*6jCoS^dBgEFbLdy4>9WG&Y-d;{VnWp6mMS+VRDfQ0>zE zMd#NY&{yXz7T=1@QA}mhSnJjuka0@CIceKFpvpt@LsnH;p>WqLIqHK0VHz2O7G^s^z3>esJ?t`1C&gJRx@Fvwd+df*{P@dSQ}AZ!kWU7W839*Z-|^HK()0 zwWdqsTE^1xDgpOvWS+vo?`L|RYWe2s0@?3pl6B2GoR5%rM09QeZ_M0-O!G3pmpGv7 ze)pBeWypH%-}rSjTzAz_wo%~&l&@q!HF1E~;j5+ZH`b49k##DEgG#k08G&lVF}W_g zQ=pUtuIlim()SbV$F)eDiG$y->#5(7YrZE1_;fs9imxBnB7O=X7ty&MB@?DNPT7R4_P*P{7FVlI8I7M!p@rC`50l+~{xOMY?oT-JF- z{kRrwUR2Vv`*DH6i{82O%)=P#5-hgNxFqk<_BA0FHCXw}lE1{fw%PuDp{(;l(yU4M zP=8%^c3&~v)3PqYZ1Rbt^FmZTYsf?@GEO~OpRxKKa9k+OtGM}^24-C zw*{3Ob6bAt70)=Al9Y?Y!$^FJrYF(+DZEE(Z_UV%|HsxP##j&&ru;FFPu>-XAD91S zzYKf*k+>F#57FvR6c^&`h}bq^aXe#R0I??$4ek&(I1*M_jh#bw!F z^7lnK%e4D2{MuOEGW$<)I(EMliECLg>#tI6;3k2=9yOoqD@HK-kN=K8yZ&XB-~09Z zCEbIEHnRVTWbJ=C;(`$W_*hafd@i|BR{3dL(-q)GD!lG@eyYT;-wCHD^FHDq5`Kw# zI5)urTuOpqhXBi^%8u;%FkZ^L=Y06q45{ZKQCU+a7{KF z$~yjeVL`kxrRh(!ez8B?^0E2om`1Lj*yShjFcMdz@fVH%j)&TA4{sgL*cV0Gvn>6k zt=#RQ=^pWqtsh7{tUJ~pZT`XgwRHtGdF+Le9`^s-_xk)WUlO09@#oIN{s6d~ViF>`4aCn$T(7?UeEgx3zNV!sV_y-mpCF7U z^9EY`5w+hh&GlnaH??ETKQW9$`UMi7qRC&voAd_Hzvch(_*H#~lvgabbo}du3lfUy zD^f6ycwg+t?Y4T;Hd(UnOP1CCj(_cwHE`z7Ki=0+uD`Hfu%R`>|3k!-#b2C`%Q}9O zxE6`))GvRxY0V$C@r?m%!my6=x&gT*@h}n}s&9XSzC{tm&jzyk5B@`3D>?7}HNmGf z-iIfA@5Aulkos&;`D2*pLlOC9;j2A@_AR>DSo>u^7rP%8BpTED`cn)Tu(d=bhH*X= zDSv;A8-OXT{Uvj>PYIf>efuHvYcym1PVlnI|G~0!o4Haj5dWT-O=rODWX|8pb3QEE z@f8^LNALsjMGU4i`8j^dY1BTW5BbCQ{rSFh!iSVsd@pVPvdZ71FMMh-kNte9!I;4i zOzXEF>u4jjwdel)d@fn?$KnKWn9}se-+cK!r7~yw*kQZ7HFEuI%G!U&W4=Q%rHvn= z`S)x4;eDEy`Z4@Jq&{TnUzDwJAS?d{;W_fG{ogPwcQU5++uy-ZV?noJLs{pqi5NGW zi5JZuuX;82(=qXHr2l|@{+NXMj>42y|1sJ_%LSQ3pH3OKF@#nBBQS0x6VI6+dQ&)l zhd8eMF!3+1pV;>mHmv>?SnGc@E;o-^e!kYSr_`ila{_m59Ko3X6Z=iUxKvDO_Agq0 zTvdI#yvlpXKQ{kP!+g^*t-pRVY~5# zLc!x>;jHatrT`u|n^aX2ch`kRF1p3Ib=A7y-l;&Q%b?kcnY z%knqQemER<|I1Wd?rE6TZ$B%yzpSW9P5sN|@59=E)$MCq9MWEF&WWRh;wLyIxCC%! zesNS|kp&_ut1svfTB*Px-DTPAT~-;n$^W;ZNAIc2%}0xvtbdHm^* zFlP(U9lt#yQ_Bf5-th!SA98^oCn$N^vlSe7|7NpznH`L{olsJ9$q+)aPClOLstx-x z4?8ERa3Re6THtKY?hHEfcAG`l512ui{K6ZVF{Y5)YSWofu1yh&JGpwm#zz8v@~PVI zyyi$ul~IVxkROwf2D-0%ckS;`OSsN!v;W&R3z$@K7pAQ4Alz{C?edBnb|_m#p(5pH zJK*X#38vTTBh}~Ee!ttwg~)(C<4?8}9$fFVXl3Ui&w21Lp& zC_nbNB_!#W_tPEQ66Um=b9Pms2IS5QNSz+h3%G|TE{m)125@cCti7KXLg?3Zt4M8> zu*~vf;FF$c-lx151|vLyvo3Gsn0xLJVxYaD+Mx@C{2JeVwj~82Zrc^3d^{n;r6y#` z>OOF8`c2)zXEb5si%mwS{9423=cexG`af`rT6Tj(Pu5@VInxxoW316u)ow$nC+ebwU zp3inaIcerCL45wl^@9UmQ|~rdm|RSHCz$wT?t*)3xTx7r)$SX*7{dJkk8e%YEx`Kc zY~$WJ9Uw5xVZ)s=F6<6mI7j=PE^zj>y|Lh#4pOf;bLQ&OL-Ql2%wj&kVJ)tYfB- znX#lIV}Ut5H@$Dv#mW?P=egJ)+hq;=E*#OkaNim-{C4)+WHTpvP)fjnlWp`_EiBj!sXeX?HgS~^7Ox;6q z13$F4)ii<>kBH*cr-dI_e{GTYP@oCb747AZEoldp%Ui@u8`uOn94!mlsACTyBl_%V z?Qad}{2Mqu*BL_WC+t&wZ-(~$2z0-2-yPJd<$24Fc7qZ-t2gJ;%>TDGh-I^E5X+Wq z5Ucx|Etx0~2OVvKCtBdVopmcc?nJ{6J^(z>2%~tS09Uu<6>U!583QZGPLR6aSL~8F z=$qj5#L+Jl3IB-?pntDnmi(b&4CK@C`BJ>Fw-^19K>tg8FC@vzzu!_7Bb}RaFOPxw zbo_iNo@@})!Z?zjaA9!pQ~wJM(y=38jfOO1&YBX5{EGN-b4-gQ$#`n-`x?N= z9u>ZBP9tCi9lt_~ufIWzwm=gFI9{*%VKBjX1Z2|jnNocH4PwO6A{3*Ydau?nZJ=|g z(XV(oME7uHY?sI{Yl6yGKRIalk9b%@$9LWiq?oesqf!!Ldw=c=B!Dl%@w_E?Rh*F; zrqeMMPHMD+?zDtq8+HtwQn3)uNS@bS3~R9b!%y0Mx_o6JoTB4V0+3r-^5;dHO}F() zVVxkU4M20>7d7Yq2Bc z?uPOh3tWQN#uo_vRva0j6{J^PE_`j|l*OlkHndU2w<>h6l% zAqjt3e(5;(hvjFreM{nfY>kN`yKLnQo7Fy0hXTK$RouReSw z{ns5vgB|`|O#CHyS@u_EW~RINK?;zKP$E3f2S|3Z@RgNut=s7KXYIetaYkf(p~)|@ zKUpK)1}tT$&KtNjzbbRZc@sJQ>h865v` zV&PPHM+C0>y?U}l|72rXdyJ#mAFt-f6-s5mjuB>?r@~7*o-f7AD*uDBHKVSqo(ffT zJa;l+b~5|#+~paoder)`I_Ns$j5=XTt3Q$bRsWJ}e~^>G=zkl^U!3mG4*;(^@p9bO zE9?g!b;g1?Vp_lb{+by(?#k`eaD)h4N6}Cqw>J2Kv@cry@gJDJr3|NB_B=5lukKr0 zv_Cf>H(Y#Siz!WiBKv>dTjxcZ+cbv#lIoOI|H5ySKHXnDjkW#B!i&UmnZxR!v&V8f zu*mN;b#+k6^kt0pi<8T=zdM6^?YaGQ0qgiHOaA5j^`~|h7P8JC$ObX8L5tQ+i#7-! z){A=lQFSdy*9Ah!d9jlAOE#8~jb60+=V=-%Ldu{cyl{geAc0g-xlx1!FH8Qnr;fgP zXIliJL}7K57Y5{37T!V5yx%B=<%|tF1n-6~+%c_he^tMy&$zj5HTV-i9fi;a%Ri^^ zkj|*8)j;e+oJ|i9Q`sBTw?F>bC3_d25g;abvO&xjKd9e+`5#^>>D0zB`Y+Ocx?r3S zruElvTNG4N-z{Z#&{G%(OuT4=6hCF>rKZgW{IUJwY&k?;@x65Z=YtyXkdvnQ&N z^0V`AnEdP;T>P-yq?}u75JF^k(wcINtmg1;Y%M=Lin~rHzYq zDFG*MH2;RRANKkS$ATncO0#p(`swAI`@MU7UkH1Mz;%=_{qTAOem)G-5ttJHr`7)7 z=BZY>FirAYcmXkz@sDf}i^acRm!>PpebOA1&Y#|E>yQgmrO!DWV<|ooKOcgrsU+R& z=<9RrffvX|)X#D$WX}XENPR$_mcl4}?$+!+|+~Fyo9A~R^af(;wpwN$|X3pOV`^$@A?hn>Xb`hU9tO zg%mHV{y!}A*tF_cE|3ibqHNFr5K-YjS$I)8-a*#&e}nMc{jBrffmo2in9|0dg83JO zZwd3lMjYMVkI{b+JB`7(L739|Pi~>(52`5mOJ!~707m;K_y)<}=<%Dq{WXX`hy4Yk zhT*eV^&f}zmVl`|ra~f`zZcD(ai*slyZ+*F`k|Q8#=j7GM`hR=={xH8U)Nt__0K;4 zXpsJSmss^b9P5pTX?^=|8=37JyL2g#b)qO4&mVAdP7=PDfGN%XD{Y>sLcq>XHgCPw zv2GA2{dF3~lXZ;nR`i1Z2EQjMh8NZ{Hi(k;GZN!cF+GPV>HnWhw3*=hxR|kiCiqb} zeF~=e61>>|BUdut;ZB#$jP)nMC*$;^F?}h)i{oFnl5N|LX||1Z{U)>iy6#gLA05Kz ze+U~{_>1El{Y~=@G}3<)$Z9{b_>1LaZ~tR(LB?ZBv!58<4^81n^xZ2jf|42KC;A_Y zab$d{zkZx{JIGwCJ@epM3~Si{@+f4uOOZ6Iq$A9IDrSzwHR7ZZ@o-^jdn9{xQ>l8&FO zGrW@>m{#rLV*XK=D78pwMt-J69aytWG%*2$2cer+W8^sxKYu3)=Z*LG}f5B=tmU|AS zm6&ok;twxGD z8`=M?Va5N4gV(bEWnW@~0*9mKr0PpKlv44(Jp3~q&QquEn~YiU<}`Ij)zDz*x)YQ| z;g#}l=Z*=c6rJdr%sVZZ9NOUr*WiMnY)o4%PJiX<-a% zQ^H;?+0_mHtyg6*jfSrO%o0lZ)GWt!WpXyW?TxEdH58aa9VWlF;8oBXPk4EYtmtQ|;@AT1yk|p12(hDrn;4PQeudp?Nd5ga%IkY!~>*a?sow}KW zdhw3~uh-e3D|(+2m!z7*>j0&&p-0<8T3J=E`CXfX*)-R8`m^j{C$$2MciTZ<>b8B@ zXeY=UR?%B|rf`4Uu_b$Mos#h9+&mg2?pybp040>fzwO7+3FoF zA@gpxK&r+adVg+L@qCCI6!yDOvDViQcEp5a8OaNs0a;ozW(@x#80onB*PJe%Pl;`i!sX0GlUSzusZ_gYp}4m49hv8`QsTVLpFn zOBj&4b-u|AOIT*OzgdaAITZS24SzSc9k`v_y!TZfJJ@<9$+@YzK5$0I*J#bxK^gId zqt0A(hGg%3TpK|rRCA=?(eEv_5og)l=tW4E$X zoLbO&P#c)J-S3IPSyOO8QS0aL3PLe&T;5%|-~=&oeKI_6YJ=b8gWsp#3i#jJ=a|Z} z&oNc9&k-3&=RahfPv-4po%Sg6_++(0+4~%cpPl$!$w4F`QM?7)gda!>)S?Zvfy{&O zI^&;d>s(Qsp;T!@pVQgt;7Z54O7X(cL-c2YsdPOoK1eQGAitfnHWr4d;skZ%%6iE- z-xNP4*%N=EaGrH_zLEwE)a|cQy)G68)A1*yctwnFj%g*PWS%j5P5J!*;RhPJ(D4(c z_+~i03a0BNc=0?@Z8JnKofr#tbbPE7uY}VpV@mus!duZnE=zRdw)Rhrg^qN5gcL7p zo^ecNyOZT%!EdeBKp^c@jMD{z*Txt6n9}rb{NC@j;PuhYdhcfS z19JipQEwo(t?`8pruFOp&f4!P`|h}~*1s(I2_H87>*54@n9}5ram%|Wc(O6&OL?*z ztDj94|1i(PIoDEb8Gbe*mn^(EofYdkfvmrbnDSfsTa^m}vf^*1bc+E}PH{39N&hVz z!bE>$9ZM@eM`_M=LCBm|ZQrDZGyIeoCbRzv?6S5=MbY3twm-W~m&WPqgs|2>S^pbj zf$G~&e0YTN;{AR9xcw;iKYu$-DfW-$4?O%v+rd19wf&f4xvep!=|7}$x*|L_UDm$I zaeGFbo!GM(##u4(l@oo0A2_iNZd)?*9L3gtNxN*v#OJ2(eIO9da6;ymjbI!^Mfh7_ zoaMj42mG!S;yZNcx|#h09}TmA={!r!M%sTi46ni3ej0{n=ieTeyA!kgoS0*`1e}C+ zP5K@`$*R8&7}t@B4{>RKN5D~=bs*>Uk-zO{<&gRoi}~N`U-xk1@LX0r+2`nu^#_=e z`S(+ww&S(@GohSJ^y+@+ua@+GWS^ra#*uMY7^dUBY-!?F1!`JXXB(dro|NBOgKfyXG!s7 zzV3kW(te)rp?%K;ng;CczG7e|?55)rq2{*m_JhH)f5NRRUxE_hGzKEJvV-Io0z5n1KO**CKNviE-t z;~&J@|8~IwdSOb_pPz^Q6Y6S5ZI^MOgBas4(I16zz{GRZ((?r+=Pq>UU*Pb^^^db{ zr2g3b>~(?^>n)TD{rd6KX8~u9$B(CV$aBF*L#8*{xwi81;vf z%j`c$I#S=_d+GSo9VhU^lx9DoePX-^>VXCJ?MV7dD-<>&vtcArwSxvv|h zAIn((6MY0=Tp$zA(^sez42YT9e0)(PWBr1YH(LKeI3wb>s^5R_aE>|)#(h}VKfxIP zZ}vGxrdJ*nXs+&g*l9(#zg&NxJcz!<;!5q0?2nAV<)HQ7qJ63_J`dmi#zdR{j5N{4gxw zNS5*&4m49{Un7e=5f5Sfi{15v~QvYS2NkJ1~2{mi=r(GW{sLDDvYXNtOApGFdyQ(9%3-n}6ho=_QTJ+$8@J*BqpY}dE2 zv=#DG{bm1chdHWD8dfu9vMu_lGGoo5Plo9A(kZW(o3@A1ITLDB%3UCN*2`Z#Hz-52 zd}o(Ma=qZK?$#w|YK>v>uG^P2f@&%2Z*kZARks6!>Sl)%4j4d2j^erKj^8QNZ>H+T zfH#6qttx&msQpE)=oF&7wX_-NI?TNBY^O1@o@cRI_m&wr|0?@7+rb*%<+tr%cEB8z zBWp*R_O^km*7I+jlb3@#S$^B(=QKf!XB@s5S=18xjoNkfime&4xY8nl-@Yv>+ENle zuA4C`ewun^tdlY7ws>bj=MZD0;^L?#Fc5w?&!t2E$??WWF5rlH@F_!N_i62$9d8U! zr<2an1-*=riLu5^MyT86GU3g*DyedkN` zeFgBlHC4&_z6I!IYkvH8zy-Nhta-623sB%s$Ng(tcR^(vHhq56+#B(S?KpShYg;t` z;+`ADGu+X|bH!>ZtL#yERNpl-J9I|76U@()Te%>mSI?YMH~v55y=PbyO|w5dDjqYxI#pHo^o2QR_SVi$;+;dbU17qBJP&Z`)uSvMV>TeV zzM5+F{5|RD?D}j8&v`TJ&?9qqFBedMe9ig?W9>otl74;a6%0W49Wpm0)=7cfgB~Wz zhkNqk5R|5T`}~zt(O&=QgiJ*MJ9LuoxZjXRa|*q$5Rh&4Vytw-D-Nq-hD(yRG^`k; zU8}xW9M)p>-!x* zMV(ao40#t&Q6<}J%~>aKxBtZJpLSUSg{^MCE^<6UR)%}tc5i2pXJ*f~U2Fmh-q_}Z zKjVG)(Ai~AgiA13`a?Fj*LD*aW{_@?pQ{Yv7pF<#JK4~9oZAc64puNM)4o%B02?+n z;)zl5#_=W-qY~A5L$Jy8oT)j+iDkTAEAed8KTY1lM6ITO<-FVe(uwDqNc+U|O{87o z1s=gGX(I6w?=JCj)4vZhjwW-hcjIQ$L+4N^2AOs6hjJGYz@tbuhmGS&436x$N(Iw6JqUT+1>x0o# zK>d`Rsf_1WNuun=-HQpFZvbhm=i^ zpH!L(JgIn3Azs|P(A#4Bg|2BSKoJ*ElYENB0E;OOU!KdJvf*kj?E^g+FB+GD^@;a8 zfB(;fyF+&!Hl9KAt75$s$N#|KyMynm&7`f%Fn@9Q>a{oBuKG=+`4ur<4qf2549dKU ze|}i;5BbjIuilLD)A9(ffM3{51^Z7%zZ|c#YLEjhe!8XkS2uaE$|cwVVE?t?^{xQ3 z5to0IzKwQ?WJWwzOYD!K=r3W|=M*_!sf(^t`!S3kn8V!?j;|2apKXhETn9}VNz2Z7orT!EiNblkKwJ)1YY8U&L{j$va=WslS7RraH{&;uE zRyw(PFwHL0()I^l1>ZPr>DB6WmBjJ8PevW<%eXFOA-Q`ZO3^?52O3`=o%w#7P7JO7 zvHUs+XNah1{#^@ZPC1;xJIWLNE+EDL-|C_Z9N$2xe^58}5E=Qn{X0u(3tIj$e?5fP zN0fqBuv!0zFY8b1+n*p?%=%}9@@C2L>U=Y?B;Y~iCe4rV?MaN1oy)JTb%rY^r~)c!!zrTB@z(Nn<;$waj9?TeKbEk zU?#2pa5^@^2A^a9jq3f7UHi9{+b2PP^~f^_Sa!BcoqSG%lk77YuI!vBsyEqj1Id(AzgI ze_4N-^$*8oIMeI@`Ftx0KuAx{oY*P&FU!xoe+|cz;P?j7@k_Vs^Z9dKQyJ~bIGzc| zS5WlNQN`c|S&~(5w#h!@FXx}R{s5}CK8RBEkAMD9wzB(AgGn)rex2S3=Z+{P|6Doy zdh*;y{_6$$^i9?krH&{OP}$8zx=^T#jkce`?Brzg?YpEzBAgbzfN!k@d>sDTqY zFFz$eE{<{i=ZkOy5v9~WfBuxyahU#?!f1fkiGpOd03{~|pbI}lDg2XTLTgEjcf{`x z_9GbMGFmo&V6K00_zky*4Z5KhM4SI%`Tfxaj;|11zkLp}EBjV6geE^Oe{uY8{45=q zsWzB4|G@mk;jN|YA2=J+Q*LPo>euA6)+b5|`0oT<{q(`P7INXAewfoWF@Hf9`<`Z2v1P+WHHZzc{?r zZ=IjrcFt;B`F|M1X#c_ST#-m1QT<&$WSYSl)fu$)E0#Y3UEuf%s{X7V`;%ilM)_;y z_jRq#Kjwq$OK>k-Kj3%{9A81{|J;I22oM{ZRC2~ zo9P%w>p$>&qtHb(qLlduKQ4wdet*2Cs(JCUA$ zZlG2>P_?CGj9joeO@5SI?D`Lw+;fbsQEqkp!x5(nW~nisUpN{GG8a+N{$oq$GtZ9o zOa)vlFrP*Od^-kRWFShZ|BA-CO3w5dWu^A>CIal=;wR${XrBKhA>4R6KC<}6OR}PJ zX|+}82w;JJ7Z5LiZ^xpGafnjd4}bo?Xtb0=m`ZtL^u5fm2>(_smHuXIe^boXKe*|(e$7M`F8A(HwlK;GMg^*PDt9Y&9 zA3;0+9+%%lgiA$~(ti2&`-r<5&z-FX(EKkbxmf*IIO@Ho{bKsQw3gx{p7$zLwDPCT ze=$BCT}(ohqCfop_jlZoq=}}ZX#F?NzqtB8VNfx_byOVV{8JoWAeKMl_&*uR&1I0^ z-s?t+TBn(e;I=Cxo06t(SQE@b;5*Lg@J?87{|XE2se|S z|HyYv^}O?&`hR`>_zOn@{VpI1&Hbmi{1Y*%lQv6yY@_{=dHy~d$u);Ae^&qZUpOnn z=jxFTb6Z`1Uz{5PWP49;WBpBJw13P)axX_zwEjljO_CitEfrw<2tOGJXfFTx2$zMZ zX#X*#Flle`*EoRfgMwtj@oxdbEvDo7?a#BQ;K7mmBLTK=3zGRZ^IwQ?ix8!@pS{a> zb1EM7_PaeZ4CtWW`GhMx|4f|zC|5h)+cw;fcK#WDoj82a)OVA{bz|OFu>`$nDWVkl ztA;v0<){w0b~v6K2fAa1eCp7ge{uXLn4al-0*qxmKVKZaOA|i@=I>`^Be|9#N|B#P zn*W63*u+5lKX?6-gXCUKmtSG{A_=f$&VlthuNTtx_2B+@1;XXh@hk$IoFa$jhIcFKj3s55N;!)l=cHOq+|d=T3rF^ufNc137lWSy|DaRR{zZMZ$=EZAWA7e!gh!jxEQzh?U-M=|FQD_OI-NYf5e3w zOA^EroBgw0ug)hGJ3c5c|8<(&HmbwHB!_ckhD^$})3#^Gkh^CzUz$J?)~*VTwKz;d z^~TZqD|V3E41&TQn;s@pjeoxSPCh1M&#YcGq@5}V@#)#PB+C>?tzDI!J=~aung!ig zhWeKu`bDx=&np<}t_sW5E=0(D`$`twdu3hb@Q!03c_%I;@+W!E(yu|g*bbiEHFCtc z1=g^B>aYtHQ>|g%y`-y6=t zP~9o1Pj#S!@{%b!CI(P>cduhT#%jYb#df8Wud-me&15OS(S+XT4@T%qv0?Y5Uz6P~ zv!LdpLdVaOHQ<&=t6Osyn80xgYf~Chl%VaAG8z37Ca_*V@R&)4l%17OI^jdpfQpfNv2-A7NE z_dVx)eH|}F@Nj09TfIR~nA~mM`h&}L;gK-Y-|+lS2ZfyT}wOn6_#fc`}< z^vBA0!sKCFce&Krg3j!SHLj<6gA%Wu4$(>$!1PM_$h_bEf#Xq!D^6BsfUqdLYiab6 zQ(>1_W$PpdpYK~0VO^vK!s2&ToUL>M$$=N5`b0VdFl})!pP^15f26|qvEvoMp!q+} zX!uA10}JAq%lYv>LeC_Ss) z*RoPJ45%49KH0AateaZ1RC6T@s)d_}`^wosh3(4+*vDxDV*cnrBikyD<*(4|M%5-@ z?bjKe)&|yK(KLlm(rbf2WS3Hj#XpQ7Trc}OaeG(TXz#YscJO`Ubw ztm79BYlLq>!V}(igs&g9m{rY&`WxoupWJ5#j)kb**wUT_2-d_C&)8a^aofSY&L?$& z=lk!DV~cD+jLMzNiX?kre2w+4%R4qWKXBjbRl|5+sW~6|VZiCmV46&V?D{u4z-qqF z&$2xVaL;A+G5R4LVBYNPt2GAY$1T6MH-*n`r1#CFd zB|-aLH<(^J@!$bVS4ebzn7a8GN&YlDbtW*A4QuAxRn5rs29fo;N86{_K@C%_Jqt$K z!s8ic{grOpLPy6>*BiUrz%6@?E@aHLhroa1>}tc_uxfzwx1%dfK*P2xPs+O0ab8Vu zuQhop54M-@-e`3|5!fz`9qq#D4gyavjN;7K1lHS*Oe2GfUL*5^@~Hb;rYYTlb_zQhanpG+HIW5hRb%3e5!xj5S}hQ z`^|Yoq%21-6H78lNlohtV}o?~i190^%I!;)TlZ zoa^apGgNN)@D8+;P}kVQ%kMhtQ(7LrfF0gYwx*gF$6xRG?2Du)s5rN2o9l5euv>E4 zLfOuKAUVA|?-)>9kY(gJ|E}{B0~q4;1B7w$<%Q6zUZ&j2WR zT?XP%nIPeiSu|h|9J}I{5znBI8F`w?FfRMlsSv{3G!`+ z+So_FIj5NvDQ_w^-1obn})rud}2OP8QM5h~n~dah$RK{D@G{NX2u7_>L&O45Hj- zyx=?4<|EI_hfWFwbyU2g5HF3=cS2Njo+kH8Z=sfND5$04*-HUtBW|7*9My69?jt-q zFIJQ$U}SQO@oxt>zuDD!FsN#eIX2O`EynXvu#j<{kIP%0pO7FZb_%|owW{*@iSq|l zXzL`DoZzoxc{g(C0Y!h(Pmk5ko;dVV8r);je3^Y>35&g(y;r$Pqs z#Rb)r&R6)IbrpouKy)#p1p3Z>+>%Ih`KmOq4l7vG?~cOntan4{)eyyYe}aJVd1~4q z_etfc4m^A=70(vpvHeCB;nfkv{YRnFGJn>!G_aJ4*An8zmH(K4v(j!4)4)tBUaAma zHsbKUS^dYosOK=oX=8bNpchiw&*mmSiK=Nq)p$+{t^MKp6vv;~FwEqVf;MfP+*0}d zCk(7~*O*MRvtqm^x?tf4%~Y^YhGl7&pX6;!!(;iiP6=ywxDaohs$mVbU)!d~v>MY+pB z5&B&~MmFbP4?QLI+!1@zt-#c+oj%RpyNoeTO&_Huox2+zAH<5$+$n+o96=%gUY z=h=VPPO%|^ar|vj{tHeq=HCqEpN%Lb|9n4@o|eL$%&QrU2l? zEvkQ2IrBF=jvvQ3|8PaPK8RBE&o?2gnlttGGTHn^nY8&Q);~9d>xC#q|M+pfa#50Q z@89*NjsGZloBIzuUIFw%iu{C8elBNQi02GVqdv6u^MA#^H+qpfoqtwB)d7ye-a}7* z1}gq#{ZU{XKRl4!eG#S1zxZ(~TV~dKT<$*QFUudy*nYi`+}?YsISU0sn(ADaH6 zF?|@;B)I$Vzf#oPYZuTz^C<`un`@Vlk=kd4kr)Wq03^3R zU4F3o{XP~VEqoyc5u~byM77h3HT}F;LGUt?ck{UL$8c~SV!87k$QEzQ33`B5;C`poWUT4 z>Lq&ZbYZQdU*;TXUHIkP=ExyMy71cCE`EPXou)`7-K=X)wj>cGM~K)=XX z7p|@Xil) zuz-Vpy95vWrUC5DuNF-8a{^|)7Mu^C13=!2 zUy@uETaausLSn=>N09f%LB7`r3s9w>7nC)10DzTWGYdBmAgt50$H^A{fa_gsDbMx< z$**;d?t6rQXp_s+3qBdZ^i-C^`a_m5r(s9K#Md2RRb=AV!GpeWCK@`AH#1a(&>(+D z{bMd%qSVg^Fh9qa0^McKmD zC2w-$#;C%^T$KwM6J$WeXqVWKkJ@lbMC6T8Ym8upX}si;8Jh5XfK=dlCpL^+`eezk ziz=`p^UmGs1}#YJp1tejRW(?#L%BmcDP2fRD7!Zp14$|4KzkB2Y@!wIx^BFuIU_07{5jQ_S*GvQM*kIT6es`fAAKOPP5Z~Zt{@mgv zdyK(}sm{Y{d!zwpD&AR$mq6*UJtw&t&nhhW&H~Eq++%iYrvWw<&lciE{Qw7=@q+Iy zn*UBbm8g>jw5WJ3As+hyx*!~79N^m_e>wgbyHY6)bfV%r3Gp2f4*LO8n)$VXw6gxVaejh44Z%5P*aIP6o@W1zN<&xAbd-z1)NX0t}@#4mT$DtJqyf;n+ zd$FUW>HT|)0cIl(-%)F-=JTvLumA&^C>R0ott`6ejHu{5L^=C}2ls698f$i`k@DBt$q%u_tl=t3zxZ-3s z&5nfIojgjffM|9zK2Nh`jTv}nRjYFKNH*Bj{G4|Y*>XFUh0@|V?7P{F`!&VopZmJL z(8^GvZS!dE8OC`CR!eLLr?embJl?k3+H=WwrZUDW;%0^I>6CfsyqQY1oFRt>Oy7TZ z5@Wm__5)yhK5w>y|M+&0(Su$c(ds&kX2-^f#Fd}_Ky^9uOT$}Tevvr|yDZ&98SP-= z_zUFZGS1_${{s6#DCN)ZztZeXYL`w+VT^Ya^#h2u-yKqMHFZkk8OvXs{DWPy`#$&d zX?6MIdcy5Za4)ojiQ_Lw&tlYH><8$H7*X`kyUULDK>C?x%9*pHY2VSn@?ie~wu6i6 z-$xxiW>b>>mo|2e+WDulJmOF z-;~(bfwm4p$;I}+I33Qf;QoJ6{wDEz`#fgeud9z3;PHWyfBt^C`aF|i1^Tgn%#I^g zf4bIBEBwV=env=sQ$#7{&+q?+Svn3jTDWyi{^LE7HbC-8oUmU8(s6S>X-{y!?+7HMZ_Knjk?86&)=`Y8N zb2S+IPjUGdWGj*pkNpR>^!!V|>Ue{c=zr;I((eFT{iEar8(r8SD%yY4PdU9V=7kPT z|8f0WAsn{nQ_DZ){!@}${Jp?gzm~RN2IE_n|Hii3K^V)gMf^ig9mDbpvMcO=u>S(v zlPUS<9ymOoBYolAV3TR?G&>xAANHT%I4IHb_fNiNa%`v`t^853x4Him^#f4kPkyxf zJV`8;nDRc6?uY)r;_r-Jgzfnh{&(evogxY4yT`|>l~Op&1r_GPOIl{xSX-Rv`&7&sQ&;l=#MBx{ys-Ho+CA^HRrw=Kbo=s?~QQo zh*HKMejHJjeC#19H5HovqvUPYU+llZc5sUP3Qci*k$ICY_w!Ms*`aZHiuwU4_@X&6 zbtD(G+r9hLGg|-keMyrnW)*eq% zxx9$>9Xy=QAK^j~rLwm-b8nv9O3mMmsZIyor;v0deX#JPw zdj{R8zu?`elZ9aOULuq zzxp4vjpqKk^&dO_#v!@m5f$nWw^HZnV@`^ib@$nMe>;wWx&QeWKXAf7{J`EF2x8ZQ z7aJ{Yi^#X%SO3obR7xrgCQB}NIY172)S>U#?>osZRkhnET|Pv1FRLkjR0_!er4JW3 z^xw?UblRxb(R~g%<3%SEi3F1DYQ8<~sK|fa%;Nmv*kU&)8&+;lCU4~^3^ddSgJ-bk zc-h+nV7_m6?`SsI^7NOq+FnO6YG_v?wUasU%YP{|ydV$|-xhZ=EP73rKkwD^)2m11 zkMUjnE_ru{zK)(#CO+^2p!PxXk!jsw^mLaM^858cNulb+ozX0?ap&FQlhszh`^eBq z2c!%@UZv#c2?OLo?gO*#k$JrRX%gxEm&Q8)W2MubJ`DB*Ret05rwn9+<-3wzSa0~m zky3xrXrrP4#t%;z=BW0WQ(<9$ckd<^@8il1^7A_C!lF4Y?dGjvLqb>e6;bhtOn#8> z!Jg&?zJc4vlDC`kz8kaY`87frx>a{}kw2sky{ir5bWD0c#G?An;NcP zJZlaMItDvg^)!Pq7P~i2_IHM^QX6kR0&Z~8pwdLONC)`o%(>!J6$==X8XN;RXh6rh znxy=9J>ZzH>(85?)PMyCY+t7B)PbXmR(2aYQxBd!)FD{%1Pg{aog2GJLK{|9=rxvp z)q%O!>h0$}RfNd_TV6@blYr?N9lvy$*#l;)8ZUl5xDT%$4p?`d>kNM=em{IJ2TLNP-dYUV41J&d8OJGunN>3-?dPIccr_2+p^XTRPC_q`CFFfPhYn_==+Rb zFj>!N>d!^(0XM{XRpHo1k^o=jJ32oki6NB6(t{|UKDf#73~ew?I&5nilK{7 z$ai)5@7m8coWYMhyxETpdCng^zTkDt9n_x^1lPOY3r%3DV4dvBJGVsKcV~Jd9Ja^d z{b0`vdc4xiP6dwG;nbAQQRv6z^=|w>Y{$j(0p7#Pl)G|ZVfdr;?Tb=@H5G3y#7iJN z_6J~lHt%tk;v6HOr)${|v_BO*Q$h)w$TOiIR}wwOugCU40)0gV-%c_WlvDBLLVQQWAKR(%e4IdjP@Tmgjmc+H0ZGM^LOhOh!M9 zEP7FAM1|ux5jpDgQw}%URMCeW-s*E(oD6-=Ex6E|(GMz4e(r_&dn1GN8P`E_NN((B zqRhki^Qed|&LvwTM*y5oklY*~7$NG%#_f^!JAWNpv9EjZtY2ZYbp%c)PX3aDY0qDL z3vc5(fZ30S!yB-Ah^|BY=brzy+$@|XKhD26`3df;fD)~9t)7QUAC@mji}s?eLok2r z$Hx9x(fSK3*y(gD*Mauk8eIO^|Bd~@qWOnGEAQq9@jlIl8S<&n55?<(`G44tPu2fe zzdI!NSbern<{b`h--6V-&FfIH<;R+=SZ8&HgZl{qo&^MyXrUdljq#8K^SNJm9~|}v zQ}WM_bG<+k#13Mf^F$8rrv-8=H|HPw-*Frh1wYSUyMl+;NZfgR3eAp*>rZU?@y0=N zYR^{dpFm#b{EO#LG(55Y){A0aXnG|Oyq6$Y=t2ik$~v5HhxSQ7ZgeHl|BuB1=pw#) zh>GgJpz`sd1~tt1^~3+xQf_M`Pbxc>2c zfhmsQ*n;$>F?E2k|7bz|@g>CkMCBKUS2$^Ta9>#;#&x_g%0KpFQ}SP=d-O7gsM3lV z=2zWD{beqHaq=Van&+9K`8Pue0HT!smv4s)F}R<4+jS%ufPUu_5Y*iM&CzoQL@D`i zEPZi>yge}H#j3_w;7i35K>*+OL>Iz&EB-~WpEY3S^rySOgwoEf!}V!_l3O84;a`>7 z{x<33RQvP(^ue@qOEDh%v9Ujz($4vDR8iMe)$cAG!gy}JxbmO7CSv#5mA0)O|DDF3 zRj|&EVw}HV|F;c2|LhFCYh=l|zTunV2GIH+oPTlhSIj*0_MASu)$MP&MtR-LCEkqf z2m7(HKbq2i^8ElrI&p6D+48^Kejwv_Z~n!PU6e88BH3+f-1<+`;{eukel>AD0jjPx z_rKVWjs3x*}^9C^#|{R0140#`Z5x{)|mhtCd(O0MD-l zY-~VFjV5DBAq9rFeciFq6@b?v7s67g5}jm$YuYdc;+*Ns@89;0QINbn*^Fx$UeqmYC*GOOMTJH_LJlfWNc<;vi1Z;%! zSM0~eeq;*&W`)L z@iC_=EUTo`65g(IEHIy%Hp?H1o@0MBMgRG6tZ<7(+G0EVHuhi4`EP6ag(LZ~Kbn&N zij2})4qHj#C(yEGY=7eT-=X@JV9oBSP-#h(SEX0iaf0$dyJH= zXN9DV)&qyk79Sh^UKfT>C~P>J-UEKf(Vi1D#vN`L{pre+R|asgVr-n;dL{TJAotv8 zUpe@t@6=xMHb(H9k*3{72`i|7f84~(h+a@~$kGlABaC3b*ICbswG5!b^3S&~IBP?- z0p~BPEK-N+vr1-fdaMQ&R(ML5ywQei_ku;|LapJmwU0(`S75`}EZ0K4?rdmtF?5BV zG#kcTk$9?S$A)1y2X<=UonNY~dnfyqizUc23cs0r{Tt_@Uu2$qgcZ2l#V7pkeBOS} zm%T<@sbhngD{2Cx?aY9AaJ*Ij#cXgT>&238$4tPMNhi!#8an~NRlFZK+7U>PPt3em z;{?1|pJbJeD1rjXZrAo5RswUa>>R>3z9rxPIydg-kPoD3it`;0_EXM^&l8TOeR{?D zY@jvO=|Lsu>TW5S#v>~5!c@JQULpDrgs*i~lzz-nNLg#Vtji}3cgEQomEHB6s=OP+ z)XIKxG``I&_-d*PI)k1&2N(k|M%L}xHVqw+@K!70!eRrE84%j<+9iEp`r`Cbo6Wq< z*W|P}AM!N8>0sjS))ksys;=(3ltY>z@&`ON*V`P<p+FCjyouO`PEKwqaJ`^(#F>J+yG%X?99Qf7fDd4Xkwh!336Y~Nlwv~0?SsE z$t0<10+Sx^uF6Rp0QX6A?#it)23c2#oh7{ex`BhQjOyFh9B|(}%N=yr0;GTJT=Auc z1vvkOWMKI)4J8@zaWJu+wbSI&?FchV~+b_QID!gbSc{UozCU09%=#RlBXQddsI zY5}mOYgE}Br~fX$-y{aV-=t>0AK)2VaetJAI+!xt(GY@j6gP*O)n*3Vg9+t?74Pq2I0pO0SD3W!&Yj`!ZY_evQ4H%DDej0^zXTy%61F zzvCQ`uygOeXpkn``~&Z>!)?uWBWzE`;$3J?CfGkX&7gACw*}E)92H+9#N+u09@mSS z@dCf&Y|WQiM%-vHmWrE*?!Tw#fmy*Gq$47%WD*lQPkL~%`FL0=tzu+9w zwO;OtN8+Qwa4PxjoC^30i6@s$t5Xm(?)x8nGRJ+AMz)6}rlb|dQ_{od3}h@{P%asK7dMOV7~ki%d(`NfrA_6^l-lg@iE z&O1f@ew6yF8c}qK1aIbP5lZxRJ1#$Q{Bb&*U%|a_-6R%2{6Lp=HL8sAW4|Bv-% z{yC_?cboq9cFf<)6w4oFfJy#;@%zDfugl4(0n_`|eTid~zpeb+ipT45?7w@3D~uo_ zuSnIB32W+z&RyC=7GX1qJsn0m?Z!3T7uhd2vqUe8eg8oC& zGig_m%y`3Aw?AA?O!~t@33TZE8v`tFley*%tLHdq{Kx8#9+Df|-4oC~K0ia=ZSk;Y z)iXgU9_X5WAGfJ_{MJY5vEL=G84n|UD^$U(%MN3n-ku2xsrX?+JofvUBi!(2ydduA zTIPU3lW)ufyQ%mvAs+h+O%RS!|6KW)edJnWpO}3eXMs#A{#PErY_Px57(MXDKcM+n zuZMRy3R21c+`v>ZxjFyh^!MR_Ya2R9B!i<=1uB}{%wHUy2w!8WdW-oSCLFJ2hUA{s zEWcp>Qd0Ov@!F|5;1r%HHT^EVw#D+_R~q%9asM1}l8TpD3osk8^7Hw1IYG@n^&H2Z z=tbD?M(O|ge#gkhtlC($6q?@zzs~~UvHy;5XAnH&`|Zksq176x6h^;?IQfUIwoyNM zcwDRdk1XTBC6ecpY2OP+VvDt#@Y8WuFvg#Y`u#-v|EzwqpY)DOZngYaPF&uCd*S$x z{k7PCN0~qI{dVkn?ev+?jQ(T$KkTpWg)&OXC*N*8VNlS6#fzuY?9MnH_WNPK8>RmN zhU-3a7Q8f%&FVRwHvh(WC&bqoQPKL_-7oFM!_lMvnB7&>??;iJzyHHS%Q(m?Z&a)2 z5Bz+_wEla?(*Gy>Kav^!X4qc{Q2A5(AO8Lg?&b@2KQ@p4W9_Fm;_HqmrTzG~x9bGP zbt>ufVDE&#+{?Joh9#YuobqT8!1F{wHeCVAE`j}(c-*DvAM9_} zNKQL5yXL{?U|RdZcu#cUg(wB@pEd9u8Q|CO@}2qLK8LrFF>atAlG}$ae?{%O1~RJ) zD_8QAcdOeUdM$zb8^OJ>|L%_x`2G+4T~E}J;Js&IW?uI{Hh&+0_+tMVrT&OnZ>z~F z-9Zmsr+22cKb#*wgvb6n(eWR2@JvXuko(K+M}e{b5jX!p*<-9f?61W0Zd@)r9Dn?Z zlzVRDaxR1xca76we=YVOiH<*hE5CKO`Vvgrzl-I<{$lLE6D|K`$%|)5WqUBT-?ru- z`~9&0j-o%@3xyBJaUMlBvH2cl&(-y6%1{k3@ACR+a* zHJ%0OivEn{|1W;OlBIiYl3imaSIp9iW|UuC{&6{Bc?I{v{;#e0NW@?SqLlh)_1%4! z%*%eSn^J7k>i)B)Z}qL@E_Q9pKUbO&AC2T5i6~|M!;hPKzH&lpW7|-jay$qWv$_ z?fT(!JJ4$VY2+8s8^*ZFQHbwoL`B>G;%VZiWQ0pWl+u3q^Jm=OxDc1UO;- z$DtRcAxi0g3fSzooba%b7W$i$Y5IfTHy+_8AS$YV){}zHbPWG<`|l?rzNv_cjvoq- z)iO@i94C}kGPZbJWp@gx-$LQen-jmpTA~ymw;rLcGl<8 zT?ff)4x`78UjK;W%JO{2$$HFrws!M3Rlt2t>6npUQnT-J z3=TH_u$W~85>>}MK5SzKv@Xn=I$BBx^t+PZtx?$?9QkcJ@MxqyD3I||j2X}osNcIR z{VZG${5Zb2!@D;c@T9eh%YA=)5c%_i)WvR=;Nqeuw{!OM_95rHN9?h&0k!2Ht`7wc zpy%QjtdO2opfTIsRCkjM&^W)~$80GMkeWO6!^=o37;K!=d;jx+a7y4VceYY@xF!D7 z{@Ei~aPibG)!BEIV3m8XJsPV&l3&KxyBzM?1LmxcS1q}#3(xQF==Cc_0lwa}XUmYI zFUV;Dr@C6me zCy$>ITFtpqe(FG1iz?0;9lw`#1p~pxHBU8uf$rdGU4u@iDpjzl>a*jTa6>Td(oL25 zqq_s{?c~VuGRE+|vyV}!nhX3g|J(1I*S+EMbuT7P-);#Du2)Vvble!`*nD%`=4}I) zP3lx7Q(z5T*wPmj)0{vp-rJr_I)JK>U*jE0OyRC> zlRs@7p#@LLmM_{TX9T^A1CDJw_JRD;;D4+iL6uS;DNutly{F zxk2Mu_b$pTHin(A8mrfzvw&8kl!qivGK7I91Jq>dji7mZJK0%R%wW2ItWj1cec1Rq zztS{E56YiRUeQTU4W2kLw`;F{8gOr&_m_^3xzY5q0?;HV(+@r1E8oV>>1_`hyDNUX;$RN^cP0<^3hD{qm8gq~JIw%en6f#idwX!+>%AQ-&I!y*O|(uL z>;)oS_AmLJ-r>J1j^-*u9L?3{I2vdp>|gPE_$3-ocqF;g@7J71d=M7|5Z zCyCuVUC_@nnv)6g@1nQkgj>HPP)@~{3-KLMdKpBOoAH7;p2XK`x|@8GKq(bpD#S~p z^qml`YQ_urOYJx{A-Pu)D5m0zg?Mq}XmQ;o_ilDcU_BMTz6fA8;_!OY#>v!li=)|5 zFkTj2bVig?|J zSiMB&Vb_O+743Qv&A9(f9^rBEQs%+@bz~9TeOPb7Fq$2srTNcu8vZ^_%9Bxkapi}^ zW1L4Tq6A8aiq3%JaU1}cHhwdA1s53q1Mks{?~b0UB3jj) zPSAcweNs*^Yd;-ee>?wYZl7knxctvPWtei*mJ1A<-`jN22jE+Ac$^N`m*8Hwj%pd+ zkFvCMcWT6e5Y|%Xm{H9kMV7lUmQN`&V=Dxr!()rv_^vPmJ<9w(f;G*-pR@- z+eR>+Lo1Fy5v{^~tXI`){Y#O$zaYjlnsNSs<8N>rA4O03c1(gbSXOpPeXIGSVrirP zCo|fy91#N?k0Gi*MCg%%PrF6|JWmlMw+C1*(Ks5)_`#1OuDQE8XxiH$G&?B9i>*JD zkW#L^C&KpsFL5+^fi;iG_QQ*9Exn`unEvDVBOJ#>=|3V5+EtP>y9_K;9u&jaf3`LM zEyFXPUjX*AS&8^C8F{U-clLKIDdCXxPFLI$}h|} z7IIDv+%d+>C4q7OWFLg{r1R(RBe(dW=3PwyX02q|EB%9a66e$+Wfnv`~~Tl z&q42xUgV3YX#P7~xwiOd-QYIzXP!R{Kz#iWrRdL1ZLJEk{2e9u9Y(*N-H zkJlRYD0}&0DUid4!lrb|^P1Nm!3Z}MQA+(qcGxQcO6sJKZ#7>4vMGv1%$wDW$MHAg z=y8T63BAHmt-t7WQknNP45|VuBsb?D$KT*M zCd&BFw?FC0evCf>?e!iU0>h_m4c7oxn+(1S=j{k{51wxUZ z`|-qej%&P`+nA(G(4AU;$tlg{ABk`y5T&#q{`&pXmawlGJiHm><25Y7MOBlGO#?3dE|kCx`&|4QIh&!1V0 z_GfYV7l`%GZB*3tQ!*9ZKcL2!%Pe}ToG-DJ!rfafWE zJPZPujX3#-71=)P{V9{N{;b3#ZFKxXFl8^3VQd-wr(QMtm}t8sEnGBXj+U%fCXCT=Uu*2g_xg zzfME>&P0@=KVYC@HMuiqV87mLmi@8ui;MWqMwC+ik+<#S!Nb*NaTYrkG1lL7gquOf zXGtBA1YE;anIC?%ejgutEu;Ro9RUd0wpJa6|K;}6di@h*YXW2Yn~U;& z1W`)=$Nvt|RayB{(`z>XyuRTl1H+s9?|BHf6;a$SdAI!b>zQ*M&d68~@H#<|Y)~_P zKEka;l%l`<`TvcCL)R|y_AU2Bzw-&@{LKaE`BFqF%M||lrDtZJh95_A8P5+}h;WM# zrRcA;;>|kFl$#r4e>t!IWBtcs#CHjuzkj<6pE-@UwD)E0`P=6h_%rrDSxD~Xbondx zjC;yivq)j(yt%oI>!)mlTSmt#96kDw*(J>L&?S4Zx;6EfRemc>z_LKI(LsG{X1fq|0;B`0a4NRGh0jkOUao$z`_7N75ZOu z(et&4QrZt!ktGEh9v%Y|kL1zfZ*V`c8sXL;D!Tr#yppnyblF6+AEV@A%THm^!F3^D zhqYRNILk&VkKCTm=)YTs1X+(LCI9|)n`Obg4`0>R-JV3NKb(JY^9NR%OpVUow%Y$Q z82kT?NbY>P{E=4AzHt_*5?vqP&SSKn=ONrCL`CaQ!)|FelTDKt=da@Ok6z0-ev88w z<*$2H_+%>M{AV*_u!TYX0f)~KT{H3-@#6TmRsMT=_pBlo=F{d+_`TcE#X&?V<0t<+ z^qFy|my_Q5n(yO=INOS`%~*m6l@)V?h%nvT4q{Pk+qpCa^h zAEK1{19`)~aSj;7$6lJW67-;;3BsirFRuN(S@Hp}JFNt2|G+x|d@BwwNH^~|Wn61| z1O(3sVn4b#fG9=&yv}}7Ajai$jZf`#n*L#Y%lNl`{$4et{eI3bZN~BI5EA4tU4Hi9 z1J5}bfp>ye7cT!}`d5PZmLf`N|B((ZoxtrGcaNX3SwYjkmX3clj!T|8+OKP4`A0I& zUymZWFC$7>|EN~1(gAOhIFZY*<^corJD+gfoAvh?dVU&FivF;!b(I7Lzn>Ur_S*#X z{(1X)sPi~J(@#b@OGw#F2evR`8Pbt6jXbDM>y=Y}_qfsHv{)p@U zEW({b6hG(P^4H&P`)YK@C>6JU{x#oBf#9HzcxvBd#8->fIWWDtU z%`P2^NtM)%Hr+RnWZ$t<57kB)0PQdzZ^vEM@O1d(tW!&j;pBF9HSvMHVfl%mZh;9p zuy@GK!Q71wu(C6&s_ZHoN{rvIEn}lQoaH@0_ot64gn6|SfN=%c@mtcCue=Y-c8HID z+j)`>ym=_RR;yeePGp;H&Vl-H`=Q>8Wsc}VaP7kvk0fsxX_>2QdB_m@13TqikJ^I{ zeP;QWp2-2}+KgqLwmQL(3n`zcuI>)*AD?!8d94D-UX!xM zF1rhei>bTxEZ7p{%rLZ&4b}w(FQXUlcxesP;8TNLejPw@$IQ@FJ6TXvLas`gx_fcPS7Dh63Q#5NLc{mb4kP29O??=+=srJb?_@^;N@YRH%YbwWvNc-`nD3hudXhQ8@v1$ zhxH`;`SO5jP9JlR(}VLqbJq6JeRaWz0Fg6%GN9r&&YEW?hf{YOg2;!nN{eqz5( zJ|?};gM0KkaK2aBLce>JU$ST1BrgwnWg;zikn`w7g#K@TC)YY~Ei7%-rTSoSftd-AdYfVFl=nbtsEP+nVkBDvBZNUvV9_j>R^5K;R*zw}f%D7xrl z5#wzQ-tONyZbEthh&}yd@X-f;ph#W5Uv^S3h?l89-tj>{uzP3WX~*19u$*w)@cNNA z1j{4Nt$W)8YDHuZe`MzeOE&8+l6e*gZ_de=l_Hb0a=53RMyUx{`BFw=m!CU$e{aXb)P+`1s$+zzf~6I7 z*{pS%t!M-f{MtbFUEUk^`%?VN_XSmn@xO|^rNPCF zQyIf6UvLV)I^`UUk>Wz;_vjJ<$=6N^!5iqYlgIKWJ2OJq5p&oTg z4IWUod3j6K55j%pZ1(-?0lZ#KaH%Zq3MYTuUgtYX4W5~?QtjqBX{dU)LGi;pFWBGF z?8S_eCcv?qLdrC6FF-_2?fT@1JY1t6ztol0i|2*;7T4=U7vO2puF8C+SoCNF}sR`Kwz zRJ^MYj{{@05pH-hUT_ets@I4C;nz}uEfsGo#7m;|_-ET@ynw&fk2)~oODd>RYW{&B zs)Qea=FMjKe_arDMU)`eNtv^H0`8YJlI5RM!96Peo)F&=rI$g}t{D#xsZ7-ZT|?fM zhV$?@sQ4Q~yfjMR2~lj&BhW$ka(#{`Ikry&$Ef&YLcF*MeAKZHMQ_@rfrC{1!TkV> zDGu*_`29wSMWM6>493f%i_VB*edOKp7ci$zR+^rPi*EG?thaC--Ig30-s%P9Z89&X z@zexH1B4usyDOsgi1LW>rQx?Y!9VZs$Tb_vxB!z!>G^>Iylc?~WYrx<=Ycw(IUR)W zHywl-e}AfuVRSI9{IERY zfygyj%sn-Eet{ z%8w1h*uX4WeiMA{%mzEhGs>@l%3TvtO8&u=B{xXLyIa!kRgG$+{xFw+%k)o!G5;;Y z>oek6DBqTdQraIsfWz)mdZ*-j@gNxeE+8Sz1~?t`+!#?&1LB6*%nwT3CAe8+ zRI44x-3IhqFBcxg7(j~WD@I6uivIF9KzCU=Pr>(>Dx?02lfTA&UjFCY?rqcGyq(8z zc?-l8_8%rlZgWH_?Wbx;MjfX*?NaX9@B~H!xGBP!Au5{xblIu*8;T+T3;ix2!T;WPs>ew{cxAwTi>RjnvS2V_t5A`3)C$KS|)1DC_V*gxh#5hs66zQ#)L zWeJSq2OG(a=Z%!|=O4uXGTrV{{@d}4252jU$MarF{j<+pmI4`)qw?Q=97iiZtWVYm zZ-c04|KV%+^Ww7+V;RR!arrl#eY>Fl@N~xfi^B`V8c1t@NL;Z2B!YAyjPr+<@i%7d zza5Yu08vr>likvx|L-NSjOFi$aBhfF>YslQdQ$lk*A8CH2T(X69A3AG_P@aOrp)V8 z=Cty|_3w=EE{KZOf6*ZYyJc$(+tz>a-i`SQ*a-WtmX$yA2G*A0nfdoZ`Q{)>X+L>c zEZzyAoeE1nr3L-v`~yb)>y6}gr^`>=y0({NJ$QYx;^fvJ0K|W7n**Sk%ijaZ-49Vw z{pCjQ3F*i)5#x2fAenOW{G~6#c_T_`Km76A!?iXotjwKJ|2+}T3sGwQhuc3Sxr^j? zW%gzL<@#qXzqabX56U;5A5!v9M0PLW*=!=rfPb zx-riG{185XUjOWh{*OsGVy%@?7v_Wb2O^w59iQx`Rzni69?mO^sr_RCOl__IKqPk% zU4F-)Ww%Ho(2{+A_2<7VKXd(uAh`!2O6foN2LODyKdB+*r#)i;d0Wdb6!8tCmmhmA zd`=qs?9xAEYS;P$OwfCo#?Qg%_eexV=O2x$OfTCcn9%}2QF0<2U0}N_rTr_&U3^3i zT%z@Iorw``{)Xilg7Cu-rQliM@e|U`@=$KT1Wm^NHv-{?((&xqwYB6iuj-7PV#&YU z|2}8@kVwn)r>Kp1=Kg;KDz}mJ@@srqbCo=!eg5)>ZaR$f_b7ymrsD}oqo?Ha9v{79 z2Po6VUzEIs^KWMPW6+CY>HLfAq92k~-}HuKUs|HpMN>XI^iF2AKp9*cB0MXfVw`{ISq!(ei-}S z z%UZC)&;k_Gv=cxB} z@c-fcoip-EY2>H=N?=U%BfrqaU&+RsYX{6+LxAU5Ny}C3I{_ln_GDeoesXo#$&{#= z?m&Leqz3i)_8>YY_N?@H0w~Wt6cykl4IYs@&)rz$%8MGz>+SU%fNulJRG+!H0GAu3 zuPh7=!N{x82D*;(pGn8*169+XF-wN@0FDoq=lZbBK-J?f zoJy`G$dx#H+Ik7kkK0&O2|s%P$X*c8ub(66F)%$KF^UD?A^j8k{y*}*Jg%ni`}-i8 z(>#~ks5H2ZqH=ed2bCnH5Rpoh6d_!52uTq_GKG*iT3x))!%x2g0KafG!!pKPvXm;r%e|mm!Ek7qvSE zU`WRh=U1HZU?LSiQHYm7{IDMzud4_GaG!TE1{q^!KjgTN2eDLqtPqdax7Z)IsYQOm zCCs`rc---)-eHgNAcBgI5aK(b^zw*O*1-Zl);iyaU8hsW14$}gQizvCI2lBDBg!wo zUfC)OelToC)ZVK};HFZ`4+L>jco4P}dW`+pU0aehm;dMEPF=oMCV?s{zDkG}H;#{u zkmmlVP6DT>_*1(9W+M(?ncF{N&y&H72Pw*;jN}j%T}KqY(q6hEwilxxSR8*WC${tE z`_}J+C0F!g8Es)R&chTC1FRmruR;*4U1i@`pnC~#ul??&pgUE7hLo0l6j49+Ff1_9 z9LI3Bcd)5f{!(B~#q)%CapiaU=^gfP`BGp-#aE^P%tjnukj~{b<2eSN_tEW>HJpGk?%n93Iybwfd-W2)Mt*er((y^KpVe`iGx3 z#i&h<0>XZg{|h$+;C#jLPhBJb&C7H6Z?EG|E_A58lrae4eRcs~ZeR<4?8nCbXwiKn zkJ`8r_0{wb%C%O0oQ_FbNv}0oFSr={uctT+vMyS4&SqnOrY66O5WymsHh*C zqJO8ZNq0EWcLr+5%KH4}eTZPj{>v08!r~wFx5{r1r~X*!w|I76#uxeVc+H=R3H~Vh z7wn@IN)38yw3MLPA4=Y4{bN6NHv(LBV(piE>8Zu@)Hbfe z*^K(PL~`Re4vPJl-Mq@70=?KLXAV``@u2l~RAK54!{o?$@@sE8Vxtbeg(8m71fiaFo9RKF>_GGkw?0?7e3rhJFP1jr@ z)epKo(7WqFD?d_eoBPjy@nctZ$gUvWPV4wQi7{=X{+QbzKm~C_RMh_DVvG|dx+^m3 zuXXxo=HFJlJCZv9QOfuuh{GtK)qQ7lUIJtPjn`Xvw?(x4G7UxzrzH~@*KeMPuNR^e z`(Zc5ArH|BvTN*Z^SAZKIR5z{xv?LgB7dR8r&pZfcicH(`9eX;Uyk3Y;WBDchnf%gAGEGNbv0Gdkk)_T`osQj?2o441s`OG zGmKaFD^U3T@h549#OW(~jQYd=Z|skz@CRFp>PRB`B!35D9b^5s&i>ol|1=>H;fs4Imu5-$)KWq%H@Mj!91|wWFqN4i`KKtdaFY&cytUv63$9{ZD`xVSz zL4)d+1G}{u>#ud?Z>#>9@xxHLha*a{AE&s+QnK(;itEI!|Gn+^U;Nk&O>x+~&z*GQ zF1q|>{R77J&nTpKE~1YR<&y*XGdhBelXgti4$K9YgwF|r8{e}38Hb)vK~&U#5j`_` zLc7LXP)5ZQqgwFs=y^J#cpgO%&F}FMb2dw#cg+L)srbU!7JLGFJ_b>W{eZyOpPcZX zqXy0O$^(0;_~=-GZ%3nxL`1PX_&rKudtyROx4^$#f6VP?ERs77(PTskwErJAWaaov z>Um&y%X9t(OQ^pj^gIR8aV_a!O7SBNush()k*hX&U{}j?{snJji~cb`jN93guK7LE z=_ZX_uQ_?3q~$sPf-A&}>wnfS^g4Y!F%N8`;=xFOZ^hviKI(X1HeAS9f8$X`sfbeM zPlAKkau;nHFJ%X4^H)6nisR3VITdN($Xg^aCZW2g>bVGrPv>Phh7ITr_01^QCT^ES^v!T*Shw{jGu?f zT|h5?w4bIdh5_is{b=hSl$=Fm`dftL&PJ4C|AO(S^hMuADz&{C?RPQ4 zEkTshPYe2gU|#DK^GNl-w*0NLU*`9)a!|SR5T&$VFd?`-m{_CiemDh>F(V;U3kcZzERH*3Y<{;_OdzkHz90ap|=7huF1p|BLxUc56^ZYY`P4 zzlvpl?Q-puM3eu2#-CY#>rh68h*H`QZ(phssCl*eqRMLKb2P;156g-5-Fz>cKdwg! zis<|+&HJ$c&$+yOyTX5O|NSp<)EoXIj#{%LL0HeWQ>%b;IbZj!tynF2i7b5gaO-66 zb7Zxy=C)wgB{E2DZMo#VD`dg>%;`OP)sPAU3r+|1-Nh+7pFZ`@i+!A)jb0wgYmad{ z6!g6nGS(PMIjm1I?%o~xNJ(DyKd2Aee>s$1W@!Vr%N!V&-(C}L?yNiVh>r#wKki|` z9Z~}pPF2m!v~>kw&Wo+v;{xIFo`HScc=DiUe_qLH1tri^N-f)Dd<)Y=Ya10pdva=X+OGJ0V5 z$%;PG8p?3CcK+P;owY#NkLtF zCncMwUlaka?x_A+hj*O%UgPUxWA%X6h7pr0O3h%m%pUin3@zaGpZ)fMgBEa_lAgk( zMctt0_5)j#pLT)GxzzorMbNgdPU$8kgThGm0$HCn)`SF^^bbhUv% zOZVJVBP%Fz<;$m0N9|yy1dG?V$OLkUkrmGm@#V;rkJ$Xw0@j;v_!bq?3r3f0sZlQF zz~n7!4Yz!-hpVc|MXy$<1NQcug?U?5Ky;w|D4%>)uqH5qnBt@Y%*sC%CB_kKe z4!>nPG}0R658rq6YqTjSU7y=o)vO0#Px`pcr_2?wPCq+f@`i7ZaT@iWId;Ho)V(iN z@7zFHN&j^vlO4c^&#D`P%zQz|?CFW`{S6^2_r?I}ctxmq;l;Mu_FW;o5ghu;N)|LO zs-76W;1=ZWW_2VhmHFVFjG z3CT1=&(*e8peJEhQZ-5!?0@}Zbjp2OQ1a5^gNlwLAkxYS$vRVzc;%~I&IkZTdfq$I z=?EJb$G6{VQdQuw^oJ89&`ki-_joT+-3;4Uekw9*;z?~+R?+d9dd#! zcEe!JvuwydG2T``48V)GcJbB`7}_h(((gA6bs|h`J<)a4`+|_BZy}C z*VK4acRP{>R#NdRh4@YgFOO(Bq6AT@aHh}%O#0RLr`v`!kW0nq3h|OCy$qtgTJS{9 zxWRhBM1gzwz@{`XkBXls#7m*{(uf{t!8h}N-f5Y;^{zCKM8ziw@#5xH6N~N^#TTZ5 z5mfw$y#TWjhu_-4(rr}#nY6ehjF&|ha)?sarGkB#yE~T^1}coCo$rF}Rvdr7^sG;1 zaWRY^m=}jvob+s;ejxMtPzp$HCA$0qzxb2Fe%yKHBWe2*SpLokr--QNy2^Iv8qe>u z`_tkoFt7w=G-!ANp1V;&nz=t* z(sRTJM*WG?KgzbHpKiVvu4^<=0xdfKxsFA9NvEBKUi}}8YU8?6I8KQ27bk!CwJ)c> ztR2?I`eR<#>Y{R+BZ}*Ve=FFRI@jso+fT_{+Iu-TogTs&BP!bda%DEU2gPt1+pj*t z86YaOAEI*cwX@`iRE^gc!e%qZmEiG`MaO41#bu7Q()+-Em_@5UEWbGYTaAp|pI9-x zjrvb!^y?ZTxs4DNZT|-x&h2r0*_USjt(D*4>0>rg-k(-}#IBY5BATw4Uo%eFeoRnC zW{6ViFIaE+d2){aC#xJ{0&QOl=Vyv=UFrCS%FVaPpS>qM2vJDz( zyx;cgLC*!xr#+KxqyCuNe>YSR3q&dPFBrcG!t|`{=T*NgKh_i0ck{il{>0h8IJ^}~ z;DM;9{DX7sA9^Il1H5nEoNPG2@>nBW4?14(UY5ky(9o-=M*-|N5+o~(1}Hhv9bMQW zO0hp8`(gt*>4@Z^z3KG0Y>a243mZBfYDK;!iRXEH3};&ZgOZDFe>ffH*L>f4`?GX8 zqOxa}RvX)&B4hvMgamX&RCN4$pt-W+1#TR`eqTW{?ofb|6Ft#|3!<;^5Bvp?-qN?6 zLH-N-UR2DWec%x51Fu({5sqTNihB)zafWZ6mu@4M&N%*xv!9U0uKu45l7NCxF8-Az zz_;S?&FP{U$FJ7mnd4%6BSG8{72Q`)I{5VQOI{2Ziv@0?+(>|LIp_jEpz5#b1E(*f zyzC{H4rctonmGAuP6p@QUl0NCJgJ$T3uY(Q{tJzh?T>ymXPiIuLGrsJDr!H;kM;H( zSTh0yqu-l}@V!=X@*ADIG}@;j26$5OpdY}u;_wrUugu#QIFxbyiSrFa8B*kL_6x_{ zoPCj#Lc?SG_d+;dI$jVLd7uN^Xk*U_jPpNlg!4g^Qvci^wW6R?`(YP2eCOy+cQkhKilXty zcyaOzvSp2Iqx~_z*Vrol1YjKhLQ%N~B1+MpVE-k&A1`ZQ+92Be9VI6Qpo=g>Df)}P zW%z)Ey^gDI8`9SE&6(%Vtt&q>J{-v%i73VX1^till2eKrgFw=wc9}l=7E; z{CFNQr{YR8s?EC?z!}2!Y3+K-WLk3w=M(&dNc)9OfRy+-MMNujj)1J-98!o?#hI{#FP zN!c8^CWy9vLdn})e+ej~(TGy?U%6b0N0P6?`g%k9{?Gr2zhX!m>TmX*;|&Ik?SBjs zWGr2N-qyHUGTC1DWYn|2-TyQ1UnL{CCn73Z{~7ZO4!JJ%qqQGwKjRQ?0=@i%;n@r1 zhq<>aWTuDE><8mh5H5|5&;DszLvj-$F3g_9{C$)02$xF7^ETzwkUw2Rq*L4de;k)Q zcTn|FqqmIq*Sh|Lx&KK=dYeSoU*(07HDs`UL73DH`nfJBd7In+WR%eqI{)B~E_FHu|?Az+g zq<($pqu*9nlF9P-bM|exM8>b$bu-Ssl3Znz*=vPiHvqGek4@*FSD4^jY-kXq1MAv% z(0WAJK)7k{m)<>1K*4qGK*ch3zSCXOH@!3fudD@D9&*9*pe)l$8xP zJ~j0MX3_gK2ReGg&u1UqJ}zSluGrbH@vqPabD(iSmmMZx*7;+dZ+&wHx|4^_0mt;g z-BE_lE++jzT-rD-PYVL(xgL0~JpBs^ChhB(K2`?qk63+7!a@8v7?v$qP)P3tdy~t0RU_cu8}y^ga6sk^NKh74g=u4bHtLu^>Uzs zoZqj?QxZfJjhx&;LI!F^?>GAS$OwY5d(0;O)P;)kmG(kEbNK$9Z}*o`4@jSp2J!Dc zw1+nbZZU?Sf?buzBpbS<& zkscBJ_yb2`SoE-l7++8p8}@3st{XhvPxJn+KC<9SJC%WvQ(utJ$bCj({cAZjDTT#9 z5^Z5%!8O}MlB(cMn91$bNAlonPM;T5{7s&)rLo>bWLIGOIjKwo3jy)o?vf=F^`P<$swj{&fNG$2`0-KS^0gD1uXA;rY>@Yo!Wm}0MEKYb@@`8Uj1ER*f(>+bsr1Nn>Kl`tBe6C?KSA`pm7o)V=QN~ zr4I{)JZ(3!=)+IW$yZ(8-S;sC%9(?2c9&-ZxLkVFx!0P2d-iL`Yo1TYQ_yAJ3yu^x zI$%eg6wd@CJ08_r&WMf`Bzkq!huIwLagb&qxEFIIyTGcTZv562CVV{8=MPS@#M2 zX16021wP%I20l_3ZXbnlI}!+o{m0Vip3i^R6|xJsH|o3MGp}Tzhyyg5eplSnvhM4M z(qr+kJp8z&dim?dz*;i==Dgr!@B;_7G^PI`JWo?J?g{Td;rD6F7ghBx;p5*@@o$BA z(YPlbl867&XLgtq3rzHuoI5Qf89bxnp9%3&C_OGWzUP;p+}%eB7$!a4SKKcd+@Rub z2=U^^?VTPamFI^hgIp>;cQ?Rdio^SVno*?dF#=%w5a9S90>^k+bRmZ*rTzte!}dM> zKmU3e_uJnk8xqlL&$XJlzdi5Tr#B^QtV{^aZ-eDmKo?j&qU(;En@iI!x(6`64wBWRG;DRcFKyowB_|Bfg(0Gp@;9E@ z|A2G%c1HMzt>Ew4FJCsS?`AQD<;U@A{}6XnT4VQ^^t=E0QpO!$+WWMqxP%G1!0}6z z{+H#{>lHb~E5{@Kyvg4#Kcn9s&(|zaIVkdHtA9OBnhy0DrF-9vHhy7!nj;*JUlQ&A zHlLk!dB`VMn%@`ePn`X)Du^<0{NzsCH)}0EeOnxNkVSXK_HT(YvO<(%zk>b?s;|(~ zVfSS0|Ha9V<;41Gz8Bh`I6QZ2?3B|Q?P>i7&KJi$0rX%t{sDcLe5%$Y*ZVzkz+8o#7DQ}(w z?osg#Q(O4kqVzcKsDBH-`Md5W8;7qi*2w{Psd%0cZ->&`Big40Ph>04?Fyu}vY#9> z%mH;&e4!98PX8Bm$ipn{9MJT+g_ghUsQ_P#!wb@JFENgvI9{s<%8=6jk}nua0gd;2 z=Y?!bq1hi6M;!m?M)O01vl1BXM;u-tR(c!H!{gO6mLJDGxuWt@+Mgh9?dtq6d`vgI70i zBWDI(@v>1I09Y6xpu+Dmw_M;6r;7eC~GURAiS(UedMpyX}#dx-CUz>5ctUwc#Rs)_ag zkUz8EH~p~X#N{q;q-Ksp`_JW@^OclA`0SRVY_^B7gzM^qY6g>;R2Qi}K@T+ec2K=%54?%+9abI-(yZd0(-X6#P z@_D+2jg03}Mp1LxbZx_xu|yZtw>Bjfx5$7@9+{ZZs+?aeyH(OP|c22|(J+8=Je{}T7a zetNx-95Em`LuPspn%^JSpSbpi(_wzi_rm%A5R?GNFHz)&KXdXg|4;B``Sa-Wv<3yzmcrI(*ejDNrhESj@Q_SN7fR|)0M zqXm!SwZ_o#;S+f$$WNY~lVCv_5jM2ICN=v>!t9@?DPf1Nrm?@A@1u8|%M@ z@jOKwuZ81>DD~Hnx$Ysy+OFv@g4X|H`Ek71M0)vIL4FT8<>PeEj??w0$&c}^t3T%N zVYCj-K>r`A2jrTo8_19f#Z(K^^2wM9= zur}*&4$5dQU4L-VxCYKNLml74*0F!t{uLSLKdsY0^Zv5*s_$(cc@#_=V^q3sKSek5p$*ckA-MJ^$n}jvtGW+)ELq zw7-D(@cSJ5l)c+uMNMFA|4R@qn~u+p=k4P_V7_h2WSPHgf6U)=%0Y53qsvc3O#8x- zo0zm-Z{7I6EWZ!q`ZEv7T}YR|(r!%&*-zpLp|{JCvHxF=a4YF}uw#A=sl8$T_+ML% z8U0r)5H6pN&-T9lfE?FFDLQ42^&Sh3dy}1QPKTZZv4n;ej}9`?Z0*X7xVn3 z0P$T%*B@BVWgOX0oCw#Ar5tA+|5LN;_j7id`KTF3Z{t{6MI652y@_10qDDT{Q42iObxi)A zY5?{MLRPA~8c`(^-0-E}|aG-`nGul5}uf9(Yd!#rO8$a4TAmfWyE<>&x3 zAL~Vq4|N1@4!$lJzqSiZ>^kziZ)a1OJ-l57A*lw>RXoa@f0+$4-aZ`m*+d^!q&zP# zO;-X9mF%|{RNiu;cV}K6TcQuL4Puw><`}|(mXE;_HGR1Gi6zlrM;+c9Oe!82YzQCm zI@H@MS-{Fb=WpK^sY1!G%C{Or*-$O@dEw9^DHv_PC3_iH5ZgG_<)Ns#j?w4R6j)-5vMJ2L@(;Tp>No5v(3&f9R@>E8w14>aOzQCnr^B z(Y&oy{?O3ycx>@4doX;&M}wmi+yQu2uc~?30;Dc3?QQ!t2oSdy29yVO0#aX(JiUC8 zAK%_#WsR@7dFPdH1vveftIr)9e zK#${oF?mVmfH%3Y{LnlL@S!}?w6Ui-xE$MK`ImP_z<$~a(-8rVfJlD*+=r_GxI;(z z&X8jPqCsNXs)e;=ebtKyZ8cQAmZ8|sg_t=EQ`3iq<7c9I6mgAVqH^nc7LzxvG8YSmXx zp>K!AeFiT{aN%UG)yQ9D-B$UJoyw)bu4|+Elw>GEi~C2$=1TG9dMsgDIaCrv=jRtZ z-=_tNy!4$O+N*-@{j(MiIjISvO-F~yUepE?HZJk*yO599l2!O^R}ZG7Z!4&j^NuRYhZAaA1CkAh$aNVpwU*PO!F3u}mM7XLj0 zV%of_E7Bjy*8z`jbbnwCysbmNJD;!sW!HLXRq5D*;0{B7DP=l~XaQ%6;vDqHVhL?sOIie_L^yeZ&S3qw)-5p2~uoL-zl)zrqG=nZm@fZAK6- zO-mdzq8Ir7X`=gsA_EAOD#t8xw17_Dn=ijz*dDN6jeS0z{fWcVP}{uqmoz9J=h%Jg zQog+15>n1r>A_^Bknp=%{PRL>*!I^Ks>9iq&xqg~ZqR9D>Ok+kez5TAkX0e7_ECD3CWPl)gF z`I((rAJ=-+$Aa5be3=l>9~}jMs)+7IlpqTA%2rtb{fnQTOV-AMIx2pj5Z?)W4E$F~D{_pir-YASxS5HE>vGKf;vF@pF1zh7Ir%JEJtI7`JZ-T_c@LJD07_KWz} zxExr1rR(3yin7AM7QRWe{5j2O(Vw_^$mEj+@tM=Yz$Pl*Y!1MAiNo{i9$Fh37&6YI zWl=_Qh_1&O6V2aMn*S^~Xh>i@VBrK!zk}jd%P(1NoNDP84|J(`r(%HFh?PGeYW5Eo zdK>`8<7!bt4=8F9_<`ZA>7x>ATp9P_akEfFc+qt{H?_k{sg$0K^JsDM-%Kf6pP$>- z_s^O4k(80#Du`0-H(96n2FV&QerEYY*WdO7rm|NrG8}6}D?efEz+ zJpf8hbVC;wh*Ikhc-P zkFfvkj^yrzC{=%}{Pu7b6nLFI6d1!8hk)ZN>=2$(es*rbYtr(~>bKK74P=a?vOzdo zIzBpSQv=yNFL_7nKXLnOZT(T~s)-Xo?8J`W&FPr^0QM-O9*9!PPwZIrgtTYBJgZgf z#puV!?ZT0cXTLOiL59YghLRHIf6RWx>W{l2*;QsB<36YplDj9O6#EgJpA_CbZ{?Ss z9yC8JO5RHSGuy8?`ETzTE4?_e4{aYG^LIuU08vW)#kD6P=gq)3CqDcPrOltP{kb3< zj)SM*EAPnfBg2m97jKy9M~fpsur`;!H_8ZgGz5h|H&7#mEb2G#-9nOi{UA<%SWaBt z=6hlPAr7BdqPS`CQ{_KqzkQH^0}-XzpTG}U6?**fHG>ew^F!Sc&X0~4*srxrqS7T| z0PXt=C^_MQF1!(?=)ZL9q!;A;A)B}MR|sabKTm}7qT?$Ar#Fzlh`0Uv zK&*d>1Mxv}`_kplP7HfSPM*BUa>GXt+WZaMlUV-TZ?oj`*3kNY#IAMihpWQ4e(*;b zh0x^>?$xW3j2;u5-bZF2EshS$AAoQ{h`vU&iSVXRA*UC{c37!1fN}lZ7o`tGl!6z$ z2cOYv$$`Cr&b0mqC2w8%`H8W-&A8ULU$f`I<6YMDX6(O$ks$pLrPzP=4DGArKHuTl z1v9;VTYjkGrega1=Wo}4^SB?x*navWxx@ZJ{=*&@$#dSY4w(riQt@RA0cIl(pKcTuxXy73 zWB(P4G8%>GY@9KAkJ#F&q*lxSYxtVYVeNwcR`L_g!q0x*KP;sPKdfj{a4Rm7Hh!YyL^`^dgeb*+ zc#;~=II6r?u2)|E{y9FFPuuKAjj{fxAO_PArSK8-AGae9e7s~IPV0Yhx(tMyiYTT0 zrFN6watdP`Iv1L>`^)v;<~U+T{c%ybXCV3rQ9e14Kcgd1ne(*L)U|Hw#hG z_FrWtJN#QYm+?JrJl@Vnc+vL%T4{k7-v=l;BRYf5fhp>lfxYLUH^tpXPNO zz9Rs>T7WJVB1+L8`-IeY&YE@?GPma~{mbpoiLw1GLUOOA%g>z=*$KS(lD1a$@EqEE zSh)TcBisr)-YIhhk8|i|DX&&NmFEA(_$3IJOUD<^^{nPZt@SoYN*F=w|1mxr;g-_z zM9Qo49QLqX-_zJ_{eB(u_?3hBE~E2LuFkxIwnhKkdsMBnU*>ZR@{rui>GDU*ysqUG zB%WWB@~W-hk7U+g>*SX@hU>doOyT@3AIZH2QPKYI_JPeS6!s@G_CG5T4zK&D^Y5nb zZ{418O6Gd!SX%#seg97#2pwi78#MR%q^CMmj z-g_|fpxaSn5Pr{e>X)u&KB-Tm-(FjQhOojE{ac#gL&>R$c4ZF0 zOy}a29dTAb=k?vLBbKUwMQ5_ct}{{wM(Rl;c8*m5#n&wdUVPmiG-zjj4AM{rijODC zl-8@kbouhHTV$=kq$MjS-dUy$JY%|D_)={ILf>un-Mc{vHd9qt{HX7;SZ_&4s<>I} zZnOZ`;vY+Hsp|qPqliYU*XAJi#(QM${rwotK)aWyH;Sw z>g0>WYJFIFJx1<*KNZL|xP3$VTL-W&I9=xICT*A~x$l?lC|d|M59kJe?+6LKl3_|G z9bk{ztf0!Rs^As~J2J;r8OUy*RaIlC3{2XMiT@VS4u-$0oU>=3B82*z*o%g|C+~0i z92wEY2yDN$DEw%CH^B2BSdkI?l{~n8n9nR9Ww1uF@xC(mJ*R`u+7r41SRmQ8>xu6> zRDtrE>h*8t833m&pv-=*4ojt2mOpm#x?FtHq%et z5H$cbyfD?9{6i>r^cq$8b&x)Qxp>#`i+@$G?xzRL zKU*Ho9QcznVG0$dR4#oQ&dq->bNd18=^PdB#6f z77iIY8hE&wz_s;xAvqi)xH2+jr&5jyoO)^Ip!n&A@cP%QSHtbiAn(Kbj}dDKn4eLs zP;#&*sGMYy)&8C<4Bqx>Mfi@M(42cwXYp1GnCWfQ&%)9Uax>>I-7!oNrmMeO`>~4~ zysR=RU}H>I$c|d{%SMhLzg~FF!C|@$1lbcy@1N@c8cH&zhkdq$M8^HK3j_5bPxVu$ z;o~)7_PE&9b*hFi&hx^XBmOQ>s@vca?Eo(Tk3C)Q*Sil0US4(Jd4wO>IkwxJf!6x) zsg2&5w}B>b((##5YJdfA_j|N^)(1^^O=F@`=?-<+@XKP^&vRX1_OlH!M=y4TnqCuT zoN~2=iq^a-d%L;!W z8aB7c-w8dINAz+_vgWw)C3BB1NYl*DW*(#8 ztuw+Y(#s#+S>YL{UghomXzz)Cx%|nD^Hyafw+g-dg18S4r+bwitEV%rJH*+KYSw^V zmwiHL>kh=OmHQsdaj$A9BV9ya;EV|(x}wt)a(&i0XnZgX;J6aO&#+%h`&UQlwGb7p z|5KZKd>Nt=226zc@?Cm;0KU~g7n+EQuA5@C*{Pi^BN*e>#Obd&+u!$FTW#I4vf;*H z#`dd?*`N9PB*g=uKUH| zPe6ZXr@_9oeIq39znwoWXupG$&rW`}us`j)&3N7*j(>63u%w$kLIJjqX1>k<^B0G2 zPUpqg{}`i;Y!JPGGe+-i9lb6ad);~_*ogY^CBugm_bw-W*Zv$HVV^ZCj(XST<%RSVYBZ3-MhM&J0n}{%7H??(ZL^%miF2 zo>&i1a2&O|Le#`~_zKd@WA@Q@Bq&j5TI~BY2|I1bn%w1>X&2WPvDU z{BBTil>w6Rhb!ef4W;>Au{h%R8_u?zJ))ui@ArRi&Q;5|V?Mvb3dzkzR7kjE8jQ7o zZr>gT3Hi2+_HT^<-4PXS|Ee<%JP$OqYoq=De*2dS3SYist=(_;zs<#B-Z!&FY_=ChEDCOcmYJLCRj1Ok)|HQQ)0UkOq;(HL-^ejS0K}i7KRC9umJGkWFga_$Qx0CI zHYZcX$;I~nC|kzzi_>4jkK0|=+F+h?}YuoIQ+;IjpIu^`?qoY zX1B5b^kJO8ij%)tt<3wEBazG5>gk zPe7C+e=zasKB<2|NB;4pKR16Gjrbo(^s&x$sGK*`%Y{~d!e8cXM& z`Ec1uk|;F1x##lAzubRTGM*opjN~3qmp^!c!41-DPw`ymN&}kyaQ%-%xD+~`dw$m~ zGJIsg_|wGKzg+&`@4uRh#T@t5y8eTC{x$*WZ6aNN_FXdGae}w5oO$0R`nSgqlv-W&F{KVW+vy1-I?&KZ;Cii55_e5 zJ}u?+sXlW`I_(K(@yv~V=6~aH91Xi3s?_9hlpM^)Y;(BBd3-kKV$3xj$2@)i>?QrX z!qCI})DNUP0=BQoxCxO?Al<^_=*K*JFwW#$2u!j7?RzzF*Y58F9OEZ-U$1Wq;z*-} zmyrR$$zVv8&ch#^&We=_oX;6U+saXf*&*)Wn@&n_^=N(2Mc&Kwy_X>fT_Ne!=awNq z4oJ?bYQH(CdurG{a)1H&*n5|uy_6yF=^lOba)u^wo;jj^*DON-(!X`-L23ZAJ4ptO zZ-0`7Pr=&>b*Aug%B52^c17f!sfES<)ARwiU|Qt0>-=*i``BGP-Bk@_$vK*wD6c2w z6&7tiF8!RGf9A}V_`E0NvSUA`($3bCu@~N!rT^>*Nsr3wxB6F-xAGI}XD&7Y0lXhJ z!@~4Ibkv%Pm~a{27Mu$RY>4h6f!0(c|SyR)z!M)lL~a|6C6M-d>Uoe#i!9x@-N-;v4~y_4RPF zODCA<6`8`$VZkwbepK*JX@m{tB>`F5?I3To$+?UuHMqJw-Ri@(FQlUOx`GO=_8@v^ z#h3vdJ3w9pSKssUNAhT3ib;F?el1jA41Z;MFlsMlka<&wkcM zWvG?4YPHrJQ~3N^b$}Y%9HuvR?P=KE0M@WnGxtxhgi}|f?{e8?0c*UD7fCdl!N!1w zLnk!MVJXO3=zY@+#uZE$aeXlxT5Q`DZQa`nva2^-?CxLy(@)3jUTI|o3ui4^q48b< zDwf2YRx9oWE$vP2EgoY87u+2!H^{pS9GURZ^hKjK+}~kimYts#)b?DTu{6sR&VEz1 zfal#6maa+~+vlnYyi%{XtwX39jMiYK%P77e%a*@SI6p!iLW3JC7rAu?dtW5JAGnDH zSJYMMl?T;&T|Ekvq{z^3*T3l}mKK0jP za}OJVgr4sPaa6Uzya(4uZo01s%1^I*VUi;c2*-?xGQ=s)`$g9+v}UV-+w4;}b#@s8 zmd}r?D%R})5ixYm`>Ve=@S)#*tMToD{DTF-Dmzp_rb01m%REWIn-ZVAdh1tC_O3-9 z;Ep1w^v{SpPa1%@*b?_OYaBs_W?#K_y?X%Fupy@R`?-Na=_9wMmv#lk_l|4pMLPfQ zild2Ph@**ViKBsU#qCH122{L(5HEq!V}Izm z7Cf=tYqlxS*ExPEfRERs;`M}hyg!NK0amr(!Gb$Cb-}=$Qh^_KrUF$eUR8+4?j?DI zqs&9u`!{KUm*=;yI&dr%e8YhTP3gYv1$Z7KiEwzGcoW^@I40MeqS~Boso*0O|51p? z?lozIqs+qv-_aa$`cRI;?o?1u#n%h*;^q;3My&{D$Bqa8@gZoi7ho~P;VT?_)Ej-y z0>v00pd(xGvgo-Sq7?ZB>xjCa$2Tu24`AGf5XV2O`$Em1;{s{x7{pHOJUo+UoA~aV zDs3K$@e1fd3DH{o1M=gVMh4zn=sKCU4#xH08KuW@G|OA?&Fi?$7pk`O3reA_V=-P_ z`L(~Wj#d|qZ`(csUnb12S-jS-!*Ow#@YpQ1Q9?@n3%;Wg+zEFqzyBS^CCm4gN%Zid`Qb2sJl-_# zHxUG-{ssM4@U*aNH=cz2<#h=2Its_pbVUWC*tuXIcgm{gdm{6rX>mw69ge?YA-rh) z^&TRhwCIo*Z65^dPh9=sbeLcBy|DcnpajN@DTvu2bW$F%~#UbHx*`W(ZL@D(z@I&of z>-JMFErnKpxIXL=?jPc4R%-v{@rSwn;rN>{BtND8d1pJ^CkyWEGOc>s9pH6Bb25h(`}IP&euz@~ujca~ zyER@>Rb|oq;JE#GBOH#05Y->Jclh(GQOdOWAIAG2d|yN<@<-Pyy&^RuiWl0CQDdCH z`68SjqN4rx(~8)0^Z4nHG73PHB0o1F{}p+dZQ>PG&g_R4*Z#1aSYOTe z!tuLRctz;Kgbzdvg6Q%mFF5d=j9XnSxyh;HAJd;$`5#zi7dCGA?fwT9i_wpQxjI2bHCMD4_1`-F%;VoMq`%>ais}z8uQV_&Q)RT@w(@Tsp4kuFv z6O#DNpZ?jYnE!C-YVutU%7;!&7!XxOuKTQKd16WpSv2}hU+&ebpQ>PDXxeT-%qtOfF151MC#8snmF-U7vS+;-t5=Xo$eg-Ht_lu=l59M435tY z(%ZDr0D@QF8$TN9K#lUVhKV7DP)}*pOQ-jpp#7&I>#Q!Szy`00bA#M}kdIHL$;i}O z!|?sAs<4G-klV1twT$oZ%YDoGFuZ>c82l;m%}GKBUI?*U?)TmuZVMif={ejM-r5^o--iAIBmijfwO@O>C%sbd2*9YcM8zO#c3*G@mPc+&;e z61vW7BxqAjD7U;nG7ZzJ~=(Awqp-~@AZ>mGh&bHak8$IEbOvig}8?@oqFI)## zJ2hz9Z%xue9ZeX^zHg^@Tnn(-A_&{C_DxD3hv>{APHG6Mr1nUyD~KU6gL_?eqCpo>puDH}akLUBv;^aRZc+eWyQO>HJgx^k^yFm>$2UYM%eY-+TZ&Ls|g{w&x8G(y-{%?l8Hvs!@j&Lps zHUUvu8`G5&Ou%rb)4E^WO@LgyPC@(yV^AiUv?lYI35ap(*G^|5|HFn0c1P!1vq7P+ zkAWips{on1z7M)EfuHW-vZn)NYh#zq=4^L#1lU}L8o-k4b>^{Ile14 zIz1RG{-6Q8K&nR_ErA?F>sO9^WwkCDyulvGrr+P}X<1^o-e|!aP5g)1%5%Gd zm)p`_mh#c)`WbM&O{GmvqFh+uCGsnTo$G#EUve*9iFw4r+a7?~ zh{MM@xvx|IW=ji{#CTbBA&02w1oxRf zZO`an6?Kq`ZZN%74*TlRt3TrcS=2!)TK+!jQ{L`f=flWfT=_pdjj$-I;{5gm>&cS5 zT>D1m4}@T|z>ZGJ27$oAV3z;B@1Vl}-UBZ2#>YQ6Xa(}W_~^cR$lZ~Q3kBptxZlN&UF_(j=ufc0(z|BL`^SfR{pAU&aGYpvcmKl;20jRv zR}?SmAf@Op*{b?1C%CM0VkFOproYydu#if_11scerp&5wXuWLj4nUV_f9QI4A3wgcF>$QeqejTj#ca+r<9-la>^sJ z%usW=imvG&vtM!c!ws)1csiTeL5v-%I6zHwfy`}CUR6Hf@n7CxAY8G&o2yCK|5&1W zvqDtVek(VvpILN0l~#W!c`G;QnENkll#vahl>S=~;1h1+A3R_~I-`RZ&v)4fPq829 z7kHHO-Z;Z^Sl_9C&3=lO#osL2VN#{L&ONU@`lVn3xp-lxdo z=!nE^0sb`m!R-k?#Vb_}k+j^9Ez<^v~RWU6KC#AWA8JsifI0 z&bcDFfH=os#`fDA;r_uv461iufCR6OYuJNX|A8h}4y^bB7qT@%n-|lXXoB3zgqWqhQ zBEYw8l^;7ueNcwf`s1)}k>_^zJF6b>=RR;L>L8`?2fIF8C!=d52c18{?4W9E`P+&Q zKzi$osA&HQ5=?y_ConsB+R8r=@x=~OQTrjDmz>x>`rTiiKQRY5VaI+dDhJ*VF}=hu?MY-re)=e$M;$sjtuL{d>IoqvtvItmj^9&(k{lT-dKTbqNe)@)bpV zvO!8Vn#hJ3g+EZmS>|x*olh>Dt+$JRQJGk8KiOC%8-0xOBN%_Ao|AP-jLC)5OnzY^ zkXzzd(FgxfN*>_#&j$v^I^3xBV(kZs4%r|j8=X(<`N9u`scxB=V;{amtp6ZpE*B{BX20y2^<_QeTjdu6!P(NVQ_Kv^*0{>J{%*Xo=@<0Y7J_|a@%ITUkb~ae2$2pfPYWK zSS^wh95noULudUC*OtK|(eD%mgX;AU#=j52s8}zz^SQ!JBe=iibfP1b2Q%w`=U<@M zdcLIetJ}IEnl{ga8BBg*ERb7Ce1TlWGS>7TiUS&kv0?dHwd;!3h`x)&){h#ie^E`~ zWX=8T2klC-KjdXFnqZp7y8fDk4H=1%IezK*q%{oK*W&kg%aN?(zhulCfsqk^!TjAt zT9&%LDdDfJA4rNn@0kC^Srxis{RcLeO2HSS#O)V27?%w`RCK~7@ISWxONzfBTD*O% z<+o9MYHKt3?ET-rdC`9CzxZWroOW)jZjb7AFe}+qY zGcZc9-O_KAKExjF&0Eu72l|`s;S5wZgb8sgVwWv5LSSHMx!#b2%5a&Z%XDL&|ljxq-LH4a@lpsD`ts1YU%c1Z1_+c=zZPx{LJ$zV0%5Ovi-4I zy7Kya?OyjakpHkFmO+yg;i=1e~K*j8(*Y2%y1fIR` zih^zY0{|XAmDSC*hj&#!zP?>(h(=O*o54U2IXd<0o~y2ck|y{aT$afH@W2XJyYp{r zXs;9R95;Q{N54NPg@3OzMzLvgA16d;qro9AGX`i|pzya-<)eS8BY&%Xo%SD4MX|d> zUP$?9qwE8w;~$!uqpcjfAVrnVNVkKgL-2DW#2Y;M?6G57$f)O!J?ZV85vR@5_uehO zaHCf)3R!r(Gn!s-WUJJDbI7weG4AX z#$M7^kh1i!a#6WHoa=q7ZO1ppV7r~`5Rs-0QAMuB$i@YhyN`F1zhVo9-o0&(*jj;` zxks&)suO%U(yjMvMu5D z!KWW0IwO~UvlQvucF5G{dT3S$XEfNRjk&v-3wqvf#rTKPPH3;u;k4SYHgL3j)sHn} z+QQhUp|yzv+razxJ?G0=e&pVtZdv6RUB|82ve{2I${Ah#nQ&x6z8`Y4`?2UwU1y|I zt#!3DDGC*?xwk$+&mVjP?Bu)7`^kMdBIDkgL<*b(Z_QsADg#Y6+vwSpsKa%yP06me)j;1YXO-dj4lu3y zTj!OzTA;cr@saFDEvTH(}}~5>!X6aJ$b7?b%K@`7HY*j0Cc%+SxJjS z=Aae%E-s-$1E{vWI_R(G```5AytvZG99+898Tn0ehuSW$=O)B>Lbj};<4F%EkUiDS z``IclIOk+Z$Bzu)e;B7~vwyrF`mg#R#Re8Xkqz~JB8b09K*oPO+|Lld1O8x!-sPzT zzI~&+_w@& z(D!i1WqG=B;L7BuiTJIsyaL9TBEH~2`>Lgxt|c~cpuyzZ76TD$jW60@MC1WQEgBWm z5gdMc^QRzvM7)Y&{<(7HaB2$fAIk_Qr9L#N@|{_>%hB8ejDT zLE8txa3()$8W1&-_yRfJ5!Qa1B#S%_kfBEKBC~hW$_Lyk@dIuDSNi$Fq?`+Rji2Wf z2W>A`=GciHNJjLx!xu^z8~XVKO?qE-fM0$KNk;vV1JQxx4gEy&a5xmj*-`SH0};ce z5~K{`_)S~=1O6isUsC$l-aj#|y=ENDX7Ux+00~VJKP0~I@p+s3v-xZZ%>E}&9HG4szRg?XM1m^LKS<4^s6Vbu(V9XN)>qN3K*KTF3`)8j^rgv!dmNi|)(x31p zrC)JXPxJhPMopgQ$j+K@!%w!0*g6%7zZSkA{vHk6KO@)BsKg%5tn)NU_Sc;8>}X-^ z%{ot##HZl)0i!06ldUt3Qp^PvqFr-vkSoVr<-byD?LB(-{coeX z26Pi^KL}q^`Q15*B`+LH7OW9P)${#y$LsIC|r=HJ?+$c=rLcNcq+ z7>iRj_@WC&M*3w(8(pUTkL)gq{Tv}Sejw>b{6rkZ`5U*)t)w?j8@oknYA@FEPy9>% z2R{`-|1~B;Zsy~n<{l`^K7O*tb`yUOM*Pd3u6RxBq|&QD@TX>EoGuhs1Wc1y|A`z) zFX4UT+rP@MbL0-Y%Cq)gov{KZj1B9La=WXguh!X%m49NFr1B>mcCo+6O#DQMzXv0p zf`eE>!`rGHkM7KBza;&{PDZ%=pBkTj1}Pp6GflcRbDh!OolQUSZ*jwhHf+CdJMDX7 z{lulo>(r9s-_TE_VgBdO-2Wz9-IcZecEbv|7#ZbXaG-1MS}pm(>h6E7{RgbqLtH<# z`_K*gzzo%yMwdH_wf|ULV*QKFlDf$0)wapy@9~XOd)6wsvhuyKA->}FhYT2UpXSxv zdL1ui#@c>(W1f#V-z9KG6z^OC+h5#%j?dN#TISN|l8_-* z|FQN5V!MZ9B>NU*{;HI>Uh37bsj!&F|f9a}ozRNT*=@Fk`HjAIw>d^zLY%<{v25SAqU!e}*j{%ggW z|3h)Q5kC<|{X<(KF49!(fN=(k{^<|e0IU5;*#2=W`G5NLGbPW`fvn^AWXv0lkr97? zH-{(O31-tyXRPQiR{pU#H3DA{KaGavzcS2wm-KV-@iQrZ#J`1%o5=6{UZ{ZcXmfKt3hMIacly&?!4fAGV zWRxGO$i0O7X~@_uc{c*Z`hP4=O~)5A#QA~`dY0Udj^9ya^be#qG~7 zael%rsU6nyUSxB}AI+`*h}HhawLk0!A z{aN_;#TXloKT{{C2gZC%WZgerhSVPvGA z;`iC-=(UrAbVA~j#18T$;Vr?urQ&?sv<ud}C{{y|QXXynsV z`5$`o_gnA0_YD8k{}|M>Fz`Ni;?fbG-zQ1I_>YR4>b?+6rz`gutSMVGT07vEBL%*-IT-eVgD}QjH^uYR+zK2x+4c7GOJLMQ% z$hqsbCZHv9pMT@+=X6CdI5!Yo9%>AZroqn-OgDl70mkz@3rwKUA|~i|FB6#Y(D-`N z!?y7J@}b(S#YzxM{R+x;m4(?wl{XK`nM2`HSDWYR*3kYthbQG=0+qR;?^Sh-Q2KMl zlOd~&Q1PdA9mmTVAIT$s=SP1f->wOFQsKGjXN+j2$=xu$GT4gRT$Qq^0$sg5*8g+qtsl-z0qHPiBU z_vvSa%5vIgjtz7{QC~GyOj>D-sLL-R($=5ha)LY@hx6@SvfXvn@MYg=DopBnR_t*) zmVctmjxY}^{xYoxfxQGq`^UoEnW^E9^V=jl-ayJ^pJy=4z#{i6<~y9O-vG?2L~Cg zbPSm0YldKQY&)};S}5iGjZOo0wno+R!#x#$8=+e^?y&p=|CIBYqZF#5tLe?Vc0E|W z_X!=^t#e_&HqU5f_ptJDcc0VlnwFQhda0rDp+BE4ecb`2wmTlb{fZ^(l5b}2HLRMe z=Q8-O5e&~ z-t34*hweD_a*rJ-+@(lr+ot{9%d{3y)VB1^bRySf&yY&bV;0c;!*rXJ)n0&x zq)i!C)&^aDt~oy0-W*Owlvb$cXo6awpHDuv(ub9CI&!Z$`Vi&4*3t8)2D)_jXD?|D zFW_}4oFIRY1IW7U*??0Na+I>(p54(6o?i*B9Xi2{|2{;UqyxuXL9>TSRa_Tq=n+3K zZbiBygrHp?QzjcjhOx%NJBFrUD;Q1ZEF{-ag)VEZ&Q@9Jp>0J-ifKBU`0?NC_NKTQd! zO9neesC?j3-EA%%8(2!ColgqpzL0@RPDyr^sV<-`FN!Y*835F*xNgk%$6w+<{jly@ zCD>Lar8l!k9u>yr%t%dmO`DaNWUD{ZK!qkh71JvX5XZOp#}qAD1OrZNKeT|aXLoV+ zp4rAgEj8G2{?>2WR;vH$z%f?n_RVkM1JzX_YsRywCnMD0qwD3?Q=;Wyq~qRu&(Fxf zvZ?_2gi<9~GPUY-s}C(;bE4Ow;Ok0|J#A~~c)yOQ!c611rJXGt3pui&R!IsDj#0aC zrBW7-svS<$QmEqgjXSFP@SPDv?fBB?gR={Y-Z<~RTvuo4-}2*}JF)t3&k&&<8hX&x zr|s86;RbLsI&1EvXZ(2Y_wJU_Sq6AEr8YSQ9N4JZ_qX3dX9zo5KFQQa8_M=XZSQqa z8(rFSCgo+VE?iRBZ+3vc$?SA7aL()y9hkq>uwdhEfQ_B!&k3yU_TTm1Kq$+51EKZr z4g49*lJT!M?g(8-hluz6+I1ND>FD9ce}IoMZ_EC(@8;@eR8eys`#z7*!-~)#J)PK3I-Z2J#s?RQ@m)cSC=_5DY%0Dkm(k1nTcl$Knt zqcd2`Z*%R}!}>WG8U3eV-P35x`RZkpQ~%-e=g&ItHNbY8Vq~NrI{xz-SNpR1^p47@ ztm~GBm}i2KvF;>TH@bVeQ{BF;?0)NHJ=a)V|IT@K_vt5b9?Ap!n(nu(otCt7Gyj!o zM!EW<39vee>n2fOeyd+PY}#bLP>*~w>rV)4{+Z*5*kUB@0{>Rf{!Q=W+Um}=L1O(k zk+Z-&ON% z`~}x&md{6jsgcdhf6+Kys7BQOHLm?(|A1)Y`0VA!9>?1YBiRSyR}tCoEwmv#!(rI= zpJ_naXMq?GfRrBx%ma)^G4dfGD!Ltvcx^CiR(3jYM8ET|M0`j5I~Su{y_|6V@IvaB z<&WnXK-zcV<8Jl(J7f8-7;EbJREpg1H{3^$7QeW)Yuuls_!)oh^?WD%EAjUvegORW zhs{G}RVdTxZS~wfjr9Xw&X`Z;U5xTud+VhJ^onWU={8Dha{pbuF78>I%*-aQ`-T*s ziVGiZ)V%tO2C}wat~mZA-x%>%T(wUT3Suhcs*|Vuwehn%*53^yL%&AZGJP0cl$;)E zoY~~@^RIRpdSU$Y*vLFns74jAI*I+qkSDJXRlt~LwjXh$#1kW_m;75n`_EI1 zT6`mW*?+9xN~7AZnsnCk=Y!)Nh>?;1g7>Z{f0;cQ{gcJ=AB$7I_`(k(qy3+~L8X>< ze=^bbSd7nK>wo;Q-T-m^ymn5n=sU{qJ+54^Z)W*vZvVs155jhL$JlWEaL(=u&vAZI z^V%PN*o<<`zZ3PJJ+R&ojEwv%`Ex#NZuud~RykBG|44W}F)vu0pVGQ!H+QaA#qab5 z|MUmM+2h}+`a`k%ZT_2mtI&Vhx0=l#K|k73?UHdJho0qp<*ABK5&iOPpNzcAc6@Y<<|lC0pqB?>pTylA29NoI7TEQgsbIvae&3 z;;+u2=6^%~-aTEUTIf5w@VX=FQv6t7w_FPqKDyk_@2DA~+;0c3IP-+-IdGEf<#a1F z!n|dxOZ_?McJC)G7k76;LAGz!eN5JY@<9XM?BahVkeA-pByr0PE*$EjX!ceLP)V}F z3fZr8%$+Yjzea0={E;IM*Z0$dveD<14knr+vrqHezna$tG=e`=TaUH?G}>z4A=Cvz z+S)B`H(C?=`ApIse$WGk>7TjgkrfDe*OJQ3&fCGo)>FJyZ)gK`@Ri-N)s-|=zEiiD z+RN41owl$00VQZYOg5TBGjXel7g0d|{i#(-(VfyFlGxNQ!Rh3`MEE zhL4D_gvcT1t|uCHg(GS^OOGvcgrbGzH{D;jLHN^~TW5v)0<8bEp(4xzPQ76Kv%hpPu)b!wpwkTP+qjDjV^7NkCK`r`yTenZ=F$6BDBa~0}tUDkj=s}9C@r?^0& zgX!tVXZ@hZ$*ocIuh~M>qlvewr&>aJ-t)}U{hdJ3r1yx4*{YB|WVSu}==9(9ovC#! z`vB|e_W=-p@tw41X}BG0*bd(f++-XlFZukSUYLI$BYzy6Tx+BW$x(NTM*76T2(sY& z=lMO+`8zGJJXr^5I1YdDs;>L#@HptrB$huU9>vWUD+5 zkg?t(c>m+FcagKDLSM0YWMlQ4WkqUh`G<(DLp7FvEby4xw<-Nt{g>L|fXF)hOA;_e z3C@qwci4}Vnor8apUk{9LAJGjM)bsSIj0mynX zV;q>mO}NH=v@2oU$$6P#^ElFOlKlg+4&N~T-ZyHFO=@Y&I*uj#7o>bJ^?N?OO=ruL zs~!Gm_YaTb+5Lyf{tapOnD!4fx<{L(S{YrR*W7hbQ9mWDKcaEGG~pN)G@E-Lox%vye%8-IOlH(5_-*q@#0 zaEqqaN9=H^`p6~yoKRc?Fzw%cXDZv=^)CNI%pFA=Ix3#I8oA|MOm~>kwrBgsg)x;we~%QOoN26b6rn?u-W%8dKkY@P}}MKeC=k z>>}f@2-*2o$((d(!Q|Vf)bq_Tf$Re`EPrF7<{b4Hmkz&00aH}vNFcWs_`(_^qx?|c z^4HS^S9M=^?U@OpaSdM(Mb+!K#5^mEjPa-7{H>3#LKjy}N{9aVxd3>PKyD?a|0XRf zX|0^WV(Y+--i1K zpPJD{C;5frV7O4R@IUI?X#Kn?3il75{@&#FFYDEbiBHaqgP~0QAky!Ge<$ndqV(qt zy`p)VuD(32>n4kKV&f0e9FYABvJWESQ-xb?D(IvW50{#3Qxq#dgfA)ogmRkA9KW1% zBl?8V{ol6#w^-kQBKrW{aXK=}zhED_)0q7mwq2PD0soTzVfF17**_rb$qmcTBaNsb z%L=Cfc`gVBLV*NF_OCqg4-EZ+b?9x!N1wCbJ)CtPi3H?<`HcK48)E#N_WQEFs`^c$ z*!h1XJtgJetuJy9u7!%fe@*O{#J_oY@1B^M{aNQ9WdG1x-2T|7wh!r$bMLOa9-hit zekJL5)cPd1;c}o@`E9KIM2@7F@Lp8@e6av29}VY!^TLA+jFjd8>0gE7qV|vMACUEY zM*h`)f~U0Iq#^Gd-CbDIPg49P*)NGdrt3PxeHHBIrv+jKK^PhK?<{wCLhJ8af5aqZ zK9F&OP|OFgxWxW%e%Hj;F4R!5@pEJOkABDOS>%%i2819$4e$|8WPSzgB)jv4LS2nfWKxr;4`ynAE1_ zW8G%9-_4!BvA=&Bj_vM;vElf2QMh_Vf2p28=I27OE`Y_U-uNN{W5fJk*L{<5)Yb66 zmj97hZ(odz^sn8;KmYBi;d|Gm3xdV+pOmL4%0cPM^%?y!^Zecs zKkS=4{=~tvrr!W85Rb88`77IInrmlf$@>0UEas8<6~lgxpZZ-oWcJw$6YlA;mY;!` zKL{g(U#3%XpWb^*QAhm_=O3>BibtDQ{@BkiNx<<=6pw#~mP{pmE+t=enz=RW`K^O7 zZ-_WQ`;y}$8b#LFq;8THOMfgbvHv4-&5M5->->YvD~5^Nujt9!Q( zVT=?dJil^4?v&5UH>N-}+35T8{G90g$_y;O1Y|3-g)yj}FZ|Bq(=#$TuH{qUI+I^4;%8#{ zsTemk;E$Ctk9R4X0@s-QA`yQAmYZvahko?EI|Yt2`BT>bQ6q_;_oCIv;h%bnoqs_1JbW<) zBdJ&XTfzD<#aVx9V)RYc_Fs~I94zbjrMdiRSiww;jPVCLI^`}`jph7L63^+FHv=PM z{Y0>S!`bm`VW6UxSo?#;|9bz+3l8aV&h*1SoBplZb|dK}jJIg~J_jenB8-gnE5Z3s z!Mx4si8aH;_HRjeb1^RmBP0Kg_S#>{%|A9}O{jMYYyUeB^RmSGv9&3swEXF!yxXI~ zSo_cUn72TjFIc~<+%xogKcmP0Z2D7Wtm~HxvEA9?_Me$izLTyDUNiZVs{cP$exK8N zPQ@wRo813?`O`q?C9(1s<9O$a$Di}OvVzNTGcU^<-jS8x-1g`Hgn#NQ>-=RIj`v!O zjQS@yzxa&y)F&V0l343c9_AHbB=wSiD`@{~&zyL_-v-3SuUMQ~jxX{tHe5g9UAnvR z;P8L?{7UxsSjfKA8f-tK{qapHIz*%OU5=Do;fk%_kaSv!d8@?vP=59%9lNjp%AY*v zzgGWNW4(pq`pZUJU8O0`*3d}9J^yg~1+3+_arK8i{~E_1%{qSnH-52Yjqa{Uc zC_E+Cb^uL#IB32s7<-o+HBz}~=7R^^!nGru#w%at+V^?#(aofkd%n-pjk&$bxDUol z&3^X!9QV|eR=k<}k8_6~Ryne4%xv0v#=63QgDRk#)V7WDT_vc5$4N_X=)&^dX3wv_ zQ-F=}6`g)%YC%NHtJU4UYQcv^n>u&>*%DSSJ+jZD%m8M$=ql~LMH61VQ40?;*MjV@ zn>8-8G-2iZTNfA4vP9j#Dp_nA&=x`L^RHJ=Nu!XH?|)_W)pFRs=3j@Ix~ z3GsBMIs7`RV<{s|d7pvI(SEm>5_wGKVs(b7>0 zEPrPehg-ISOnx1!Dw=qBqJ;^PysST5b zcByA=pT3ua#Kp&74KX)Gjvcx@vg^$M{;Plf%c19<(l6ijy#Ax~J~&Q)QZi1(4GTT!bbQ}@M~n{{W-pN$mY)U7V#nc@1dTsJu2tGKW`_j^v#1r zV^H)zR2q_RhN8w?m%aAH2EE#4ZJRyD80~ystW)@Zi1RL5(()KFoF?yR{V zmErqs$BS(hwNUJ$c!%~^_0fZa=Vd3gut%SKdKjb*&8PaACw~i;e&*uAiAADYZ z>5K__m{#uoDVcA#qU^|{yS{OEoZkPk;;{j`tYjCGzvDX%TMu8HI_xD^E4t#)J3C9p%m8%MTQSXo1FiJ56UBJ~yB_fF4Sn_s`AHxw$qi&lO^y9MM&ZkzC$ zF6p^WMke_cy{vT1holj&X?o_;XZuQC((_B&ukN|R6zO=a)70X6z@;BkO;67CfTTGm z+m8AG@S|>*_KpGvwB`HA2c1Tlp^P5uiqCD+N2kIf#y`GhiCo?;3>p8(8(p5DeJx(o z2laoR?|Y@P6D%uxp8vw%9`1MOHDp_|G3;EYRda_c1F>gEDBT#@1}JL5jN^JgxVbW3 zuM;h8L2;|f%{~F9aHn9vn=>Qqq5tG*BjgJ_fjYTgdRmPxR64jA4^~nI#Z6kZSE`KQ zUhjl^tv-38nAzVl&z-e{jNOUlN>liL|3mdS%cUJ)uWZZI+6#`5d!b9IM^`&|9I?Qr zC;$C}>A{ab*S>Ov>Fw=OR;YA_=_8N07WCobdp=(AYn{KE3smyFYYAN)z<*5s(zgq3 z|GUn|8OP!mKd#;{{*SW|86S}S1;)6da(S{Gtc~vS?B@;1=i`w5MPuB*^C4S#rYXog z@x3?NaSUjyiXKqfqVr)|;Gc8s`N|?b@mK4J!#P&3 z2Ce2wcYsatu5t11W8jra{R4`6B|0C5-&+d)Nbn~0VnV<8Ut26Qx44agqfGu$5x*6d zSHMW-hx~P^jwSh)uueTN=p>)NpUK}Z;#sY+<+5HzH}J_>zMp?d+N=U#J`X=Q+LMjL9FBQw%BfY zjEs4Kz%MShXxsKrW-(&(0xbU5*EKTE=cG-a8q8{cJ8Xy&M#j2K#<^eo#m%$(c7*h{ z5#y73*B;CijC{Bc%$RbnD6|dLZkVE4Ct3d?CT23I3Q9y z81|Pf9`K9H>oU~)QV#of~-d^>Gy)CszK5 zJ!+VziIEY1UX9dx?i0Q8dqW0_zn4My>X@g2k&#b=_d)`9JEF}8*uN_vDgKJrjS{;q zGHBkq!t6L!z81Dyo5g-g)kj@7|NcKbuj8=Jt0bkLFj^t3^Fn?XD)=+U*s%QMICd|2 z#v2Wt@N)t1{D9=Y9{$}3Bl(?wD_GY^&FPV9sGbUpewE)fde-wfn5U1iVf(q`rETqd_nJsNCF$?IXjjgq(jj7g zeOR5u_Ah$Gr+!1y#;~3bLDJO>2gt}j!MeIaE~i&s*$A<95n?|XFPMtQzi{1|o7_`- zk`K6~3}CH4lHyO|N%RTtMd|;4!)HI=iuk*c^3BNq%8xpA+`azlQxx7Lv-%ZS;s{z{ zWR%~$g{2hS9^vbEbM;uU^e5@k-1uALfNaF|$2z;p0q0Cq&dtcCuL~19|5pClVg(N3 z_6yQaW_01hO=C`h3AvaQ)?5p zFOIeS?uvQt7#Z;tj9(@^EuNW~*GKGpLo80Y;tMy7qVm^&{EXDobU_K%J^NG~YyLO4 z{!8Rf%r=y3|CTlXx?#JyV)j#oCRSCn&BKohOOhhR&Nss1f4%$}87P;eY!7EW-_Qda z;*F8f{tEU*S6hGInQ>{9So=-NsVC-nVHD*bmEF$c3RlOIbHY71UTj|#i%X2Z=IMxd zrGp)s+<%7X{FqQ!9WU1YHCDe+j{Um?zBnL1j4w&Rl<>XiS>q#*z1}+WueG24SYHrE zM*7Qo@0A9HkKV`U4WA=ce@OlXU|t}`hWQ_uvyAhhd~lP~9|v2%&Lq75zaGD^k6$I$ ze}Tb^SmzHtaRmF3h}NUJJGo4D)(pWRyRFUqbbj&s*1*d5f)oU~#G! zz6clR*G8t?rvrcN`JNf*^ADH5I#$01;!od4+l)3Uu-{U_-ciFr{N z8@3-*|AnE&2Y>u?;}?Syb9oNZ%}jsx^Hm#H|7=<7U!(XIZmje77@Y1I7;j@F>!)%Z zGN!$Ix(LWPP4Ji(R6qXekLA-blJZQ>C;z6D=c)g25s>w5p_qt20P_Z8WVFA6^Km=A z-c+sYvKYwtRv^X;1T0R);)?`~48CCf)bmxgZ?{|XSj*o)%o~KU1|uH?=R+R8QLU5w zHCwFzAYzS5f4(p&??Rra{fWZ?#bad13C6#Q5YFBN}|&k*Z>i2h-iHymTb_RBW7Y}37E-=pbmQTUhv!2hp zb0bz6M*2Oz=XrV&>->%I99_v1eAYfqMDbG^EUBRV*Z))}IGX03clzz-``&9_pt%L22Tl@MGqRP`GJt%oMk_NWY7Bk?u27*kb(1O=FunAf1f%P-zXk zcN>yUTu^{)-N(nDnREq8YURnhZf0oR_T-2oIfk&{zLL_=?)FfbG*&OSqZXYFB z{%%kky7o?$jWc`+aj|`<>jk6bw%yj5rvcgdoy*Q1)dv(i`1|esR1_r(`)?0DUZRO=Lua>b_1*!+&OJ4ENrVn;+%aLa>~?=hN%-)*q5|MrZv3Jf zv>BYf_4~8=aZ9MI-8yt@-FNQ&rPnP7xO4(Lhq(6N+^iubaGcC#UtMtNZ1{4ttreh6 zJ1PcVWzZ|yPH)Nvi9b4FW%BoZ3Q%6Yo)b(Zm ztj<7f2;SAb_$GH>o1WEGTR1RZOZju}?YeMUQGd`SRXuopH}hpoI-tb~bzL2Qc%te6 zsoyV-hoj0ahZAzDY*04$YHiKwE(l(1xW0UZD*7@}_uIa!b}0NVRk@;*2|U&0Obyv( z2-D8K{$lM7Fn|-?(^As|c)wQ2`luSiuQ|I?PS(+zr5OeN8<7V?;lsGs0$k=6~O- zV{T7l9}nO>?-%i8lQ$rb_siG4l?K_$G#=y7~^ok zI@+T)V>#7(CHv8kbtJMc#qX8`RL_^x zj~+e}*3H>y0K^dk{{(ZU2uNs>`1fk|oEe~;0=|p|cFJ~YJ-;muh?sYu1dPuo&DTx4 zv2JTB3}NzJrZw9B32jwlT#lzgER#=7tJg2de);3ity{?iv(5wBVS9-m&7pexh3~h0 zwNiKed}KPbAO-!;bB)>c_LFQSel#leeBt|rhgYcAP37~Yn0#3gUy}VMmD09H8u#2=(#`y0RFX2_`v{ebNE3&nc?rcu`Tg7~8_(l6_I zCT}b-bV16fzjQkVqgB31SJ-0({AjlJi0yG11D=Gbn9MLDdZ+!n( zY;JRU@91dO`rA1D?CZex*uc&h8R?fob>N@RF{a>z$%sBc(pezJ^R4ec9Wc*PoL^YA zzKmX*NB=xGK0xezD3TtM?0@?{@#5$>Z`SWjO5&f`Ygzidfc^bmCv3N~xc!vB+!${6 zomU^pb7Gt9M{zEyqMd_@yIB3l>Lj+G4mDEk7uXDBJs*kq(Rhm6Upsfgbz1q}C;s;( zCW)0FlK!M#5r3G5_0Rd0=A9w&sef(!L;P=uA5X*jr(5kc;ncLWCZ``sXA)oGy{P^X zKN=75^iyLgJ@}v0a)xE80fA2d(K3K0WM#lI>F#fMNa3teF@9=*t{W$`= zy0E67KeoFE#)jz!Yii7Pxp|BEabR((p&w1d@uO`I2TO&bruY9u4_o;Q!UEkfGWrjs z@u-5%U3^L3Rl$Qb{*ubCB>j!z!-FGi_V>gJdSPr>e!MRvjGoB#WNm+fF)s`wBmM$E z6r*7uH!s@Gem)cNzajoG3_h>+^?kbiN`ubtTK?1DCn#Y}zec4$CHZ{GNSuC*_Fpi6 zOcNzKJov_!tp1_ zUw?hBaMK8eSq*WxXa}46!D4w zSrXaFxkd6!D`mF9G97jKqG!bE}uQUdo13Og>Dgw?78U z$73Y@5JhozlzivF2^YmZN%yk>G5M5;PyA>GVm{dqC;VP^2@f@|X9LaT*Jjr1C-IHN zd@`OO_IF%z_lDe;Y&gi|XN&lf%8xsB1n*&*Bm_rp<$A z|4>uHlz@7B?z)0hn}4?d=G(>=|72`8@#AQi{?~G5+{=zl5u5*G8Z`o6q+(>mKjoNg zJLsIJJ++&8U)J$IX|G0Oe#7zC^xr#`Ln?yB%0Gz@X>W)h4@198%wuV=eXwTXr?sZ6 z{a<6t52IfHu@tbmjch;I*Do8Vzq#i-vio6<#Ss~gk)$jCR^Uf7b=IJJ=xr*iA6Xja zjlc{i|%|_+6g0|D1*moQ|XJWf&VPxdL zVE*yId%SD={-eao4;F7+{pAaj@*?Dk`tR8|pamEi=_hy(^uDy^7=s1u-{+Wvd2_}2 zg7Hh(J^vRow67&Bxj%FEsDbJq2JT&ETb-J&XA97&3CFdmFtrhCi zbwETfvzAEz$I&%otgTVmkomJ_td)bHn+{)n)#YGTrFwe5lX9@4)6rCGHFp$0V00iI z2hQcBTcC3ho64t7GC&&R+!IEo+MsjEFtKK+9V%4&c12Fb z0v)<^wV+Fh5*SEz+%9`Y4Hh`)-U`jB=2j+qZ2wSK$E8%}zKj}spNmYDKFtrgO{eq< z*mI>_9k*ql!O@>e4I%FQ`f*+Nn1j&@6TOayIk3ieH|$yL0EN4@4L=g4f`ZK2)K#2N zgh3mR#-?U>fD7Z+S3j>&gz|?+{q27`!Q%H1VmsQ&KxJKe_aosBuxg-gtq0u>T2?OH z%o$t8U7ES9C|T+gH~U;o_{!6I$RcA%nbZaje0aI3@0>NAV1VAkp1$d-V14e*4{Cr3 z90+`v+|}O8z;$Y#|i+?87oj+)!b8?sBjL|MH%vw77kuHx^mLzH`VLI+R#wcnW84P0*3n)OHugbAfXdq%c)hBnIz+($Wh zfNjSXB{`9HkX86a`~DFVupO6IsW-p?Di=%F3|L?TJ8zvi@Oz;K!0Y>d-|I|)>e=z< z0=Uj~-@EbP;g@ERXs`8v>#h$`@9g(SDX2op=}nbJeg;4tS`_6T_ljG&Ub}km=1w42 zP;f!JhbSR{)cnwCFW_*D+=n%3$^6ZMcry6^mHwgCt#S`6<$$N|c>ef~1p zz!s<_!5^=dDgZS!VUN!|H`pnyc;9WU6T~jkxxBO75vbG_ug;Bhfi_8-9;=jgg#5z` zN{U;(PvkGjAY}M>WK?1uPF1+S5$V;&o@GfR_?LIdmSLR9;>>zJzc&&5 zsbK7Zkq?6JS{Fq{EF0wD1!P_=d>jL09MclZD`O=7pAfy|EuVyIs| zzZK@S#i)*vzwWr>3atm>d9H0HQl3EO=Yq#P5x+H-Z-bHSgYehg!m|1qKy>SqwvRu0 zK`eeQ1krafh4UJUlEcsSMREea(UIMPb&5NB16kh_JVufA_DdRfIE@;Af32){lfSDe z&=(cUI&YGsU%=-LVjXwLFcEQ^}wHDiVCi$;`dF?QYK=}Ug$89}> zkB@CBHg6+*N%m_yZ`*z7Tx-^SFG+l%J?!U#D`JC*-zTH~)b64AN1%2!47_W2p~-$n z!r-%6{e~pkzc)8w_RED$=L-xN%$onCS?Pe&ff0Y+*OK@2$J!pb<%7Kb+Pp^%>m~KR zVfmXsG|nL4tyh!RO$6nP!+w6wzwx_FId}9OU4FY;%Vp{R^u8PWzL_>oKMRc0F;Wz7 zch)vD7{uv)c)5IU=*dV}DrIVY`=x{B4Kc2+=L`3ZsGNB#54G+MK}>#>h~E**8(<{s zpZxw$CCXL<&UpGC*ncM+{FremqImsJ10bB+u=!sq|%!o^g;>LkvaCmhX78@9=* z$@A_){gp+_qMP|$jmn*@{f7~bh%v^7>z>P|JUp1LJfO+-kE9dHFX6pt-NOV6m}6wL zKZ>)@KBf1ctvT&GppRJkk?_cP%S@b~z52*2nrhMd<^0Oe&1^p@is)--zohbm&1xPW zwPejdORT^OW5fJIH%GV1Kdmj6e#EZk+HZ{mvcbrxW`gkp96qXF*YW*7oc^_}>z=mQ z?tvJ|IGBvzeG+ExD7Q|BDP(}~M{dfl`u5Wf^FlDzVB~|~{DPZ)a(PKs=`e}OpCsbj zV|fpZM@9UAsOWZ3)nQlU>DkHfhB?5xx2;~k1D5ZKk@TZv{4Aqk-uG5@G88cRP9nY| z<~d^|`APPz?b1RP9I8x)rA)q+h~F9WoG|vp$nSpy?~lKnQND6NBAN#(Dn z*OQI&v_?Q5CV%%{a$Vx(rsZMvGWTEpUhW?|0JXRv3*c@fxDmD(0@{ekC@*t zX%8gnKd~!Fv!|nTll>;cwOS`t4hdu(f4Sm_bi??XM2uem@&k8s&-^~wTC;UDE8h*v zyJKX;pLc%8UHZYeM?-a0od31^<5v!%MpFEV97!+Xy{P?f9KVdU{&KMbz{t=e*f-)m z+gOks)myCnBXW}TSG$ar-#NTrGvg1e<8M!FH<`CK%)h&lVJ_1vBcKlqknhrCg%5n#U+k^1}!{MXBN$E za{85xrhhN5VSn$)4;$i-@eMJIkCl@%>B3c>Pg<`F1yW7~k9ooM=_e`wAO83~J<2u| zNINMEJ`jW``MsB)55jr`x9TP4cTM<#_@W0!M*5domzHpSZ>;Wmy+yRx{G0HD@I`lV z{?1gVP2A4D?QbLoiJ$*W_>$tE^e+DJ(WnTq`qNl`+o(g)F5S&p`8{z!!5A6&$GiPj z83u3rIqO!3{;d1F?T*FBsJ|Lz%k<%r-$dKr z{PS;gE3ow}SR>!NNJM z-`nRxKgI)U=UBkvR5-rqjgeu0h;(N;@ab_eVvh7;*hUC{urQ(Ceo5)yw^g@GE^3Qm zGm{SqKyD@R%U^`IN^zRWT7DvNKv5VO_SfEesR0JL%ajuaE`jYt;U7eew_iW^yk2p_ z60!J`;3U~EkmKBC9l!U*0mWc!*na1IAN~FNi!5+t<{zX27N>~cWiTJf zpC?yO2eLjO6!U3x{{4E=rZlT)I*|F5knasxoy7M4$egpY-o=byZU6h@fCgY>)PKRb z1zU;=ynVW6LmOuN3sV|x|EIeVXRqaCK^-yp4;GF9aw{qSt|d&rIc9FY*munv%NNKM zwq*S-VR??+p&Y29CkVDF1@-?{{gR@ELaffvj%}#cb-!Pa@_G#n`a^rB{31 zm-CDf>wmDg#PUz%*wSwp78s6^k$=?v%lGK~n7XYcdt#eBe~_d<2@9nD5BhUMR?%(D zdQ7*?juh)ZNqmwqZv@7M<@Zd-kc^xnU)K3Y4z3iyG_RymadO4 z5BzKESEI0gvhK;$f6VF<3BqsRW<=vW;842%uyPrJRd zJ%_Fl|1LZhr_%66Iz~qN?Oe9tF_+@K3@y<;%R2sQT>RO~PjmUiUv#{<{jrKSu5)D% zwBMK>=l9pjeeyF+UxBk8S`{Q@DgakiqB)|DebV_syqGseKcAb?QmTSg$zMA|m z4p?7WP*h1PBj1!$McjD?h6nZA?&9v*a%hws=Qph~&J88pQ9(tT1uMJDsUVlOeLqUi zRY6jkj}8xeqKY20GJl|UN)^%j)tEbVGn^JJ$#aXG-Yd9!!t&dAVx(ph; zJlJ9JzF)NNwPb4rli&37d~RaE@o#h&oy4`*S1Y2ZHN8I0i&jRCHeU;!&M2UYD3|b= z1_og7TjOi{%K&Xo8J|8n(;DTvo;mceKmWsmT}PjIbx9Mc^zEe@aLW*dSABd_{Yec? z@Uq&a=U|0ect~^Ctf`~3eIqQChJB)MnDlmgHNTFYKQ7TQol{2#9=rUdYv@NhS|k2M z&Bu@QY==^X4J$Mux7<82-_is*jT&t8{-ztqJEgKUrYG zKfg<>V?m4~QVu-*>Y@5wWy0qIl*W2QI$i9;RnLFdfZ-Qw!{iqccq*Y1hCy zt-G2~VZTb6*3kvZ*7$ka@(wVhJaKH-`4!v~oi^)k8+MyJx_HPZ>5IF$!&M9>Swx)T z?mjg1(vRvh+;*G#zQ1?o1lJ<7J-9htwG7GPXHBYv@c()ZxVVYR}O3 zTqO&&7rj)B(Sf*vpXw_u5p``y$@ti3w9Tlzx9z>9L9xVKZ~9(oC^-;Qdj7mLTvi@* zUQ1mD7P=oz9{61f3?~(TelyAr`q$iYikl<_+Z1e11(*HiJ`X&1zz;lOR6^V8`75M> z=ewb7W1a@+2b_0pyG0dvrzY!kyU+zZKYDMtoBf^ZH8F0(BO_^8xLGxK^n7K+L7~yT zZUK7HdspbYDhHI2_{|j#x}e+-pIt3-ZPE4-zdBlu1e7Zaf1x+lN(|PJ*1H`#~{>As-6uenId&(ex zGZg*pLi-9s4nhX&#-%ygB3T*TETdy~sCH_|h3pu9ed4zkV+SRgC7O>N^#8H+yZ!WdeBbx~_IRv&?%kig)?Rz>wTHF#KJnT-V_`Nkds?<>{3YIWD88`y zzplJ5<8_<=yTN<(lZn6FOxnd4H4};WD?Ea?tcdt)yr=l<&Hvru{TCSDd^j%NxEXwt z_eq$p7w@aU_~QTg&bj%!IDfzTcxm1zUe*tJKl^oxcWH(EhjZ{``ZNKGv`5#`5^XcSKaJ1s`Sjt6Co{`*>#D?vbgWBNg9K zh?ha>Wf5J{f)@k;ygO7G0+Ld}HVn_yZBpVwfAORfZ>HL4rHQCz_LQCpOWlD8VS~t%nl@R<;UV+dm(sk z{RV)N`fH_}%YA--0?KE|`~ooCtZ?(D)Ia~?o_l%O56b+3{r-&n~~)Hu~mSH(LKgur_Z1;Q**^C_~=Ji~sl=fU{03ZcyP}{DH?A z!H=o{Cu*zy#o|?i$95fK*~b1WoF@q67TOPeR1hOXDfTN^WkCg}_pP!QAzKDAmfry3 z3=tLGfH?he_q1g{1GQV-q<%o z2`T-L{{lB)+GpnA>wo*=L}vY2Ah~fM2kzIrulfDo@@JV-$Egz-?XM-m+aN01|0aCu z=6Uu^3ZwnALO2{qMA0ALel5SbsCad|bXxskIlCjgHKLUE4_8FQ ze^I`epWsp0|5}GPYU2hzbN%4}C>($!s=rmwfM(h!`U})>dF)X6?CJVzkUV^gjM_*l z3>y&m$LzNQ;@bmJ%J{*bzeNl!IuKq-x8GQPar&3L^RjwFeK4*4Aa-KMpA^Ge%H=MS zf6V^jz^Ptz{j;tOyUQ`~9o7AG(&XQkAD0vBOYkggzc>KO1tp~DKWU=X7mm?_C@0p# znSZSO;_6SF{5WungA$6`pCqTq<&~`df6M^|5MR98K(Rl;2Zuc*i8QbD$!Y@`=TB}3 z?};b{uk`ZMW3v0kDK_uB_huZw-4V`%j<47<^C>yWzT1dKyMVu4e~k9e3(1WGuqfpx zVywzZVoY|-yps?A-V4wLm;9Q`@>&9 ze7a$_|6zs8Uv9t57q{TRWgJLDk)J<)l~#YTkgjs0^&D{)kfA4|mM2D)M_G+ila5zdirW zV+??8UH@SYfNve1`2Z3QT#KdauPI|jDQ9(h-s(WNQMCOFT>pa+Za5u3(0>Hv=>NLA z;sBXI8~-r=zXU+>+mG)?_Z1boBN+Q{>&nkOe~m=&e^i&*9-ZVBN1K0Q`9%Yu zM92T3=6ALeZV9yhhuDdo|KW6)pWs#$Q4b;-DU-W%Q2tDf#5Vl67abw2qLeJ_G!9=bR$*4~5>lMVup3 zRXXMdg`6hC=CP-i$3RkMr<$IH;Ysqev~|Vp83p9{n2PzA8};G%O*2C3U+clUU6<`# zo+|?zCWe2Lcx(vu-q>q@%(Mbl*Y}wH^y&_p%%wU88tMU;lUFqzF0(=Hva0Ks@0)?Q z$vtd7EMvheO~vrDUTnCo=<7jpzb8u|kXM-10~p8G!`k*1fVg9>oR=vJh=|Sed?cDUgp0d%V5SOK_)fC#u;IKH z-;H;QI}z^+G>6}w5KHnd#uycz5$taPGObPQU9@b$h%lXpCFcx)$_KN`)MDNRBcm_q zb-3RHIG$Pg?eTiv3+~py(R^PoR?{Z3hRE=Ha;|eCccpE3lF$ct+ zUbaT@oq*}ArOtWBZ2-_{yt@8~CRDogrZlYB6L{)`7S`FCfSvE{kz|La1*qfuA05>-416#)tl=PZ+C*g1}kXEyEfR!l=3^7ZR+IOy=?Dx2Iqn$}N z7&px?k_?uFUw_Ojk_)11m#0btxm&K~cJ-ev~`!#edSr zxa;<}2Qn%l3m00e0Iuz@@Lvu0Ia$Tt+OG;_Aot6m@=twL;dkqwi384Dp!>8pJJw&f01*d>x-{or;QH*^Au^kdz<}bC zXK^QOL3xpTP1rp%$PV-9qjx|V_(x8Cd4=l%OfSm&cig7SYd0!8OdD08gLLHxnV zydKfM(+xII%1szQr&J$s?_HD8UCaCantH**t~&p>Ug*}J!LQ!G#joBRZH&iPysv`S zXZT`^>qidsQ)x;8q1f@&Y=1+AeqB6|!26@!k$oo6!SHDXBbH}N&@UFje0kQ6|HncU z&(HCTrTyn+8$0pvy{PQ{T-bV ze>~3e9+!`g>Q}Es`C$IOPvttymq`WMRJ^tjFX~sv`y)L3 zkvHwlLBEZJ+4K&nK!b|c5aMMJKUqYxTlmBI8y;wZxGH~}wDze$g^E`Z;>FDiYKMN0 z4B_EFVh3n*{vTWKS1&s-y;Ftcc!2#+0`YnS0VN1I^g$j`(RFcze%3vU(+PiUUL&sj zUtT_Ti}y)poYyEKxv_tovaaO&HL~C)-DJhVjCgVUv7T^$5j+d$)z}}8{rZ%7*`ldo z9YI{XenzZc;eUHx)M95u<;Tqm`)4WT1mW+DHee4f3up;=hC&1}&v&O$u^w0N; z6nu6nKGVgO_Cgno=b1qMANG$^^jC4cjgCMnS3x9F-w>7bI;80zM z-;N8=R9c_kl={ou zQh1NkWCc~Y^JcV>zi^xs)W5L*VY`O?>Xdak-!G6P8TO5(^0)nJQH<*nJwbs89M?wC zU(!{588E%d!)(nr=6wZygf~N!(*O7u+IIZ8^L2e<9Bp3#_df%KGewlbpLOQx56;%K zw9Km(V`=Rd!@RFzj}+;ED8>Hp$A1-dO=pR!3BRv@ zlrL^Cf=8kK$NqR6S3uE!67(tKH0=x`4lWr_vp*UPtu66dC zV6@-vNN-+;nx}8O9DYzYuOec)jnB^gzKkm@KUzA6!g#)hX0x^y~N{9NxE~ z;7dk7dqxr!U%cx2ZENGjlFatIFXHbBtNxhr|HZG<|3CaXJ9#71p&j8m zD?4P6@3nJJf4`ZB>n$P^qVQHRCn439(e)CsH|9GtpWh)w%r@E`d zYhDKZ(?2T1mG_(;SnG9w-sd8!JS}(^b<52w9e>jhCcWGG`D<4LxK3qS%9^1@aI^cg z>SNXbCTv{#K{?eP5XUCeob0Lr36*C?FN**m)LjR>SF{DhI+MJC3w*&uzlh^z8f;(? zE&VaD*cK@Dx4k>MuRXYXlsj|LRTBVb8@`sX(gR60<<~phF#)Xnhn<@g)Bty}&i#^E zynOUL`@A~s4J!2a)fV#3@xi7*->L5;BVG17?4&PTVlf7C0I_A9gm~ z1HA5J^JCjU6JW1xxCth;W4 zCe&QS3mhGx2*(&|=hiyuz$n*K3g?DYl0Clnxjt8+3k>-FTrzPA3+_5@nKf{U0Sr#m z8OW9~ggR5_1)LgT06RLLuZlJ`fZ(UHL1KjgwCr&3p3NRrNHi|h954BqtdrSz_`+2^ z7+juV^RAQt{YHnp9o)kPRur9_Kd-?O7ADALj9h68OVX5ISEbv*(@|1gULCagzjgj_ z9D|=^T#KIs@|+8Jyu$OH{>WYt1U#xXO&4^(-)@NIW$}IzyiT~yR35K)%DU8 zMn4Dkli+=lqb+#B`NL!-(}3~2LI%wG|GP)3xpPUr8_wY%2P-Lz~WZJ!0>v42Gg zeIcBufCDwDuQ-;*A!c$48~(NPH0(dX%|j?Z0gLY6B-!3Ownb|D{jqtLxcY;0yhBy@ zGrzbN`$_PAJFXXk5M03T5$8FUv$j9&0z=%Muzv;nDJbPnuh^5%nV#h_CQmvX*acX#Ee%Z-ww|L`C~= zwZW=W%L@Y-$M5b4_YZ!OhCO#4k%WT1L**%lzubNrTyS{>;tKnp4U+#K{6uUYjYs75 z(<;+h3gODVfFj(FwHjV|}(xey2ZH z|JYCBhAM<&zxWq`KD=&xN!w*OZT!UYWB&@??-#Y7RSK_H_y^O^kK+2r@pahWA=-Zk z|GrYCpNnbxq!`~i{V|Up*iVA}9hCZmtACY{M4rpYpPzRA<$X5h^B;J<29QE1@+Yar ze&$Sno4f4?H;Lxw!}TXlf6pA3JabG;p|#)tN&nmc#`%vp{sKO1#{P%>B!NgE(e_i< zSn%MrTR(v3$AV;z03|0p(T9K7rw7gFXN%+?g_OD=n2ZcYFWLZHTOm^H2 zc%kxmpGLq}re*!oTK<%JZO#G+@)3UlydWL(_~nl>3P2RsEANpXX9vj2;$7WL{+Ru3 zUHO?W0LA{bC?r2c|Af+`+vJ4Aq?L)h7kJ_Q1wk^K7X1e!+yFX0IP!ZLsku|Dc>OXr z+WHG6CqmGNesp}^#A8p%ND3@II#?nQBY>8H8|y z>3F5*tcRrS?xA%Onp%wY-@5kCtp6d1?@&7b`~q$%$v$;y_qC|bjP@r2;qW;^O8<$n z54%Tli_X8_El2+4@t?W;tbi|NbW?s{Jr9x4|0enIdk3zSO074|G)U@$Nh(&KAks%b8b>OG%DyA*(sw# zFPpXdNW+E0Lc1#;CjASf!cQ+gPWHc@w)oDN0y1{S&TTf88_8asPk~XzJIUc4{fh6p z=aSQo?;4iVw2M4hXlfRE-y94WcC166)fO;mNYlgV?e$@p!+=iE+6s2vxwgP{6YpGL z>hZwgUz9<__pohaZu$WKr`v9+1be`e_Rlt24DSVYUWoC$Wa|#HE{wPM9_;`U%X>em z9IXOv-*khUMySBMO4k$gQcBLgPU8n;`FB)5YWwIGOxk`V}s!mpr zu(>zCD&h-=JtywT4tG^p@oMevkIyZj#`b9W&6`YM+_x(^g*g^b$$5vykGqDjBJz`b zk(CXs{iIiOaAY@Fsu91{P>l`a#%&HtjPC-IJjZ>7yOkjOM*M9BH3L{Z?`TXHFE_YJ zU0MI@XCqMap_5Uhw<T(3z07 zq6+{zmVGBDNy2T(>qnlLZUmLo5AF9&REMd?z29bRHiz(qulb5zuHezVX^tzeID&>} zp_`AUT7lr;6&dYQy}_Ahuj7oy7=fUvYtI+l(+AHM+8ZV9H3#hbD|)~AVF6rT%+5I| zX$~G3^?$Z`xf#gYUJw9N%>k$k7++GS1@@%O96Tx701z>o4_jKu!iq=Bzv`T`0|T0_ z^q4E(6?Razx11zv49l!0$42*1fZTf3vFtBhVV0ZXyy$sS(DW*~IDe8cBx0^D0X7#o z+^wT?C+0|j;1$x#9v)VK>GdBrtQ_YGlX`!sl1>0nDMli#t86bAYf##;pj;g~`(Fv} z>)H;+-_43FeXIkyK0XMXMlH}B^HO8eSDk5UepdUb}=U0HCq^GZ0lzM3p@Uac|{NWi=;E81;% z`<;Z_s<$1MZ4Z-nomHQHqaDaHkq_G$ssk*FielZ(4B)`Ei4#)CcZZKO4u06Vh!;m- z`)Jkpvl`H}Z0nNTQXS|RG)nKwI~J@^n^M;Ik_H5qmIhiI%E79mTU5^6G=e2jhenM0 zsSES$wlp|>(SpR~sIgZi^kIZ+Vyd^UC2Z3DUgvz&3c?{3--73w|KEx`_}}h5#_JBe zf6H4M@?ZSEUg!MTs6FEEJ;v+T&B%Te=zL~}$dOm$j-~=ns^8vI=(oq~Sx1C>*@73` zyS&_Q)%R{ZyfYQ=EX21*=?xGSoj1+ix08M6cxtQT4ys%D6GwAqN`b?E=gj(;$ABSn z!XJpE+gs-CqHzcJgvs)=o-2Sla`lu5=NO?StmWOkqZwSKfmN3 z13u#f&H2CG*1}&j?m)hUzaVbo+Y>XRn!Gr#mf!3H5(%nQo$@dQEdL5mELOk6{oE=lbD(c zxKuom4lo;W^55&Ub@k$D%rA~qL>b|If!8==f{3~){esLp{&PXi8V}m}R4h&>lpe<& zQ1)l|e#^8|p2gLHJ^=qNNX`bBjX3!u`rSU7U~Tu?>*ni`2fY^D@MSz-_+R1<@^?*o zO(yzP3>fF=%7_;yKfj#7{j~Gl z;92N56o=oNwt4iPTcc_FHaK5B^g$m{%J|7YU(p!6ETdQ=0O0Zol5qe^E_UDHsd{$K zs<&Rh-TtDV?b?}f)F0ru9sysc7XF4v5Ik>Tp=ScUcR^wMik;IQ%mg>^K-v8J+D$Fv z2aY?iM7RqrcocWJ(zwHiJ2SymDn46?H%95r5Y1@81GRuh%0Tge+bSm>{|i+7Tp`{B zr8h-XXeR{sGdvvWY_Lme7T8Y3`wQ{n>YuC8>2g|!Szt32@3{$JF~#98o<8%^VL>!w z`!z=yS>Oy?s330Z=&B8Go-~94+|L9*ySC_G9RHEQem^ek5BY8T!RN>A$LKe+Lh`Z^ zrOdz1gdM%XDZH&#-qAab(f)QvIBPmSsv+qHnPuA9dE-t!M*WE^|ITV@C!5IjzdinO z)m5H{sxzN&ut9SFL)-z^=zT3`Z|)3x<5%No_5<4^aq{!$=e&E@D0a1(BS37$+7Cgx zKt{i%J<15j4~UN6^6eeSo?l{U^8auAnfGmRyh2ZuA*KD)&bMg~qIT&k4v_Y2WBHl+ zi_eRX#MN=_ISQxQ8dkOhxxmr4**fh_|1)!YpjHb=su|E9}J`_<(|Kt0e{3q(XoYu~s=J&#Qe}oG_l+u12cWf>r z>&`vTG_Q5|ZT+Ea8T(%#N`U?M6#gu|hdaoh%@sV%jMo3L{6PpGOqV~e+3$66yw2tE zIu^9?3**JLA3?isYusL2#~t5~xc!eh)+X zi=o$FeoW>Al9*?fUDN#%O@BDQD1?iqDM*TCNTM&&q zpp0Mq@teDFeWv*&nLjpu;CP96di}9Sxm+O$$FP`Bb^B@k4<#q!(1+1xw?vkz( z7u_u0&=q=aw{HlER|MaEIrCTEQv}=tRSE1^EtoqrykJwAE+`za{;bU}78rAGVR(3o zChwkG^#h0Y>4C)5j?oI9T>w!ckvetTZIT$jP3;@pR3z;E=EYwKPZ0Het#xBXb9 z3Ou(RJ~vvKcYfdc`}LaT`tYu)UQ+KGQ*c)6@Q2SERY2s7b-j*%c+a_!ado?`fd&Y? z-+kZp?KR}=d6o4`N53Fzx<RqXiGX?Zm{{8aVqU8|py1Jb&l)+KC!p}x-i zcA9$7*fBhP21_3{ES%~dv_}Ih$ke+q#@+&y9*cf=d9nt`D;r>ca-l4+Jm(ktP(u$4 z>1nfK*~^}w;(6s34+{>+E7jugo?MsT3P#I1`+cRjGzp?t|@DI-ww`c-(rHCMo$dn5QO)CXyO2I;=BlLnLD z`(6K_ss#$nR&4(sUg+U~6s6!ApTAz;WW1fLbRfSTQ-zKI@hV)Eb)G zwcj)ycu8{Tq!rTIux?;j`RJ485Ik5oTGB!VzMj=Xb^l#n974Xv9qDj+$f~Tr+J^>#LoG~gcn zb7|#TnlL2oR*LUU4On+`%ia|-ny`J}xcmACHQ;fRtQk4qHR0Z(&$byA>TpHc=?!zT?c(}4M_+@%x!RiS3`m*mApI`B!!LF3N-Od+^Z zyQMUI^18IQF|?fQ6CI>t^8fqQn_sW~ z&+ik)esyf;2?9p>muP~GTR84dE5x7Y$NO4~u)!yi64-HipoZlsJ@tJGU{n3#Y@uIV z5~auc)BY`Z!FhD$m+q5Jw@U>&RJ@K5kJrn1-xjaa2(+(W_u+wey)^T^zj(fhvrlZ{ zFWA?9YIW@N65hSVayUWr?{Y%^(kQ(GqV|a5dy7XTc04RCp9&EVOW!#?KNV^-wxGyG-zh^vKa%;@c z-<}us?jpJP_|q`PeIZ38H}vB=Qx~Tlc@%n}K(t~OH3Ro_2{3j=L+ds@O_P6(i zo`spONe|Ix#EbgXh3i6K5IL(ID3WwI|9rj=1jP$x#ACm@5z>RG{Te*;tHsyuk&Nx98^RePiuJ;K zS!*J<2rui}Mqwe^4N`XR~hwZC?S)B@SOV>`20%@{WxCUmPCu!SV{8h2?K6 z-UKngeqBoa@%NQG_I=fD*+PHDeQ8sKw?LGl|ETR(Z;(m_k5n9=_hzhr91no~;}m>e z^Ld)x0hKSNZ?yT#`m1HUchVA-`yc$;B~^~R^BD0>@9y!Iuy~#*NUqefFKLDF-Rb&E zn&0Ot30%WNes%3ivtKBAEB(U1zb_4C$Xw{F;s9N%Vo2vuk{1?X~WB)LPzmnqB$E1Xe zc2xfzEXMYa{p#31PQkO^zIZ`S9_j5Dzl44s3hTA4_7D5xv45Pxp9P*)kqQB$&pq4l z@h|TS<}=!#ww9lR6zPem==^DS&A4wiBkXAJQ^)!T=mYjoQ}o9!@q0>gZ#2n_RVNtx zuN%UBn9sv{p>kvYFlGGZ&!1kERkYLZ&!*jH zgJ1;qtM@@)Q1r*@)l^H)_9;1CJk^;||2_!kizsFN#E(k=hxheQ*KGHf?Ppu{U&Yve z{7||5>H32;mNjHazjmX>YMapJzbJW|$KL>yQ6Qav{^9x0NLK0T@H{nX#`#lQ`@cAR z#b}*_dGqUNeo8ta{B6mw#`@?u~{Bb&_@e{{GgwgfKjlPk`0geh= z8)p3a+xCNT{KkIuI3z!%oc#4y`QFE0oaPS#c%36i=GHQPW4}7~&tZKL=sv)=rIX+J zEFVIPOU8V#Umg3$MaTc!s=Bo&6T@h6shCe&>u(UsC>BwQ{o}7cN{#df6Po>KajjT> z>{pLQc#8ev`z1FQv>UJeAPnIB0YNh77X4v={6EAMu#<0(-H zcc`zT?;oJ#ZMJ{n%D?|~(S++8qZsXP3=-rY;!0%t-+?4+&g+oly8qt$Jj9hB>lwE< z!LxAvFcKxeeiKUnA=dUi#EI6uu(`ZE{V$K-%y}(eY#CufV5voIf{yh|~Xf zegZv4{ryjV^);{T&rH6ym3;1?q%+vjiF5hWi8=aH)^jY*Nc$|iGmCT4?G!uDc0EV> zicew8&>fs&3C^O^AJ=hu2Ndo~$sR^NFwVb~_-GN?Me3RMuATOvZpigRMyvHe8Aqik zCiNrP^TDy6b7ajyr(fHnY@eG0uW)bas%||%t<&u4>9LL=HP&SHiXZl%deQ{Wg7aN~ zy=%yc%@xJ~HfCw&&XWX9y$|*2q;CRYg!Bd_BO{oha=%~RepC49?wJ9(1^Te}NM+-& zKnFPL?Ap-nV_9(UmPsp3pPE3zxA=z6?phKYvz5r0YYR`YN94I@m_Utt3gJUhSjG%&O`!8Zal+dZS&r4h(*(yY%rwMOb~Uu%z%!Pk7VZ)||D` z4NAa{K^mb(U|IR7ahW5`L5|soN6NNcz`(kY^pQV}0P)d((Y~AQK`)@ESv`UcvX6aK z>Dt)_l$^TPzeA%Hh_9Ypv`g0(3@q^JlYHJ1K!r^@@!{$q{iABy))&Sg>CuJrQ^pzq zZl{rEH-?#myuC@Y!d7d-_ud^>cX!o+YV*xAyk)dt&OR**hpm#(??}nz_DdSctQB4Q z&5TooL|0XhTk9@zSa+w-pC;8nMwNS%jko;Bal8`_Uqos_tsb{VPdVBZx-9Tk(dujp zV<*j+s-xCb8AibWz(_MJGyAX6qQ~- z3_T3sp*oozUEEmEzE?t6cQ0ee-6(Y|^+hA+ey{wBc|A2@#E)IK&wMb4HVxUY=6k9@ zU^u++d{Z~r-CxQ`^Q02I(0NAp>Gmd2e#4xBV|KHl<}b%L!G`(}T%Oqf{vKVJrG3=; zXrm!q_rhY4u7(yYmCxyM{gxKg8JiaK+D09+##!E3c(N;ew&k%?$2V%w%!~Kp;{;V$ zd9Z4i;uIBVxBvPs;H3o*>t0kXi@GSZUM4 zzCBWb15VJK-a*J;)US@$=L9|+Zyf`vpd%IEQHU2euAPZ~b)p*&FG0mi6aXxy zIDFcGffqlW982>HV7wgqAde_zUY@h`1_5fPNX(4?G>0~?!|hfa|52obb!yPK-<}s^ zIWa%Mvv6Leh!SAGIz@i|x*~nx;ERvt2Gio5alWE{b;`a>#knhQ$aiU5W`(ZnL-R{v zytwk?bWHM#!_Uas;at4SowhHF^TquIhh0$SmHc&?@}{I=KE;uY^)HS;=JUJqf8Omc zcWYM^&98~`#eQ|{9~NEL&YiqM??{Cg?R~@;uZ})wAxf#gQDgJ&kU9OT6^|qa(DaAP z^I!bxT#tR#q^Di5_o?2tw0#kb7pp($RuFE#y^Z@C%=c`G<&X4&%`ww1kWB)Wo zf8f{567p;DDDR-2ZnX1mI6obfKaQ)S^gsT(w7lu-yvvoi(Fu+!8sO{t;X8 z>)P-2v+EBTG4}t~>5uuIO%@Ww08!EQ`#9s!hRp{P8SS4Q!s#Q5^~!tX?<@J98u3{z zB8+ie(>nQu^9%tSVg0uiZ;0eJK~&WK_vAiF*8fm)!U%mZMwHV2h|0dDB&(#v zZka<{{hEKS{H925>>sDdpY*dsg}`l-nenf!KMN#(4@5=l56Irt>XU9sv){O#S|S|w z>x#C2mbz2lSv|FA?H}W<5FY!7DfWXue&?^(G44yZuKzOowOWT~_UqUq{W~B^ z(Vx-@wMvq;?}m$IwZgx){bRp6_K#EK&y$|SJ8$Bf)3AB^-#%}|cE#;gpk|@{#{PKh z*QfMf{(0{@c;@gTg=oh4t23&%fAFhwe@(f?3Emzv=KajS9oNI$e{ehm_K%C&p9NhV zB%?Fv?`c8B7C(PL37PZ{(C==DQrZu9LRmd0cjTui1$fwD}8`(--0V5EX5IdEaJr8}Y+{ zas0vY0C?YmqJL9kc$;KJEqilm&EI~XGjsoI-T1+L-&X7J%yGqmNbmm;S4HF&WpTiw zw5j zQVHD3$s0O<;q2{eIf;EYtChUj#yRHc7Z%{RhBHuQOp(HyJ)A@4@;#pf<#DVQdFrh; zU(D%Z`^=%yDvA6s(pB!uNki~j=JL{}Dl@PFm_~Jq?F91I6|TE?AsCz(9$7K&91EOU zy7pX>E$=)1DPOxeXg%lr0(-*yJ{d$V5y zes?t0wvpzYkGrDg?vU}3biU;{wXjhQg1NT-kB&RR)dg#UCk(U(E_!~OR-d;6B~7M& zxv!0YQlUiGsHHAo$JliPG~F$LvA4yJ;qq2s%)0W-@Wmz|sp)jgaW5NSx>8Q&#zZsl zApXN=+e}l~_jx<__mADdayPdw83jhLGU3WFYZHB#x5-FhOE&{p-?;pK{~`KN{)+kG zg=2MKe!xJt8O1s<&hv+1j+_pJotE60u+OMJ~wT2B9mM%E18EFX!*0g+?z1;v&v8VLL z69qt+hC27RHw6wpvL-8r*aGg*&ao4IHgd`bjO{e~T`v%4@NQ1(BYR+4n0kGG1_1Xj zugrB=W&%Fe?n^RXZ4Nfs=Dx`7V+x#7uV`4MU(wfkmdSb@C8#p`|yb^vg0{N9U=>Y%w1Pl$;#jWe4N6R*u{sAe;>r)8VQ zU*cK$_`>G@y7In^*KPjq2Jg{NCjN3WX%}DAOeEs3@CY7Bi1=%~r}*p5|J~vJ7Z`u5 z`J-_&_$Kd@FkLU+SAp@x|M8u3^LKIne)aLvyidHWAM$?o>lE+O3~yeA_|?bth;#HK z=48k9nwK4#-F#F}g6C4m;ia4JA;bHh|JPh3KZ)i9%>_Y1_i4sYV(?2$YVk`nU+#(X z!Q-+l%9kMEfnu^7xRo)_kTqZYc|TlQQNO?_gYbmP>=fWa-Pd*z?u%o;1YQ@$wD9MS z{*crKNY!e;pSL0f^rYf@3h~%4p@(pkc|pVd*P7s%v!%J$_7u>Citi%Ci~1$-_(Bk% z!oX1*^o;0Nb7NZyqhCPOFM<6d`2D@}Cogf3DM$ey@WySkoF9be?K&X2v0q|5dgkdr zd1ti-aL9aqY7h@!PsP^@@uGeSJWs*=Z^eI7Nj{MRu2At;gm`h|!ljAZ3HZ%7{|hAAepd-{H!#(*Z%Wbs6q=oe)k5QOdk9|KsIIk2}eu5}})a|^@AKTXu^-ECX=PHF>b9xue%!r`H+u{5~{SrLOi~soN{q~y4wmZJhleVvp6N&mI zUgIAK!9C1FSUsxRhr7_$RXAB&%P$V^byAiyfp?Vvwo?MWIso&>{v7OI5S4#gTx0rh z^**$9CB}>6zijTJ)X+g5wEojt{G`~L%~{ca5s&>DER-Ro{*`Jg9&kK6g%@5|A3%%O z!}ZS_LivB#?u(XxV4q}_9svQrUH+(XvHde*ZE5RL#8&LS#-SY&54TVBXSBcK^e^Bu zi_!k+BS9<>eT4<%Ire3Lz2&^A**E}djHQ(y>ks==uz!J~|GZ(hrNNU%$=JZf%f zX|UVtx9vCAX{`0LL2W&+$b65P8Iso=(Wfo)=eejo)&qpq5wi;mIE?GUw(7ric;yJNwT2SNI_11#`#&~mkgyT&# z_@(o_MHR;TLd4@{8Z#SeM zcSJ??pLc;XrB1EyAG4p>FM<6FRQ=Dke8eG+4Kb1M(WKc=B(B)`4^D^cOYkhLe=n2( z`xhwu+K_y`Z}=Z;KY@rZ-Z!GOGrnJ| zqVkRV!Y_XRTK$C}`I*j}oo8K&?&1^97?+3riTzPNl=j2FuZVbiGya~#Kt}r!hH(85 zrL^Cs!Xs6jq{;!N%Qap9wfYN3au1-(pI-En0Ib2g(`0#D;1s*soD!hqZMI*nv;WL~ zwLwUbctl0luZ_Eo$1LmU&$xdv7~w`CN~u4-{mE?X;uAgEj~17T`^gZ5!{_!W?S~&% z_%Zst{gsh@Y4aBZYqS0$QARO{QtU^`yWq!U)`r<3BclQs*Uv){E}D+d3s-nT*7SZA zP_ikQW`A(`hap@P9Umpvo_CLN^IwtoUv58b9lw+q=l{b|xkn;O(SO6ilXpp_ft4o> zPP;McFBaiO(D6xcXFVdb4v)NdVVm;*%k}qx@w|K-D)(r5`IR2Y>>~-K0ZQgi?)~NY z3v>HPKyr_v%b#Cr_neFm&A!>ihJN1>O5W!FKNe+_hA74U@aI2o0*dy0Tj5Dtzv2Fy zh;S*0Qra&&y>mI)`^vN@DHqu^`+@P}5H5+1hqnEy$o#N1m)lMI#CVT#>+CLM} z$#njJe_zO_4mBq_e*EqGwotY$en!EwaQ-b$e(sYBxfQ!^Gq&GU#9#tl{MAw{aS}^g>XE}+jH6$At+rKd@<(P(~<&|>vz=#uW&zz>#kt{zVh8^^Ulx*~r z?FJ>l^4!fwcFa?Qr9Q7m6|J;}`-ZGqm%GUV{v0`2;Yx)qOz$-7-S$dD7|trrDZA_j z*)J?cUyU_@ULn~lj&3o7>}ww)Yv(w_?P*8PYMeKKazRPC+s3Iwndui2F7`2mg!<$i zZuxRx@24-zNnbYP20Cr|-ropndJib&zHor7g}PxS@~SW@h(o0DoHazvik`C_EFeoo zOKqL0Bdq9L88PCP9gI>5xluC11rpXFLr6(oaIT9{{mCHS`P#1^6JrYG;Te4*4SBd)FE_~yPbcBfWb8qM}BNH01>IaL9Xo`U=jDaX8WlC z`guK&43e>dF5}ju)g;)%tx@&aQv15YfyLn1A#W?#)D-BnSC$RGjW-GY;Ii#s(EmeT*wM>4U5; zkNoy{I|Bdn^0B!JI0A()ss2TlD3Fb>hTyj?K4kN6Ny&72V z1oNNdJ)5$Q17)V(c<0d79%e{4Rm9Bd3~zQeS?f5Z6MU_`$b=RCi)6P;TtB$(2gmWb z_SX7K?P32tRzoE^6>&@}%^thB@$z-u>os?p6v%GKPRz|Sf^4bmHx1ExU`43>fl+hS z;F5!v`pTE;LqYnkFf;j+@nqh4WMacJ=MR&lcrWA9UH^_3{}WX_<$CojLl~8DF5%}3 zW4JM+Jk`uc4RU{8`FU2UD|i+bl3~2O3!HlRE=%FO4xHZm=gied)L_H3C0X81%5b3B zO_NA_4X8QeL$4&8t}y*)uiQHhs_=B6yYi_)S7Q_D^?2c)YKH@7)gjUUv2S>v4cf z#dC#ttZy9u#6|hE#L=YAs9V@L4osxtCkpZ6<}qh|EbGVAj|0h6eDWcH*@(keBy~UX zW4%A)KAs%PNFGtqb$t7rHR_G`y=m+4*7DcTYua>Tki~D$Lyo(4Dbif!!MKiBM1m+I z+71iGYXB=OpOW(mW$*9)IS}Xxzb6PT0QeF62XGvX=sbS*OoiTNM?-1rNQ@V!f1D1_ z+Xc_9pU1-O%U2MyjT!Zan+5LPqVkV?q7$m~JdE*u+~VX9G&`b{nHb8rk0TDRQCL#m zpc>BT$52BG!to%Y?eA+h`&pVUDU5h^gvWk1$~ubZzw-m9$!ODvceUn>?O&Yy;_6Qm zCHRN)#lS!CqrknG&t}}mY%70p_$ALAdH;GawqG27gX2*|+t1C-14ll2kxJ`-xIN?e zCmatW+W!LAdfsa67x2gQFRuKW4!aH(`iC;=zZV2MeYRvwB4hs( z#~)?OxDIL^p80)lyeS0#&jK@Qp@R1jmxRgRbMHKa)_-vQ8KCs0h>F&K|D|d}yn~tJ zm<$mP$HP$Y{C(ILgP+FrGynbfnd9PMc?Hix`)Q04;5Zse{c+VZYsoy%Uhest^!F*^ zd|Rh~;XF;0zc_qPuW=4bdl=FB59Ti#M?;bSaqaO-oQmQb9Ul}s{N?ud`{l>wWU4kt`8jFvyO`~txcb9({^Ro4 zA)GxOUlE;ujjXLv&~A9iEWfz&qiow~{~8$gv0KNV*$EZTh<)4d# z^hI*xco<6k$(ZiHNX7-W-|XG4_aE#3IR3_uu0LX+-bfB?Ozl+&S%10zGoSAbKynX6 zRJ8xRbMDvom~#xkc2Z zpxvANKgmxFV)VoJLmA;X9*X{JB@f>sUA%+CMql>%W9>g2@yBsA6#l_UTThbZS6{Gu zR{1jOU!4B1o^X2+JPX$!ZN=j_nkdAGB7fAxNtZd1pWJu8H40*kBgSzwI37i`{oDpw zof?18-#dWIBN|6T;h*Q5yq%1VypwmjM_1bTh4mt~{1@!C_DL!I_V{sn>to5Yt{oWh zIF4o*U4LA;iK|GjAd8eipSt|j`iF-M1g(dppGH zALYx$e>nO*7E#gtx4zD&wrK2Qes5u0`HRCZKhwL?bY&>*92F9`b@rDS%jicRg)+)S zbR*7~$gfqnX9#2)y0g7QR)RpP0xNj;ZK8B>h|WQDQVU-2-qQP<^IkpjUkL&*p!xR_ zAs)xyq$8YY{r5Q9n-wu=CGex-^HTvzPT=@E91oC;e?a~Zk5_Wb*ObmuO|K%bH=!S2$-OM>Qzh zB(dXW@?=l_oMAru$awaoZ>LutCYSg2d{x%rBzY^ndv1C9InsWn;+9P5v*geTrV9R{ z=g6XP-OxR+*x+)pdcyHkL&(~4(x7~m0-XM9Y0P75Q)p!Qe#o_K6~I-ifA%trcb`$z z@`I0`=>p?^1>J`0Ie}L}?^JGWkOM>B>f|gPEDv0(4g?&Y)e(&5uAg97ZUAod_Pk*~ zvmGQ(9~}YmJMi9`w-pqtO)f07n`Z!goSkbp7KN4nhDYYUVOr%ckBpbt!) zhm7|o4S=6+#!S06dVA>u<5P!7O3+s{EV6k>#%!frPpus*ndg%%kIA(u&m|Fj?z_{_8 z=76uZKl2KI7;Pn_=Qtc>-6wSkp}hofBK-uQsLFu%T#-7%q`iBwx8LD9G>qQ%_Wz>L-#me0V66!$4cKhW~Th+n2h+bZC4jLf1UrlAKuO2kq znO;@2)eEL=KE3f`2LOqTsWNH%d%-c1&d!0y-C=&>k}+r0tRc73blA>uU14yKi~a7L z=n1n19jo&5=mEK9TL#xZHG~Z@it@p7Zg8j7oS%J8xc}SY_*Uji3(WqXy%=i-LqOk* zmViFkP3Wk>6EnO)j03_}89HQNdm{c~tbf?h;U5fJujc%Yc$xx&RPoTtqd~%psU*?Y zrifMxlO4^ODFt%YtS@jXN(P%%gg+3Q54TJxdBX(%4+n<$3zP8!0@u2IwecxW1|6vQ z4nn*XO5Yh#g%&(e8OYWI3O@&onNX1oe&GbozyA^j#Ni1j#u>HX1p$es2lU-)!3$ovQS2mNwCHCtxJ||17UE@4dRas%8`4odon?Vk`abph5-H#+ z6@OKT7dN1P`|>lh=~pr+q~Z$?0W79C{Owgnrh{%qGcJhaP)71}`S}iI-;}izqZfG7 zHuUhsNgRJxx;(pakSA?H-&*;(=Pt&1WYRC(#(4gMiT8j5^F%kK;05K?ChI(brXkC|F~OX z^B}6fy7Q%e6^DXp7o%ah#PP@JnB>O+eVQmCWkCUIBd>7EOck;S$JBb)}J zqWWJVf5%c*5K16)o4&Y^|B7RpE) zQPBlq<3sIJ*LE^HgvIHt7sR>2BYY5wCkOE{JuI+$M-p>W}{-_weH} zqf((CO@FxlaJ{e)UbOw0PP(#u!Dtu8{;P{{yrGo;N8!(Z5q!nm{6VV{CI0e)j`?7! z9+KOTE`QYat2fB+o%_CimF3P@fBFb#K*#45a7)Qr!ehD)@2*!$zi3VgP;#;DAE(3h zC3qIvKXL6xkp2UsLj#Z3#)uK6{*vbRxk`eXu_s@B)?sXat>Z78XZ_FeL)+)qO7j^H z2DXkrvqReql^Y;R>HmC(?i-1SMaQ3v1MAT5d=fRhW&UN3zIQ^DqQAg(Jq~e{hr0Zl zTs9DdQt{k=EqDv`y)B~D`AhMq2GX$yYtW+|VIc57@L>QyTA~j)ppMec_yP5@3Ju@i zjqJ~8|Ev(cJE9c%lVS(FAj>?*%8XO^a~H$3uKwsRvd86TqYpN8`Aa&jc}>0y^~@eP zY`|~7u*k*bY4sRsy8Xxe#mS$&wbtX1l09uhALH%NhaQNE+TWCW5$^d0Ajdm;H< z5vBBB{>3N{jOIwLnHJ7C|93_>7ep!LKd$`zA%}ZAC%M$m|1Xap%=WuClAA-9UuHvs zB!HpQW$dp<{$=^~8SBpt$sJ6WKhG(p9T+(2bK=mL$)FGVolih$i~V*--{apY;|JfN zkldd;d*j$QePI`1+|b7XeF3N(qV{`zX0XbmJG_g< zvBLP&2H;0O^uZrdO8qNUeR;xp85gE<`q2c&`M0?8V?J14g6G!HA0K>w?T}^{$+&*T z^O7LC{1qQ`K62D|85P#>=1+KkN07`ApyXo5kF)N_R@g>GGPWOa<-aiZ@^Xd56h?dq z66F73@5|$A>c0O^Dk^E7C(ZM48&%@&GL*TJkmx3o6s63`MPy7eWzL+TgpjGTkp^Qj zMM=hoh=gSR-EMn#&*z@!JhzX&em$?>_tzh-d(PSKz1LoQ?P;xb_8Ebwu>P%8*|;M+ zYb9@AEGC{qKOT^O~p+p^Wkyif{plQraJUc8~!ogO5g8$V{N=KT0lA zemEV4FW#-zw?9$(13tM_#JK(rLIf{-N@ms{Nd|MNco5Q3eki&hjwnU`8H(c4 zzsb3oqDLq3Va#F+!)uv{l1TyzV*`Ge>6bCm9_Pfe!nU$CBus(*}caly2z zC5!=eqVUb^_%f~^T7~CEGRm)Y_#8$&me+J7w@oeb1Ir$k>ww;Q*Io=boC0iH?l=7q ztUo8C`_mA`c4S^B=N~M7HNsZB(Qy^9LC^VwD_DO{LHDO3S|douKUltU;?04|{Z=uq zUt>`ESVZx9m>~2I=Y7)$>RaQL_r%Zr?fvg0^NU}1iOmMsKHOZ4J3z&?a{OP-DE~N= zQ9PoQ`G@bn8v9CHZ(7b4+WN7z`dj^BXJMwRQvy-H2L7;HFtLr}7xVnrD*lO5#up;zApR2(rOZFox%p>F zVleF2?PERdU^d+TcwWNuoACOT$eg@5#QgOiTR*j~{>%rHwi4e1*SA?rg7w=!1XRuY zkASL1o~J!XMt7CukUebk^U`7WLJqLSewsas=y{R-c(Jl>{pzFavp4rX3+R)@-uhT# z>?4~z_U?$++m)^zW7kgO+zBG{*y8)99xUm6oPGDFo`ocDa*mwyKzh208Qi9(v3pag zJ`C}Yw=259fXWGe9b zZVL++)ICgo%YqSa7MP8@X$VKG>Y6z^-WBRk1efBqt)ap~vQK)WE99~|eSfMZ4G&AH zXKPwKWlImcwT-i-BV4lXVxr&PGWNuVvVJ=Tydj5O?=dAork31PTu}dE_6u_P>Lrhk zFR=&N9j8rGdDaVPgu8cRHMm3Nutc+vXQpt%kE$E{o$VoOcYf-Mxz6BV?XG1HGrPfB zW0@`ydvsxgWtO{Ux)nTjMS6mDZfjo3IC_Gd6^bkRY+(bZ zxbiQF&pkn1+0(dR4|%xn`EEZedV`3y%X0HlI>OHm`BN_smxO_=tj(Q@Wns^58}6K+ zECUB(|R(8v3Ul+?@2<1_nI- zGNq)iG2qzQ3{idV0YJslFnv{9Amy{>b=gKcxMZ=~x_7EQA)#?~f^*MCvV*1c@j@+o zxOUZpP@DbsaH>v~Ma!D!yOh$wG! zaYA*j9w?W&+9@|#blelR`@U?!H?O;oZW)|CCp8YZpr8X4?;yZSpz^TaxkRXZm*U4Vh6_SLXy=v(1aV<+%f1Qk6P3{8L4ss&mEKB& zSUt#nGba>`rs7Wv@EuY5E{I-h!8g}m!7pjd>3yL_P!S#S?o0 zE=Cl-`ik_+pJFPEb~l`@EXt6w?tupbuaH%tdMPExR?zH*cpV_B{8j#|_B`Ok{r0-I znXMScb%z|{8{2g${QJ&X{*^89ZsEK;esgGcKg_>8!Yd#uAk8mg*!y4nGH=E-n*1>tD~13g%y1LsdIEeYivPmc@%h0&9l?M0Z&s`EJIAiMtsB~#X1BuS z>!TkAhzj?g-beOc82)1DZ|e^(hpGP>q6Anz!tK9pT2y9kSpVN{KT+iyqXZ_1QreGu zWBna6cuS}&T-x3TX;d@r`^^yF9*BA&$|L-^?egrKXU<&Uf}41vZ+gCSN6Y%f9Hn>UvN|G0oDikdpZ`Ht zg%`v2-(TiMlRvJ%sP+TLM~A4KvHWfRo7rOa`@0~%@%%^`|6*p?d|^*kwbxr{#$jB) z;kYMvln-V7z>ga#n=({&y2Dt;`nw{W8=}JF|C?|lIHrc~H*T%`&Q`5W-tpSJo$aQ~ z2f>MI|7NiO#`S9tBsUztB;0=*$E@G@Y~-YNu0ONg86f_9Au8Pd@L)n7oYs@kZtsb3 zc;2D(KTgv@JVd?u&NCnWy&ojPex3oS9u)q?rv?;|D!Wr=d@Sn5xc};daDC}`$kwkQ zb4*Q4`mNHY^*@wc^!SMq;{MirDcJvbqv!n*rSM;OcjX;2RkP2T*BixY;}_1)2jTkB z@!;^syJWRgWY8-sNq-2OmR??LqX2N_Q~!6u?iszOY@w{!iO{T_I| z6@~bx%pZLFm&Gu@A$<+T()Lfd{e2N`6r#fYf3jGwhbHO4jQbBigd2e(4y? zaS;C#5vA}y(_qz2^0HyQ>zYTtwD}*8AE5{rLC5Rsh~FkhMpyru+#!Im|Bpqu@pQaG zFVDMV;r4r5f;Z9+lE>wTA>24RoJ#me#72bGS{@Qq2+&At&F$jm_E-Cv*{(EaIJ(IB;v*;g^ z!T4B&kEfTRM1BeB1to!dW$(f&3K@r~o& zDDp2{bUTM6)Rdq5tG#Mx{+auqsPV74dd%xjQFw`_4D_QI$FF~gyPMY8kRl~eSMOW7yC7Rh}nzQ*3}5v*96bdH_1@vKotr#yD< zg!q`bwvg?#W?SuQ-nr-sX5W2MZt6lQ3z>KER}A2(Es76!etk$5sdS26z#0Z0-aWm` z`j!z`vw7M_nJh)%qZ1YXt+tVUwc%an)>C#s;rw--EjeCbz_&`tW0RGEGq~w<(5Q}G zdBObAyKGgsuy5VMekU5)y>nbbTvyhycPb82E4%!iT{`0naKEJn&J_&uyt>8&IP2{l zTC!CS=$>|er8vtJc%=Y4=}Tf@j`B0rxTo^)rS-X7<14zLi^2IW@sF*+v#I;mtRL?N zZaDpQcsUQBa`i8h>kFKKujGr19gnMnB$LTQZ*DRGta*>l--(a{54QYB-ZkernREUA zzz;>wNIxf+n->&bkh7Lo>TG)cl)MGRvog9rC3P-5o*3Kx3F$Ot@nThZ2l#V(jo7Iq zZx}Y)XO~{4CCoA{u*xhngwDYW_xFBk4RyQR{qQwX6aJNIUb4v98G8N{yP4_a0Ly*0 z9MN&@37r?e*|c|}Jt&y(RWTaafio68z4olL0j!e}1CIQq0=TiY+lDj%P*-4ftCzk5 z;BMCRU9`#-1aZZf=}#9G1;YwpfX zD$#`DcCSr+e>p|&}rRQUDks>XXfAAU~2|PZLL!|yipU@%~+SBJW>s2 zvZ|MfuhfRFWdAfH6Gf;Ie@h{*i#~MPA~UJ9oCV82dq%I6v4aU7@m+(g9bjWGlh<_< zw1L$a?M0qzHS^nkeck~*_Y+@FyG??7KTqf;DnP3jlh$+^{+3NRW+Z#|Qkx|W)`(+yOMt+_Gqurpu{m-3fb-vhXW$T{V9 z`NVepu0JK_vH@7~DCo)a9XjC95|!H8UM8Tt1IK+{@)NR4%td*(w*)-)m3w`F`8~FY zth(=Y-iH^7hOXCFt*T~Mdfz#|!qgD@#0*>e;;1q(&a>$_mc+PO9LMi{&;Se+vL@hfg~5yeoMBh(pTlw*-Cs zO5Ht-^}!Oka+fWVNILaOBOVpQcUV z>%3orbnd)cgClSJ$Gz@N_aX)kco*4`_luYHecs~%@{t}*@TO6Fz`F>S2-g9`qO}q3 z$!q=Bnm0uQ@{ayV=cQZPON#fO|JPKd0b)%Fnks^r?$?A5V>mx3OmKb>&*_5m!FJr) zC|@4YxV2dejGuPYkaJjc91XVP?`Xj{`%xVFDJ-%riUUsA;obDyNe~Akj?x<sCMj*7Pv;Q8Y`FERE9??m|!=s?(Q157`cntx*6XF-g(bTl?Pw?Z%%X??$ z_uLoRv_{`*IE-lYQ)Qy0?w__*JS;y*9u-Kt?7k^t^s&Dnbb zT#P6@KV8aX#yFx@;fW=Tc2um^xO)iuF>(U-)O31F-^c$~{PPlHc{Sq%c5EDf!y5|u zf5LW5h1@-z2G%$*`oVGeh2^r`eJIr})S5pZawEGop$MN&TFu5vz5L8TC(8`!#=% zQSG<&M`zJ%zdSuN#(k8i@`>stWmVOi8TX+^sNO6@DgBRs{zOQpJJ|(MlNj3%kE>>M zJl_u?snY9Mn8QSx9RejMaQuxaxINHO(PvFX39KPX$q@z)9^utt<3 zC;t1hsSX|V)7K7YXZbV7QP?8BaXgIh_{XZ5m#kYhvYq*79zR>Be)pB0E22B&`AHrKhy8)V z^`Bc^_p~a>iFSS?9%pbIjStF4SbsOzjC}no#F^&DM#%{re}i}Xl=j!_Y;&GW?a*zC z!wMDJ`T>`Z_q+eOKWfUoIgVcce%?95@Q-Y~Pi-z&rDgvBnr{%Eh*HYej|nd$;qcwo zm(?0+?_Z+itz17cj~`wrqh9p#Gav6MC5e@tCGD?QGS2_48-JL~ZzY~_{OW`F?n~!C zuX532l3Sv1s-jcvzn1^j)&D!A9|6bT3`F%8-ha8pcPo14<;Hk^K!1cAK$l-k&7r$w z`GLA_9$nh|{7B|F=0S*W|G(k??ScyOjlXGl-fB0-IF!K%hvQKw{ZAq9TP1lePU%JT zIWyY)hx;Iz4N7Z87e-1?n z{w9v4v?-45`0T~|{uJuPad>tD5F+&={&zOmhuB7bv< z_ov9r#0Tn+R+-ZDAHmu@|KK>9P`dn5<=3BO`#i{wAT$ja`;TxOjqv;r)t;L_UG|2i zKmSww+4?pG#+Q|>K}?{c`HLJ&aAk-Xq5RDZq!yI*%jjtdzaN_B->}>j#_^i6MA7p`+~aR2C>bY+15=f&(Bx z!Pc{JHsI6ALYKAQRpG3OsRl#eE5qyarwk}@Q-a1>A%|z~(uB^dUthb=)`eMLx$~Z{ z)P+l;?!A68Tpdx)SqH|y+Vxd#kUrE< zzOj1hHw_4$rUnfR{7H^o{p#n`1@dqN9F#cyo;Iwsial`U7w>~5ep81W9Mc)j9O_6u zO^}7*ix+;Mw0Id?!*aUeqM$|+u32a#{p%T-Q)Ybp@oWY7a%wc|&K3=jbF%7m{W%pl z=g4WI>S|XwIIfG_;C=eg)%$BnXo(J#a6iNiN>_lzd6F*MT-1SqYt2(9A2p~p%C=tH zP6yT{_J4nBktrN^RHZ?(Q5|lsTvs2Hpa?l@oDHHUC_q=Sz7_Qyl_1yu2<{wBr9+BZ}9jyvu`q zlT1NxH^+$eOXENfD!zvRFM)8_E|2}YyxVE9qjiD3oXxUbtKxto74Im(&|mA|?^ayY4(@Z0Az%sx5azIT7- z56xn=!u~a3{veD1YqF#c?6R{40D3czL6i zO^dI`^%uqe%$xIBQQ^IRyZ_Bx+Tq>3-S&+AM^yRE&FaNy*TQ~L?B5cuf53op{p|*! zH2uNKg#Dt%=mw?#^8IpJ^PS`-dB@P?kL8EQdjo_Q)?e*%o2_BpVi^5;!hTVlFE2a( z_-AwI#Ar9^8MJ*RPA5u!_L~k$Za0(sZM!`5HZnb{7t3f@H$?Tu{!L2%v%lYZ+eW(rb6keV@)4uBzQXNqgP#A5U!LE74aLu1dYOAO zj-R#&kNu()`Nt>+R*-;u!0}R12^+5yo0Dq*1QWS_BDM@r8nZ6(x8=uue<;GZ`V1r9 z9x>vCD24yJ-gd<#K~x02nLUGz*V)a<6k6tA>=$*U+m{^^FQ{Bvg!5Y z^Pk`0#2UGLX1_f4i(>yKMgH7wsfBDG$-^15j`V2f`kOP>AE0`BB1++(U@aI$y6>nP zkf+W1WBTKT%KaO^sPC1^OKhnC%Z)SrwAxvI%=(A@qCu!0!u_}Ak-@pM-G(sE-`Jlz z6yb&YPpQWK35z4UGS1)FpU&i$2jhMncipSR=$B|+|6#5__KRY>3q^lQH{ZEKavK$I zXDw@_&0n~l*e^PWu7BLv>E$Fbeav4S`_*!%XbKjZqhmHNjxezgwY=z;aE zSs5AaBAcDt>4D>=P>HuKlsH){fA$yoVSA9v-(M4&+uGwxJu8R zj%%~Xq`l8loZlTKheWAv`m`d8l#z8V-`8U+IqWZkuTPd|lO62SI&5@3PIh|Gx#6th z8B#Ug{p5thko?yFmW8#PE|_z1#FRC`jsWbq?yz0M0i@sFx^gA&Fu{~rnVkCj`e1iz zvE4$oK_IaItU~SaN?@w|>fpV@ZjgZvh2Mt!v;}Pc#<0_mbwKvS6i>@uyu)N4m(6#7 zDGu^wxkDpj^?~Mi@ff+uAJ})#z0L9h7T{sG=h_$gSb~y{KbDB+@y;y|&vaS&R0ZsX zhd*9U)`srgwp)61Fo(m^I%cjgF^1pzY_QzuVF8E99rpclr;7bDJ#}xWA%Ip!T<=Xo z)gkd~gTsiVH)OR_?YPP)JIJy-+O;ySJDjJbu>8~!8R%556X$bM5<0#aa6Ms&91Oac zH9XKm5~f-Ymh|@2hIQcU!*foCfO~E0f%BV9pv$eEInE#S;hcsYW}hZ>f)yRQ?0m$L zfZ8=KSu#^(;8lxi<3(3l@X2|P`1~>!j2{s^Yr`cL%wPLsqHHY-t_Z#Ca{m+yuDum^f(8=f65aqh%96j$Ld3 zl8%Ac{)8=fcDC}7ew-5kwMB+QwT!@}Wa--OkxF1m-ydQY&kO;OF}xT$T?`PWud2TC zCaH`q3b8kTD1mt0of|y&89*t{_K4KeTJXn@3e7S1w4iaxA%h`fP2uL#@0ECdez@?* zT%XJ+P3Rh(|MYW>Cd{-lm=wNO6&7cY3SMfb2RTwhUE(w}p$a$0q^Lv#7N^J;X0BC% zoLIj_&wuK`Mve60SB`5!{qhL8z+dw4>4N?}dZcN=tB>B;Kh@BJT!o&h3*Sq@J!Ziw z8+Yl!5qk?2V>OJR{<@1RK2~Z$Ab&n`&kP-S=*FW}XT3fDcloszG5EC>wfMDwfndBH zgU0pUh!O->_I;2J(AJ0221GpY#|Gr4=l%k}4Bl^gBHW!8eDk^6YqSoyWb^RdsQ7LI zyf{ja?L%2D_#FR~QHEg6De0fDI>&>qRD4$f9`CoYT^p}cdD-y&VkgxLy>@nt2MScY zf&edx%ENvwoF75>p85FH4%Ar3N*(8w-;s*%D8OTTMHiG$cnkl{e!=(UiWv#g@j#r4 z7Z>1#{aV;gN+7>t{z$F9(u(n*0XqPi@^29MrKC`K(ugibl-GXiWQVDPZwJgP*pl&} zhKjEd;6=@Ay~tQ|E2VgFo{B$z4B%o!;S1(mlD=jb0kGYTkK^`k!FNU($s$^dD39>Z z9ZtMBq{g0i?k9fU{Ma1eWTMK)>6q3+-g? zKlW?!hI0NNg?}JcTSjJ^TN#{K=*wuA#r`lYgct6A;ZMb01#9|xE(E2YP&x{bx7*XMU zX+}vjcTRG9pWFK9`Y-ltVf(nS{@=}i__Mdtbb#lVW--~e_!Y2U%Mr;B%awP@x9g^O zFPU=v$t*^{ES{Hb8RVbhF<4g1B9XEGV}G0t!c+7&wdvd>`+E;fC+u0o*#1@sXHCbK ztM`0N8pS-)4DT@ZU)z6MH-2*%_w{zD-q^23ksm>fThGpzdMa$Wm-lb?f0TVo{95z1 zVE(a339x^PGXC@X@9FIL)tS3ZY3+yeZC(9;zyG|`Ugg}&gZbP>C&Y*|q7?b@zq>-@ z92+Uw?>yu9^{4sAa-#H0-YtRrv0n?Igu>(B@aeByqGw0Y=0BVt_J?7=8m0bq3B4YY zC-eec)7HAs?0T3lVZRmyU%p8AecAh_&<1&Q( zT9o<|C!gPA-;OffH&JO!8~2Z1jP=KUt$}p;`##lr#;yaW_b>Dr$+-W;eyss?d|jSg zHG4#T#Q_7&v9$3Ax4$U;J9wb!&z07Har=wHH>ay(?7xFhM!t0ZS);nXW{-FDUw?d} z7vuOl7~zJ{@zwkLJ!el*ct6>T+mlv*l)QCu3HrZ(-o(|clfxq}Yqe2+1mpOD{h^~! zg@o4+KHWAAstF&=xc(f9Z~=%4uYU_WF1fXAxj*CjQ&ju&pZ~+TwZl-k*so3LfBbW^ zQ~geR)_z!ju|Ev^)hPJXdD4~SV)^s;$~yO>t=};IAN*SS1x8gQ+}&%lvVT`v z`(eDO`V$Ttr;~HqdH!Z~U|j!-WhiLXq7bFbpZvHi^W}lr z*9(Wy`XA8P zj4!SKqvWldKX{38do|+(`;Unzqew(4<#Xe<9%H9p`MFPXrC&SCudVCXkBsLXw6*;w zBe~5&l%l`<{quJ>Ip1Nv(;2^eHwEElB1+L;eq6>p>DQ_YCXA%TMdJ31LAY2%h1cKH zcD|RDJU)une^K%_>(5k_(KJLU{PX)?B=V4S~a zql(N&l%oIq^E&sAw$2RcIFGh}!1_A};Svy~w0}Dvp?oek9V%S2(w*j;*2Y)nmLTw~g{+9)IVda=Cv~{;A-4c7n&U9~GUZx3m5; z^S=P`y^zj-szpgH`=+&~<8q$;3j5iclc@ld{EzEDzZ{LIw)H1(O}17=n4TuT$Ct&ANj^%h)lxa)()|>Pf<7M}gJ}Gnlb^-GQ!Z;sAD1&+4*)w+K4ENhNBI6iCVY_POs_ zSMc)C2bCZ#H{ettUg0>#70m5;VnFN@2{3nh*&wNtGBD;%mP1$8ced|Z!(T54?>o03N8bbZdJ@!`yOTy`$PN?YG z0&qVI$WQ&O34kFoL(KBz2cHC1bRPbWMuqc>(A@mxOl8HJa~Iy*8O4k*+luPqbs;S z*+ji}(iHQbBoSTfJm{<<099!{6Ek#RkJMEqo2)J1!YSRx%o<|`>zrgR79H1xi&qc0 zIJnRfCM;X%c;3&rKSt?p$_&gz_p~t1A`k2X~$4du?)o zS3C4RFP~@!d(WF+=+28*Q|Pql)BfQ$P^);si|@G_;PB^;U9zGzKy;Gz^`abYkgIk+ z<$a<8Se~bw6KbLgTssYmTQN`^5T(RJ3;#`|l$68Ps&HjsWv}`x?uHKUoCxv#`!%dU zY4zq|NqPz(W7BK(@bQXJKYMj(x0}3Rkp8Zm?-Jk0oIZ#AKb+_WE>_K3Am*+Pi1TM& z>2|wGRwUg>jUV=&1aE7|kEec;>t3uotL*faglYAI0(O69*O_dONtEsiQY-iL3+Sc{ z%`2Q{Z}AX=P<^$S>>(?-Zbydl?OWg2gwIN;AE#8oM1_5xBjb!g_4h%csk^L!Rn&*m z^4+?CQLElf%>M2QG9t`h^qS%WN-O8aE>yP!AZ_~>-x@W@Isg2ydKnvNov14JN<%UH|{N^i7A`|NXi2*xqD=ClDg%WtY3gpz_EI*30># z&tJg)4(#_Lh>RHZIYyvM@%_q|OX5IZm6nVNqOTxMOB~&{MRZ+DvgYsm{+t@Cl#&w1 z80W?t{rP`5P67Md2%0558tS3L2^jZxR*z&$Gd z-Z6lS5rsF2G7EW^GmO#B-Wg>ii>R=j#cxY+YRSTJv^bmAmLF3!r?$6sdE z$^Q__xX+VAj3_ejU;Se(+hSdJ+PUxuVu&DR1u6OL2UL!AI!sw@MYyAySxyFbJ>(7O$#M(o;F0}JwF#m=KXM`wa{L1iu_K2)aK6Otg zlezzh;=i%LVixJz;kWg-|524rqYn0B?EfZ+Z&Nz|)jn=d$l|{4*?H%c8TD5b|J*<^ zw%g?2KUa|JS=%*v^<&!mdx%{E$Eo3U8%6#x^IZzr+)(xVBZ4~8#vj~%c)enYGNkAq zfBe&TpCQ&OmH2J>V?J?t&DVnQ%L*m1MwG%o|NVdc0q5$BE5vE?$N7npKj9I|d3+~_ zQGO!v1h?ji%h#TialMICfY@!NoyC~Z&nq0KCfxsapYF~*m;?Tp{PB9-1yzV5|J2jH zuaG|A>yr9-Pe%FU^|m7&4_}|HB!RY90^ley_CL|`Z_XIEck`7%f1FUc&h+wQ*7xJR zT6JWz#Iy&J?QG{$U~GRJr-tLrDDrtcr!}<6(UsblF;8OXvkHfo!gK3{n4JN{y0vBGJf*y^nRPh zIWIWIq3wULKI8o!j?lePCNn=am>M?A~Kh}SHp>lg8N@;(X-{ThP)BW4E0m~iRx&4{#^sVbZ z%>CaR)q5~q{`~c0bk+EgQbU>J1bh%~0HT!k=dT}6Th88EKEs!B{=ji+{Slrbf6gMY zm*fl^wZ{7Jz<;g$2O_=)(fQ|(AF~z?O|}`?mr?&kwO`q?>*pRtw_lt#sup9M0gkWp zLkWe)4}z$fe#JVjo#zkc{xcNuJ%-+Xtg4L5?CSp8H#@xZroCr}$FBf{!*NQK@r&Po zrskc=N>FlQ^z#ox_`iu$<4T>sK^p6BDJXnkMO!~37!inm;CM4(`B!R5?R~gO_m7RA zBT)H&6DQaFU6R)|{ax>vv~&M0WsK9o@r^j%j57X=$gH?Pa$Wawqe4w-{TIt$RR6{4 zu)Z{33)YXV#Gk`<>SnwY!1=Zk&)9!MP(~a?h4trqLg`4^+97|e{-LPcv4~RU5B~Zk zDC_37+LAthOn*hm?|V~%t^*nM_aFSk^mFO;O_uk)-}xL{Y2?lwlWR}1{pG-d!K(Re z=LgSUKB=y^A&TQRK2>wte&g(vC+4Uz{iOi4s*9E!6zBZ*W7rj0p^ZaOl5>z`q`Kj+$StxJJ9%69T3W{~o=1TrFgh!TYe=$yChic2-VfWi_bmy$2GF)(v9A2j<2f0(uC8<4nPo7_t zkukZeA>3o%Ey^`h3l8pc{mG$zhLG6tVbP4vD$u6jlH#4!MzEx>_p9o0#t;-=^$y!; z3^h1krf`Cc;g zTs!Jv360Kd>>DX*0D-n?;ppue@R{Q1MsJQ0d^xR81~=OjR%gZg$}8!^1=0hq-st26 z{Rw+Fu9+h|sx&^N>q{s2^_oe_wh8*MVYluLx2@K2OG2^dkdqeB_uAB8-=I=_~IW9DZc^Qw`7Pr;VWIsqLZD_tVyP3{lg;&S4(cM1~lWnpYw>`86N zwKYudxalW5Vn_Ylpg=8{GQr0)k%zZhW_M=$#d&Ri<%e?QCTjqCOy#70T#Nj>eXS*5#*DV`|747>J$ ztXUhJ_x!3Ah=^Qc`EGSLuyx+#`)NTYz%?_bVcSq^;5(`IvTT*X|1Q7iJcjc-=Cz#P z0eMDQJYPhianS}*0{KNN%Fg6HohjNciuX6zK0y%8=XZ>XyV|n@&#x-VFN*DQ87<{! zc&I)!06%wxc@9h#{k?8%U#6^!`0>ZdXPm{X)-sfUPFKvH81URshl(5VKh*r;uVhqT#P9EvTN=O zj!x*uxUTGsGLl7UY0|A zW4|bcfBwGI*!eRnXq_eP{WUB^*~gt1?{^8t>vFsKV;VhMbqE*i{IAtwX#aF zpve!*ANxhIe~~hN@a;k)-z^uD*tx>Yvz|ZE3PyUU6!YUGAdqQfXDt+ z?3cxM3cP-}P_5ok^JXe2qT*u`TKE^GKmJ1_e(rsc3NBIcz6k)cDGCpIuUHrjOc}?2 z>`ygA8B&Vj`}MVEjJmC>5YE_tM3sO0$o|qvUJ<`N{x!4Jm(edHs(d~^^%3Lv(JDNr zf)Q_pT>Ae`g7ix`gc->0rzoj4K?vo0WX76-UR$^?wR`Jg(gVL_N zE5Z2DR=geJAN$29^AF#ym;7tmjp1AS(B>b^4-4V3f0Kge&tE4$Wu~Rwac-mjFxTG! zm5!H|$Tv{!I#=TmQ3+%uLH1yWOdV@myq)^51(hcBC>`xwyZcy|;;<=_I z=yxSaPx<6z+WrCSFZO2-LU>C1<^2_3!`^CH*RdQb$gn4OrvC8nP18TDKiDsd{hJg#=h>x7 zl34WGFHf(ioyUJ>{T23$Qurr07w(e*??w;GT*~a%X`TKsm)|V7$3N^(#(rrEUg7MF+hm^A^dP$g`uTHs{27JH{Tsii@2J(~WaGEo z!(U(UULnK^!>9jqeo0aCgEqS-iD`8HW8)9@i(GiLc4LLvt9UYQ%t5zvVi&xPwH5yq!8ra+K)47xp12sXmz^-vaa6G)v;DcP{I?G8%Q${SBEBcl z`Ik~;m9mKqI;9=G%OUB|foj7EINBTCsn^Y`BxU4yE85BH?S<)GxmWb`8rQA+>Q z$dWA}T{9Ch6+X$*)_)j31^t*x$MfS_WGlu?o(WT>jeofR#~@rR9iO9+T1ooY+_~HN zSf~GI`+w{7mmrwtk7-D5(-9T6Kc!hFh!2?Dm$Cg?TRv{D=3)f)qZz2&L_{g;x0%I1 zd58EDtJ$2L-Du+%&Tl5d%|(==zkL5E7?GT^uOI#VXN;ePaI+Dm=r5xBj+q{odB~8}oPR{vj@C-hZ4Q(a7ro zGf(#$J36I=y!os5x#5qlkTv~m_O5+!gY54SJm|;Et7KJCT*Q==U8JXU-uV>r2zezU zEbZ{4Q{?WtkbAc*AxUgcGlWAfkdMv(@DbyD}wJ2eda6G=>V&hr3dnL^}(*5 zdr4Mz4WPQvvErw)Au!FZTFNq%2Gy1C~m~@2& z8uuRv2wQ6oHd*yHEXwQ!&b`}USdpX#M#xY99`ua2NGz6oP&~m7bS+f(of%B(;Wr~` zwJ~%(a0d<}dFN!5UbQ(EW&(3|U7DOQ$r`SlFg0Ody%|i^T03#8mln(ro2@55*bH)u zN=HoH{h5?ac`Rvs*#!=*xEwZ3MH@(OH7d;8D+`FB&v!0ccZaQf;NAEgKa^mG||v?D*!^XY%DS#iGsP${-`FvFw7A157na)I6kV1vx55^5rhNfsFl{ z*_EBUf$1;1Sk4U42ZbunE~G5b1>8~Hqx)MtC&96&VG|ZAKz$-KG$Nx5jCrB9VUvpz zgn1ULEv9w^jht)5);wdtl8%j0_@xA=$~?X0@ZJoJ?X+v`cx9dnX zyP_TwdFN9o^maddcE2UaxmlM$%(Vcrxnb(%QcfUYvE=Sd2SdQR@aSZswdXWuR<{i8b<6Tz8mdgRl4DloL z{Y1w-{f*y)Wgh;PZ5!;Yw=g~q{8UB-G?AZz^9b;I#1=i4Xi3)m-JsK715Mwaiv)T~ zEe{AnPY}0*(`%x~*#AzTxTBFVUvgjOL;@`;UQ2+-aZmX1>6T)e%b)vf(wV#~yz>Nb zf~M!<0=#hC(~}l_dT91cd+;HBlI|5A{s#_>X?p(S2*7ghgwo3(iuVyb{*R_)nS(Ju zMt0V`90|Tq@m~aZ;kYL*$_IaUY3{9>Lwg^fwfr}y zV_tX2p^W4a6<#-k>~-HdnGI&FzbO7OpA@<9ZVA@S3Mc_?9?H74?q>80vUI$5V8U57 z#(h(3%cuAgno0zy*jBE4nd3I_uz=%-DCO|qhwFJUzd(E4aK?Ry3SvYRQHq@S`a?*C zoR1mt@3os^e+-VhqU?M4c5BI_PX?LV)9uE%o}$_>a2W4T)tlD-|6Thr`~9>~Mn;HI z_~*y{-F|fT?Ub7qjD9CPUh5&eaQjzef2-)+Lz}Vval96eU!v$gWc8{geTxS>y)F;SQGo!tajrAGF%UL2krT(m)LvE82 z3~{FzFG~M40&Dwod&$%MCRqNW@R=F9qtkAiFpgi=C?lJ{;oq=#1^H6R;a>eBOPbxN zwdLbW^^P{z?$d?=2LUx=uEky#_p@;_C!)qc~m;$8X?ykoVq-Tw#U@ zc=W~U8z*`VsG{Pl1$g1OC*KzSV5lFWg|ws5Ea({ObufqrB8px^$$QePedu>ceR1nd$!^3m_dcX zfsEs)$oivvsm({-e~7~KaZ5Oi^6Q22?~SOi-JY``WZSnSgLdPe;69xGpkyKA`lm1A z8^;e(<^NIV6MNjutl=U1G!!LKU2fE80T2(RId};M#iW%9PY`0LSGtKOWXHeh)_J zV-dye%Dd$6Ka=IOjL&u%5B$+{KH&zm;BmZO5PB}We*GGDaap>?c;H9Hg8+ap@pz5n zS19`D`>^;Sdo>IU8Lkyb^V?!RalSb2Nm&0%m2@8+FZW`M+sF0#o4BXEaEVfqEVP=~ zX`vS_?i!ar6jcPvm%=}6^4tFUnE6HhxZQ8tZ#WNJE}t6s`}?P!>bokF)$JMAUxA4K z;fPZBkC?v|k}<1`ayM95v~&Me=z-)KY#Z%4jU26#cE<(&HEVR-UEfc*zKW?d#3S+*;}{YWyCjEc^4*L0Qi{qZ6==^iL5+B)_p_kzBuTix2$MV4O zQaJ94qW}E3iR+2-mb*QtGOi!nDu3*+n1uKj*8h*S8-j;5i!duQ@*w_hW_f`e)6 zFT^epjef+?62ZhKBXsh_#&`N?+v?jDaf++IkYc-uxa z#ht9vkZ*n*Ifd6u5iSv~1BgXyBixhM`mb#|fq&Y61fXQ{T%I-(uBqx#2T7$5lRk{g zJwwWx`%iPXyGyMcxuFb9~sb?GUp-OX8r&>`E@HscLJqH`XzqNmH`S% zPGMbTCBW2(`sJM$Yl49qmtH*Vr3}iCSx0R7p#)&U=Egg`|Bif3YKe z72Ft^XbrtyKhdkL>kS9K*mn$kVSzd3;e6X-R4*UZ zQX;oZmOi-8!qE<0A(zG0_!9$MYW+!NGU zL=%!FT3|`#>_IYtjsWN>I(IEphf&D~4+b7F1lni6C+;PN%O%Oj2L zLF$9i2akQS2X#~ImKLY8z$Q=keYv_{*j9TMzUY>y0ITgn_H3Q30O6{u5m8$eAg9ha zw7wfJpk}|{j^`irVaBPjLr=#xu!(^$maN?UoSk86*&lu({&yXeGl3ysWI{{82;{8- z@j!?-Y!ztW<`Mn}EW$P_+8@vs9Wa6oKS3?{=70x+0X7xS7T|Hf2wsq5#}AMFpRaP;#Op`q2f^B>Vscd<<4d4?0ZxgCgpT@4C2U z!7Usxf&)f*_2&nS#JbgzyUzQA0xDi#fEN`ovNLJ^hU;7X!FeiPN`M!&VA#1mIN2h_ zA3!ReSPXDAMdA7Bq>eFeSUaPPWD%t-xcCldLjUyMZ{81S3$FjFd|qO#=gqkPV#BPO z?frQ6Ge(1<9AX3qj8MeH4|vG2y}7I=kYHS}wn~0&;GeJ8Tq(u{w<6*n2P_D0n75Bf z93jqBf;>*wLc@$_S6U zS01`12pEx}*%ioz&PbK+8wOTW@rDAtDEVDEpHw(KAPjJ+cwz^@#fZZ9-*hXzY?eQx z!&wbwgabb);|I|rsFDmQy_Gz)%?^dEwAQxPu%5Ski{#qzK4*V!PTHk)2$%no}>uARMV+R`!SfS`Y|3!nw3?pB+DfEN3@OUDM{~V{` zm2*BDF_te1-z-k%7iIO4ybTZ)-mn|@nyYy4%;?|NKa?%w_-Tj|;J^cl{930TMEo<)=g_--04dS~eq7?n*_y6mOa}+f4=h6(WSpRGh4mU+qr-=VaE^#l%IB}2RxK#nE&p~d&ESZV6ZYtb z1EQ4jeRnQ+O@bBiy9*yw)7D>@f06oU9yUNO?9d<6Unj)3Gor%%-*#P(H|a4+zdio# ztu)kluy)&T&%dQ(xQ+YEg4#I#a~KV7*pYz)HiXCjrHlOzhp*-^j-PnGcc-_1`PcrX z?3o=xNB9@Y=3&YG~EH{HX$4^Leamvz@TzA=U$%0Rm%y#Eq`1N*4O6i|6={m z2S_o>zjgIzb{JsGBS4J)AM(BgE~f7Pe^M!F*Df{fX`L1o$~`41m69Y&DTO3TSwa|l z)`}29$i5|8mfU0CLP#oNWD6l7+5gkbIWzZ}dG0ek`gwW&uWv6epSky*_x*g%e$MB8 z&bgHKCntluN9;pg_p?g_=s(omGX3=JzbDe`g(M~YcVsf9_+~Me{NePcx8EDt-5*Ix z`^O^;)ra_2j0B6@4^Mx;MWpHNckMbW>9?gHUN91Z^oy2X{fKor zMz`q4udQu=T83}sf+Ge!9xrsk3lBu=|0XH@`HRx~i7j|R$tC!J$RP3ji&~y?n=D}0 zt}hv>OWS|qg(l(RcvjiPa*}na{r3*`#{b#+kNv%P;fHAXVSque!oQ{ew((!f$`5`2 zix-Swzm;hJ;gT|;*I?73V&ga5{^JEB(KPi(FJN_~|IHV7pBkVmYPl)t$HVcn? z^!d~2N9#XnS^1@3u>KDRC5-wDPwghn9Yjsr;kEI_K{BcHromP-j*-w|aN)SKC&_wf z|M11g!(;|Iy8AHAk!;_%qqA=E}ZZSxuzj)8}VD)-{pog@$!& zf^5KNX|^L47S4GWfUS+6^AjXh)?=*Y_Nqz4!yXK#JhOAlNMi~BgcogPR# z-&_EP>f1G;ZV*}B5bw*xLWCKz7Bl%Up9&OOJ-;BlHicH8D11koaMgr%UDCen!?m< z_d*90y?OfnVMjBddhyEcy`HMTvZioO;aXDw)UMa=Im5kwaJ4~EvI%H9Ic>V%Yd652 z6scC|0YLqdZWVUi4fkhDOrIp08o<+P_YAW4X~E0~;ietUnb1A(j(+brGZ^YHVa_893P| zvK|aLMg$L=biRX;JYa0hI%LyU2F9&^sG_NE1eyxdep{QkHJHHpC*Fja23_AwI+ zcx{`**J3?KXt_7>{#;HE2zr}o9!|7?QA5X0H1l-?rTzSRy}suS4W1nd{36#0+%yZD zDj#G4+Isd%uB$NuQyP*qtmk(HzAURE^^IB}Y0sEq-$EZyFvK;bxP}2aD>W*mW4V(l zdmWQbW0l~JMxV3MotTi_u(zYr*k?r6&Br}`Y*^e6p3H5$`}H$faBrcRuXQQ4Se zz4#}Q8J^d1Nw^t^@;*Of_A5R3{eAWA#T9lSbLYH;f+TKc;n{PgSh|0{r`E?4&#mL7o40g?ERh$LNKw@ z{5(X+yW(*I9=9J5;Q1S6PGp{6H}z*S2%zEvgm`Xi#{0wm$9w^vt@v)RJ{U1xMSn?~ z6wr%`?6lm(}h1Br^u!NTPogGh?hk;{P?UuKmP+UVZ#n@S#UB5 z^uz>L^Yfmg)Nk#PTd`^b7yknjgw5~& zQ3$XaN%+zqWkr_p(PF#-#e2MvHRdj<=ei^r@q^g_6kOs$Q^o2>`|MYS zip_gkir;Z;@Zvt6u3~<(mg4#0=;v*iZ^pc>=)9wT@BHMwWl^;Hak;|$uW0(c4h-6S zZgA)?mmeHYoZtNGmiwK3btg%=n5)pvoA7!kCQ|eUD`YTuyp=*nSzY^}7%}^?J(9{l z=j>f#kWLJ(eo1(~IrO|CZr3nxd{|&VzyD?&D!IC1Q6_jPxX=9o#tPPrn4tTZH{B-) z$3Lh?hjI7%!I(_&LU5n^gDJ$DqWhSCO%R0R>n}JQd3u9)Ca4wMZ~h^~o1y#WNX|f# zf!1v~DLKds-OW%#+Ycx#jpm^T%zzlWZzKNZz^G;RBBgYcL)q_iK*ffqj$@iTT$ zG2Y!C?~Ej+ z|74o?eM%^j-+G;H@NBJq+Vqzcf4*7mT3P=9Egr8o0AlfH_n0!Ol9)6v=dSm{B(Ze| zC^*9n{lNSyrTp{O4K&QsSw2{4uvq!W_nX)vGpy5OEQybc@r;$>m{Cks>So_3HW?MO&{f1wCz_Po#kLt0Z4a5L-=DD0ZiGR5M z2>m>KbA|m6=DPz>JShE7YK)95klDTK0=cFOZT|H^IDaH5@z3mh`8AQdxWeA@jGI{f zLBS=?UvM~_-~4N#{gTSR{>Aa!f2}Yx?nrC~qt} z{<;0~%F9RQ^c&qJ#a~kT^+N$LZ%nbDH~#TgEGj&I-$iWvfZy9%{r%C4LXo7DA28ql z7I|yiw6Hq;Ki&Voq5Z&G7_$3scw_dD=+^{e(!`pZ+zrFhIKg;QUNCN6{j@L301DH_FlIFh3NOQ=+E zFn@;MZ>#??NN+5Xl>BE;ta?kZ`+ZKXdF%Fv`%ilR??3RiBmTnMT5?-}y(%^l)`>@m zBPnjVSv?ODeU8EhyBm%WX&DuL8o%r!P{~##!5*8|H4AITQYS-!)ljxtECh{ll;#)*GNmKoHn-W*#c`Y z!8Bt0gt;c5==JpZr}esmSJ$_iJzTC1%3hpeEPUetzN_51%*yTpqN?Am^l9t}#%**p zbib$q7O?wxC2&+hkB*VUH(XT%!=^r09#gLhI=^4IR$4_Bq(6u_IA)wb$g~VBuWslA zid^36=B4|>)EJvHvo7?3sY}D8_h~Re-)rBhEyf#wUhXTktiE#(GEewXI^;kpVXgOg zS+=bnaO%!jR3~o;6qZ{$^>Su{q|uQ#3;gs!UYzTy%qQIa(`_ERSC2IVjB7)?jOg=$ z)aE)#=Fes4;j(W6NW_Dsd0oQKH3fj;_)OWkEjX9?yVBV`e@otnde717t z==-rXWO%o=IT4m^z{CjmVUtVRK{qI!c@H`QmhSQ?HP0>JRMTNmvd^r6R;A6_HESKf z`71dLoenMldX#SI$*}~!YTxZ<@9_rAYE7x4t7d>bW$_-p9vYB+!fj8Fd)>f=Rk2I% zt}+F2C+1#0^4bi5-Q&!{znFuGV;=3Y&gO=fzhr-Sk^wlKF|5SX-VE;RoZ=p4t_c%X z4{ZB5UlS${PU~y&O#`~y4ffk&uLaYSl=_Vxt^t{ICT?B!#0;`K&+-{yTuWFaZrDF~ zmjeu1?74eS4GXS~n5Y^0NBdyrT3=t@v+d$7V?c0lM8N1(dM{GPP483=bfl|H?l zE2uY!AEejb5x{=xMI1Tz|1F+2kcOuX6!NrOas~Hmc%F*KOW05O^b4`Bq){?Yi~UWM zabB>tmo6CUnVexs?Hdo4d%sHtmQ=i@5HF9yW1d#%&*ty1 z+q=u)(e&5Jz=(=B65=KG^JN242haPE3{ z6G2U%$v0Nd6&q*baR0#5#*MvKN1W<~7299mzJUNPXo+?Q{ zFIm_VX~*f@CW!Zkc~a4N%1W#A%5(aS6yxb|{Bg0wd?#g`7gfBViVO(YSyeNPKL0UK ztA*^K;7k2|?~^(Y*W@0Y_NV8G!giW(rqEA;`Q5+aiIc#zyJXVi{83k44f<{4Y>D}Q z=F_76pNeSbIiftR=sdxB!O@b{eTInHkMm!Yr={dyg|z1rf?=d(+5P)}cYU z7;XKxK{#8Q`1^d#zQXL&leYhEnfneIoB#CXAM>=BZ+wUomXYVKS#1R3c18?b!|Ey4{^0&k zl&9S;!1K=sl7BpVa{d%?KO4q(Md7<4Np1g5_^JXh=*zCFU0co53+9=8HNx>r3(G%k z|JO1+efqZyPw!`L8QzW7e#|dpzKfFn>_bNv60D_b-ni`crQM$jP`>>QPb&XP?lw7e z%dQYT?onxYp2-icFW?D05gzlTqV-?VA#3)6Et<6D&kNyuB1y3yjIVl3=4B*Y((hAC z>nCqn`u*V#`h>rwT_^AlJZ)0-o=YUNu>DcJ^?G9MA4;xPkDoBVj`>zf`d6q#o*@}e z;;kE37yse@pT7O{M+p%iUVfrt-EI+_-Fr?wTWj%$+kbkV>L2{{fq(JS$8l?xk%r=S zg{TcA`}@B3Z^thp-|sCOV771?5jpAQAkC&sqWgx<lw@s{OGs@K1XZnfyqj!m2Ypt_&slxY92B`8k574| z2VS!*-i|kN1o7Rw>$taf1DpW!B|(Xn;EqjJyPHvUB=cZpNY?oC?#>4FIi$gj1^pI(B|+JCwUki=sS3|xh1UMWPNsRu{DHEvF}!7 zm_jIhV^5g59f*6-C+pHpXV__SSonyQ&M<1@W92KBT_JRPe$^|r3uLtA^y^pY4q1Vz z<*wD{&{xCKyf<> zutSYu?XhRQ2R1RG%#GYvt42CQ%jyG1)yrKW2QDz|_=yFZ3+2S&ah7qNCk~I-;}*Qm zv$CgWTgIQ~_WJP`n*Zy>y%}%N{NFY1rN4aq#b(ha{!+7$ioeViy>Sy2f0cU`U()>F zZSH@4<8L&Cs+H~z+7?sadz7Z>3FHoh(Q7x&eb+{gYZ@$Sv==2pr7 zt@sJLQd}2x4maGwp7PxPd4J7O@|S8pVz)UW$Y{T2`~n(3_X2^R8yX4QpW*0zNk}pn z%>6}Qnc&s-_HHkeT7Hh@S^*v`s;<$hYgrn)%b zReB1rzz(hEa27&8E%tMFLiqJaGSE2DUAf4zaa{`di5+Uq&wmQ{<6u8Gemx#cfXrgq+y0$x+`uZ4I~KQ~_AfzQ#LRH!sIVRs6srQ&Oacs%~Ver`NpU@-Xmp+@hl zQM5ad0v=NF4~2M9KR2HD;twB9F*9F~csvDMq2jLy@sh?FlkR!@btp~&Bo$8{1UQ)` z;d?LMxT$t`EbTc;?a_-Ak)+IXdFy!=%}CGO#of<>{gM1&T?FGaN&4S(o@Si7HUi-N zK72e2AaxSQ8Bw=ZD!k4fM(bx$MlZsCZpu83x1Jd{4~Ro=AY)PL}Evx~oEk=Y8L zE!Gcn7V|UV`Y$Q|I)$5$R<^ei8>hB3{_?x_pPn_ugm#>P`5|09DB~=4^tC*Kll54s zfZ-@M&TFatd^<~j+c*uEE9_^d*w2`dwUu~2usq~$<`A*`$M$3YIQFx1TVDLf^AqgX zwC^ah>GyrONz~6xDSy26$l&?OyqdDNzb*YFl|Pgiv^)p)bL*pkl=No}I#f$ARm~j6 z6G61)uZ8*q5{{9YPJRyz`6XCGGShV~VZF@W5{y`0(gu?L!cgTqTjF2=&l9K)~zN(A_ zM|vj~SutqKzohhMzuw?pS5QjeewwdF6(DsI+h2Y-dOrpBk7Iu|#s1P>a(77Pp)RH> zOZCP4{4LcFY=c~PEw1@x`+5Cylm%`3Yk>^G{kCZS6_>;tYtHte#Y;+m98X+c_}9Yn zkNx9TC?F;M>dDeexJ;UzrLTAZ>K43`(ukD;)vuc z95DtX>U!H}o4oadg#(mlKp)AM_NBK_Rj|)MWXeWID7qlvD5(C{j8WD2tasB`@w5} z3g67M>p+U1LyO}h>gN{iKOXN|>G*7#?{DkBeUaV%NK*PA-uTmJ?2sXfOU=dV54Ios z$Nz?BDHxt!LAq6q@azzv_J{Ld=%?aGQ&|66R(|L|{1u4OtuK<4@}FlnR}mD+TCCA* z@cPfjKN#6P2uacW*Ry~2F7tATSo@8FGqArZ1l?z@hwY#`uyvU zUKEZbCH>ixBW{sSX)i9Uafzh$e}p330C9YH=pYVxZDaA>rpNun<}WCC3+Es7{)aI1 zqJiT2nF%ke$PdHDpBVknm$v@3H2o;;TC*mA)V0ulOWN^o%k%;7hz8X(+lOTK@7nlo(8TpeWXU;`U3D{g;}zBkIeEr9aj$ z36H~Jef(=-`-A<}(I_A#{*3uA%ZYDS=b3e1A0$?P@cV`#TojU`@ec^-)=4KZgtq)k zvfo4D?v|wD&{mfJ&cChv#GrVmAxUY!c>AIAHy>#uZ#4*D{~|w_lVJQFi*SiZQqsR^ zeCRo{kE`=k_YYlY$6q55E?yj;InC)V8GPVsx1GM`V(E{9Ge)8xqr~xf8&B4eE7lWJ zPBd!$w(=K;^o~Z7GJfIhC%vF08+7m~{dbHcl^^t41}?AsYhn3sEq)AAkboqmo#XjW zLz=F@&C?ZsTl$SfddDG2DL*X#6}QNx{f695577L>{r@T2{jf>M?i8BzgX6C?eC%&4 z*8ZU2jPdA4GLn>h=B?9*>e^!>mj3$u1M8u@mwW5~uKY|u3ML{+DgV6rzn&^owUyRr zW&1}zewl>y;`N1;^23p0y(J1?d|F!hO-HQ%LNLZ;^dl8X3f?U=yOJ1sUz79nd29V& z^!B%`{+80tzosI)r-|FobpQU5$PAnoYZjpJhwD!ht^L!H-Sfrm_f^{223!t(*YUVT zyjc5>%kvC`n}Z~!{6)ETZwJE1$q)FR7%x`-Fn%V&%|=qR{kyHCxQXLEQLO#Lcs9b# zLXx7N_ZbF zwe^qwJd}S}XSLuj>#W>l7>uip`)|DLmQ2iB(`WOS>MZiytDL2yQ+JSwbKN$Te?LsF z{cM?Qr+bpzWV5hsYTz+4@_F{%*Rv0k3x;j8S?YR{G~fAV zjB&g*=ZuCO%n6V^dcLD2{PyFpa-?(@xPUpzL3NrrT<4G(oD z5ce%n`ZITtVXvK~=jI0+0EMB0N0rod0z0lGyj;?~Be)ctZu>Oc6f9cPjkveW0GwNy zo_%169@x>hal&k0BjC33)%tKJB>?<%L%gD-p=_^BMm~jFfMfeO(_cynvIh-l|6nWk zyyT_Thmw``!Fiv-27~%_0GdO4kDW102e4Gr?%v*S3mEA)y2a|-f~XwJ2|asqzaOln z)IPq{9EO$etBmKa1DiGd;}On#4G?s7=Ec}o@_=1#_4&d8X%L#frgF@E7Pw^5KXtZS z2Y7LV8@aQx9T+3ywBWS74&dZkIgJQ1gZcF}x+^M};K+^no(UlU9C0oF>g%Bgm`$dZ zkNq`amd2`(H%Uf7b@kQ@CLC4BUf6Ih&)OI=EN(oxar6n1E6D>eILsJ#+;0_FQVoJ-9CXLVV-yRj_5j#XZ({IZeINHKH0 za@ZEOYkTmmY)MDpdt}C%v?H3pzkZa>vU={ma{05I-tq?E>G=h{+WQ!Sr=3T54{c)z z)*ea-iAyj7u!=ZmlP?GAk63S0AIAjy-|Sg<_Juas{-Aok!xcF&ppRaTr*G{>=7H?X!4w!RB8Dt)MG-0bZ_jDWYz-R)nht*HmH&Y8lm85->a<_&o^DCBzZLI)PH}X@LT{ZwXxeRtbU;)@eYb)P| zcKzSlA3la=-P{=Ax;gG*5!|0){~M*><@t@PTwLCI)k)qT?uq&>>_=gsb1;n!=Z@^( zH36ikqX5k!rBE>Ml}5KQZ;ShXu4{<*{n+t8zn(nnm;lC5@neK|Zg0T*>x3j;hlcg9 zxLV0+@<;#?RD6UGFN<(^-5lmIxwm=Wzy6~8Aw!mH{{Sj}fDqpn;gygKKoaA_=U?6s z<(U8isQ3UO9^0#caQ6jxxa^Uc8rW}tW8kaa3Ba3*_ZH&iQTTR9Vm}V|lDF<~%N$kv zA?p*s4>iGyx#w^n5Tw7PakF)sU1NtINdQ$;eANMf-zE{?m6N43We70E0G{*$_!9fm z6wwVz`Qy!dEXMV@Q90Ec_+UV@WcO>a{XU(SU5%XO1v>u)?+x&!B>Pnpj9eccbOyM5 z@o^pkyfS(bP9D*5uS}uF{<^W=wCgrh5MC8Y%DgG>5W9@@?X&o{@<`)9JnpThowws+ ziTzp>zZZ|Uxv<~p$)KUV#pWF-x)S}qQJ3SNe*gCC-#>0T* z6cKJ$!26@vUl7#$EXg)tEIxl0h|T*@aEbYc!{L60e=VFhiLRRyt^YgD=`W6z_Go4L z3Hv!w{gTq3HLKIJ3uipU=B+qh2Iz+cl9cqT&o94EjP`DKVUsQW{!BxJ!|fxb{PF6~ z*&a>{qvsHZ!{v>C{V(zly?_pHjh^>FQndb0 zN_oEVe3`e{x)=OD8-)9tbxQ?uuOE>GZ>pq^v&?C~pKOcpj!25~R`LN^iLQa2X#LK1 z2#3dwl={o-Kk{6ZSKPj;N!xyiB>&HUoBk}M-vLQV{xhV0JRuqLdrWlxd9juC=hxd$ zzFG9;*9qB;*S}HnpU3;K&a6)*Pj~ul?LS^Ohu6PR(hnHrJtlK!>U|mVQGDGyE`O5p zkL|L%$K)_ZE87o6TE8P+?}yjFQR+F5cdBO`wXZ#G^V|CGZYcloxGwdAqMyC4>mzc{y{NByJxqRE{gagcNxOTmUo?Y0|4{=iXpn{Wv!iQ0 z%SguQOQB~b*|f6!w6^}z4|W7{g*KQ4Bq#T znWG|yts6Q{to&lUH^TQql7cT->`+bKBFObU+WGvp{Kxas-s1Y%0b44_Bz61X_=hTg zIREI^jrk$F@wz$D_QNuBZb|%-Nq^XWS=#n50NEcXp8mY=C!gr~d~b5)sNa_VeUaWE zBt_FNIC@B)LH^J`oPPB6w;!?_uN&EquJOLlsSB51wppAB9^wku{Jeg;!2c40!jC{w z=qD*qzK~}I6qE9rw9+%d11g>)#P>(ISS0cKKd%1U3Ry0oey7^!Pb)LQJu1FHh{x;Z z@cJuC{b$@h-WE*$5Ec7&c_yf$;`4-fyxtD`Emt8s7!3B8ZJA&>70(pn@p`+zSvOcfMzjSvXYZvpZOH^#RJ^JX zFRA}=mpo(zJ@fU?rR_gjWPf@c zZTTCCA~*_3N<4Y%j*^T{1zgz_@!R?z(RFi__K$gW*d1cY0);c1wMPDD`=1u2Kj#i@ z{{6$cfiZtsHxMq(U>L-VT-D3@DCuxo%GW34AaOMyZR1YIy~NPv!_LH%93nP-j~hVP z?;~;+?F`?4WgB6$b>W2(BQ_G!p9$ain+J)2E-y=#UfxP9RNi6ppp81%H5-mS5FrmI zERVj#x_OI?lAH5%^{I|9z%Y7^vL6%VW&a3GU(o^N$%SV}95w{(`PpG57rql8RR^9* zOECtPqq=&z+gX94t5=)4+H?ZFO_vo-@izc_?l7PCH=+vDd}Hx`ipIn4R`Y*R3O;rG;lU@PF}lB@S| zc}JkJd0%qbTSHJ?*sI=jwJC^NuR2z)y)4K}y)ZS*(}v5BM(3B_tS8u!ljB_~)d3^^ z%oDbVa1FX z19(m^P)$Be4Q7ts{8E3SF${2@PbRE3f@P~tXqoIOfafjzE9k(|+#@jXDTv?lm0#jSQVXy?WLAtbSgQ!x+x1OP z{9u5zpT%-}QdA(P?a^tn(>-Bo!bFW{^_~ExD9W)ExIFt=LkEQ(PN3pyn+C5W2LMK{!7C_6)M~vtB{qhTuN;2WPZEzbv|sdClp9a7o_}uVMnd1?~2- z&-Vq_1^2l>pb*~{-EWU1_HS_`x$#q)F3^#E+~8H%7YOa*2Fw%UUf;TU;y3K z&pLoP=h{Tn%?tt;P&l4|aRU2AdG$;|IR1G$&zCqq8yFk}&I|5yf8+`AlKM6CzLA?> z?d%KAQSt0JfG;KC`QZ|1$0aSoM=hYmDj4SPop&-B%)kYu`S}dtd0P4?d@m%ipOAYVSIDv<#vs=D^q8dLWH6bEpDe^|8 zMca?QrMZ)hE+&J~RQ%|J0I6e$^6Clr0fYa2<^wrvG9M_#fbD|&+#j4+LHjMrt5foi zA@@oNg!tsNeJ&FNwo&m=h-aevCP;FSpwjuFTV&0A3>x54=UcH5MVWu($DLo!OX&~ z{vZ(pnk5_p@TDaDWtF>&nX6L3bv!_A23|iPz}ur2v5=(nf4p@ymjaUqzkKH}#!I2# z62~9)_mfZe8mtcRIGK-A1uex(Tg`MFcXco=-VwbB`wc1mB+sw(nYpOcl>0sVK3HM1 zWQPdaKPPk_^Xhm$!M)Ang{2h|?$6(mz}@md`2!&UUr9>;Y1_}V%`Kbs%jcnt_W$Um zY!?T*VTC*y*kb*B*j(E26J8I3*OgGpZ@uk-+k}hj-iBdqBLPk)-uu{og7m}lCCqD! zrr)#~PWgU=h5}qa_;??I{dm5D<44h78!((hI*09Dc|*RN*!YqB1#tV$x2Gq-c1bEfIaPMk;qhP~ivc{T(PI2{ z@@?vsH&FohvphH(2=JI!_u@TZFeu{>-nw?34)>1qC=L>fKTc2lB2R>;x}KiMZtuUb-|pN`0zPi@=G392I+)Dog{dso%k=>Xdr<9+9M?b5{JvX#vCu^JjXUE@| zSI7J~#r|O9j69NE(ZzbtMR~FEkD@Jc{D#Bf{Ni5=`_FI`U=WfN{dFpzE)tB|kUKj( z|MY%#djAPt4-tjzr}Tfkby*5il=EL`3==E=C^!T2>ez2eiGN&%8i(9`a8XWqK%d{1 z{-V6PSo_IN>qIOt|Ie1+Xq1q{k))&_qr~+L5gJueF+gJ^?f73}`+?p|SAJvA^H_2H z!F@un5<4=;vTGLN-`zsNTU~!fpcjo4*ROh3sghuf9&NBF^}l! zmfA{LIOm0xx~_6tnB%{8_J~kfXfQQ*Sn>ky_a34rSI>QH1n%vysGM_e7vUBub=J$E zo={!*IV|n$6EY_ebn6-UozSV-^k(>BEm(SK&-%3n`ryMS{byq?S_AiWIU^zrtRT}i z@tlpC3d}jIaLv`-1tzsCPJeuf>wF=PGr9#SLq)@_&$6OAgW4ngPim@}0oH;>RpkO( zusHq3;T5^7NTtvv#}?;rA>DLe%UN~FA{U)hk$ZMh1uUsJtUXFa1>AhD9IL-q6&#fP z@^h)23P?BTyUj6)`+e}!8GAnVHUz$t#>Lzq{XotO$FWVhPOx52?q?gPu8^HneB_>z z4Rm%KvwfSKBao}^y5@Y%S+cP@H!*7Y6>@CT=Jur8O)}zO{2X9>i~N4#g4_M;TJS=@ zOXHKH&XOLN!!;1~-hZF&eSog5YgRbCP_|c==@2Z0a)pj+rlvu zch)R9tPgHf*``l=A_p25=Etjl(glYYo^#*kOM}rpI?kV2VFNTDjExck<1Z}gX1%l)o+L*;|zXAQv4yXor(o;84<+l+d-?vOTQ zEcrH+^D>Xj>~!8pOH~hEt@CUgdQTHNhRW(2Y%zh}QG3;Hu#F+pH^O}Ec~e-bu~F~r zhjxHGSD~_~x+C1)^vz>V8z!_etu-FD#t_yoXV%}WWWw+}^Q3N1RfC-G@y|axzbD;Z zu@=Tz8o=W5v+JZoY@ocfg88H!7EovBsT)_e*}?S5PX?XQU_oZgp;xM=wy;a5beT94 z3-H0<`KHxv%s`ZO`u2$?^+c1+aGgEe@44s%H(u&<;d1R<|4#rw@Yj)l8P_8$sWaRf((a+j7gn?Qd=Ou|U-Mc~1=@tp2z5WA~%s zjr$3BW56YAaC?sZ21jv&%qXZ;DmMiedMx~+m@4@@CKd>X`C|ryzaCMlS9J0A=_$a6 zt4r|bBm52tw>9Ja;dwo!-%2;McLG}*TwV`akOEw(cvm4F`@=B*fcrtNbMJ`ebOTVQ zw6HOCVhZi|w()oxyA?4H%f*uiywrgDqV(=b>=a;3)o(1+-xk@ggd`rv<`_l zzcB?o?SKL_i>E@~LXBx1P@%E#Sn{L^rdPfSlO~v09;<3H$(Cf{FYIys}9~`d> znOTqm&QtN{g?LH*ex313J%^(y-~<(a;vm3kB;oT1`56UOc+k!}+oKmLA}Km z#Y|SP*u1-?`aKThw2OWnKs)Y~WdFH*tI=&s18MQf$Pg7IMg3M^w9hE6S{p`tj;JL4 zIG(tk@~?&S22~UQyQL|9XWlu0*;m}p7^V#rTThAKCrN*1@RM#GioNIIu>~d4k;w;7f_=CpTAZ(KhjOOk0XS5z(XT zTZQ4Y=je;_#-j5UH{Gj?2S4m9mj5l)U$JLuL`EC0AEPTKO7F%7yh-d{$bu2x4V?`!|{-NPc)V7e^@X( zjP@K(%o`gcMWXpvmDny8ZtYLoelQWv2uacQ^N{iIn`_$1{&N1I*9yi7{A*$STbq6+ zNP#Jml=M?gS9?yhJy}w|&18VsdTg8@lJtKX%ZljSA*7Y%&x^MFNz%`cR&49=qa1tS z_==`KUhjbUA4)hLZ?|a2=Bb`mJ;maW!*xdKj`=4_`^oD+7!OXIJ37!^to_G$%o}6= zlY-~9zt1>!z5|N8(VioV+f^H6hiLid7%@Mcog?mdM!{R{H?T!7vO|(m{uq%1?~;o` zt{zj^?EasvKP+Uo1CpZY*C;j0@A_RQ+VNM*%CB&qz*i%z|DwDxCH-K3&zr=g_D|a@ zN_C+<&%_DY?TjP^UwWYY3IV-s+C-1k`fYwIN%3d$?V=sOxFEYR|4V6qdA#2wr;cAs zT%E*tM_hj->E}J)-=&rDZ=gMoLXv)d^yvNmEyL5FgO2&`zu^s&#$-Goy>;BvvW^Ce zou`13oq@-7czh^Y{@D{x%?qEPFP8oo-!l8@%RlD(J<$uPW`Z51YDZf#RjP8=JR_dH>Q~vw*Gy5a`0Z3BxmsU)>NDi^>p&P)7 z`_Go2zQ}IO|5EJF^iAGIa*Ch051woJhwZ0tzgkv)=)Z&U54=Uczwj36+>(82b41DR zSEq;@3$&Nm1fL;1=4_K*?RTD-v{2c+-t{8kRhBzk_4!%CUqzw2^`w);tvr`UkKY|8 z++-Rvi#wkruCw!&m)$r@thG8b<5i3i=&G|?x+2C1R_CVQ*!@WdO4p1wtnxR97uz|8 z0gFzcbj8C%kAgabbsO3bc>TB|h^`{^E*fe8@M)g+ba@uI=@#7A^{z4?E0|7$maBn> zv-QTU7|i7r;!?(wKW)H#&atZTQtd!B++*Y&p#_Fczi~5ht`XS4^8I;fj|R9Tb=l83 z-W|rDITlbpwj-D@IK^*tdlvZo&0%uE3|+9Yr2A>|Jl7w;=HZo^YxfA?cZ#Lk#I~hKp02GbN2tMY>gfDjg@M4T~mU z^c;4v1K1tBvnI%<6ZBnonR#=hDRlqQb>qxO9U=3vOH{m*Ddb$7IaAfu8gf<{?5@6V z1lwBgn%ljayN_;5&LYMd4ahb*eQm#Yv>k{Wq91x6!I~HVAj7$B-UQ0%09zB!U*#@}%v?tZPZ6K?|VaBvs*07W@tLh%x z6kb|Bp@WjA1B9$#pCm3H(p+f&XTE1XgoXzgBH#fa*ZGC}Gu#htN9`H|ovUhU+38we zBgs4f9?z8s@cjKty7JkZc9^9AU#cUor>=+#LJ@a`0+9Up3j5Wm@kuB;g|yKaDe9Lc0#-;4}j;@ zTpoe9{@!hIr@LQWQ-BE-Zz9CYA$FEzG=YIm`%`wI^xtC_cK< zV=ITwWsFY&cd)~?`T3oe^8n9u-rIkjEdD)otVU8lQoGpfz{up@wCms6qZcV6N$E#R z4|ljiz8@EGC}(>=fc*{pV7&x>U`hISE}KLY2YJz+t11bgG5D z?62hGdjR}8N%23qRzYgrWcu$(WBv>mFG~F3<^?2?_xZ&H&_Uyu$FXc@#}yMIzy139 z!6Gob=3*@^9`gX0hoFq(lP24KCZ@-mevOvxFIIkW{&Aa7-k&a#!uWgpd)6Hza=V;~ zxY5Z<%nyU{n7_dOd?B8ZRCN3ad2YP?f{}(sw0;yx`G?FBwDbIHp&v&Q-p$(2=J-y- zU*5mK*GKOMkffiFkD{H&VIIH&MO3u@tXuC@t23deSpCK6kNE?pIG(qE@tgtc!pGh} z2;5HdgXselT(Ex(`}0NTad8Vm`*zZ+rY(Ohi@&g+=Id>F{_(>X(4MPogd&3d@Rah; zo5!YQ9KT&~Q2cx5IR3`y2lnSv$}e->)Jifc`de_#=a>K4_?sd7&5@+oUvcYbDGBeb zp8PfL8-d3u{9y7eZhsl90UHN=nA6JmKcV&GVIBbc(_f)@a0Tys+-~+2&s;3&_g~=g z3hrMi`OouX!gIydH3h$ZE;cp?*Ejz4zb(J??S~CgfO!at{k--Ythj&on69`V729Kr z@ODU2@}KSY^dJFL`;R-8Wg+GV#&}8fw`k${m%49_{~j*H+0nDY>Uk^cPixyx z4sHDty9ccw7xM>R2rt@ybNnU_8|rH*#v|bRk9h#>&!_0;^`BAo zg?96gwHIqYaQT%hWY0AYqq@y)Jh8)BCUJ&t=B^0p@`y z<2T;;i@|(Xu_7hy57&SC?^5`nbnh*m{%oD49|=ZqW$@41`+wMe7VY>M^8lgZ_5-Qc zw@A){#p#M%#x$NW`4 zaXe>dTqOyV=QpHofAWXRAHxIN%QsWlezmOqqv!Ejgohnz_2Ye?gHifX+Hbe^$x7go z4AIR+U;Mi+I6h$rhxcz$%0JJ4Bd=dDZvP$e{Yw}>5aGj-q?8}Gr2OM#`rF3+S=atQ zKfi)OzmBg(`N#Mr9%{&6c&G|)&;GI7&o*n#P7p@#mW;g69ufsg}9uBlE^t`~@+nInCD7hNJo411t|Zchnu$IAZv2C|f}-PT{b+V2JtW1nA~63+w` z_ZNp&_fvzXX8d?sy19`|JLz{TeU}+rBolbfXq_4y)U>4U1y==__(^f}#7(l0?b)+F z@3aLxzXgOXzG4OMACQeX^2!|UTRF`yYNs81)(Bg^p^I4Nj+1IHzzc`%+Q5Q)j7kM>YvE< zMpui8t8VZCRDRYw(isk&yfC)LO-O@h!o59o%VVwL& zouS4?>nltt6Ubg!=F^ohgFAN24wOI3gwFdt(`OZ`!u0g}GdoA9Le8CSnU!*Cu*hcb z$w9*$VdkN3xpD2CASd6jy3auexW6bP_i%*?%$W;XSD76?oa9j z^PaCccqz~r*1ULqv2klh_;6^le%Nzk=;m2o6e?#3-EV!ZXBZm6rs_i(+eZFgA>FZo@n7zNUqXc1{g7 zf)mtdU-OOa27|w@AAO~Z@&6XDHIs(dnknS9xXw7-zK%ofD)#Sk&z0hx7yh)%Qun8A zB=cH$en4rLnej6#NQQmh#8K^1KyNCq)B6xW>KNExq>OG*`W4>yM*7AMbS&#M0Ay1q z*1>B9c+6`lAv{EqE0&Ls=mcgjmoZFK><40SM4O+pCJE-{nAcK7xJ)FufyT|8YYRHs zX}`VxHW&=2;+aA`Hmg0tf?%j~hyYK{OSwD#T-dsRF`beuJC-y!}O4 z56pAdUk?URR6Ik77v;4I1p4{s3Vj-+R{HZoFc?O~*H0A0UsAtPX02S+mV2({U@AUu zBEV`S;cv{^(0Gd&C^j!_DV`S&9;O|aNYc;4>l~mR*S81{RPvVLZvHQ63@gqEyvay>yU9Kb$Wrkd zLOkZW$=7-|=x4Hj=OJy^3Kvz@UPpQ5yXdEYc2k|Cj;hJB5R6q^^eRDa#bTrb;*iNEYuVsF2CDnaKR zf!hhbUM9f$F&~Hdp$hx}wf`TA9nR}q4FfN6L*4v5I75(sxWB;r3-1W<{QZRyr2*Go zT?_-ysdzUbUQ+t^o?f19MTUVVR6H{SU^SBPaK((x-{x|^JAeT^DKEfdUJLWSl>Cc& z=+7Z-OpI%)&bZLxCF#d%sm1T#oD0P$*byJ8v59tG%0vpxkQDXH$xnUyaKD3<7_W!z zGD1I0k)*_5RryLa`N2JTk6}N3vH0Wo7$cmCI6i4<|0kqjmTZL_;w5D<>n|Nm>;5~U(~Ws_sBz&Cnjz+G!d)+IQ=jmi}@+ayqM?L zv&`K6|9oLIX$;pX}&;GhylaOKF|g7FjP!-COc%KVqdi#?EGnAUHZ z0`^kzgLeb`Hv9wo$0_L-KGMn&gxt^RI+J@2zae$}pC%mtd!iTlB1yr+EAO8X;WGyr zJarxo45;{2A>Iq&dLeldN$$GL(I1jJ0{;TXiy0?I0W~V#TZr$8!h0i$8XWEwfBb*Y zXKhK~{!u`Yif0M&lFA?3v#F2o)={866>pObkh+$QKP+$2&i{PSi~fe!sxLFXP3As; z=4ZL*D^S%l7#f27mt_Ci=<_q{7kdA4|Apg;#~b`>;rIpfS^+2^CI8uPGd~e(UsvZA zkjusT5B$D92JW4VLi-Lj0%tn*`+-^KpX^4v%NKLww%(EF%wDr)|k)gC$hFju4Oez%Yat zP5;JQo(g;N*u zzm95}4klCa_tyiYwq@y`_l`FGMR~1B_{AvwQ?l0FP|#XJ>pziXfAGcc_KQ9*21=BK zWt9F){|93&t^Jq}j6il%+K+lQi$_GZhs?+Y=AL5p2b(hl;f9LincCy;5(TwUW9IJb z{Oj#swfb9&k41KmM)Eb1T*2d&C;Im}w?8;U zto-3%BhZhLNQ#cXlXFjeA$7nnkAJZqy8Ii30>mLnsXwZ58s+3m?T5pFg2#V0{o|3{ zW09ncUsGdbWI^V)E#DnKyNabBPLDANmmnU0_MMyi2u9PMZFbei|FiX{W#yNi*H1+8 zPC`<&{K@A|R)3uDEVi!#1#emZ!wrnnn~xK=ALG%B(vTFbKXqsAI?a69h1P$SjBrzs zq~t$u{-WA_jeC^=_fv@IIbSdZ{cj4okNZ7J`Oj=3s>rx*E{@;)G->Pa1caZ6Bn1z4 zDpiw=Q!gitF+Bb2>(YV#s~VT7tt@}^>-r`myHmyOFEMYrN~UgD@ z_CHC)BfIFz&s6k$nz;SIGCYeo5|@>0_|@w_+kQ<)cFz#EA2KVqlTh8}U1Z{)KA(Yp zU1IZA-IY-~{OpNO7ZSVQ zDv$bhFOOJw^KrxVjnB!MOPb!*n>{4@bq=b&@P#k`b)J!P&bzTz&#`4Cl?)$r&C35z^5 zT!tEh*;9VJ-g?O#MlGE?sOLs`P!y%L@vMv;y!1S6e`vbndAr-QxJ4bR} zlSeJT_3(XY3D35#iN~pGSLJfC)Zs_v7QV;kvQjSL|G*ATXQN zcij7jBr~0*IDHZW=1ph5^Lk%Tz?rK?RNT^pOAjp8b*=0OpAg>9b-!>oX1`6EoHfG; z$}9=KP&B9$RE_R*a@uey7~XdFE5;pl0Is$lc-}B6&ndn|iN{1|2+Zp5VG=N?AjhGwPqx5JuXkhVh9 z&&?)4PV3zH9oH*~)5|l+ai6P*r+b(7WGQ?h+(xaxHuAw2!ugJL>2u@hL??(0C ziL8syPgZXJPV5*TTYj`#H_#OJV9(4WR`8wlmWuU9xC^#!KAj;w#1&57x09UXYysQd zP`;EJX8^609&h??!GhtAxh@&^djUV|4OUvcSTJcqKV4=jcfpqDjTr5zESS6ban6d2 zV7Om7s#v@GZL+fakA6R%+$80@c=xzP-XJZvj_tIz?_)B=XG_(2vW9evyfj><5x|a} z%v9f+wgK0tH5n&YGeF)>wzpHh57@r>sl%!{7Vv@nQ*uB!6Q+Ka3x8js4jC~QZaa8e zKz;A`i`u_-gfCwjWbEnd>vg?}kO|u(-PutGvbDMdXBs{wb7gk^u;-Y=5g;oo;Uf!1 znZ`z!Fsxz4oz)ffgRNj~GVA5`ZQKp^xk3G>JamNv1Nx6YtZf2S7hSU9BzJ_p7;YDh zH<`dIP{%X&2onxTaSKh`(+PeL-8bGo&lqxoZFZy@n{W>jD3n>h&Iq1x*EqjMM+?q1 z_Q_(rRfXAZ;abnSFd;Kcd474AIn1=VZ#7L`1Agl>@Wjzj2Wa!-&_n$IdzgNG%hwya zHn3Lf@grx#;eTrZR0_=ks1)G>D1G6;C<=7|JCNiG-T|?-$_3|^`$=8^g&i5a1^CRv zuVt)&=ho$ib_ac=LI^o84>@d+lkDUd<`1l2Op8_M|=nv>^i^3}*DLMc& z@DAA3W^4+$Pt|{4s2}@P6cGNpKtE%*&s=k$XVdf6!Kx@=&|dg};l51}e>|{khaLwC zgYg#7Z2N!YeRo_GOSATX0T9I{iXb^BS)w55G#LdI1r-ChfB_K{5isj2f(a2bW)uT@ z45*ln;=F%6G2k{w{w|v%CFFRad9#s+yjK?XsVh z^MD2&Z!N}4Gk~6w*C;jp2yhMy*m(c+?EtfphM&AXD)!2p-T*uJMYxbAJQk}xx}oF- zfI5CqX{&B9!+>rse_RgtH_>PD20)tpw_XHfom>>caNy$mDxnKyM0xlJ6aY~$ZtIwT zfDcaLhHCtMhS-6J6QDQ<=iG$n`}caG1D52xfm@I9K|UQHEyhcefAgP{6R(}&gS~Y8 z&@BM7k%o8Fjk&jW0GGA?D(FVIdrP)okm(}1x-!8Y9y1hDtp9gL{Ba@^ZT=EI7#BOgYW##v9<1#zP5(k|{Ml#ZDW~l%bbyHMERo#e^~VfV1Sde$;EEBV2lKD*9{zabiwF=R{$6l35a5sI z=)wU}ngeUfg&zbs^5u_N#e1Sy55}=TI4-_n6XnO%8g~W*7Rcyz=raP~{w4gG@7Xke zTcYwdh|>C>aQ@I=-dU$x1-d-O{Dt|uqYDp2Y5Iel z%yKG$>vS}j^k6+8xCg=kCZ2cL=^=IBv#PZBLQO{h!R?0=phzY@XwccmRC@3q6HS!W zep~x(=NN4%cdl#U`c>;rYnR5F0#seX6J7WqN}E4~0kF9zi{?Eg{22BZ)*s%ldm}up z{W9fGmr(mN4%J_B_h;CD7%#2=@m7Xr;Vw$FX@W}qOIS; z0IrJc3*AXDin0FT`uihX0HQSg)lTp#p|)I2JJdrhob?40y%4T96R%GeJ*0B?{B+Yj z>GsP3xN|K`pzJBT(OUMsE9?Fz5Xp`G9<=@^T)%ibo*8})@4>)h{Yh)T_7A5=-w6SX z{)^a3wI4*~{8~HnZY-nz z|DF8o>z_3JndBOu{N~F0W&Mf#a{XB6Piz-szaed&60RQ^mM4lHozGl{mj}w__^9L`~=sTJ3^|fy3q@}-k|NHCx4^@xV{}6@>;6x@`{o^ks$$*fC zH%X5&hyO3He-P{Z6M^aT!I8R;;)ZoO>~>--amaH9~V>5n-0=Pjyrh3BKGVI*Vx zq2fdox){mCbKKtErC!gNwDeuMF{A%tytMfTm&5&C^jWWve5XzeFDnB~LDEVv+?wf)8;JWeE{=`a37 zmoh5)o94`_yMr0+hucFk0g8sNy{`O_;&)6kJ7aOEh4y<(=TG+ick}e$QvQH70rziS zFfi#q@;=YSZ7m@yU)d4ckU4|RhEJh}gX%HysHb~<#Q>U?Xe?4?1baP*mV>NiGM zgZ@6R2D~pc0ZHGFP; zc&4SRG2l-b(BH*_3(_mQ8NRnR1PbbTt_rD!Fgt3r{-q`FsGzKlyO(vc0UNT^I?pZO z!YNtCC1=`Oz^+>?myFdjfiBmFoHGvT0v#9L^s$?025)vX^4%vmkY=Rw-lBvMb6DCv ztwuG%5kB63c1xaaJ8-7T&}dei99XMg^I+dz0_5z!F(AnBCwcMC2knBOHej30iqGG= zD*-#5cH_VN_(s;7Jxm?=N)|>hS~_)hxEid8yr{TR-2muc;b|psRDkC9$x7wjv_Vk! z6@i@VGQjkxyY2PCh9L1vNtOOV9{_iratQnL33>Vb5w|C@ssL0^I%C*F4rb?fD!OW6 z06@{!^nz7pkeD)B|4B)EVCAxOHm}ERs&M{h<%MfyLCvFK4Q1V4k+r6?z0{UpxwjJbV3OJU|aX04~fkb=lD2KB)@UY5F53i+`pmyD&fT5FZ z0H@8UABopyi&IT!14*E-q(&1p+|_nPSg zZ9_+HnzLRHF1mlmJo&gj^y#B$>2|0cEE{&NQ1*d3#-q!X)JWd|Sbby|4AP9AT;tbrZ6mrbTvv znPXP3n_D9XiMfw@AL!o^fP*`s>}d|*Z=RqQX3zl)^2-Y>DCRS^AlYp&g zgC$zUY{hvM*xs;2>)Q)N3G`so!ZubrJ6Vqe_mrA`Ac*|EO@4ixmx1Gpl6K9S*D3~2 zY)67Cbo@Foz74u9j*HK4Vw0_NY@HRjm^i2`35Ek(#ikz!B3zu;Aeoo3tErd>AJqC) zf74Upz=Dn+AjZp~^6e14-GnFdGM{w-Ia7B%*|0wxn9=cl#dsWUS3tOnO?VOid1;yC z!8_qVo{r~;@zU1S!787|Yg`QnZRq%RI{;=Q4c}#&`<-3!?1}yOw(ZdkYw(Q;QC#ZE zq@bPggFFF_yNZ4$0WKzuzp3`N75+y87%z@&EQDyP!syEz8U?ZfJqP(g~sc^Nc(=76V;IzLx8Ps}Bp;jnIG@7;mD_cXkOfR5)RG|4Xwzj|C;aRhf3qy4d%`sl&{QOWtU zR%!l>+cv!zepxJzH2&5W?~e{&$$YR7^OuHS9m^Teej@t|Ta3_+OcBNYX~9QfUSfLu z*+0K%$AF2njzKI)X=*>*UM2_+5Eb-4;rg9E?T-o@+ZYf>$486t(&XRr?C0&|} zmv@JCUu}izkK^04`bXDfY#<-@9KB*e!(c{U1+Kp}!rLH9^Q#CC_A$Hr{L7FVUW~Xb z#y7A1;@z>GCSubCAa+Dobb<3?-ryeuv|{#j>iN~!wcYmiXZ5S&d=8u!L&FOXX6)Q> z)bbm580+|Np8R4vUnHJ*{gKSepy{8te9{f--D~4feRf9v=JmTRYyWXX`u>Z&j2*St zj!|I$8pVo^>@Qquss5UWuW-lxO;Z2O!-ulgALn!6xXenV4}yRTH z2I7rQn&wZOPlDrnwEicI>-=o9q1{ZKG|-!lHy7h^KA8vNE4ltCT`zk+TVW1k z{l{YBybOT8SciWgz@i6bT|gXJyLHB_iQsJ0_ks(4bd&rzF9YXAY-%c(Hy~q}A$V0X z)5vA*L;#z3hLN#h51k(%Nt6&Vsso#qpqk zj?W$g@JDI*o2o-?juVM39Dh94{v(ZlUSokyeOc{aPgId!h+=zMuzfTB`P2~HOStVD zW10f)(bvz?v?l#|A)GIwwD|`*wQmDPe;u;wPG}0aM#nD@k3sy7iKg3pQ{qN13%o*2v7;FFQjc(KjQF{9Ydt4*) z9bR+4$#EHZ?RY*6K)66AzVyKDOJqe{(yM;U+B4QqR9ve3`ZYNv-HQlT`K9%LC@R2e zKlMd|;QR_&{Y%|$To=Vt@|Z7tYOega9Ian8eg*LN(&QJG6C7;EhR69FL(vUa;2R_R zd2>LQZC$2jf<3sw8h?k=n#M1-*KvM9>n42AiT6)zL0-Yz@tl}U@CO~AC&mY(@;EO7 z?}G*QySw@W1HrqHS8lu#mkD;!@tIKstL_8!1ZT?97^01POUmSi{zPszcw*4ZJ++z`?=}(wf7Bckmq>wYi80!!2 z&rt~X7kLRn`;!V#E2#1g2a@|Qj30^cqY#y}KLdj^LvHlpvHCAt+J8qQzGD!j)nAxb zm2qcj^+}~D#`=Zjm&X51{`bxcuE+gy|C^WVEm!}=vW5MJ{kb4%@{82Mjvt5g7LO=n z{93wATK*)A@mvQgPQ;=MoZmpxztH~soF+Gx$6@C6Vg1J;{CGrZz3*t=ab;LA5DKk|H(AxXrWY2#LWwd{D@duxD-0*yp zGh_dS@pI6{TtsR8Px!)F@8g!&?=2e6ikH@Za{9V&J1{)pm)D=i<#ulQbB8n5e=NT= z{-SchtoC;*x=|XUwEpw?+~LP0f1TocQ|IVk9zVj{%1-#@`isP3f3EIt^3vx2M_!tX zU}yGo>g%n2haD$7t$lJKEaCt;(8fsiz?eJKjW?e&4sR}_j_;pPa;E1wvSaA9ZzFCL zl79VOhPbpkLngJ4E{yw}PrflZ;OuZSkNj@5cE{<}UBSm2yfb&dtAq6qWFD2Y=>)h9 zn`cfjRtIl<^S*OdFQyr-N9X*%b$IR7=q!N+k9VycLm1|#c}lR zXn^s5ESPJs%LR1xD9EYVqY3y~C+B{1zC-a0xyNk}=z}TFH@jt~cLBNFll4E+OhEFI zwWBsaCE(OL#{AS25FYNX!hED&Y+w3$w5U4 z#_)UY!`<+#8H855^LI3;!JF511S@7KK+|D8XRc|d04uxty&61H0p|6cw|9Iy7tr4! z`(09j;ZXZp3r)5)%C#zYT#sk`ms(2ovdc&7( z4}Cwr+#L91m9H!uWDTawdvW^DfzF_IM8w7zYhyrY9)A9ZhZ?AGi1z#0tt*I*Z#Bx< z!VFZHDVdH>Gyx`#fi`D883IDZRhDCC1uyv z_wHPKz;P~D3SD9cUf(uN%Dk)ssO)z;_HX8b_tl<;NjzInk)%Z2*)K?*3LqnAJGuh@ zhGo~+&awxq3Oaf%*xnwTRWgoxy3rE;G_TyYlg|OF_nzH(w5S8{P5Br(!Bq|tZ)S`i z=Xil!6LZu+ z=XVGHJo8Eelx$GZSh1iBIHK_*d~_>o5WA{N^3)&>P_p_Kv~ha}5I@zy%>KPRT-%># zma|y{@I4Mao+LQeDO+Ze-QEy=z^mxz1U4uGzOllH^AWb7ags@jj5d$9NQ#Wn5}4=~ zb5_n=X&zG~SOsIwHU85Pd>NzL`0t9~V}N|j`9>lebD@#Q#9R~*?CB(8E(<=z6gU36 zA^6uf=33*WX(RZm;7VMsyWp$7F(v=;om=B~(SZSPW7-O?1h>8`_&K0sOyh%tF^%4~ zfVa$(*<=JMZ&`wJ3%%q8|Al{zRSJ-4Ji4v1B1q_7jrb)jd2>se^5z;hBltepZaj+a zi(e>KqWRoAWp@G?pw{#QK@1S*y$Lu8|FHk-K~pi&^YCs(+Etkc5`Zrq?<>Z)LglRy zJtxK+-nyp_sty#J6`o4~CUm@s7?1sQdI%RO#tRRW-}ba$&Youp;HzrW4+Qa5e4bDn z^fkUc&2AFf?F#jaFYf%303OltkHq-42;TwGKrtKPc~GXSk4=&58w=!df>Gn|@&}vj zHtY|;d2_3p@S+#WSzmB9-W?hXe&7VB#@~M&Xu?b8&Eb8BAh;tuP(A7B^0d{%VnG8P z-yp_Ivpd>MyCIVq5euHv@y`zcET%NPRle8t1cJwSo)Y5~(M5Yiaeoqg6#BhFTV-Wk zec||z?OUYDpZI#ugO9nctahssk{hc>(r%uzsatq;Y)?kq1HlNKZ^uDj(CyZ~8(xzY zqwfU7a~pp1^9R$8ueSe1Ci}jD=d|K#>zW4`%fA1Dg1!OBEdPJvXf;)JkZ2UcbX4Cl7K;?1XE{?zA z`BP)-P*-w8CTLtCn*O+AJl@Y~q90#26(Zsle!d}HZd_8jzcv$Gr{nd-cxn2xt)Z6G z|C|r{)A5`nfZ0gHpZ|G$kkOR^9}4#LyMPkQv5wt%nE+GX%nE~EW1UYh(M!*qq^64e&&d)S{Rl*V6JEzS^D z{pq868z3sFzhiNZ#vgk4u=Nmpqu9i&w3C{!ReJaeV=KvFi z-w5kPTKz31C=Y5k(ean{uc^aV9}uU@YClNhkL6@*KO0oQ6H&?jn{{LEP3Iwgtmmn8 zML3-QLtFoZ_M>&D?UTz?`T@Moi;8z`T0d+N-VssB_IvZnTQ{iCi8bzr^X(iEo;H49 zg7r0Ot<&u7fWv;CnH|E}Gx6Nwq~|H)n+FhA54X@P$BAXU<+`ZmHhV`m@fz((2#f zo_eo(p9<^zgY)LPBl&6lhZn!?PpUq}Zt(0FpWi0G-+c2n#1FtKzdMqfWYPcE$t50H zDuNdRqu)h@1MtTl=mOhqwDBkOyI&YkGvZou7%P8i`p0}|{X+1Sc>QcC9v}uDh|=1x zRQ>!%vUjADLWf=K`fDlwmg2pT+}Q4>&7Z>k!>gBj?G#l#8TJF#r#Hgmyggd|YX`Qu zPi>uC_uyuO4Z!xbsJKhh{Og18IB$)H&ue?*0To(oJ^zBMIpeu2%-xbmVdCRoW!{}|k%S-Y&P-V{;9ooc zg&?`dAW9p5!uezS&rf97j38iueisrxXd3?m(f5N8rRiUoH&8pZcIC3~z5wsW;c~dYi9Um4bQmT#(~xT zlZMZGqAnYD(fXIyZ&9__&$E-pUxe?XI;|$+!_hRS|my1ETafs6T56^hq5t8_*>NfLX6>Hvk^Xkv;e~LwXfe)f|BCYsaomTtehKY|RaZh(&L#F|v>#FzF%exPF!lF& z(^N=(6AEbXyXP-f`!f;Aoy3$MOdFa;{%}g@QR46Sd*$cLv$o%4BzHQZwDz+ee7=Dk z+V4xP7w~0$?sE#lE&hx8tE|rPap_|i^2E2#>{`mEXvHHQ6y@i=d8CKJ#1 z+WV9uf)~z7JfQuLt^czSUz|55X}?7aPLA2L#pw6;KZ0OgKjt9$=Q8z|RT@@75ysh_ zCwhGU&GRSwd34R2KaE(&Un;8iB4+(F{S$UjQ1SGsyD=J!`4jiQG=!Va#LNHL{yN3q zz3lS4OB(-J|673gE<{vv|3mmJ>bkT$yZ^6w`eR>z|7Y;*=h-!nKYQMO^YHBB=Wp^B zm;6WGVzj^m>34Aa`#&uTD77Wk$$KUpqclH72b5^#QE5@(3oDa1Q13pv45pSvQhTzL zlMenkOX|#5*`sPxNWL`gIREb9v*fFy&s~&mK(cCEXlTwG9gvn}puY8t32c3;;Ez^* zMsQ5jwEYVsOksym(@tM+X#r@$eKt5m4`g5d;V`$K7O17TmseXGg6yX`Poj==1{yw} zbOQr*0C#O6fAL9GFui_5uVr1nPzyGV>$a`(6E*sK{U_3>fqGQD)l`Ms2Ijkk?L*{3TxaH~_RY45hH!EDt@)DZn2B>!EVd|0*|Jo!ZKrHi97 z2)bC^M>eoK^gUZTM5Q|ihQxm?2je@yTf64;dsg&NUQ=93F4j zmu@*s8TKpEQ4ZbF7XJArOXc>DE9APtfeEtL%PH>jV1>l%-zb9UvtpO~Ffx0d-q@vg zx(MXm;B%u?71S&%HOx8vf>hVMtD4f`9SI6cJ3by*OI66;xxVfZ0sg2LC_TE8gj45- z7Om0-yoY`I>{V(5-KUqGd6sGlD*`Ud-nTc0#Go#B>Yvn8{InrO>)$)WtliJ%)|MGV z-W9V2Z`P?maP)qKqdgaXHPpCWo393~Yvil0^y9#HAJvN$1bLvZOmx0HDQ*pcHyC-P z3R2w`9m(&#q64fxY~+)=O9gz4i>>C*(uRq?+btE|n8I;6=`q@go#D`;yzZ^!)FA() z?G1NbeR!;vG;96V3c}6v4z@ob12cB}4Oo810Uo>e-C|avDTHG(mp)5$hdsXK*UT$a zgX`w)Htra!49kxNkvo*E;G`tJ^^l7l;ffBH1Re5@<*Wp3e)bM5uU3IR z3wyanIjO_y*Sk%ggsDK@>g~_Chh>0;s-umqELqWX`-{UrzL-Ps8vOZU8Lg(q{R(8lSf!{WsIT$(E z9L9%UNt{{PVd1TAJBqHEihdt&1!Gsf=@FPB;N!BYQ@{mt zm|g2PvQJNa$nlB`J!4`GYfmoU+2fuGfX@Epf~3y>x6TLb&ywfZU!3QtCSJd=pI;BH zmjoetzV~6>h!?~t>3NPM!dW%pMd$Mv%Z~lFe{=%qBjDBa*GHVE*b04VjVS(%^Mq!6 z)A{y3DgpS@@&01GVD%9GVY#v2Q1GSje4#0A^RK(cBmg%$-c5{egYfw0b?7sJ&ZlT_ z`MjWbYyz;y1sZ?17vtNa@*NO8geZZYua1c9mOF4-0??%6HN|*2RK6Xecbf2`_x80h z8W{0uMgmZ#Ze0`0{DUx(HejMBF@v4w$9)6xphRg zFad0*`xZrz`!QFBDzs~L?!nL!&MKs=bZ^)2a#{97UV@^edGh?5J*+|oWeQbomh|cWi14zR|nT;{kt>3Wvsj&YNcMn?q zqbFz8ki^yZXUe&sfAcA?@DereQ!Vq1UF!7m#cy}nZ4z1pI%w^^oV*W-5XUxR& z4PHE?(#Qvas}sF{v;Ngs{Up-*AF38>`BAgwflJj?jYs7}IQ2~tk4;3eD(FGS#y8cQ&)>2bHge_lh`MdQe z-Y1B}6wg2QNN$`jN1H!_R2Nl{m&T_|?R?6Y)lcq#@Hk(PR)1lhLb|2V@E$tWjQI!a z-x1-R5T)^l}^En~hex3;D#l+|BQMybLT`zCAx}^1Qp8whBuV(3=XT!Sw`=WaLG3#F{ zcy$SYx$B>Y7l!`k`unr?-(E=WzKGJsuWJb{RBA4F;WKkvi0OH_99cRi=`I=@-}?ESAFk~@egKVO)q0bMWpndJTE`Jc<$ z|Nkb=)Biu>JPQPt5&x})vtr#P$|ri>q0Q4TQr+gY>z}jdGL@7tGsQpsDs}qli1X%Q z#nhMJjF^?%N~nM_(_{`EFQxdQx4)-)UZ+-noz4jtl(W6nK1(S~9=_V)Ju=)+4G`<+ z43W`$PC9$Pa|y3g2M_$BWrw&MgXbA5iV-AV;L_;$wVxtY!P;T-y&mXv1bf!pPQNgrEjX;W@_m6P0Yc8b zQY)S%56*V%^8NEORq$o#ZGZa{>L7IL&QWP@9FXfBd8I6b3;1VxWoOnpg6t(9-g_jN z0nb6F;88VWShdD(uk*2vaL>Nh4j~TKaEE8z=v{WEF!$lWe&j4W_<8BX@Z2jZaCqU$ zXCc~-kn8#B#Rfr=?kY#VM|x#Dz<1g=v8r4dWG{W5+NLiF+n2U4?ilF-&1WB)RCC7- zR%tGrKQGY$OzE0&J*`L(-|9T&nZnZNRNl(+hPc&j01OIDZWzyj4jUY<^$9fslikPu zVGz_Ayq5jp-p^1M)YjAgdZJ4?GwetOX4d_VLU%&rW2L`>=_o{BA z3fo_bJWv&D4D)mQ#s)rcfEn{Y%gJtZfcGwLD_yPQ_U5NzJ@d>)VH zp>RY6#7wEb23T>%W=ws7^f&;{n?2iv&r>>=Z36n=?V)+`Rsyh~`>`#=er)Xbw?;Ue ze?<^5A@^w~!26mUAX}aQbm({;F&@VOus>%`6Mw*esb>tvJKuPeQkeigVn=1;?;pi} zaLG78X%k))2T9r$SF!PB0(e2kzYyak;{d0c@NhFJs}5We^A|sQl>na5@lV8f$vA*V z6JB)A>G@f=tyO9hz(G3xpcpS12iVhu&x+VL#SR#lr26Q;NC3O(_}yZ>G&|^;&%NEQ zHNPGQ$Xyh2HN>PB!;ZjWDx!<_h|<<^^K((}$X3f&e7|2j^_TsCm=EsfqR--ethD-% zi5uutV>p$u55@OYLKip=AZbS(dX=*MM(=ol{RG0|e1CxPe-j5F+Unkix9`01jp-q+EbMO2z?bcA(G?G^*#4jH%-$v7YlM zP5wf+_Caw`mMfJMQBD*uxOwn5?}Nm4l1N?R^#jLGtdJgQ`ZJnWP)xa8n(=rW`}1l2PdI+d@BDFTbGj8{{loK#wDy0xvtz347-h!%`QPXY5j-b+`mq3+ZwZ{Z}Ak?{=-H5v3)_aKZMWgW!7|c9i_%@e>G2k?EN3d0UVGV zH2E`Szn4*b`;gH;NiD|wh4m+mKd)vB)u*ge3)c_!^Fna^;4l2})rEnOB0h&26c207 zDnE{2V1GWX{-uX<&r`(h^E;=J&lvM(bL&s=%6(f+Dg4dzAG`i=902EmN%lW*-D&2` zJHr{zi=*yB{7oDnzMK6^%J=c%Haq#=Eo^`G{)^)mI1Wf_zXiJYo>Ci58@yld=klBF zFZMVLK#IhEc**tSQA1&Bz+xWbc^9mI4|L&)D6Rfwop(KXk-9c%w@UjJjC|Ndw2?EA-Hq_VP*cWM zuDek*oMAsS7vIXGQnv4<3BQaN@!_z}Kh10Zp{)IXD5}UfL?!k2sAFN|hWWvaJQ&>n zhansfQQG;9bKKtErCwe*pHw^3hjsmkM7U9i ziiv3c_RkB6daBx&RsT^4FcMM8^>0=Zc)sqp&;RwT=S4Jc{IIv*7*y{VL}~gDT4ZpC z`j&BT>hz1u{SO{L(Fiw|MSrbFo}IpU&#V9C>j%63Vo|*(F!krCH=~Y>*PMQ7N392I z|BFMo@htiyoYl6U-2cz{51ZG2*z?aZy6YR%O zaUua-Bq2(hKViRZ734}@ykVc9(X9HPgm8(7()+)C^$n`()6HJJCdB_QpMQ;6*U!nQ z-qR43^dAMaZCCj1&LDvOjG|&*02L>upbLC%0d4&Y)LHh9jQQBDe`3F(zgd6m_Q!N2 ze>$SH{v-51t{G((e{t0yV2mp)q@DnOoPjP<5T*5>%&8Y{QnM0vXIQ@&%!r@i`Ew@1 z&H4-cQ0H>$&x9hw!VaDc`x6zHYX9MKn4jpgc>g;a6_|@CO@7|-1GlIUV?}CLg(1WK z!S~}M+#Dtz#`*}>58JQ<$K6d><4?_-KiKDAX?S6Lo^Sfg_N%_IUQGWRsxC1PU8EvP z(_giD+BK@H1_@O%c)x7Fi*Cz)-h3M3yO7DB|6tDrD(qtKi8;$cSna3z2)BTV5Awcw znc@#}G49-n!#aOT(|_p)^WjTnHCs6TIjr;7A|&@>ruWc43O>p!1`1!P$J&vL|f1(QGL(7S8o(bN+I zZua$O_5Vuak8aCae`)x-eV?YO`1r8KU!~!N{Il85oBEqP$W{N52bn9F3B%QbZ%*8J zl-k)Lc)>A~Q`D%G(vNZdPE&)9d_UP?ZV^?v^UA9<)k13e(`l)^38$$`9oF6Z-t|1i zsju+-cK#wY*+$j&YUBk<_0*%O<3mhg#n#&+=Ga&OxTN00OGh7q)cWL&sD3f*-S*J;7~iJ8Nc;?yC(Z_bUcH>_dl(C~7TN=N9vMMrh>b`Ee3x^UmY_d9vM z-HPNFlb=$zRXf<rsn>=ZytD_ryrG-s_;my4tWV~t4N?SoN(slVeeVq5 zF0Er-QY)zeJPmGIJ7W<2M|uSBnGKj?3BC^=p$0A`kGtD@V{1Un>el^~uNvgpKD(UU z`zNKg=Jw31d@Wd$*Z1=7bL!x5)%hN4M#urp$r<24=Wc-OzCnAck}fDLoRM$!MF*tn zC6~Mja|AFdYPfxWO;~Xy+#~HW06hPAcgw0CAaio+$jLdLAoJtHn^7t1u(+_x!B)P8 z@K{HIe#aTZipitbZ_w9=#Na(E&S}elcDno1cWUW^G55;*SA5k1<(~SVVmE04$HnhA z$!%2!^S%W1yS`2jz}2VCrdR0z9;MLlW+xj^JY{63>UlaK{@4(E^+O$j)wm(N9-Ia$ z=u*}GCpTpvF>gG1V8t0SzULFyIb&5IaVA@$hk4s7;dox(34uRWr!2V8_T;P|G)*5YU_q{zikIfU#g~m zi82PmN^3&{KFEU#w;k;*j&dNOIA?xbA369LT72!g-V(SQB|WOs7o3xkJ8@HoGA-Dz zWLrx3vJOCB!$;Yfkw{!Re+PqORNN)g1Heelidt_6;*m}V5HV+f2N zY*P9d+y)vS@q9DH&JNx`wLs;2v<$FuJE|L0VGL@=FS?zhW&(0=aQ5d;HU|8o&n$BW zYeHgc_w*M(ip`#Jcwr(k55I103CQjy25%=z&y)2)IP7;O2zW$&rY`7GmaV#DW&-G?)^uZn z=q1i`ZH2zZ@%{_qV#4z-xN=vjZ!JmyPISDJ7%#NL1sDT_!~S-B-bUozlu@UbBmiqV z-dc=rgK#Q{zC=_&gzx1UZ+~>Z`sxIrN5|`l@oiE04v1oZfuR1;*`4*kOOB<(RIkxM zL0NobLP7jqE;;mdJ4AJxiiz@klZW=$wZnZhsG}z;*5v^iR8AgI>_gcr46`jGSp zGtJT9DINb*jF)C7IGu9e)T;AnaG#F9p9e4-X?R($Tid&)4Pxx`FkTT|v`3V-&lmc+ zQ+lU+E!Cd&+w81iRnM0@MoeS1vy_nBxOr*v3!fL{xv$OcuzL(6PX@PNM})`fm9*0z zE)8?ce>#fsUKWg(rvEQ}s&?nJ9?p8+hcvuMJoY$mOYy3x{y5)~w$J6>R((eLzs^5a zdu<8Oz!ODd`Md>9{T~m@PUt=~e9(pZ$K;HsHm{Oj%>h$r4tT)}Sex+b2&aLln27xR z>A{i5v`)_f33Pm>7%#2<_dB+>T6BL77)Qs4rU1-G8vY6I`6#OUL`I$(#%rRB&WK9- z*`}mAr(}JLX5FVtK~3#1P5$XW`o)fQ$N?U7JO~2# zqcps*oc|eCKZ9hREUo^UrE3fTSbcE95BVH`*Jlym!OfO`l#cnd4>maf$0LP!I0%UD zBY4HK#NQ9}8T}4LbQP=ohNz$!qO@)powi`al1={$e{x#HRWEABn}Pzn1bhM+|Hc zmDJzM8D8;^4!AP>ym&n0_=h#ZOU@rVw5RN7e}&7sep@1(6{0l#SKMB5i^|-}(f%3P z((^igUH=KjYkp=bvA4eslDjKYexAyeP2{&@))RKUuwu-gSbx&mFK@Y*Y*>jh>-;AT zFBB`!tOw>N67#?Ae*_!e4%OQkQOWj?-p;#rch(Tr_P0kk2Sg>uKTPmH>9G5s%d>Yx ze4P-b^}p;^XP;2uhgNXS*?0fiIB_>5H_kVu*?+<~k)3s{^1zG;M*l-F!UbL6JZ)P2 zA*p|#0?Dee%BMU0?)i_k|G6Rgdm<`1e~sooJDZTiV~w-8BOK0mrPaSe)$u%4ZO(4s>Oqr#pHFoK$ypaYo39b_yX9wXKWtYGVam@NSNMdiRoUnXs=WcW z(?!J`o9q`agbQTiT~FYwv*usH zz1ikZU&PlBQCjn|$aO#6$SzdyQB0HU<|3+IozRmaljk1=7) z-?%=#5Uw|(lJocNTRUcq+hN+mI3q#O?%T)-Aa+vgpM1)5MEN*%*7>h_?Z=*H-UkVS z{YJF*t9betl1lwf9e5Dnz}SCb{q;roU_>S7uYLJo)MPVzR{8rOTo9s??YH{Lmv`;Y zxH0TsR9ve5a5*fm=(E^<=#L5vK$KShylXplQ=zJL9wnE4cb+a}%~K0Oa$~IaUB%sla+Lou{S89=2Q&58J;v<-No-jEWW=xs|62Q_dE=)u>-vTBWbyuzrhk3+ z?;l8B-!?W5IW3KIv(JCclb;=r^JJq@`$^irBSW>)8YbAW&Y$53Hv&=G_!X`{7XsRi z=_bo%9sezrpNII4L6oNd3Yo3t6x3F7xp$TQy}%I&7s8L-SQN-EuGsDWx{O0k;o+s8!{jrX} zX5pbZD}F4}TMVMKbz11ZDc=9=wrlTyZvQ?G@r^~4HhzTm3vZ9lu=yr#|62R^Z}KGK z{v%H!THwHL%Z*twP=5_cC9R03laNf!OgZhsE zP@OoUd{w_ETw0w~eyOT6&})c&R5Q#3$mep;eKIov#D#}OlYH&K^2Ij6PI-#J<8xYa z$4*M1bnc;@FYkAQt+$mQlW(sNt@pgC;k`D7b2QAwxM)|UUb3YQ+ypNv&A+J$r(a$)<3%UI`z9(U&$#%Yn(A^$K1XJC7sx&F z^3E-LZCHO`#OTmueMq#u*s5dIZ8G8GxbdG9?VyEM*)gdS7O+NUh z0b^@gA9_=v23t?yaXFfu;mt9-oUZKRKz@WpuH!vZn3*(l)}!?I6mj>G`-2Tn$x^Gl zD;oI9E||@Q-!daB7$?a4^}pU6(QeromQ&A+|}O~Z?AHNu?tryKdI%y zx@!)t94C0dm~&IkJC5iK-@nU#Rq{y%dcD7;?>0{X=I;F(baAN`99EiYGy8N~Sg|MG zEnn3T4)*ELzcrA7-XP%3s_)+^PS+f{*U4?cf~C=0!lo-iem9fMs%^?})Z{3~>f>Et znN~02d8HmqC2q~1s;>pB-~9-B0R`^|(V6pM?W493PH5&ex?wJzL! z*EK^3V@&Sk+h{@VlC#@5`%NGm5J!* zJJ-B6*}>|_yqFD-yFry1roFcbz7TeK2WyTF{Z4#r-Byn;Jr6W5(k z7Ua{I6kfRY+#1GFgDS$43}I-%N~Hs&F&xQTb;6{z2@G^z5#c`F2y*)!l}kFU1GC>$ z2DeLjPxa%i@j27R0A~B0OdtM-AkXH9gHN%J5v=~GKC9nIWtb}yb~%2b&Ht_Qu%cMv z{83GDekceMVf!ENbMStJAh_da&$9trGcB|`fab^fvEP_L=UE-%O*i}AGXVtBH~N9% zIJsc<6aHa;%?9+DAVlXmJ>OoL^=2shd0LWjerz`g_}^SA&jI~SAIF9dP5`EK{-$F7 zIL?oMp47y@B6E<7KG=1;Gv`@q0=TW(^aDZM7M~~87Jc0TQG6c)y%)nge3rLcMgl0L z;|s-jIfTP;{q5uHWJ-$Wx%`cuI_yjPqAF;YIHyc~n>b=f$-NAd8OA z662-W2^Jqu4BWFZ0W72AmmLC_jWm4L%|My>Ma+FN#w((W_J~UElc`%qGaPhAv7SdE zjlV+S@~v97Ls{QTAPp~PJ&@SbE*^Bm0t;zZfIljs3moUC+1W7lW*!w}95Lh|CzRDr z#`nc>ei}YA;AaJu{rYeRzm$KkpIQagA9oK)JCUDq`$g4N@UOMgaGW3K8A!?>{4#Ue zdWB((_aEc-$N2#`&Mw)1&+YQK*Jn1f{qeku^AiM9vG9*(=L+|UD#;)Ast+IhkNGL2 z^?&~I!a-*HY+KlV#yxO-MYRobrco^&W>w@q&&QBXZ6!hUo()5SKYg%U|@p`C$KBAI-1~5Fp>#b}!Yn)sf|K}er&4~;j z@XPhD3o^cv5;KI=Pi~0hwndbte<0WKIqBX__h9?op#b|aMa4pz{QO1;XO5`k_}it{ zFm){%3a}qvSPb+Bs5pV+{ATD2+V~Of6Du}%((Y;)&FZH$K{!)HY4Qg>KXjGqTnvqR zy&J{w)8PIrP5fn((onsX4hT+67|dNC#n|vc{bQyvqtro?0?6$jd`aN zJ`mtIoTykofQl26aehhtpP3a=S&VLSW`LczA`5&*d zBEI%b{JBUF950p}Kip19=T}bX%cwu@zc|kCi0&iV{s-@SEPk*%kkS89aY8cAkMAq^ zUHD!R+bv$bI!@@uSif*NY4!KKxY4Lfn0*WTKl^)KaDD*JbD*`q@H`XPd&=EwTbb{V zZm#^qvH4-2Ulg~{&&d8fmkVkL951KMUvSC9TGApfYk|IB5F^h7%a8K|aGn9pei7!W z@-^Z<>_}+On7=SyTKmDq_wpQLo=1WEk2JifTua|e;mhjh#Q6aL2}Emu;rdaVYOToS zO=a!BcwQtC9_vN$QP}_I5AUPdeRWIwZ%gfuQr0+G^YqVt9*`%hH;xz5`j0SA&+4aP z*1g?M0I&1H;(U*$`QHoSalBq~{*gb}J<)3>7hwBPRJ6=03CpZ4|DTx-HuKk+P z>B!hW;Qk=3|35$Sz8|H`Y1wlI{0i3b*AK~!?PJOL$3E~+XUn$cjP)DAr1pR7n?*Ho z6HFNMcXRQXU1p3R`zkZ+XN<@B0m0}C$?@yhJ4?&l+>WvSV7xT_<8rvYM4!duHv|>< zi#R{%W_yB!TT@iJuleWB6aJexKioQ>B8gL3Yi;b_GUAlDUM;P^RQype_wo5^R{I0z zXW@7~P0zyh>vHPqTh1vltoEN&{-~m~`wG4hw;#?Ah(zUR>qqpn&TT+f{d2lOZ6g@{ z2j6cv!bLFgLi^=dy!FquGeLNO+%A zl4Nk2%y`y%Z&>ju@}pjn{G}OZ$UmpQJsjnAniK>Q_nrOoFj@P2zjOBwd&!i~;6%gV zgXDerflA-1Hj@juy8*h#wmxT=;r#279awcP2Rt~v-i(siPNh9cm&70vS4tPet+ z10u|paG`t$XI{o0!SmlbgATooGk~QJsUbaPYQga@7Fb$MaE09IrLj-8I>0@HJ*pGj zNN6~2)gQZKy8!QL=lfpr(gyl|wZ}707y<)M}u_*BqG@IILoIgjK$ve0ee z&+)fTbO8(Yhne&XZVxJEYj4;d+X|jMdbpvqwGrTTEzmmLpbNY$Ypx_tRfKuV1_#G4 zF#@9ttCD9Vw*%b1+CM(H%YxK?)iY0wQUUysj56c*KS;~|I%6(B)B)4pRjumbWeBHO z83asQ?FdwgytOwP6QJI_SLGyQ4wxS*-{agUb?{ExIwGeX0qmX>$Biz&O}?}n`RCx- z@5%G}TCUZl4=4}Ew35jwM!-CG!M2N8M!?GNv&yCTb|8LZO5*-~g6Hu;fIU_Ek@DJX z5t-MU3(hLL@Ao&b2mC~Z%%9yYz&X#9v5&_Z0b-AL=7&C3AhqP7X~!j2Al@UnI5*Q0 zfU~WmZU$^1hc8+(SX)4`%bWIwniPr zzuL#3#^E&y0(M?n7o`A8rg0T|S+s$s1@|sdJ>F6WcMPx^7W0k*rmpu+w0c6$KY4P< zkA12z<4H|J_FFx8>fxL5J?)UKNy!8|HwW#M7$6Y2cubO&M{!|y1 zD=OqApD=@Eai4D5Tr+_W?=90=pJxv1FO}PF61-d?u}e?>g~P_MbpIj?Q-Qwt^B0!? z9BT)rZ%o?jxxo(bmdm}d>aGJSk`l72cNzo2)$)%tW5N5B=I@igtL+6ceTv3*yTJwe zTXj#&T4e_QPd)#f$`Th%ZHkKm1Mz%^^N8}%JWmj!xFGr9%?95s(&M7oE??P%hYL5B zbp}2rwpLGb5liNtsDb#6MzvNZzRU!xG46E zORj73)9PK_wv7Roap0uR$C7bT9On>}%2Y`+1LJ-k8s|)o21DrhA!2-6BzFfy z3lJ5MUZKO4z{>WYuK4yG4f@mZ{l$36xG1gue2XqsWdHQN{Ku07=d983t;BfAxaf^0 z{-U_D(+R&id+ul;L&wXA@zT~Mg^V^8->pW2ADpHe6U2`^fImsY6PEsVsxN9;?LtL# zqxOhO`t|r@+K)Nw_`Bm8@vQ5*5|SIMmuA-q{Q~>kM}augV9*yUtda7AoBRTjaZ$)8LwYdmTFhUX{F%iUue%QoX0_{aTon85Y2z=uo9t7v zPeZ6jk2k{@`Ty9i#`6V^i_+#Fp;rJSD{0GT8DS&$87pkW9b3p>GNF(JBZyNtNE^3T^$NN;l@^hoz zGG}ni?ew0kC38W{f8d8U;q}q?*zdTvsa)QGjA4f0sNwmfR|DsQu}$9#E`S(sfW9|G zlrDecIg{c2FKyTJnG2%ncw#8PAEoKPhePDSI+J;<=Zs3j2PJInox5^2>--}PFO-v? z!@93(79Q+p#p8IY6;cR}vk>U~7jsVAx#y~8v(6tlo{Qs)xE}}_NnwEt2RM4D#O`XC z!#aQ9c(MiJPn&;)?`fNsKV{WW-Fd9@pS1d~$k7OP3!lXB3pBU=OE_0U| z!XD9c_y>Y-c$2zespx(!od4P5f{sXDJnkgtue13T zd*wz2Gwg@v%D+t}=~MO8A&mNCHA$<#s9a0qdR$ifQ!*}!>m}eT^lN4feXU$qK83aZ zuBak7E=ub^waPcENWT8o&wihJx3K=~>!&pR@rCkvwy^(1v+57WMR9!T2-1h(kR7GQ z_uMYta<0!J{xT3qAOF0$P3td?i+Uj(t^W!0x*U7@8jqT}3qLdgY9Zh^u=@h z13@V3#c)92gr~RVzbs_6|L~1G5KeObxhS*PyX4axM*Cwn()5qZ(fXC(tN+6Onj4j` z+>ZI40DRw;^7lqJ!tq6Yd}EZCyf*LKxAn7^0bjcQx#ISdjEkl;;emRe`^q40=lj|| zbCv-gI^JB2mnMJYjVDX)rYr+qbiC$VfZ0gHr*m5m|GF%$W&K~RlGT2Z#$PCB>2ucc z(;HO;$2TSWzs0}!RjFWkSMo<65@0=>1)8ltPfBft7H`X(*ujsRQ{s=||LYVqX{PM7pjOLc8ym9^Ac_r-iAB5z_ z@im(LE!_Wi9rAk1@w%~$^B)k57>q84GwWaLZF_+-EKaM`YZc4zpJ084A{^c~O2(y! zd+1s^9UjAYei!p^*7z3`#{5J$ar@zTDvoc``Y-Rs+l$n;oYdnZmX2n%U#0OcIdk}Y zoZ>LX_-n5G`sXKhIX}^hG5(s17nO5io&O}`qLTAR)m%g8nHHlN?f2jDXV*Uu-3ad+ zX#A&K_(6cO!K$X?^CKATkJ~c>;Uf{Hw_j)7O7devK>ruFnD5y`#iizDoS;72+1dL3 zvi`H=l1uOYWIn&$T>heR?Cm!S-DnD;wEAa#Rjeb^566G#vwj@w`H`a$ZW5xB&Unqu&FRP2Gq}FU)x-+HNxn=f;;NDnX5gYORA#MDl@~r;5SR{8GqLS-B zcgM%sKhDVga{oiOWtD$CDlh?2TL0mNeY;0h4CHhhM6#c=-@N*_RDbOFiAZkjpQOpJ z-}>EgYTLCjpS_oR{pR*(f37AG$v>H?{{<5(U_s1lJOGcD7e+unC z7&y?d_Z_p}Tz_`|NAvm*yZ>wI|0D0s<7)c8|M5dfvnI{MZJv`Vu>ztfi46xZ(L$Y?((yTm;71FxHD^`~GvuaPW%I(p%iqppno2i*Qd+3()n zO@GYq%wYMV@B%*V_N{*jbyj>+NJ$RvUSlTlnoqQ2w39cnAUnF(qHOWGuoyu9_~=a)Y=ox695ntp$SyUWf)luLf%?nyO! zseK(zDIc?%Nl8z3%zra#E!j6#Y3;0nMWo>dW4A@tJwV8Ox$8HbhrqB|cXVK?FO=}K zT}&SIhYJJ42E+9daNcsWO}YA=V8zgd2nn*2%h=dgls(JY z`2A$he!E7g!>okeo+h7i$@LPW^rn~?!K~-9k=C(}ptRzkOUBtgpy;$q-`?j;Kw@Ts z=E;*rAX74o3O zcRP0f{`t@ecn;b)wC08m7-2rCL}QT#sINHGcfYnSj9<98*lURrBu>xEJ-NvOMp%@8 zNh!4j;r9+&HOBEiFae@=|9EQ+;yHDV6;G^z&$ud&%+EhqYd zC;4Cff;adBPxD7=um0)d{Fzk8%6QN}aPz~dQzEj%&1JFL+kK3>_@3(9EywNmxPCvt9|9rKjS2l_56BxqB~Gt<1I7g00$I-fg6S#vH!LTwQKW8eL(aKt63ha z2rB1GzL<8!9IUIUjOP9^^0*-c$fs4fAsmDKq0^}UH6*_l=#x~`Dsc86f{~ZzyH<^DxKQ!Tf$ry)cjuDXPc`g z2pgBYW8__32xCWi)%3OjoU1yi@|SFY%6M|9WS%-OS^3!MQ?)6uS@%ubB~%R@zN6mv zeXSG#C#4js*Waf;5E0h7a}KQ?Eml`_c6 zbkNUSD-Ga`vbd)*8oUp7M7}+^*9@datA_ntZ3jNgb}=sZR|kF}=}rl*y+EB`hJNrA zUVvFioVHUn??W*=NBA^|TLE#WzK4BZcmTDe+tsJ+YRJHC6@;Fa2bg%ne9>JoX(&@% z=J}>X5k`&Zs;V7VO~Db3OZ7I^QN)g4V`J*>P{jOPu;OV4xJP@Aa&TrPVkJif~qa_gU&sjicOpi}0%Iy>F}t$?*0mVmV!VZa*C%Z>*QyzxsLa5yF+ zu!_7g*13;Ac#0XDo;NIO#`AiA{vVbri>|T5VSxL#T?xJX!2>$JREWn5IgF!CSoscz zjH==TawGgfDIL#U2Cx_j^g{;G2>gH`)Nkc#f(!4wA7A|84+3$9o1Sx%oAqxQur{z6 zF9xNIO@ME{O5AU~`b;2QsGNOVgUcm4I4)`BjsnzpK>@{Er>jxj? z5l#_Nd`%F753Z#97EWK1Fa*TlhSJ36C;Z?;%Yd~fC>>tF3jc#SaK(Z#n}UacadfqBQ;eeq67jqFxPNHFir6#*187e^rE2 zLzGs`e1}P3eS&*Lo;hQ|h1f-I_+dUQPjKD(4WC`A7tTzSv0yCNaJtx$qls>`)PL&s z8Lm^FnKKp~7~i_`7mhRkSN*wzCNA7@z=GBOw2>k>@Qb!#$Ug`r?AyZy&w1Yxlg0}3 zsS&`JI_QTkqO|(A?a!&Ei0QIpY?a#kB6i#JkM(4$e-2{MN3`YmW!CTh-i)~l42JdoV?sQg2%nPcqkRFZg}A;2pD0Tunh6RzQeX*0H$vi4ss1J+vFZ>8#r2Q#Nx zv2K{O3|OP(zqHHRca)$#JOAMgH+K8CL#0nwKIr+V@=ug0XjykX#A<&yU=0VJ(dr-C_N%41 zUQ0{TV$ZSaFDn1-Ek6OC{U8k-XlIWE(e$spEcT2dz*-peDE1HQ&u+htNN*hY)Uy3* z-|5Jm|67eQf57G16a8>v=ARq0rj{D9&Ac)CN~bmloEr1KS2Np%{euWG;K z&)BFk#$VhYwG3FJ*?*Sll}gG_s?#vnXNrva$9RC`x*U z-b0ATftDDD1Ay>BtQS7a&yHG`4D9K6dm$e0H~1mBE1KmK{12x3%D=oJwILbU(D61x zJPug%K{(u>cxKVpdbCZDy9d9DUdn4Q+L~%bzpn${iFV1}Ix+58A)A8CuyeRus z(7!%7aceTrpyM?P01_wC{^oUjldqZ?!#e*Mj1t0uXY}^RvA;tFF1>K*rkgtJ`a_id z9K!d@2Ki?s-lr0XQ)#vS#N2KvAAZ)c;&Gr|0Llk#{F)Xn-U+Nvx~@MzAc?jA@<%vq zcP;z>Lj&~o)Y--VWAlGe<#(|#eSaAYWb~g%ZISga;A40A4o3-vAWEzM_^Sqz;JWr{ z?{J+UhJ4(Ak3cva_(j8W&OH4|+E_iT8Zk7G(SKunAj0E-H5%U2wZ}`c^w={Qr83Jl zuiwLZ5+NtTG+FykQRUB3ulf@1qts?R${vC9E4Xg`{s*5w%#n5f5Cc0zqtTBrL}~30`fjTvAL;9I zbl$i3g%9@mtEl?JdgA;Fu7%}47BNI3O0z#g;bA$Ya_`QFCuu!d=fB|yhxg5CcrfJl zeQMc`*r3;5B%}Qxn8@}UW;tO{#~E#(zx0Xedt!<$`$0%iND&-(Mq9t~175NgeUaFn zZp7$6TdV)xG5W7hG!+cnt;9A&zaG+Z}Vx;L0;|lImg%MUO z*IK?}>|fz@Mb$s%W0Nlm@48xT;F9U=^N&O%U@}wxEdTU!N+En&jDLwto9$PW{z-@- znJFI(^DCn&?Jnd_cNhP&;}1`_wwAvjTkQUeX(-?SAz-Rt?ZRU6UQ(t*@n&ZKiS@w& zYqOc*Ndy$inocKN8AJ8S@W}PeJ&Zh_>uM ziQH_ZMRE7q?mwzb^BQkSv98}m*}p(71y=uItMJ@AtO2*J!V~QE-#R?|3y*VAxu+u9 za{hAhdMDq$siBPi7qS1hfVIFgU2Dl2o9c59t|tF$+us6|kt{@8j$hMyhQ2;t>CNz; zVf$T(a7z%S*?;_}U***E!?T>T=6bWvUlt);8WUf7>Fp!R>3MOow6DiM)_*QWa&g=R zO@DY^`5r|OzQ?VjU_0ASd;33j`(29k&tR4xQNOu_3K(ZqF!reaKURLrklf7wApdH{ zWs3V_{`MPjs{dO1Uyk%%foRMAH!Gkd-lE3)A1l9=NNzT>{J5p>%1Qh5>vMYgxc}ku zt7GlI|I0ywIe&{&-No}D>Q5c^X{f{@^8E9Idop1))#-bcpMi8OHF#X^^PN*~E7d%rtO zc2EL&n>(F3{;PrFJU^H_Zt53O>+~13G121imesBaZu08zQ;3}QniLIKWB0+%AVdo` zq*`>6U#|vbpOwIOhty!$Q*PpbGzGX~@=<586Y4P3)#$>}0%Lgm)B3v~*LQ{4t2{Mw zKdHhWyFCIneN=)+S4Q1^e^&>1W_xN=qjW%)*>b1ZXF38SFQa9n514^nZ*KlNX{HPO zo-21dNOb}BiOw3Ub{K%GU2A4-ye0`&ILuyOqptv#rq4JMEv5h}mEv-}l;yxKnLb)p zvlPLa%DJiWKmkObeRZ!;Tmck!)Uh?2sQ{Mr-?-d8UjiIGGAMJ-?0S-0<)0I>s))Q- zxnV;P@1R3C)oQ{|r{843*=Y*n#)$z=;<)2hTfdSY26nl5^uRB&pr^Wd@tQ6m-lcAt zjlU8YJjq__^K?bPF&^YoeMAXN^uGD9VW$F6cRFktxI`6jX6*EmnnHkyJ~@tkrk0Z* z4?f&*>O?8I=T+Uq$HC>K+r>L#k0oxCIeW5CiG3|6H@{G-DO9;l4%xUib!*={BF=w83nH% zD8p>hQEYse3m7hSa)mkXU_i$)UoXs>=?3LuY=0D|nF3V{_Y<3^S%T20;xcnv15i+> zc|@^79fbMMzv5MI3P8#AVRWy~Y*H=XqM!3W^4kgT? z!sXtnno>$I@5-oPx!Lw`@|ELTx~M6^VdtvH_;WhI2{G9vW{vu=Aac3N-X(RU%o?d_ zuC5v|@Y9EYr_;3H<1y+PJ71{r;yUMe9S^X9Z(YPUz}ISU(bX#3VBUxIZcJF&!08|j zvnqCO${k8TzlN{(R`r#Km7AYdICcC%foDH>Jld)^PwYWj*Tmi7ISxQeZ1=NumTJ6Xt<;m| zLvau&Ha&U3avjhRGo#XQfgymlKg|cIs{k4CH%g;@%z>m4G6nwW~o{w_P-S;JCY?%cBC*)mKWTG=X-u=oWk)gI8JZafNo0;?`OuzVjP}V z4?uX{Xn_9wPSsU)12M7*X88vafwv02&!gVLgBiupZ5u@KdW&~1&d;N(IKZXX?Wn1H z6G4AEzP}KUCgm_7GAIHhAZ{`ym?6^bPK{w-u8xY>-F>u41^%u3y zT6!hz?Xv@JAh$VP-jA?wfGu|Pic z0{Bvtdk`*L~?fJWmz&Q!Vw!%~}uXPn+ip zKA1MMzT=f)lfhWrK{WA=Jq!>#(G~sBMikp2jwXugY&}syqXo_d0jC7PaV+&L<#i4&@#isCz9{O!O`aXydQbI zgIdwGDEoUZ6H$C5YsM&t>5x)_l@rV)x=Rjd22V6c?ay#?P zWUz{kUnRsFAbvb=FlojM;{4C2dw??+CxgXw{9++qRQ-96y1CBs>SVyB^xWsGbuw(*>?b?&@n*Qz;lYf3 zYMg&F^urQSTK~uQ(c!aS!F;0hhxN+G2U-}nbNo|a z_0xAldfOq|vj6NFWO~7~aU`ps9nVX;BRtK1*ED@Fmy=*3ZP2SzJN0KDe?^s_KrQzE zs|V5>AllM?4O0t;?^Ybc@U!Fk!}CHHgs0`-RyVGK8np73oY;Ai)lcexa5z4ThKI)w zJ);UH>?$82VamGC?TGL_neq#o-V-qMS*vm_p?jO{Pmt_C7w3-SWP367uPkx7PZ6_Y z+&6E2+jc)yTI!^;o2%P7e%i9mpIwpOB%&?*uh2b`*Y*rCWb{ASetIKZpZ}15v8)nm z=7LSWi_RD`>JPEE+fOd4{gm<(6@f$g$pr*E&vS9lvp$>>vi7Sm?OrFy)!**)VIY7i;}{ zA)Gf84~y@XPzvWP(s~Z-^M}VD_VV{ZdgFZ`+W5o&V3uFPA?}S}pFgZWV4Xj-&i>f@ z&mk!PINq{l`wuMn(0k^IF^o7@+#dW9ei))H_YZm*+{ldVHX!Whs&Sceug8xM=N znj^r|oTfU!5j(GcOO(?mEJUz{_@cN`quzp{^GreOaVES>-X!RZv z(8K4MMqOe@xbF1#If2hRLdlHt4`b%=&OJ$?^3R`8fc84o2Hy@!1E20eYyDl6;rRxy zLlGVIVLkV##rD~1;LWUum&}jKz~rnd_03(4!H2KM&+U%Y2j9)Q#IL5zz=;LEW0g;y zCwE=2*;yab8H_u{d#~b0XF$!|zp~(SCvZC5p~r@|5&-NU|2uh^IJ}mdRl3 zyl=bj?D5AN$)D?&4c+)XgABDe@ajw$2k1*ZlM5-;0!}8cvV&fJCG)Bu$^8oJ1|l>9 z-qn6EgvYiu`fk_If(FJP4NsJ6LCLMg#PHtgFus?w#HH0Xa8zxY%(!qnc<@Yk=jVa=AS_e)1=z*@}hL2=W-Jv)<3VW8Lk>C5aaA@%Tf#OvoaaN9oHY|m~s@O!TOd?jOB z==VFdvxV}a4pX$JEf85cRVmwf4izF;I4Qj;a_P6mhM@(IC(w^g9jBn0LfNB zd%8yGP=80jUFDsnKDh^|oDo4t)H?wX5ebGrw*-YDuT7VAcLqgudamgc0eEv`+1<`* z-9eV|J|9aXI~eqI(TyRV#vp#m)f1mKsDVnCsU`Q*KT@gc-7jskF$ObVmpF$kH-|MN z*M9c7X%2STMo*kGn|H3w(IWL;{kj76k+zHE>umv4ZjAiAKn+-#OO3ian|BV=w&Tk) z?VUl|zF-TzD?R?V{A}}C{A}}^{cMmUoWJ35HWGKB1hFDvqz>@u{Ij9PBLVp14eh4q z{z5+&-WT{!>)f?Ua$rMaY|w%c37{t(-&2Ukem1<%bFW#x;5?e8-Ry>4P)h)EbiAAp zFOK-}K09rm!2d94e8wFY6TJk`fsXGW#A81je*C6cex6R@I!iG8qj{{pWi0sH3&lXV zPuSAWMw8Fqr?Ts>dNjFPEa*kwC+sD}xAe2&^#;$+7;77?59arnZeXqw2FA-YD@G9I zJDT@NCDCo{XFJf$CfMh!>AtS4hKCQO;|qm&QS-DVzF!NqJB5Mabo|~O0E-cYchu_Z zlIk4Kx=(?Vl|>0+d*WU4{Y{11J6?C5BzrRU zX)siz@%l0n5Zzl}!QH>3G{*fW?Ty!*w&Wo))n0Gh(yGZYZ52f4Y@)v>ELeH_ElcvA@owEHT zH}~C~PUofnvGQx_XKPu1#QILj#`Es{Ys-&=$`AWX=A&y~_sRbNNUf$pTK0o?yE7w$<1e+wvuDFBNR zh3E4rJZaxP2PkG;r(ypn_LtG@AIc?vC%IqiB1b>-|HJD{KUV!)Rer>6R=g#u2<)$D zIe(hnF}U*jygsZSAhSaFZiu#QzrQ}kaTag^tDn^x;cO74m4D@C)yEV8rKn%a^#8T( zAN$#`zlf%Pnx9@NrEoMUF|M>1>pmIw&)GBcpOw<%F2#LblQP_a{X7)xAH@DLn*1zt zmxmNlxGQFqN_)?f6RuMPY6|y>T4#Ulz`ID_-CFvL^*ol=$#3{u_e1{x752|LG0R^( zH{>Ph9>sO@68p{Yb0PM2?{hh$g#M$SP3;%S=`%TOwQ|+J*8Z`d4exU%;DSMMN|R46 zd1`okA;9ZP!DEl+@dx|a`Xd}|pOL@M7a5mm2zxJL{QxNT&tZQNZJ6Wx`R{F+qWiXd z9IKxL`v(D%PwW5q=jr9mJmUdg8~$VSA2%eoFQV0m@(4f9Gi-X=5cRc2e|Y?1Z@>S= z&lVVEVFzFiJeT}++P_x+0jRwF5T)54{{uL>UU#iFW-kPIek5S)3lKZe($6*;KOl%F z3HRhd;lc9YeC`59oCdbjmVP#TpO*~ZepUBB{pNROArQ{%ngrN@rvFWUE&XiRo(L4@ zb!1DxvABrojP(VNeIB5IkKIq@gAy8yD6Rdi$-F^;tj1HO z8`76D<`1pa|NGCSyY|IrFyfs4Z~C*xDT^vUzMQ;d*7+CqvtfTx999gShkIg&!u^t$ zsf-VR;rzGsv$d>${gGx-@{Oqg?+*x)@6p`<4n^_;5M9+QpF8n`kp|eh5o3Gf@)qdxf1Ur#Vy*um zR1otJrOn^oJel}{{A+i?F~xo!0I$;pY%a~^kNtCa+@;|wua{O(uL`?Hzm{`md_WQB zCj`ljXUg|GP**{nFS}=Otk|AWe;AMbbKwa84pANnE0K6bom~53{PJ=uM*oM|Mxq~M z5vA!L*0g^j!8x&UYLFdk|1}EXaKB5#L%V?IRFOu$`RKDs?d-qU$G zlS51y`?uJBu)iakS$@T@`c_h1&V6w1t*Xyj|4|4xj)@1!V$Ug+;N@x;muoS~AIle2 z{-rOCZG7fFXy^RDl6Czt9_by!)L&t&^&^TSo*O>nz?*;V{C@({dm>Z+u&3UY)cUiV z9Ud(E=g!l{egz$JRf|NbVFwY5jMpM`zwAPc}ZU|2lv9i#1MYCK51(yTUXQPDXGUeL_^}R+m%$D#_ z-Ol`;11^s_2*+jOVSvmj(kOEG;R!d}ejXr7mca4^*Zy*@w=6HR{j4= zoYVZj#W|^q6GVmo=SYi@iPXV4UUi>{91>)2-IQy(k?M6cDCcaCoz%DSXP#{cf#ikf zp%VEG=SaM-r)+>#0IyziA=jqu*^NDG!89&$}= z2?y@7HX(X!RfU~@M}OUyW&s-lb3bG*Hiq)$H@~||TEpAl8a?E?+d$9VTMtZlY6(3y z^esKH1lmo!Kyxc zW?gd!6U?_v+ufrt468N#u>P0}Gz+zxF0r&ftgO9k`zWa|loR{7aae;UION!ORHFe0 zfPn*kzdzqVR{owB9{8z&%v&LoyJ%$t`71}s_UR)-kkc)*e&icdaDLnHu_w110{7oJ z-yJ;-0q|10+FQ&B{7SN<4oF!5ARlodGOq*Vq)lA`v54qy3GQb z38>5O)W-yH>{4sICiDZqZh26#y)O8$5nOQ#kpWfH^6ZK)D}k|+lV=sXsDiTd&+ng~ zs0iTOxvJ^kodI!EHBFayPDf=y;PmoRdzhCtJJ+|r8Q2yP6V}^C87{~)?0RBz7pO94 z*6T&{2}qfl)%jO-g8TFadXKIlV3efup$WMUs4%YH-OwEbB)AjaZ>(}BVdSXEVhtb3 zy!0(gu73JR*rXJ3nUGc;mE|FTaX_>hijK3{6Na3v<{4jLHQ~y)ykm&f}Q2ntw z%3fo@BSm*D=oxG?&}^VF?3z_w_rqKj0_C~MFH@9YR_$HWFBRIbG9h4Lz8eAI;xnHu z7wW*uY|TrlyL-W=P9%A3v{|%y^4J(n-V(xmZuYEfvzUv#UNh!W(?1>F%^2OLe>ZrS z-jXqwn@Go);wI7|<_eGCojfAu8t*FRdegsKynlmZ%9?(fG=WQazl40fc((?}-2B@; zm!^BsgS_9zNbr8~lD^M-?A;~CwF%xd3-Nx>{6b>~UP#v(9^c}AlDz-?zosmCcWC;A zV^ccW<0@v|9k&d6S-r~ zp}>cZUnj(i8kaRrXau_kh5{)%UTFuwVnpHhJ{jtZtd| z`UM*z5=IH~)vYFn(MDERXWZGbY+@zm?K^mG-Y`d-?bN?{NXTD1$gIik45l zUoEtB@B_c#WY+UD^bp<%QCtuB{Esag0^J_Tgo6lNkbD}{JbrS}eH>r)pqWqboeL{x z=>Zpeh6B8B&VS51w;$`NkN6D`t!~B({KDV=da&?PU^o~nyw7v_3Gt%p|BzgivBJwB zfc;1OWVitUCnpMTK5@ZAX{YI|`}(5rJUQHl6Q{OwUAmC9|1&`uu|)J7&KMy$f9aD} zdE>T6T!8&={Kp`mx%^ELzXhVVoAHABb4}0W4%D6te4Fp{e!!v4cpOiL;{x$M8*lW; z8t%ja275Wtg@$v%U^<>F#EUAwn0}e1hVpX(_Mh^T0Yd>!P86Qc$0=YfzgFQ1cE6ex zQp6fjTK}7+```t&=7MC9#s1#y^h>mT{1K?dK7MvXdgJ&mn*RLvS2;P^3r1Bt{9*ms z^KXar$MH=x{XaYie?V<1n^&~-RZrHq{vHVLh$szTpw#$;(q0_?PQF5!u`i7KFC5SI zAL8POrtcK)-{jJ7?MIbATz;jj<8SNipB<0m$w+4T<%JF?qhKWPI&n^yb^iNb;=;II zPQ1AOsC{WO9GK^?AaSDO() z_)ZblN0fYUIYIk!0(<%QMRNNw<(H0paET)FUX~sX+V_XckHb3tdmz2Jh*lxW8)OgM zr1Ze9{kA_p-Q)s2ywGlX-Y2hl{Ke~a>=zWWLF!;%MX($cY}!-71?s{FywB7K@pzYL z6q4I=|DvF>(a4iG{x;x^f+oJoO#rbo;=)?a-zxPb8Ux5FU_Y*KK7K~C{x~iS&kwwD z!st6;NA!~Fk_uu$Fdd&K{LZ--;>YuY1I>8BdufZens!az6bpjr_$(nF%NvAnxIf}e z+ctfjsR69Ud8(X#8^ijYcTx7c`lI33!{=id-+9Msio)~x^77j^f2q9OKD@#OR{O>A zgg7p?<@(j&cXGxdouvTBT?z6%4B-6Zc`1HQt0w;XMXmbQn{MP1fajS4oO`qV;CcN} zlpxK1`R5;Y>%MX6qf{=y>tg|1Pk`7(jvocquM0bx4s7%Iy)j02Q^b_H0I%}}avhrG z4?~I!NAw+{Ji?DFvI;OLs@aguh)cq3t+F2;Gp$^CSFP{=XM7lby7qVu>-r}UDH4Kc z%km$8Hu37z6-$8?dM+US0lo}EKY|ezjvu8VQRl?Ki+*rarq1Lxmp_)%*8B_b?C+)E zxUi8(P|N)%pW9!a|9+p&hzrMhiK@TCF`q7y4hvc5PonT0rMGo-R!s*SERatDz?Y-Z zj|qt4eQdn`pC=Z%AS!1b@WLC-O?+l+o7-O)!i__88=}1almA}V@1I*YTdbT1Jn49j z5I+X-@K0Pimp;Rl4^y)KjF@03Dp0&t)k zfZyb1{Y90ZPy9L;-SG*)o{k5To8^nb^VM-W%G&?pxUeXsx3HfR=zsZYKfOL*Q-K6_ z6g2UvXSZ7algm3ip7|jah|}>3*#Li$)2>B1*IWz@9ErK(c(C z&9N6TjP(~T&X#duG(7*k`muERfR8<{TaXChK04pCbEPp==@44)z5c z^jttdv;8KZ`?C?H<)2^wri(Mzz1`;p@IIx0jcmpzBHVOD8S@X*g4pzg0RZol3fTGp z#NHeiHU-_FjbD8KUEa|p&U0N|fH(&5sRF>4N$5v1qO|-If%;Ko<&*HJ0S@Y{?Wa}t z!%G{t7lD}8kKafwR{T`NFbz?f{&2EmK6$Orw*0gc9)DJUt|n{$IRojPf+)>?`2H)C zzR|f=QJ##raKtXM|HFK2FFS)0pV>w zKQ0fPo%A5cv(58gzMkCnz8Angf0~O5Vj-e5`}6EF<~dnFoYqw+j$-(KaDB`}xCMx| ztp6z{NAKL5-jCtG!T9+Im&%lHdwgs$S>gWF_wyL`@7#&1zoP@5%~09jm9c+_#I@4? z*v~H$B_GS7^@~ln0KVTkJbV59m$WzQb=i6n znEW^yVP8*HP6~f~y{e8BBOhJ}EYt;oqkTIMDbt2h^AtW1)}MBJaLE=ZyxTa#E7<{5 z62}y8+nNFRqr+`+LoFD4Pg4E(?pGu?w)(~Kju)uXMPVEb-3|cU`KcX0TMWYYTL*`Q ziGhrVI~zh344_=TvFE8EO(_2Th|v~5Rj52!>*y3|9T>6Z^*O)8`p_x+oX?m?ymQ93 z-<5I??h4n;+p~Q3C|$VXxvS5k&nD0#Z>#sCp(aq`(iY!GRi<#zj|tI*rmc5Q$=?IHB9ED4Y{o$osi+vnUbcatqzKKd)r3PkbB*}*O z%Yfa(EH=bEQ3XzxjyZiFbO#|meF|#(C;`{`GaqG=w@A*?EkD&r3s@64)*;UI6X}-g zJ1=lB2aM>ow8mTuKpU61hJyQ^ka)Fg-jYOXXmCkgZI+1<2$}y<^-e}lP-EDUI6GMl zWCtq+Jad5L#l&j+xg(B~J`?93?S49je7Se7T-ZKw7%Zu#6KmKB=BX~-+c?Yy80=sB z;{@@7lsj#A_2H_QWX%1yp@cmNug<%EGvb^vXjrvAaiOmXu!@pf(50g>sJ#1ZXxR`u z0QA*Dw{+75o;pkXq_(*N+vpk3ykGYLVdc5hrLbOL)Q+%sKlFIPy`8$0E8q9;8Xf0@Gph3lWKc=Od9I7RA2K1$I6Y0Hd#?$%fW zB6ilCAs^n5WcCudRCjg2shS$6`@{<9$*s>WsZ|B=OL=#t6Our4v44Nr`@HkjETpFQ z>S_qhu4l===;#a#$WYF)E{44CDaj70u;ZNwn(9b=aU%b?}#YqQShGk-%J$ zhBrUhJa5PIX*{pTen=j7meN8~kQSmD^=oM)kf7rwgm}E1RYJ*=LNR=NVOhy;v+PLF zhy$CNo;MaW%g5UZatN2$j0ehrw(4MZ7q9gjvLeA}I{vc|kGI365f1Nz@%Bylad(cM zW4|YCiv&05_!~kz-j0_-c>8Agf_>{3zp`Gb6hs1wj;DlpQRDWw&NoK~9gGBpbbMg} zz+yz} zKWQzcl%_bwhiDH2#yFuS%I({1zoO(Tp56UYR?UO)J~U2F6kdGdXfbZ$D8~EH7_W?e zXd+6}U%|=rBbl@@>r!G! zrFQ1OlJ$KYEu_CTqO|(=E9m%{B=${z({r&dLx05H%5@KW`Qd$PystwmKhB8D-+05p zxfPYWuKr=aFT4I6R1k)U()8!|KQjJ9cfKxnW8JsZM>qpSY2^&3g|`;8-im46#2 zHVokQ#b@KXHIJV*274rh!I_^snQy)M}s?+Cc5#N{svFW?Jg-FJ6E3ArNLvj0-5e0MN^oC%}- z<96CQ`3CLmzw24!9{V7@Cn4I>eh!?{oRU zo$`4g6a)BlM05WG(0w07X?VWh;(d>UR#enfM%*(lKR1N)L=@lWUGn=sk7_Fy@jK%g z=gDEdz6j@mD6RhZ^N-ESrWay4@vQwlOngm&WBEaUef4Ow-!@?U8ab&_ zlQzda%z8ChI!SsstNrvxdJjOfW&d4%_K~yc=c#R8KlO~yQC5j{V2qzgoXGjFn!>FB z<)~S#=b;Tm33(w(EB~;-NAIXhQG3s9-P5nl<%jje_9D0zu3x+n!yrUy_QRjQaKC9y zohI$ZIFAFTC#wCMzLKe3zql7;{fPAvg%|LdvG!ksQ9?NWil#q*{WYYMb52lUZ%KH;4Yi!c4qk0FTSba|Kj_8SmVVx;nECZqf?UR3@& zzuu@K=Q*>@_9uUp{L$Ydg?0Xkx?$nzo$mnKG(2R*0{CdNRc2!>FsB1k9yMX`&P}d*@>*<*9e5e`+hV$chtl)r2Gq_ z^qL#{dG?~}50?|oE_klpnP=ELJ+IKtEHhkqVr zL2~&qtwn1X_K)!+5iShTmhErB^X$);AFN|tKaN7U(TLLO52PRM1g`$-8C_7B&N_bl z>GB_g^d8I9pS!m!0m={V3YnC$4vk|5BpMD)3q`>a7+KoL2XM$sNe1Q;;{aw=$p0@r7Yl_>xVd|>MFarxnb&QS z?LC(eJ^hGZDiqrhNYR|3>?OYk?UrZW$-UrwRaHwpYF=yitnJq0!yb zS^J+kNRfqz((=il|EM3a%A2)5HH205{-@q-uzl`4O&02n`Nbd!R((JFG?`1Pk)OY7bQ@IER9_L?F{So^d zHv}1cYN!8){k`c$Nbht+Y4yjQul$N!;rQ**=a-p``72^4($J5^O#HMdn;(!LNNL8E`{@_CFuE5L}~U1=8n_?TO_tbScffPwO>*4Cmk+yQJue( zb^as@FHnm;ZhaZjI|osk{iRu5Py)wi?p@nmV-}&0bV+iX9gKuk}6h>mUU$etcN6V;41iOQ7y4<%86j3AMdb)|!CI zUA~4-#%V$6IduoEZ)n0P%MbTiU9Am=Y?8g7ZYl>(-c@|sr@#~*_w4FD5h#G7;WZ7x zk2`>*pw#ak-_?Na42?^hwr~L9_gX!q@(qM516_58$^(acA6kXYj!$eB;_W zCs5D<9_aVP8JtvZ3_NjK3rySd?qi=+G2oQrGOBL?ZxMEgyWz#0x8y{BMa75?ymNK) zYV$9OD}%}<9ezoD*92hv;XNJoB*57dZ|bk!Fac(hy5wKIZUG`>^`vAvbxuE zebC_X^w61NTX67PeFxL!$}p{)l2hUhWq5jszEAfd3b3gBuH9TC1z1^eZhD?UJyqI` z91u)s!6}(K{rd+fz=BU1y}s2OLxr9hBR<}>fPVXz>2y%hha)b&<

ev8{epcDEK1~nJ4wBsZ7zFD?wO&Ub1?Hfl^WN5)R!mvaLuOZ$NQglfu)moSN*zb z4qattc&R%|fe&HtN6&SsBYoFDmN6Kk0FKKp{p(!@&%Pc-rHie4LuF;%66^O~3~=Yn zk1)_tfbqb!i~a#O5NtBZX4gs`_^n<%&R0wt)^97ExxK^)g3Zu#Vuc|H8z>gOEV>8u ztABQ9)~0@-aAne*;c0dd>`awON$&z1JbSN-cW{S(!^3KdE;|4q>9#EQk~;8oSTp0} z{=VR_@|F02o|bU-x>GW9BnHE#m-@rO-gh&Cw)(^P)dS;xI~#&wx_>o%t&{_m zL-$>c?cxjw#a-)kj`8fY%K7PL(gplj>mgP*xsh~?44*nQ;|H1a>UYockG_*uKg#xP zeAz&z1}Ddv|1%F`yTi z|KL>hWJf!|``3Svd1MbsgA5b6%d|B1j)OhqQa;vCM{5FI z>eP)434KtJ`ZHVUygPU!<1hCU^Z|up{#$p1djX>VIbo|!(ntDp>)`cp!-U<-*kI6{c{)}=}zp1^%jdxD5 zuJ7r%G;7e1V{q60q#Mi|qwScw*&H0+Fjr#5c1@@@{rTWk3#?$APuj~Fl0Be8$66l) zHF?nA-Ex*iTpwsQgxfgIz!@IWikAK?H1(sit?MaDPMeeN4WoeO0fM0c}RHfeSbFeE~Q{O@Ojw{ zMOX;tjLC1Rt@nVSI1W`^iUhv)e!gISWZ>UQEz3BK}LcBQQ*GF_(Gk(pO{nNUG z6LKA#w|(NB&p^jJ2=Tnpm;Z+!)8<+65;+&i+IQNS<3A<_gl8-E#JQ0$i-P-O%jk zLu$@_s>sPKDR8#~W1Wum?}GBLfaqViV0g6YeB@<`Q>Y~w`iwXy%qA-TUnWdSRZv!7 zT_=db8_8c)xUs{G6|aO8QAV_7{c#W2lte}-|7+LjU6J0}h)zJ1KTo2ESM5Ro@>{~ z`oQ5;iuVJV1;C4rHxuGT)nC=T;P>y<761=AUL^-0u_D(=syV}DbWVq``e`&#LRyGo zyXIZ;_o>QP?P{o*n)I)&e;hx|LHg6|m%q;nc3pne978MlnD5gT=_tt-H`L)h|+0VDIM)|fulve)yI8E+u zkII)p7Js<^V)rxP`KB{df4-kveeTwu0oQ_9-}CB@a88KQ?1%3ss+)0G_VILUR{OI< zI0r=EA<85C^97d;J`b%P|e_c<jnHzD&HI&0oCtY=QUP@+6NxY`^U1gSXCp+3U{(n}pHlY>B=@B*;{4(M2eS6R ztt>y*{(lI{cL1U-?I$e2(l{J^W}L5%*a?61V<@8Z@=KV)d(ZMi8KJmw!yoQH*xUaw zq<0`w|19Ik3W{qa<GH`ebS4@bBWOgxvL|H_B?hn}VUYxCba`w>4wYuCJ-3fEu3 zDBmH7()jr8zw*tdL}gdWKiq!WJO5!{KmQj$@5sOTdEfAQ_8ib69 z38bmxpu1wl+2q&bm+m+E<&jzY*3RAOvzk0HyU==oX&DtefgC>L)lKU3m5EMWBTJ~k z7Y=8ntT;~QeIK^9-|UVsQPNEP;tdm69C1JA$!R?}xKk}zb;ALM1e)vrn%Wf(n-)7J zzg`|@Y+iY4&lyRWxpVXUTdR~HJzn_}W|2aN5_viXm@EPJc^PwW$^$PyXOFYdu%EMrl*pWmzNmecJSf9_j!@cGznPrrH!j5|10c9bCm z<2AtRe)#9@y*iNf{_-DDI>;Umtodi<-aWcX!C0yuskyu{!d_^pvG; z+xx;bgUHSO(-k0S(Ef7Xx{lKNQMTG?vb-4qV~^ z%acB-z(Ti(F(-L;AZhXB)5^fcSwU+ z{A@u&KO1k8825|V&((6Ao#WVdbHA@lKO5>+2|O>n$Y1Hv|LPO3F{nb{N8X(oa| z>=0{u9=5!Bo{9Zz9E8LDHE*B$(6W7I;P?6om#P&L!7w^LK#0e;@jmxVln%y!UpM6U zE9pcKfEk;f`w8)Q`x*N=@Vb%5wIX4p4oKLcc(EH#z8@XW`??4&H@tq7Lvqg}N+3UF zk98xjXDTFu0d%~!5Z}_zmfVbo(RmtrK=<6v05z3F;6cZ$2=OibYTWm^AZ^A zL@ZyF{nZS;Z8mL(YdhC@?E9S9&xZYFH2uXA1B$3;hK_3Y50k9xJW={1^J?yA(KW#L zTZ_l#CBO;mzjb&|)^(aDQUv>}X!++nKl_p*mTFonTU{jS-3LJ^H0zK3bJ{2!n*H$O zxrw|B$A@_2{o!>Ahc*8#{cQC7H^oB}c^mFmWFGz3>ffsRw|&W)e*;u+*w04m|H5v5 z`9Q77*k?60pdZ8j5v<+&JVq!X>}R8uKQI#COA;pIM=v?@;}4fVd;g35Y(V49xS9cZ3^U_Tq)FL~CC&$=bO+!36;UlHErbpmLh<39-T*v|$K zF18uZ^&I$C2lU@sajgDT0;s3stA%*%pTqNx!_9a>oYdY^iNE^t;@~yOTYh z9{bs_zYNdEdFk{0-2Lxeuv$|$rp@mIr2jm2{pHcfHqT$4e_u}?t?*%t-#Gt0&<{sM zY2y@spGI#{+5Pc90)RILG*Rf^Z2#Clhy8rC@q<7Au$7m}h~=F}hWDcd$q4bH>QB#W z=~+#gp#b|+1bAN{poGZ!>rJiOoIlWy^?hXQpTl-b>p!{o-z$MWLu2$3_A<|7X{~(B zM=Mv}t=5nKy?x9lMl2r6TK{;xg#Apk{`W)p^lEaD$JV`_wmLBUY*?R`ezunOTe&su zFP*YR)_q=4^(QL-*guHtm!^N#jsZ_7ztf>>=9?4koIkSn|04C*mJoLc`2WcJ61bSY zzyA^KqcGv|FjpYu8U=l!|oR#W`ExLiW<+>F+=^S3*?5$1Vty>Pzf z_P<^AuPdK%&I6ah0=cP0TmSPw-(#MK)PA`Iv zdbcs~Kp18JfYtFtA244=lFwa#+(_9y^nrXZrT%a^h1&0)zKZ%j&MPpmKyE4l@TE{Z z%82FhF8Tcr^K5v0B9))LBl!*ypSeEOS~-ZKf4k-1?ca5pbjSCfpSzaC$GoF|o)PnG zen=s~@po71dOH&h>i!MukH>Xi^aZK>jHbjR1RF-5|D0e$JN|Um{_Vrl_n*N?Z-1)( zxmnCEz<$@#liF%CDeGU{9)!ssB(e7SJm-$jzu3-L9`Bmp{)EXFh7Up+f>BDUf3E)k zDESp7gb$^ZAK$mL@-aV%`7%;Dx#QPTx62A!)g%6L`=KBIF+UfM3_@!EPZ!yA1MEG@ z1D{Fi|7HC<#4`>32hUW-nc2^8G+%urUoi zFV6g80~2=jE6FJJgs}JK+PCq_;Pm4VS3g-3IIW-cvRC;AkdZO{#lb{#X!&Y+%UeZ# z_*g#to>T@C>Krl6X{<7U77~{F;g3Y%-P#0Vo}U-YyEN#*r<3xKQFHfkd_ptvG%KX0 zd7vpgeP7RAsniapZC`n&PrNCtD@@N8?`a07br%WnOEiP7qr@MaJ8lY1mTY}EkuZS< z&Y}xz%}k(0LvJ_n5K~w=X6IeMC9dH3va6A)HjV%eToNa$U=B1zDvu^FZ~+O!^9#c6 z_5qc9o*!Il#d(Rt{>2XlxRnsDVKrM$WL+RO7fxmVaz9T*9Z9I$Wp(ymWbWs7Zs##TjPUJBnYj9FY3tHd zLd1^PJxn0A_O$flpSs{I@hQu)RRd&Q(9dB*ZE)qRMTM%n2FT8my4cTC4+OtoK^Q?N-oet1}31Y*yig>!hyL-M`dwz6*xwr1bYjt;nvZ)$h6B~PX z^m(ndInuo0$wwryjPuE-OX6itf|me{#B$D6;?>{(RdfCuoLKeyqY;!$S@+~jre$RlpouDdmEnj;MVrA zOJnMWBm*rnUW<>HK=~z6iXFW8#mI(nbDk%Wjj0}!@kQN z2N(3BT@cA2y)iLET2OHv8d9DSrkd&Aw1f=yGhsrLw4mSy{=KgM6)=nw1A*HKPn>4k zhE7=d-EMzY>(!eYc#YH+>JTaG>O5xWHu}J6OeiU!8@289uR6{8V&uzb@^Ti6C#(Ple z50?uQQJByp)j#)u7RJiN@zWUflnpJGFRcC<7w?`QR(rma4s|B2{qT5$i6N{Pr+nN6 z{R&TZ8FPt$$2Y{tP^9~EzG;8`-}u-|F(!`wfH$G`@b9lvUfBWI( zr*|meKpbPL{Tfq#eP=O-xObna`nMn4V9+`gF`;Be)qm-%U@5S*x9@A~yFneUKXlu+ zbtdonziNN_`m;a+Frh+f|J?C6Jg3lpKxRKm|G|1$q7POm#p_wlC6|zqo!+OoI^FS) zwZC3SE+&RZ{Vyx%@qL1!eK6y)`Rh)O-}LtDZ2!STASQ-L`UhyOyG(%nrE`5+)&JP| zZ;$MU2_=$z>n9Tnh@6x6drjG+NU1+OehM!?^Tk6)^*?5ROehUThKEuJ0VIxriC|2q2=<@Wr;8Uir1YoMAC`{^B}~ka z?9V)3R8N>l9GiYa=^5?%MUYS;;o0N%JtV-9JrQ1Kp8qlX3$K5krEqz9SO3-VtFe<0 zUeF&L0Z>J{qm*Pn+5DFeiP=rxja0P5X$j5Fmfr)(#l*l1bj?Y)4{oabQ2XA+Hk5Y# z^Dl%Fd!tSRF>^?dt4DW*(yl)Q2_;hb;phd-1OStK(nC*B^~s1)XTy-@iOK6Z{WC zBbzfb1|M3!s(#31R@~QZ{&&(hu)gm14$C{glXZRQ#EgQ9J*-D+5*D7@53{VRrQBCG z9b=u_m+kstcL6K>-n8L`OOCU`Zr`FLhzYgo01rXSHE`Qgdv+jV{dda@>33mo7ZGWEmW9t^+Hx z4L42{(S)F1!|k^(-?F-HRWY19R-bdwTCsZnM>eo`&(epBQgq=!8=2)v6HOs}GNWW{ zfhnBq#Ta7sQw=6~GS#*y$$~=xjRAS0=FrKy_UOf+{*e7V&3##kF_f(w_sr$FB4C%- z>cLC0Am=6{FTcAQ$T}82%&eDfy|eIb{miVAj%A4K8Zf%++QNlqp*Pi%cfcH zb2aS+cV&F|qLTH9(6Y-LkRR0(STp~Q)mdI><=%vEz5x5!63E4`F1dAz$a5JGuw_56#swn5~FB% ziBWuBg5wOs<4pt_fbjgtc^ag+^-(V%JHN}${bfl)50u06!UQ~!p+Lbq2_jCr%aedF z*{|)(_lsj*!UEwM+VH#=pFEc69kJ?q67VGBJ^6S%USq$^l{P#t(9*)bHf`qpBw$R& z8}spkyu_q7JWvR?Rs|=Yk5n4?APF$ZcqSh&$V<4k;d#7FpX#Dw(RWGUCwAQa{{83i zHor3VH)CF+M;o3ezh&683+2O8-c8I+-sO_nvsuu8ReE3Bi4tME47uuOIXW*zd!Y%kI}^ zKVkBxUZ`__yV?z4zcEj5=XUGw?^duY`b{A1zD@=i0`n52b%9Cw$Qo8qTIiYVya5!y zAc8S^q7RstAgxQdeihY)DpsMspJ?}W!phIKe)+&Aq_YPq(eJC|k^Z=Okm}F-_lt+7 z=zCU7QTC*)>+rZEO#i&{Gkp}@+-cV(!tgxxWNH0!|H4af?GNV3jNPm@1nA)k2r20?Vb@&ixUB8GawjuBzv@FME-`0Kwc?pvJxDR@qyJnO6E4n|x?Te>|4Z!NO zul)RRo`-Ayy0UT7%9ZKS{b*lYBgjjT%Ac!gy@PPl&%Jp(bRebv|EKhSoGl`j>o<#0Hq|Ks+Hc?rxf2>ON8N_2FVsM8~b`{N#{vfOOVi-b|}l={Qv7bc&3dy$D9)}N;yJuiUy z9CK6-Qv1vK9cWlkp_S0+6io3;WBoCog#GgPd(Q2+ybyGKysB(t0A>8f`2=|h!TJw+ za&!5UWx=$5m3G;WqYReED<;4HnxJxHet}ee#>nU+tQ#uP$xBubq21RCm7llE>}+IK zhy8+Fdt{FKWA!go|KIj$bfF#pEs_23x=qlp7VfL+I^H#q_Qmy92#@`%qi^vNN1|urt)un^l>U$L?Xo{7GuD@fs})_+JX zp>ZWRAD#Y~m%#i2Nq&}W&_xd2QMi@q7Z%5nzF`t6{vV#53pu(ia zq;~)|Ymbe>Vo7)dtpqwCg9#CwZWPlI-7d^i&NoRiPb*+A_UT3!e964<{_vLEykuOX}--3?0{7(#oX z8{RMXr`nIPka3r=Rd9GUx-pn`{1sOI`D^yi2_0!mSwA3gLi=ye0_Ru|6+=6IVSf$g z7f9u2WGxCJ8X5WV9OnV;_$f?(tS4@7yzBOl-@@=dD1$FbN&15s5g9CxUj-pYZh*h6 z|7+UzHyG(1h*H7+e^cb5NU?}BC9Vx+XJB3e^9!W%a}P>r+@&}8rj$Bm{=oIo-uffy z^;7u3A<2yHM7@_TAA)e9RD5OJsV0Jb)HZBBsQF{_XBd(@gespGSLoaCX2j@Ie|!F<<@MTE z|6;WBXZ!H}VMos{44^*>K7`h!OPg_j)l4_;E0!!)E+nWU8V+{`LI_fr12 z-%eK171b!&75iCT4WE^2TAg4uwf^$*$joDzPOCO>yRn`1F|ab{f$v^cSwmgdne#cn ze={4>;T8Y$$-|j&SwxABR*f7i5XoJ!a8WA}(|WG)Coq6YN7;3uW_r+jbXoTo z<9ot;VU{N6pUT6i+dCH&?Gb_5-q+t+Pq%o;TD(#Pw=J_xC%dQtFyGEY$u zm6#$wOw|U))?rAe36I#^OaoFCn&?M*2B_tJ}ARJ zC+&{R>eou#aa!=LCPo+TvKV16GQh-C)8-y}2Y=JH3AjL-Q*%=q#v7Fvrs0!bu1zV16f9J7U z5_s*tQTn+`9&WtTpv88UfSLBSPrCJ2hEX3=k2^~~V^wa`>m_An20b-0^`#07VWhzs z7pXl~oCl>&T+DeX2OGO)u`ROAmsC%;AZiW@gPPmM~=Tp4A^-oBrS8 zMN?>a(Udk`^tZDIkCzE(Tm&d(paWD+Pk48)cDC^6web3e&tC!da~%Va|3$*li=7O7 z$h@KtpI79JR@^`Am%;u?&X?o8fg*@~xyg6?!er2wjPJ|GV_p>drHj%1I7>gS{5_I0 z8Jl)+9zZAKMfrHli(-C9MgTAQ&}rlp&H-d!6xx1ZFuw44ML}Ma`O9HB7yy|g)#R$XaRv%;L1z{1Y2$A|cIaH{Ql&Ib?=aK97e zMKAI5&GK{<2Z;+k*F5u02PgU8GZ;)hURe3NbUidDdQLjXC*yNQ1AHkAKgU-8-oo%O z%D$w%cy2!CZQ6A;ZdRNS4ep^7XX{snna()h=XH;0mni+s~M{=8&o%g@8pud6vzAomaR zo22sZI^^2QI-5~`WvzkNU-rxJ=V_j{{PxG>eZj!In4tYf6Sb3eD^H^I9|U9Qq7Rtg zBb7hf+_#eO&^ z_UHZkdEHyrd!Fr+ID#_%;qesn*;WWoD!;w_rk$+3H9dC@3bdz;Ul?zJaF!?~%^%#j z2BzA`bhQz!Ssr)ULN2^(z0-hclxib=A-jJ8ww{87okMMm_D!6_; z^I%I+McFWb<#4mH2LhCx;ebA1UXav&xV$v;N2-G4b013k!+6YRV}6sQzifiyEkZ(6 z&bA-=@gLg-^P433FTv0Y1UrXWeRV`@hu6QjoVdU6uKDv%`|6)we;iMM;}Qhd zZ!Ue+o;}m|?qvU?moH3zz%6hkt^I`YqM=`ue-x<>2Y7tq-j3a$cU#VdATKJ|{;qw? z$erqCM`?e!KJbm)xi@AoNaHVe{go6g!-%i9rk%fqmA{LlSMu6v7L@T5iEHQh*Kzyv zf5mZ+F`E znC| z++rn3FL1rSlo}U|V4dzim`@EvHzdi2S&{cy3^v=NSbrYv_|@6+|IgqpX#0N%Dt9PK z1?xXt`B-lJfM7~o>wlO1|AiL?`+77GGjz=DL(YXz4nY0yl8^ah%*zRm|Mp%huZ*Y~ zOuPTXe0BsQl5`#dYQFEcq}T;v~XzsX4MB&z&?K_TTV#>sgF>GS^Fc}bIz+$mJ~vKM;XVKI)V z^wB-sy9#%H6@1Y{%cE3B?!M#zIaG5o8VpA6_I8IjCxi+sG^s(&=RE@eqe_Kh-5(P1sJvnx? zemY}OJ~-*tx^CN zzuiBbncxB#JC3!Uot#f(Y7W`3#;iB24XlrS`PmLSJ-Jcg8tDRcZ(ofr(z5{DMI3_1 zyV`=TYJHbiFOKl>}~`oTJ| za0}E==m8GRdAIxY6?q_$-Te8MOLvgF>(g!q)C25AE8g_{@R88IBH^ZM{Dmd4Zs(;7 znhfAj{-N6g(`MF>pWpWe4$}v9*G1FUz4=I(?7Mnf)7B7V8k(fMx*!K%s60DTYib69 zPF&x9(9Q~Ee&7D~+&v>uKJATaZjd!#`*i*2DXs-z`JM~~j$QJmcK0)XZx1S&?(o}r zdywP1rBY5*5i}?mM%y^4z{YbrdH3e3!5Lx~CiqCJK$8{C(IStH!4gUTGS_#SF!S7t z*ztXoVa~V(o1RS-ftF^*^F?b^p-FYrZdW;d$QXJ(ed(T;tYWxvingd3j4JimbU8{B zTr#<%lyOrRK7JML^VP;0*1CJWUCXwHjdnibyhxP=-;4~^ zimx*v`}LRM%tSd@>*l;%w!r{8s@-`gZlDVun{9APvN8Z0#xB32C;}#zcFcI%fqg&a%_``9u$t`JTPJ*U15dHa7wd9c7TG%aBdb(t#HFxl<00 zFaep-iLy6`n1f1*C$*VzhTwOnPKik{Nia=`NmS=diKc1X<8VtjtIovI-~VZGzD(5q z{U16a_Y&vZ|39CfkEe+fiEoP&fgF;MQ#|fp6iO>mil3j?@{}AJKT&v`2;T4GeGBJY z*{3~j8G!SrR*#vNlne%ALihLm2lL}JIHM=`&kCh@y~nxazNm5j_+RPYrX>RpGTwua z?}l(1C~ZV3=bV{;{g^cgQ$BU!k>lm*A*Rw`K)B!g=T zZ8v5xuJPkM1mi?-yaEHo$t)S?6Q5p`433cTNBDSQ>#T0ezyGv5pA5E>@!O9Btc@@{ zGiQEws~n)+r%R(7bw?>~kDN>H^Jj&c>igdAoB(hf5HB06jVBN$f8YI{D|R}^1I**| z@Vx;q75<_hTi=gb`_-n?#u><<8)3T(>i=ZH^a+!T!zerj&Lfw%5CU*MUi~<<*&oM=;CKsM zE>1pf`yITk;$4+kP`jU>C)qC#E_%S)G5K?e-;N+koE4TM%znE{CMF-B9sqDV^aW}B&AU#tu+Ba=kg=A|q_jV5e;i+e$0rh=yU&efdqw6yjsMI09C|-X`|QtO zC-BU~=Lz(X-Eh1Esr@!4J2VonH+wMOXa!T+FM=`j(FYu-Lh66q=Xb{~I$S(pygsG< zVfz~(ydg?S@=fNfZXxRQr;S`#+*v;zeffpiZ)xxpgY_(pPS!vD`6W2M#2l5MWIrxX zc)m}b?=smC+WwE@i*URLsr_&tQIAXR5=ArCzkXRKOKCqCFRcE$ z-A|P06)Z;?KajX~`uQO3^GCwuV>wt~-Zg*xY#*N9Ple+|aJ&Vn{@81GHxjdqS4?a9 zrAIke73+oLOK_YF3E!xp*i5i@Jg=Tw)j;cKZlC@gA3u3|R?PM3_*zJ~Ua+!J z3oxhfezqyb8&*g#*fJc z>wjg*(7$Li5b2Hmc7p4_ytmc;8&kDt$G;$i4@Rlr_yG!w8uqM`rt}|_z0>VK1l=eU zr6l_^qR!tT81ZYb92$NFCwk~@SdpL_lZBPpS4UYC7;dH$q7KTt4Egk(S2S#lSM zgC_~ejow!OYsYWFI1$1AYnhW@l($LwkJUepZ^3aoB>P3lS8QcTxNTSq4b}d#{qktn zuhFR8jz%e||8wK?4*H!-%Ii9a(tq*z8G~@xZ%-;ecl--)4xD{roi4@x7(WW(al8i! zA8`B2BO+Yt>+!Rpx_{Yz^z*N<@fQ`Zlk*?F{D0x8Ej=vcu1ICXUcIAA5GRWx~6E0#T1%c@f_0`QE3GYh-dv2U-51!>z zhZJWh1I9w}8?#nPfyXfcz300+fbP-@9?r{j2k>mf9+4a^u;$C_>(ZP{y}nVkF5guE zh&Gm)mUx#qaPV?jTGJPT-RtJ1a?@w5q)RKWN30ZsQ8(20i0zaBFUHkwY^c))l4q_a zFPf|au4p}RUq6@$@)(ydj$5J$ZtOYlHXu|RuqS;FjmeV(?*hE${E)Q)64T!Y6!(&c zh1u)eEL9}oFrN!swJq)wKFiA&E`9QhwQ+fU{}IRT5mB2J%s1M+BG{#CX1jH3WqA+y zQ9oK#3)J@58#gnP3BSB##jU)o2onxHu5fw9fXuN`QrlmDB!J-tWy4Wout)UML*E9g z!V{M&o~_-b0i_C4!p?11g6XYpnL0I`7p6YeQJ?PcmKf`ItOJp}1Oi1=v_wboz)Rhd0*L7@mEi2UMMOZT^E;4VZar(dWq= zJhS&A<@)7H5JXPf9c=TJ@PF4br-bvu)k!NR?A^wB(d&2-=_T{sl_BhRe9dl6Re14% zW5&B+CHT#(vMwx+314;HE26cD3CBsS%usYTgbR*D9%AWf!@P6*EM?9qK_`Vxj^j*q zq0>_Z=IV`{)J@ONtB46L-gzpoeXj!>FU0G;i{YG;FDoaidEOY7JG4kmaOw)7%SVZ{ zNwTof{IQJp#m@w+Z&2RsBn#PABWA+muUWm+T8hLL8^ebBd8vw=bNR28-x=oZs0TlH zz54LZZdI7G)~|G@nhA`G)%~QArv#_GhQVDiVK{}A8Q zQa$NCt1-|(ORP#bZ;bsGm(W1TNx08PzjaYupprZmv|xhi_wOyo+ISbvXvY1+eoNB4 z!CYVcj#Y5!Sc~|cv0xGzKZ%bQ9D|WG)|zuf$bcDZOs@?X3*yN5I6fZp#`x!L zNFU65PrthNQ6>jJ1ZVjD`w%`}kT+(x;d$rQn;VUBp6)*u_>u8`e7qoUO!6CYU(i1G z*1?=59K1If@6E>x^2XSI&QT*vKEoKCF$x^8Oep~bU}E#PegQ|@>@RHI>o1l(W1)5e z@FL^Aj)LE}`TZvh|KR2Hr-4^JDCdsy&G%f*?|g;Ij8~GET^v^OGHG7ZoNZNIa47w3E4{6=S<(+a=S``iM2h#dI zF`p-k?jyMGf~iNlMo#HXS+})U|CygOEw9VF(&{g){CU?VmQ9tB>oA_DC;juOm~U1@ z1tPV7E^jpA)#k4IEa}hf7p6b96JDqCuK9io%m=HYjDq_P=l*Zc_MJPB;y1weQ${!( zmq4n2F7MKGUaq@#s1K$7v0lRT&-4m&>wf)1hxeT!!CfYqOtPV@+p&DicVpgMP=AX{ zQjd0@bfdICTz+Bto3S2xf_v_?@`d4fdeT4Nig{ywR3Os)VRB2MiIq2Wey=0TM^oZf zu>P1g)vJzF#B!(act4giwYgKzh4>KrP?RF!+2h?T50#K!u03iRcZHK2FPxB-XqmN zqwmw#tTlG$dn^%)r}(`POz8Z@%@>j~L#<>K+zZ?z!sE#diy{eo{khk|@H{)yKVNT-DgyIX*#E})n)}`uk(M(B zSH@>hp3lPl*8<@&Z;8L>e9h%8wz0q5S?Z8U>o>MUc+6Yk@r1!(Z~HV$4P09qk$&7W zop$`ULU_G}aRZm_(=^G86={yjhQ$J4f7 zVfFXpZFx-Zm#b;}zbz^^=6_4kHOGE>HFZjWx$oN;6SHIr9@mpF`Ky}hBaih=?Xdnl zb-ZbL2VwGYaj?F;YySGd5oN&q>vIg?Y(OM`y=LibtX}s1?I_yvW4>RI|K;31JKrD@0C_Tf!BiJwY~$GkE2+Y0tSt-&jd6~sn?IsAIzG|iE1 z`v=S$WB!3O{>l~?-(|^0oSKlO5d$Xt13#<{kNIXl^g9WkGw1y+)@se*+HH~10Q+UR z+1Nwd@GOMuPsK+W2bU3BZVWy0Qy~gOq2GB)cpDy|@B5)taQ%8_Vxdo#ZUn&nl$UKF zhB4d`&I6@_<4<43X%WqFp|o))!s`E0vgV~^PWkaZpC?A5O};REWb4h3{XGIH<3CcD z;fX$Yp_Ekr-2Fq4m#RpWXawba0E`zV|CT$;XW;3MKc6^QJ$$~zmSF&|6M1so0G5yW zX3Sd)+Fw4-V~1;Y48ZdY4>zC4q7cTA@I11qP6*n8(v#tEX^iPbPC9-!;ByHTBF#Jk8 z=enhr;{e_t@ziu_lRudEMceu5g8C#uZ|8S-Q|cezw|(;Id9NUJBg`9<pnZy)p+}#JD(7*cO#H|!T!J2>G{U4&mt)MN0glrjy_=i zmt=og_3Gy={}Bg&1*9v{_CI0v!*V)me;z)EHtq|@dyGJWNcvZ@{hqL(%h33~3nM7) z7wZ#=aKowiq}=8v-t?N+hj#xZto(WVfB#u`vi;KgFNDeG70ZKm{ThYJJrSj^QOZfU zysy}e@?PsD<0LpMX-5{Tmz28(CA{z6e|*N%fy#F)`>v97+ZI4|95@&wCSF z+WH%XaIq*Q%QwDqhsB-&Mp`6&r<_}lvbS&l&dH3+%fs=<&-U5Bh1UOu*LCq!{i9Ck z++p=!88rFUC(pm!|LDt)`4YUoCE35F#{tff<6aUmO;2qp`(JGTMD$@SwfvPsc0FWS zOB@gCQKn1je;D6B`-{-pZydVOc&dE%e1&Efv;0ceid7wdZz0yRbM1%T{=&*1u;Tm& zlSms%|G|0*!*lg!#?jg@8Qo|OO1t43qxUXn8GYHgVCX6kLpA_&YTN!}63RatrI^oP zFro~8J=Oym4LvV^iCYDt$an@HKN;a>p)>`h33` z`DdbZY8#&S-sMXVn3H`*tpX#+_(nb+%bS64%iHk0=Uyj$iMC1`y$TE`<16`iEN?o( z@z;60^S$@%aDV=^UP2ON*b2DuRtt()bHbWOV_bud?L~Q$1+=Z@cv8+`Ciu{}=qf#4V-$BW_88 zGqOlcn0{bpMkaCU@Q$k*y%f3Qvjq}zH6{{ddfIQDNV&%j- z^@YREAGk_53~}(+i91U~N#w5&@;paeexjx?ovsEP^h5f2-sYUt@a2Jb@Zq0C`p3c5 zX%^1#)#Uf5_wFs!~Is+9Yl@dx#4-R7Bj(&fBdr5;!uURq>;BBM7-G*5#F!6Rh4oWuM2M-teLCp(`aL0Zf~5 zVrF9o3)b}7e`b-0JFJ~u>0dP00hSovn)<`a3qB3}W#l-r54;;0GFRDz1sSfPQ&TGJ z;LFQiHj_NOAjA536}0F9B$l}zHj35<)|Fi=l$0C*+jh#!w{G7E*{PDm=|(1u+W0`@ z*~z}Jx#ugN^koci`{RvKW3PW=jX7tVA?Gf_c|Am>-=rI@tRZ*$8?2ly4$kLao|3-h z2~i)IHnC5VJY>ha4p`QFffcj#*2`i0ny&WvD`3O5I>KD=TYsM!{iTA7*8;8BQ z@yQ0P*>|t+$~rr6Io5r8|MfN?VOjBI=_O_$P5(|t@-%yJqO{@hf)Y1Sx%1GGYdfug zgLN25eUFUSryZa>jF-} z%nf0ZcD;Xas1u094HLq|^U>cwYJ;J-Vulm}RnR3iUCic;0@yvMd|t{8 zV_4GqiLvgi352n?Yo}i@gk`Q0N(QcGaEec6iD!}#3^*i`?8|wN4KruJzPCqh;0xW+ zp9ih80G>6MmYAKJzI&F)b<7ny%lMY?EYdV_q znjXd0h|7IFVE2M~*@v^-L6%ffxbt)e7~a<{v2|%5n02JzvhP={{%^hKWfV;u)~L2P zEU3yKpYeWv2bvE!&gx^!51D|Nt)tJsR1hAAH4x$2CRoHH%)a06_65~s;Ee+1}wP{oFGmeEVA^gYP)t z;ef)6N?>wgzsC{1lEDWu{sSK`7>9-Z8o2(7uRAO&=ji`}jDNw$ z3!BHUXw){m4$o##N8|l1h31 zXnW;X7-pa8Et=Nhb>u9&o3C!48bgbhL5j$sRM3x>7Cm9a+Q=wcKN{Y*;5aP7@-u>s zis~IZ%R}<}IZw_1;yRcEBI(7s;^XB}xpDIl^ut)Zo9laHoGY#Ugted8%SSBh=JxCO zI#lPN>42y9w0<-tq`x{!N&U~;GVC_%R6qY%3DKx_pWpEs-G`HK{b0*4SS3fej-;Gl zfbFS*@^gk_?jK1$<3hq7*5R~6Iky9b)4qRMnEl*Bd^b(3={S$p?eeEFrL|)_Zhvm6 z;?Cgm@=D2XKN`F*7@8<0@o3yQDE3ctk!M+Aos>`CeudeOrykQf|JIEFn3Q%|H1ZTBAhNtN$p3%zVHF@P&8Rr z7j`_36Wx}!|LdU)`c(OqWnZg^fc@p{>sG3i{)hD!YJZpPr&m0sJ6ZpoJ->wBk8Xs@ zZHZD+`{kaWQL#=VBM+UUC#&8#xdjgEzDDr>R+}o z_z^KD|K3;~-S7_kLAmQIwn@kBe|4@mF}s4+k8O_1ZGlq3_V3;Ih9pzOi86m;`w445 z^X@IIGK!(bks@(I{Xm1qUy&SfU6Rs%G2RM&ut6!w{<#jGPg%;EMjv-Rok+1i)?Y9V zi-gZ{ym^+z*k0_R!f2-O5Ew74{0v6f;x*f*(%N4*o>wp|k9Wl%zuSk8q8&f&klp&D zlvMxR`SV68sDH3A9^iR`m#q)L`q(2Jj)NlMx#MTp>AD4=fw$q zL9&0=@Ap(yhVT9I?wA*){;_;VgzJq`!SVlVMzy=g%1*3b(0#Ey-sOMQ{`BYnw6Ff? z=T8@;AKv!~mVbNBiNaNRV<_t<1Y`6;A6!vNvVY!&j51c**!f<2$QAj>B@J z%D4WUUWJN9|DKo5%I_>5Aieuh_0Jg>eU;TcekSL{;AqPF5oM>uVF}J(&%Vznypzj$ zPbvm*Q$>I;JFCAi{JzKQEH6!&Oc_71d{6Yj3#Eek%YGZ7GK1+)8^-xtSW;dm-i`)8iH|APfQ%)-75drukvG5$~MkL8g1_3y6${vOAV4MAU! z?9YAAZOOS<5%z~6v~kEj2sap|r1Ee4J^!hDrQcDg3ZcyZSiUd%;D=I@eD3;dg>><` zTNCKd|N5V?AN~1D{zz}^_ae13uK(k%nbttPN_R^C!})L=Rw%j;$$qj<#&22UW*=Ty z^^`^FKNuf~a6u>)oIk_ULg#xII#A|6lwIih3FpJ|c-Q>-D;Q-6K`E*JxN+>`*pC!< za-OuNYk&VU_4l-s&ymp2pZ_!Z2hgs+aQs#bvOlT*x$CdU-8-+_>)(FQ=XcsTI$`B+ zebjQ`aFEp>8$bSq2Ojkg9$1ybG<3UE<=i#u!5lncmr2Cr@d8(jrTtRVQo&w06Y&dhHtqM3a z+v9@bSvipHy+Y<#zBOQocW;P0Z3vyb@|1daw*^J6l7+LJf{rh>SBK!)pb;_qT3AtUruR`X(}PckCg$YUXhWwdUFEmr8pFmZ z^RG{_Pz0e*vLqWuD8ij;3jOT8P7``rImHPP@^D(A+HBdq3gF&Y%dah#7O<)RI4{R_ zUBPGVQF3`_c9CUw;1jxA%)@qrn2LdiX>GNf( zBm}Rfn3k6tgQ@qPiG=o424e$nRvuny2;uG-`L<(B0lWFfL&y zfkVw}=L6yfu(8|B`?fDQyz?28_$O-(VTH}lvUQGnKq+Cb(Q8XB&@#Gkpn-%m=e-3} zjTVPXf+R5guzj6AgfGYIePSAe+?cc;liuqCxYWo(w^SPd@rgUfJk|iv*nQd@4JKfm z75id1#T+pDzit>N-4($4CTE`;)*K#Fws^q{8z5U19QF0G1L!f~QE9~!O?W!VD`>Nf z0yH*C4V4U&gWX4qZaMH$7iR2Kdp6Wl8rC$P%n@B60?T&ZG&^Xc2-&A69bAyYgutce zd%Fieh$hj8KIi8u!)c+KMLS~p{@>z7Luq)?&^BK5_huE(PXLX}m>=Mr&mdEpV+gu8 z?kb5rDV!IzM0gyh#(6yJNB%k{FsSZ!sr+0r=uhSq`}284%!}$F{7RHE7`*s0(f)f! zhm!oO9qx?yd@ux_j~x~v2F6%-UFX$ zfyapwEyf(Y8P4$gcQZa-kQY7ChUf9JlNFP)h!T2URgf3O>l6;HTrIWI5j;Kp{oBkd z$>1j@o_^o|C!g08lcwmH|ma3(z=ZMeDAJY^*5f0F_d`~w_9QIA1qGS8lxZj$JW&{NN+im zzCbA_;hwA9tWwd}r&}C_7sJ^Ec~MgNq5rN%)_3!~xUSy)DeFp%7gm0p58I1(&EJ;@ z!`~~_9^@$BpR%vT_Z8$tMeq-tz4L0$5l){K!ri7Q#!=SQIGZr}jGnviyGT;&zrFZ6 z9d_`+UZZID)tDE>yc}s=nw!P!0_=;n3=$oj3e>PbZtC3TmsLjJCbJyZikj{Xzn@hkM+Oy=}*sVwhvG5*T=l5E@}sY?LTW_k2;H*A++Nc z=0%wZPx1>ehg|x?vRX5!pr$VRFWZm5P7tjB_Suh~SHyfO=7k0AcSP#SmsI6&+VQ7- z^6B-*d^YAc1;_72Vc#1M#tx$$KRPQP^P(20{z?6Z>zCMg!o7ES_(;n0jkrGw@}i{n z!}Ti#I6twyx-y2cuSeoK?N`8jt~t6PY5e@0R?)&rTKDGIwF#YlK83*`wTs`901_uu zf3Wzz`-bw4pYOwy)1P+yvqFm4pp>L1cm6BbGk@m0ZGix<4|v&Z0Lsqz7hW{m=T{@a zoR^atbnxe2<~18>{erfrAea{;)ju4%8=Hw7 z>l;JGzUfi=FUEIPf6V7PqZ^XsgZ`5r5$qv*c6oSF{d)gh@`dWpUY9=JtcCVmf6R+w zUXoP*Twc2+Uh`_d_q{3OFCPCepNjcS()h>q%WfZ=*l?(+H^u%KFHHXfu33g>Zdm=X z@l%+5R8O>i?e^gT?fB)61YmwqaQyP!Ff;ekIeS`O&jaEA124Pt!}lu$Bj$3pLw>>$1lvM2BC70`j71GhdWt`Yx`8a-{3^qzu@+R<2f+DNy6v#zIKoJsbr>p6ArT?JpjDhF_<~K?DgMB?32*#d*dpo30Qg~ThexdCT zXuf#pIHR-mPuu=|k^X+v@<*LKT0`6|*AQduP@?dHxcox(M;UQ>d6)eC&tUXB<~K?9 zllYcdMlj*64W;?=l=c6Amwe2N2BI61bBw5Dw@B+R`P*@&^y}|nq<08P1;=kj zt@Z4(yQezae%kz;JTd(G>uml13ojG;4_+phGqSc8D^CA>`V3LH;G9La{VAeifZdO6 z6Y`16CsRJUz9=HT%~L#f?0EqZWcFxfWaLp|@qv1=p(=%hOyl&bq1{gs#ZS#A+2o%k zh7~KUvFxb?7~3AyhCbr>_m$4&^r=t$Z^&$ZE)9pz z-!?F;=?d%N;0Y;R0vn0E%@bD}@3R6g-L`BJSM3isUNPOfPbLt0S5;J{8rnna-D{La zf9VUekAFB&s zgtk}UQVlS3^t-vRMHeuozJcMAreH~qM*g>ROaN!3XpZsF0a0=Jimsn}LD|xe1py1q zLDtxB4Ivw>0VDt8(NFc9_fN~RQ}1)$Tg|MOx_?Do1)lEl^XkFT^02aY+^<m0;hL2h$I`7{Rg~Q6}St zS-^!i*0j847(#~nPV*iw<>9lPUgG;68N;S^rhXaY9uo)brmcKnPq6mv2@3mh>jPo3 zc5&5FXKm1!YrOAyxgs=J5VZ7`whPqCJ-mB)80VaC@z(Vd-zmU=x`jb0=j5T2LsY{U zeI@u~&G_8t-fHlmgz4S5COHVKO}9T8E(@X@WM3y;QHCiWipDQg)_}5^A0BmW)qtRq zm9~7C8VuMSC=<0(0a|bMDbSVd28&)wUGay?F#W@=sD&C#m^I#ca7#CN2>m>KKWq|% z;6&iZreamdd_;`PWtl@0yAYjg8_b~UYV%X`n#})i@gylUJV^?lC*hC_c>GU5o&@_T`TH555N@psL|^&_zl=);Eo47`3!f*zJc&G#+r3Rb zk0%-yJKR%idNQaY6XpPaF|G_=V|AYsx+i*C!rUFyBC0Co;m58i?>P$Lw+aL@Cc-U_9nY zFb^TF~>}oja1!@4xq@eSbUVSM-oU1>0}whe0D+uQ<^1M3~>ge1l;BI~^M@)wRlw(tdFL zVSXL+9VGpkS!$06#oWYehSnB;Y@Z{{{-A7%_}fx?KQ9v%L>Hwb{gaZX))K0&vtE2U zv^F^}SAZK64&w;bcSbVA8)rNNb(?@z^o+XuU`8zMKG6i(5Bu9m`hPw-;00^5 zMd`Nc$3e9EnJ^heo+@-$`7G|nuD>O}l!Zc<+< zmAka{FSPw|6{Yu++Mt49e>quh z-;6MT{n*@WFt{zw2=gQ{R6KY7i?TPiONt8ve&}~@0{D2$lZ2w*N&Sag|8*j#@QM^yd%@!@ET_Rf_B#M7#d*MT+41 zA=wW;X}(Q(Y!}@hRXT*S{>SZHn0$k&A5uRX^`n(93@_n+G(rTp(vE+)T?SF>KRmVZ z95Ksr)2Gz&QMBt{L7qgg{=Y9XH0XDDScm7|sMI*i?{#h+?*9oY@`vUUgK5X#U{r3* zlZfDk#Tg@i$621ZtX4n&-k=Wak8g+Tn|Iy*@pHv?roZ{@0NVNsLjs1ORM7tK3y0}> zi39)~hsDd*51{OfA?QN{N=f4fcmCBreRfyxG!{rG_xS=Q|xBsd=`-!C@HrZuC z9vzM|S-SDVIL9~s9j^amNiT58#+lOpkh<-g|8kUQdHzUrqmd{TY(HD%8?C_7^~`Y-~er1^szXVFb1*(%nB)#37EIk>)f*X?hA!thZjLo`ZB_1_qsS5B-> z-VkzXO=u_MWa-yG!p6V-_Z&0*zXsF#Z!upGOVuAPOKxE?YuCAJFAVt0_NRY;`e>wg zJW5IR%w0c0v13i;Ta^E@{`CIWF-Y%8C>0!kCU}Tj9G^#xQ^n;>M7Z%(Ja_%`(C_SE zIaeRb{sCoYj71;Dp_J5qWk(HYB(4`9el>0QUw;2LtfGyxnSk_8rt0rxtW?P=F}u`n zu0}9r{=oK|h;T_%Jp1~njl{H~n|pgF{JH11h4o)9zXt3(*?#H$&y!KPr=XNH{&M5Q zoxE>F4}Jc(pC6|m|NbRTBITcP5*(&;V2Sd$Ge=hvuLo|uPe`W_$9-;3iFmV%VBgUa zE!n7tU(diZq9idn83SgJ)iV214u*4nMEX&-9$v#MXov~FIT$MO%3k-L(k z3uojH5wW}{3oA!o%ab_L!m>E1F>3c0ISALixzaR32WFmGf7oz~4&2t1dwoHO4qR1s zy6IB7CQK^ck+>VHpTi%SNWK&Q;8m0Rv;!()#IL>a8KhMC0S=bmz|a9h{xb0#7B zaGK9p<@GOAAXpb6-*7|}E-ydjoMx>7Ur%3qI~V9d`=)rwq{VtLSLVX*2Oo7I*g5E8 z-hDY}vv-Y}?le=lrcYh*S#Kj~EpoRmXP7{Ob<(09=%j1}*Rg0Gp!jGziQ zA=_KSQ?mzvy1m2JE%-rvQv9?p+tCuREnY1Q_K=50j=jccnHWRa%e@)PHvA%pZo5B; zf3txbjU*NrukQ-jk8Q6n%aa3)S6XSWA6Yp+lPgxJ zn}P;M{nNi(#Q?KKXR()p4fycu@e}<848T^XepgT-0j&F$EJ~Vc1R6&dGR<@pVbRHP zD(6c~K;^-@%)#9ZKu+n;-3|*a!TGWf-xC{jprL${h5iQ_Sa~j0=DCCz442xNR$ieD z8FB+-tu~jjOtcCbw&lw~>k)-R4^?yO&*0+?dqM#^rPovyR2V|gcrvi8rygiMw_oGZ z4?757ZP-zE%^3z*q?#@nYVm(7PGlHOoXD`YI1$JpNAY}x_o-{qc+Fr~Pner-34WH| zORfK$1cERj`}_AGew+thm;VQzf*EOchH$CyD+>CS1pLT&KR%u_dUF3TPlWed40O(M znEQ>e*?}W~O?Q;>cM_A^<|pCKW1O$_(a+fLg5zAmT4IOn;^586_%J?R6ydOXPtY}k z!Hd(_lD2O4bl(xcjEoQA;|1eH@OqbX8`bJf>Y(oWruSWjjQ|>Cydxhkj^s(96#H#B z&oc)tAEpP^C4$mtLq-4zGG3OCmq0j4lwLu2Ra`J$r8I$vkHV<0bW9LTUV+dhN;f8KtjK%1;F6 zQN&BN?Vmd@jMdN3Ec*Pyu)KxEi}Z&JqUVZITKgBgvpq}Y&2tDJJxTiy_kZ^B%RzkO zbuUiw`d9xi$5v6gQ-LvFC^qKzE@)c+;W!b1%ISboezGLJp9!e6{GvxlPX)Skyt4@J zj`I7W^k@@4;#hrk8}R1bQQJGMrUFem-dcqBK>2Z;3T(m)>3_A`sta^5Zy>JxzFFoOSnyOG%A}DL{daR~O+W z^}jXBH(R+&O$BmvymA4+WF+B-_1D+9v>|Z&2Ep@TN|rGzU*=!<~@v z%lju>92@_gP=?MZrLCU@e!85&-WkRVM*MR7NunQ!G6XT{3*to7gN^;_&zk>X{mruD_!Y-_a-)pMQ9_UtQ}q-h;9KLfIwmUvWO%--X{r`ZES)!0{g9^H0YY<9||5 zIjsG^dHR=q{Ngwf9PdFJe**nm^f|qTlj!l=^dF8d>4W4z8^4cJV|GwPXuo%c@Zlfs zKkWU#(NDK5OG?itf#KB-+PmqcztQqA-yW9F7)Y>>JOFFf{*X!8Q0yU3YMg7 z*mstH%8FB@yvvW9)D}hU*7tUrf#Y6jR}y}x!mfkn4khOPq!#wwHqBW<6D}AW-SN-~ zP4Ket^llqV3otXFUohok1qw`~o%Js@O5b|)KRtoHVyn!V`nr_rnQQ5 z#weP=0MEC}yO&zQ%~{W)Q^GA_`nS2gHUwG2{`Y#+RGV4A!;e(f@pd~v-jetBBO}dW zSA*Pnc5~cd(2p5UvTA-(+xsaORY^<1g2lJjEqJE|GhG7H3XduR4sVl7+37D-txo3) zX+f$$ePaDL6Io;EmtAvo-5YlRj1+eI9Wevj8;ro==?yQw&*C2xyE-hX z%{xutwAHxFBdLevYuAm-ysRIQ_in^4+R1xF-aI|2cVyHf^1JomOHc0c$Tc6*E0q>J zBrRU=w|Xb@h}4hJy5`%?1?q#@PO2*cVd+A6Y}{KX(7Dgx+GN9y;D;L-@7vxEeDL3| zbu*UlsIus>y2~IA==@kor#g{;Vd|ZjJM%ue16Xq^+^3R%@#iX+i6_?c9i^U+Vn_E3 zfR&@34Y~7F4s!PQGdEi24hp8$583JE1l5OT*OVmNK>e~EwcRo~Fi_^S{g7}wSgJlz zWszHZxNCFr<8J*r!5mQadP7V*sO|J3vP3NeChhRwq#S7na}PXNIs3am%$)qqv{i%y zh-kaJQ}lZccH5l)PElKcuAEej9va?3Rq_Yi=yv* zi4Ql2*{u|N@&@ziCVUy`V4@2*Idr#{%W;9%pKeg!tLY3!5C7J#k4l^WEeF?s_aZb7 zC`&+!jvz9J)pL!2$G7jM8t)}LxbQ-irXZo0vMeZ4+U4C*E*-SR9;C+d+cF(oc%#0q ziN5ec@tzMq9jemcvc8Cn9b6U&SJZ?TI(S}R4n3`_%Vm8LS=_-zn_vVBJSyp<%x66= zIF2p&jpZK~y+|zX;5sLwKdEzDd9XRerTsADWZ;860gcan_BI(9c_yI?U(&w*0=gylUW@sxLf1lL0e!8Hi(@c z=R|IM+8<*hx4shXD*xeZrS+bm))}V|H3MN>=<-G{L}hx{GjUV)PRd; z^_`XvW;GBvA)GT4Z*Q=kM`?MU-hJfR9}a}g{K6Ut?TYwr!{lG^B0}cTjA3&Ny?GpGxCVZO;|PtOyEZ)qfs{K6X^m z@U_tc`3If`_ViP}!hR5hB>nw=BflzE2Q7AtVFw$HfA}KuHWeDxYNY*0x8F8?v11Ug zPigcIulQL`<(Am*tQh3}r~4o4{Er=60jQy9`aduG5&?qluKKZ%WFFX!^%-`I`7`kX z1K~qCr*%L5gBa^yjK_{y?5Gmg-!(2Zw)L`IS^IBG`yYw;1}GKR|6@Zh&q&Gb#;QMC zN?#IwX4p>Sj92V0GD^Y=tHo}hY#yFne__X1B$6Mk{RI0Dg|fE+A4{`AB6==JKyQG* z2BHtxQE(kUAcPmLY*$=&-*op})&RF4lpi~o(na`@g^%^XZTEV$>Gty(`w!gz@V+)2 z;T|{PiGz95WP!`BJ~9fI<}nVe#(3=D3PCvW{$rOG+rISme1`tUco<&-)P81nJGmLJT+F(El!OWk$i6tBoZ)C0-8FG|JjSI1TM zNY`}82H1fl$d(z?wEvAlIP74-^8x>7L4dZ?Hfo;g%xr)iQG)D1gvX9C?5Jst$|DHj zL5e#+ygzhfK{mkogpWmdTrPGn-4fwV4zF?oiCbQL0Ozv-=2P$(MmO<~>xCUvyPELA z{lDfQ@~hd^Y=Gq?c$_K1OKN{zOS97lWpV)4Zvs4s2AGT_ypUd23){bdwf&n#pIFvH z`uQ!x!^N!len^n1D5b5R)E7*-N$TH}`@VQN0NBnT%+|4~{re-_K$ME>U$3uI>U@%& z7#9Yi>;$$q#iJi+^p%&jzeZ&a>b_WO=>yjNSM%i0K7Y0ppMdxt!Q?+v{^efsd&F9m zPe)x?53(DCaD$on!dAT>Qd@3TWgUKP{o7vT#_NLNO#0?CPn1!8`)<{`m}kX!ksIs7 zAqY2&i7$#!;?*59h<a)|6=?@B5 zQZ^TA&bM*hLG@Dr)J;=Xyw3PUi5+_a+VaOGNDrS{Z}gM;lX?D?|!3V z{P$l-c=3f=c*N}Ez)KuhJ~iQk@oEpy_Et^YSp$9WtweTYryW*+7glW>d`%4us+;%R zD$bsNA#7{Skauzrq+4!m8zIeqQFUr?x_ts}~G_g8$rD zr_ZfkKfPL`#OR=GtT|tD(%3fj**jJLKDbQ zF)-P4UljuCve9}w1>l{peuE!UaRnbXI2pnQvLQ~*}&XrET}Qt|1@T*(LK z<9(E76JB_+u(9#(VaM~*L09dj2L#cTJx=6wQ#PTUrm!JBox3F+c+&BnBD@UBZ-G*5 zZy|`x+m-Q}Kp}V2hT(hCfe9UNBErie9DeN5L|+)EvP$+7DP76DSQpDp4&_%t=|K@* za51x)?Be*gchbRKt)>SAaaR;)B9DH?``aQ>Ho-nQX_e+rjl1cff{w2c;l<-b@P3_N ze?gpx{Q42uFCV0X3v~Pi5nj?dN!r38|3-B>I8Dc&-Ul$7lJJx64!il3*O}E%ri2Po zMydEZX>qw!z`z+13_DeG=@Z5F%eT+E^ULdu(req49(HAqb5TW%XrNSlouyOU@#wRe zLs|J3j}v)=E5=V7UqrYU{wQbM^i;+=4fj7u^6%@t;Oy*cE%g(yUo4BqJMJFh?Kj!- z)X*t<2@E?uuBIgZh56e5vYk%##j|k>`4>B5Js~Vl9bo!8=mU-ud5s_Nqj^?!+e;Rl zi8gAZ-hmOPfV1hM4+ba|um7Z{<-sOxY#8)$`-#Vi(ALTOuWv4{)^c{g-2O#R zKFsc<-hu<01@&S-aJqTz$Bs8ba>H>VH2Dkc{1L+z>6P3Bto;YuZ*ZK5`1t!gv?g7# zUpt2U5LtiFX4C5K1Wjh^SYaTjr*$4+JD94L}>LF#JQ||lRkGnw-bYZ%#S4c zf_&zotn?+}h4p1W2*DBw2>Z#gy!i9ah+1m{khrk*%AM1@1MEi?JkJbiva{hh5wgSeJm$jU*UIA|Hbhw&L|^Ie(FE_ zU!qp~%!!@atq1Fc7mf($gi`VOt2j!_F>^~-fc2{|TZg9hm&E`3upzUqKJLnDXO)Cs zr5?W0peOtM;ez;fMJa9k3G`3S7em?iR&ESGF_xz!`tVkME*b2}(Eo^BGxZPf#q@+Y zQTs`vFU;SM)lTJx7{PvWas7GFuirO~_q`e82lMZaK4AY2t^EZT%d0F%onQ1mma+c9 z_3=P>9PdEuf95MTU8mBtHEk%T{*3h_#(N?>)-NUkFO%KRiQ`LfoDi-4 z8EZIvKgH{rRon)t7S12PUVkiS+}`5y!*L=w-h;-!`Ey<6ZHLb%RMyx_tPL%XU`i9Y|{IJ+RkH;(t9$sc4L zyiSEyT~wd7D!hgI|JVE9*yFb@#++cT9}(M47Ym0o<$re8^&;v%NImt8+mE&XbVIl> zCO*EFdx=`UPp#DfO9O`f#N#Oh;X;}Cf*r0^6mXq#|Ip)>9t8C3@)NQJS>ps-I(~3` zQ4ePQPedKOM2@NFDxLLDVC_E<2p5S`+WJMff9>1Zbnc>nf35y*mi)|zv+^H}>OF!f zKk#!}Ipw7{#duD4KUP04juYw0l%F8Z`*QsXi^!9kWJD01;_W` zcng~T)7MhrQRQ9w6<;q^VeDUUdDvbVhw4wmt3RIfklM5)pjzEYgSG!l!ncUO6gItA``&`aJ>R6H!WQKhB6fPbgq^#z4mYF^TQu!fg5gWhVxq4}(!k z#~Xw{qln}F`+ItB`P1@a-G2>1eB*cz8vi++c0Q(v;K-qG#-AeD?2i)Luh8p~Px#^% z)IW2<+S)olHvNO+TZS{`AJ4gYpYprP`7rIS59|Cb9w$PhBRI&hmhXhz$$wv#_Io2G zfXMy!{S&6c*8e5S9~HocPesphya%nGg8CD@C$CSd9BM)P2??;#Zz=!ji2u3Ze~(1CQ7EPLf5N`Y1(MVC&B{C7hW=~Ye+=S#EK0@a&)hCo)qA`B`h`hT z792@YH0aD)|8a=!1eA);|ElY9JCE#>_i6oFdn5e{ssF-P#LlB>-*>b+Wt2Y z@jVHpwDqfC{lyzyQ>oYv{QCTl%4HirlhN}jD5dpZV07dK)w;uof{Lep4E=|)|91Vw zoAoO4uqk_-)IY>2P5qDaUp`9{M2hitb(LicsBPbzGvAfyQxOTfw}y;eM*g@tU|QE! zG1N-kW0}eyHY#an_2Qbl$J)1AQb?K|ptbId?a=c#MHa?QcoCuZAw&2j+TcI_|NOA(;!8TFwj zto(uY^L~yiF6n`y$N}X`s~o^x?Y{Td9+C$0x|KRj*lh;h=y5yk8e;%-e0SY@Ut|n2 zr|gm|9AyE(iHIpaoz+2YM9Pb!bJW22`K?r2y|Mrv4(%`AG_?UWUoSY8pW*;GOGo)x zl?lkavvhrQstG8lQjLLcge=Z(@v8iezBWd zEq*{IrM9T~Z{&iGs|8`^MY*OUM_vF5e%sojd3_tWn z%|Zt{Y3{G@I?Dqbl`l`I`057M80XDCspbW0^SA9=ztRZAzft;9qiP5;yLU9^# zOntxF`?L=D^j@z^-{+6WhyzE%VwV|!Wj~KhIcZo$<;110$}muYgzDN-#hiLlAtH44 z2~+<0I%{4zrmNMHIl*CCcfZ;I-dew}`|kauIuX;K?aj3Y2YkK2%LG+Wp47(1Ya9W1 z!}?uqZ6gaZuSnIMT=I#8qs)CAO-#V!nFbC!BV9pKb@kA)CANSl3~mTHrwx+EM<#uV zcLSWIb{~QiJiwIL-EZ5T(}C8~RZ%f()S&sjW1r6seoMAXS2mgvs0k0PT;?)$DF2)x z`5lYHd&|JYH>DdpwN{72FTDC}qNoJ@mPQ^2V>Mx1s^|ElHmzVWkyf`uM+b%$YMV|7 zEPSY$W5DpOdJH#VZs#RL|2 zoZxWpo*pzE>sl8TY5<2wpN$`qrVEda-Q#5*A_L2h`s;L;eMe@t8LwE&Kdrq;u0Suu zN)Es|%U*9EZw1@NR`+svBe=b<|JGr29Ow6b7>6U80zwXxt2`yID7WfR8j)by`V{j8S`I@9r;MR>fQus}E*$3ze{{cp_m0Hg1o z8M@vi9dw}MJBaW&KYl!0M1Prbj2>|F>AqqoAKwmVXnfvIgva|i6@;TictPBenQgGj zCA)N>MaOH2@bV~sYm{O+-~)V>J5{*LIHZHtbbM3C@oUedZbTeJFyg?BnQ%I_;pe@FKL{8uJedZvWNQU1F)0c#=+S_@uVi)$f0aa9x21;q` zChn-T*W}<4#&g5IG2@;v|7r-Q&cyRFMpRJ|eeY#-d-UsZL)^aOouUT*`uP%tv$d{v zXb5FpcWNTOardCDTLp0&7hVh~zi8Z#v2Mimmn45-@h$bcvA>@y9`_`^?|A+;dc+vd z!9X;w8aWC8jsG|P=?W9V0Hw6{KP+q2K&s2c+UUGRO~liVfu~#JNkgt?=C6sY3GVfV^tR=0vy*Qr0WZ?{KVs)X#G!M z_tzVAVRYM9@vIjmOX`0W+opRzqM}$YaFK+s^Xs2Yo#V2;A8dvMX^v7_|550?UkYrm z%kbf~AI-XNmP8*F+ceJ$zl-diEyY_R0yZe6?Yp_-T)vQ7E@*h|aZ6+!|5gZx#}}>s zMeA3VQEUF16L+rvm4EHNy`}QAL-psNlvaPx>h(41nE$mp?}z|~-3j-9dxXRBOXB+L zf!bWp*g+nwc9WL!?}+F-p_JDC0>8^*_idwfwY+|L{zb*I_Frd|p$$rD@+%LNucSIh z*Btty;l`N1u>4#Q4zGJ@_=tHHH!1b6Uk8lx(qZktlH`}k(Y=ybb+3i}mp$%K5`97S z3fM2|bVK#WaX&Qu3Cto?0P$l|g1NpwtNh#%-UFrL{f{%P-{OmWJYMGuvnc?Sy~XpF zCn^ZXFVWg>^c)jN4ma&Fz3e%A+)uOQ$ESh&i;&#^o&IbdeP>p`3yv52o4B7OzQvA8 zI+S($`~dd2;r2*=IDUvGKhA{7_o=j^@yWV@%=7WEJaD`ej(elygGN2N`=lC;-`4*DqU+D3&v}-1km6k)RC=Pd<{y?n z`}?Jx5Z|3qD(-g~HFey^xd#(i*H0~Nzd%Gc6s5HJOW-$nRd?gc(iicp>-Qjp3qdKZ z{i`4U1Zcc^0}>(>V@`@pxy~COH_Y5hnC0E6rXdC*z&mSH? z?DhW#zeo4~@OxzNM^+|5)vH|CKsv`?UiZLf8QEPmGPL{8d{WId3w}Aah0Nb?*<*Oo zHu6O9i*3(q7L#7buf*8wm_Twel!`ujj-lElF1awV|6i2G=Y}UU^Av$xMu0un%mS>v zc|cj#LmhP8KHb#frUy`Hd&n`5AMExc@c3tqGFxEZ`c_d=p)#~Mvr0C%ntu-atL0}J za@1h$q#+HJDvcKyuYO*WY76dLO?`3pwkEh)nLOFX*c^=G-nPh7(g6+Gb1HrsdV;9> zvIeC@T`!31l(GKf=M;Yg6q5h zF;**IyHE{)K&8;qPo2Q$J^f^dU*o^myy}+9x2;e4!4>`9z4O0Ff$E)Cj+5`HuJ2r9 zEh9TZ?}7`m-nJ(2+N%NaeH=7lxn^qYAkq|8<(eON`y@MW9@Vu9NTh9h&rj^VNl6y-g#eVQBF1Ll1cUN>f!*PV%@&Hqr z24|=+sF-JS!5*snPA@9#r2|VU*6;r|$^(K$M&2U_8bE)u*@bB%&0(U_62HB5N>F`p z>d|Kxzf$VYAB{fqN(ZVBk8QJ2sTELvurX6_wlUmxZ0ITX=MJ!AY+$FLSQp59ok48l z*hA+VPltDTX9aU*m2z8ioneI5lgyoE)?jA;9^DRlwg;t2?am!sYz`)Vbk7{&WDB^5 zzMT$ks|PrHN7md_gA8G?i={{|}~0QhgGo=uxy zPZn5u$-j1k)RH?k!W&oVA#a&CNVMXc%=7s9=5|ux|1bD! ztWrp;#w#WoD}tB~Zp6p1*xh5A?Cy<+z2I^HDvvgA@XjZEBNrX|UOwox^nEn^Qa+gOxW4k+^$N54^;Urmrac&jIj7 zfAkl!tksS$53C0QQ#!t*2rp^f5|HPqUMDjU7}4=<{{px+lJG@arVJR@Gm3THse}qr zMk$T|@?q80RO?}5M;=OH+8vrpALqmJ7JhI3yxnhIUH^HO-i&xVT&^nmfbH($`_3>} zVqy#<0k+Euv$qErFK&0I@hR{-4Akjz!gFy427R1QlKg?io4~ba+B4RTn7$;ua9>x; zYB%@?ySpG>#JTm?>bS>t6T(LdPX!O?DGLs|QeB)sZc#~Eo5&znCE4JsGqI%HuPbM+yk#IZh{K}UgON1uXjb|;NSUQ1>-kvFh`+qNe4#%!TH4P z?lk@d`oDl<%UPIr`?uYz;EecoK`E{Mi)IggMiqD|sVJV{vCdzAdi=JOKK9pmFzX*7 z?|Pd$%w0MCXd7k5{E6ES+ugDKoF+f@WlJCMubRto8{eSvhxK<$-}hoa@1mvh$Nq}H zv3rla`ly<$br`15+uEJs_rmgThuRI>&uQ{6Xk%GPl@3grInT|6G5!#&#rhN5-Ld_g zHhzWgs|{38(-^G4=s*8g^s&AEZ|wd#1{OsW;q_WBRpa%a9>1*mTiotWlb`V7)BdYE zmK}fdhxuo>d;6n?j7I5j+^|HZ^1D99z$fkf8BNE9;8D}>{10Gw)A~06{T_wVTTS_d z`}g3!3U@e$3&F#t-}xW-?+@bskL~U~&~qI3jo069FK2e$>#z{;=y*be?~H!$j?(c> z`GouDbu|ZiXSG@g9yI;V|G-OWqL1zF*zP<)luvLk)gZewcbAzg1ouS0^Gy>Xd=UB_ z+pqC@2*>>mI2P&D(`FI4PRC~^H_`8ce(#FX;--8c^QDO@e z{`bG)pPyL@1B5BSU&GLczp=Y>O3LIwPw6RdKOAJ9mxlYVr24C^`7p`3FLV8b=}W@z z-3EJITo}lze71UR0FX?+?%4?!H)FLN@=~{m-SA;WH1n5Wj=9 z|NevDBj!K+9)9N3R3Edv+PaE^)Uk^8rt$~&QL?*v)_X$t zP}9l_Z(linhE$yQW!&A5rDTzG`o2<`i)7Hy9m{^!UMBN@`fqwD?+^9rc4~6YX~VHH zAKqHrQ&nhwK1M;)RSN94d#hA1 zTm`<}H7NhBfdPoUf8s#@r+VX zS)iKi@wHYUL%C*WtGiw>Yr)5@cCk)y$F;k2(v78`L0Y`+i$# z3U3rl<)u8)hW6HAfWk-vxH{@l?S5}1m~$&*M|Fq-EKt{5YO-4y<^@eUV%L!$ub=C+ z@6{7IxMuDR#ku2M;l%16scpBZz*4P-lA5>jkf-an>exXoSn&SmUnP%gDekE$4<9eo zhC8fX_Kx4+4QuBs*zLM*1*50`rK3L41ZEh%SE-m{3oi!wpUmp64|#1ChTeXw3cd6F z=Jh;g40FsMP23X5KgaglVdMB$`f!p(+JLW8t`NSOcl_+xy{wB_pM;(!3&tDE zfMt|I%#UzISTlB4uR1?>*lVSYTAh(EBzoM-y1A)FhXngK0!ejHJ3c?jO;f42) zym8-NUNk!$Skv*=B0RRsVm}F9@9`I-JS%TQ@b>N4=i}z510y=#NQ75F^b}FLr-{CB zo!ZbT;NkoHbnt`j=lLP>^GKSfkB1XqI&Dk`AL;my`v4{*2@h1~_n&I$!m!g|yttp_ z4Sv8+8_y*z>D{IE>t101+cAZY{hHR9lIVxOf2?yhqQfu87Y}(AIb+9>P=NUq(zgY| zlps{m2Mv_c`mbQ0X&0w>Te!eN@Ikv$)EV)P#@KS}hv z?Xu#=p8~(Ezl36Cw-ZUCFTev0)_qd5@B}-3>?g5D?N94J5qbdzz*+ZY`;iWDjQ)$V zw^;vRKMA(CZ^Z>8Ke1`(kMkSqVp#jXxSvFP{G1ziBEv(O`F<8A(>(dH>u+aN5cU({ za`|>P!MVVjtgNfH?CZm-|6CBj6{QcF3J~7^rhoeRh@iV+tnsCi_&+uLxqpCsOV8zF z*ME}e3#-HaenRu`_N@Ki9mxyZJ8At_a4ze~>}B_BrbICAPr~Eh1K~YUO2Z4@Z*kL_ z=JaHiGwZpO&EucF|KRv8?5CjF(*)=0_(T=j=&g5VjkCah6727w>FtlE3j&eEx37qt4eh?AOw_V_pAZ{|feZ(CTmQH=0L5{;49fUOgo7 zK1*Ktok4ONwB|zw*D0C|9D2e z-E|*-VepUJvw8CS^4t0k_U~Xn5$2084ndp*aXq55_nb?=jehg$&)$Fj!A>3WA9m_q ze9i8gasTeN#M5NJ7{&Z>tzxoNyLTHC?-KIj*E{buFP&%YZPB5PuyQKpVQME4)yubwQ80!9KSUY`aa%Ijo7kI zH_p)tUUb!8dBx2Xnj~LWyU|V$2KM^&N~=%`hE7_&IQFVJ%-vl)DK6XzK3{w0w*N9~ zSil>QeN5U7CYeNk+Oygi_G&-Ve7LI=7~W2OpZia9*hO=Q$rxE9SXMRq-i6h=Fh5|^ z<-s);FlWoUv#mb3L#ah~;LgJa@Xl>&>d^#UnB6h3YpsDHoH|b`2aMp`bqnWaKYnZo z!@v3Eq`K)r!+>#`qx%}cS?5#Kj?dDBHI-#5;cpyaW|r%Nw?Asgf~9vKTX{Od6xE-% zEH@d!tjU9h++ENPj&@U#YTrW(s?L}acJ#a^grl$CT_-OCJ{-ETW6N?q_*%2bYvTe- zNWgJqStnB%kp|CRG~z(mwv}ARZ#DpYeE)8@iXQy9n3~W&R~PCzn+|EUNd*!S9s94m zcbWoED&~?EYOpY4`E_@$E+l%&2NFK_sn5Qt*ZNGcfx~0F`<0ARfhqT{dK{Uf5551& zCuT?Mpws}C?>pXZNc*ppeoVr<cgA_s z&qIu%dY4P7{qm%t{>8Ed$wL4fIkRie10^4j2hyw9PK)izc9Wro z`FF|j_jp~g1(m~hQgihtT7h%B-kVo^2_68 zWLL%fV*3ELQxk;nzOF9LbwjjTrvq0y-c^Lh>mB?U+j;r>5<&d!>rboTOSN=hg)=nr zXC=am+m%l?@ekLLQaa$t+4k4#w(<96T|BZ%LvQj?l+OCue;#)iAb@?VSW z!s2%2MNRaD^}iSCKA&Tl4j$6+4@G!Mdfj+uwnLm{I=D{9UvIu$d1AiYY5(Pctm|?m z#IG_+Y3mx^mk-ydclb^-XSxLui6f5CgRvqzbEdav+f*cI@&l~n)bmGz~y zvF%yc#gg!U?W`Iw76!1|b;Rw;m@j_)1nZLd>b~ohR*wQUxWbKTW05v(%Wz8uG$#ST7PU;#`Z~?{Nojk>dE`v4sBikh~2J&?a|n-`vx<{PaFLr z$Fl;Gju!V|wF_grGPV!%S3mequ&?bo#lqZmu9sO5aG+`)`+1kx9*+HbH2KwT zx^b7B5VmxJLo)mOH93xn3L_&@!(`zrSMn`Y6^3}UsbV7oH5&(Zi4^#2=NeT%Hl zT^RdvoDbWTv0YnyUo!Nb?B<7Cf>_TzF-HQjK&iO?+2dK5+`Fa%eVSv~ZySGhh%UA()7oDUf9C02TynH)H%9$&dq}E(kCH0~TsKCs)?X4HvB%o} z&BL?XMV$}^Q$ns8^C-yqYo}9rRkr7ziWx$ zBV2=7^$)fyd!TY??I-BJpOhYKh*kc5epydM7u$zv@;BG|@PN!%YxZ5WRX_{dpI!g` zgI&3N!jY%ss}q?^7CCtSvi|KA)A%RL82`=fzut?g`TyA8f5LWUY#*kzpCEp`Ymi^s zT2nvP{@=Xu!!EyO;#uckY!44a0>OHb|5Y&mYR=wmzAcjdzAS84?u_u_>o42Q`=*{7 z!DXGl#O=y7`3c@XI&70zH#c|GZ<{{=;+xH{la;L=wn=L&qyJzz`6GM)N@?S#V0K^y zxuc--R?*HuiQ#}5jCV#((xP*}otq4YvFhJwgo|b1iP>#8 z?4!7qRfd;60$J-HgK#~WcvyP#GDZ0AFa7pcn}2Ql_dIOj`~Kk{{7QZQ!>?4upV=GA-|P#|EGBC%?a-b036frIyhcBI zRZN}>`fF%%Ye;4jTV&^+(nrWwIYsAOckL!?>htP0#qT2*tp&3*erG!VQnUB+%^DbjQsYgu5<-(BC+#mksQ!pnBSM0;{^z?YG}|N zO<0|E#-C?t3NF3aGUkDo5lBfsan;dL6J%ch_Mu_7J@BynkvFtT9#l^1Q?n~V8xZQr z!`4Kcp}4ulUWW!*10wm=s9xP=0ko6#lN#m#yf=q*NIGi|%AGR;+wO7%yay9aM(=e2 z4<6f&UR!4blBCHW&+KeLdGDRCx{tF1BPZ-gKDpioH2+$6Ir zV4Vdl*I6U8|A8WyfA56vk1Y<6aI_C62U$SQcJS;;KSz)^wbb8zi64yEFnUo(JugTo zlo(yq*h9Ih7^q$>)P$KE&)plsc}gaPMJa9RsRQBa=rXwWDK(&z)VPh`^x*gKjnAbW zTwtJQ=!qo(nlLHVZdP}$GR$!R{RdpshVfc!SHqT=4<0eCL|d3%An2Pn-_`%%2w6=bG9+_kW)2gvb^Ta&znue_7SwezlM z3*dmHo57yGpeuLw3fqw!Kx{IoFBs?ezjdEOB8y)uvB|I1c-RfrH+Wso!-|aH<@EG6 z2L)R-zqT6R{P!i+HsOWwW_}yiY->Ly9sI{dl0f7a!hR@h*TeH1K9_3y@t`?XbJGEb z?pNZ7@G^)VwhyjpqMtW#SB4w7`0R_xLH_#&4s^VO2rrBBWBdHMCOk2zGyndz*4*mC)2@NEm6V5T9IE#+^;pPDVy-U*h=XhypN~T zK{g$qEy81ejUvLWZ^8@fZ{xD?n14|^m`uk{7U3n$E9d_jF{ET~I>?~oGxh;YMiSn6 z&Eiqd%Gxp3B^a-SJ}9G%4>=AZFf_cV`r9w(+RiT^>necz;* z&1Kl7F?+42eV*m_9t7rMKx1k?5MaH9hb8t8 ziSO%T)i*!Qi5vuG(eVZG0Dr}PEnV~jjlN)C`a^E@*`LMzfeQvSrkOzif0a~!wV>Ko zbGHSt?yDr>TkZO>A$3wb!1iwe-ONr+^szq-`_;tzU$VPhW$gd{+lyrjS9HjZQ7mGyD^M?32uMv zkHm2eG(2aG*LPBRr;d?}ZyaM^h4GT=FW}cav4#5@_ITrF(I?pNBQX~+$PcwZsd)Qm zWd}PJb4Ib&-vZ$*QA)FG3;eR*^0&v#F3MG`TV!NU%DyR)gY2znjkPQE7Kl}V}t5<*eT&5PjFA>i^ez0GQMD?fjAMcL# z#gsF5bl>*7tQhA?;{NM_aBWd4uD^Ob*zjP=WZCqMT715iQOuSL^;g8h@BZ|KylXYCpK5BDE`gbzR|O@9gIf7_XN zQyt96Kdk@R`%kmvPq6Dh><`8M8Cw72Ce&0@Q#1-Zo;(}Gy8py}tzaZS@%=|fxE@UU zg7Krhr0dpwO5v>gpKyeWM5*}r=~Y{NZor5L#`wqd@xBQAr)ce8F!$_jDn7yBzU$@~ zM*l(N{{OUpPTv;xKlc4g6sky1l+x;NzV+l4lCwm6a>@9gtZ_ln2#5VsH2hk%<;O|R zRSn0C@p3KXzoq>jvi5)Mk7N4v2=x&p-+uFP{pYFKFB$VM?mu{6kNsM-`q#>hx{8)% z<^S6Eotme=%UR_YhuVJ-N@@B-Fn-63J&-RGK8UgZ!Sd^ea0w`-${1ZK8?@$VZwn$yyZuE!y zKYRN%um0?DCC$UL%ddI(cvkztKloJ>|HH3p&tCxyOU?<8J5WMeud4AmJ))TGxADof zJWWWhjniAji8?|0$sL$BJ^UCMHCpMpr{*?t&g~s#RAd2Z+Ag7Yhrbq*8rw>=0(YmA zQE6vml0&V*=xX1iuZC)Y)?uc0>wUH0nrknoJ^yI~tZp96ciN&4iqs~by}Q*HkgdlB ztx3@UPNo;;Q-#(bGuGC0^n+^hiFVAeF#dUFV`h!KIFRpW5MU(muhf>gfb-PfwWqG1eUroz`3QoBo-qTaY$H(YO=n zI;2nUfx#N!{Mzhq>Ql|Z_4gr?ZoV3tJeUMU)}{V2FKs~lsu89cr4E4DZJFqJN=TOv=D51CLvRvWk>e z?H`)~qPFtEkI*Q#1CEDn_iAfdf_O{m;srLXKm_@7^{c@Ke7||WQx9)#BB9*3(+&M( z0WhsS(B_Z~B5Ms3t!xFXghHD<_Nc`-gukGBtC zHYMTb-s`>nwLu1}olOZ9q>NJ9I-|6F&NDKiZOZ9ai-s zQVpy15*c<@OkWRu&_^k){UbVhJRv>5`*+t@OUDRIvZ3k++sI&xOL}wv@gk{P{Ko-?)!MSo=TL_gHU= z@3T0q?{{>F@cwP`lf*xk6Px_aQ3flN(&W!G*ngJvT-~*Ax4;m_J{6a1fj(HGl-Be6Etr6cgD5cdubK6=9;Qg0g6R#C4sSEhm_8;u0#eNcTI|t{*8KQ=wZ4cJ>2b~a(gHl@il|BvNQK{?tIk>DfVDw)sXJ>@Neo`79jFEms)jwabqx_>b zWBg;h3&OiH>BsN-@r1J9b~kRIZ3U~HthxP{CYMG^0FnFuV`n9Jtah&E@y~8&cSjXz zhf?wRzs&GdT~&@Z>-iBL2#5W&wDv1%-Mx}(=aeuY<83>}{E6Go6XE~HPaCnj{s#5X zu)^;}KJ#2rjF(h@w~ntLN1x*S^7;d@$NK(~B>D)?y8gs|TI_G7$&c_@dyi@}jeD&B zRX0ZeN9DG-|8+nGVSg))etDyxn77e-=zI(LUtYfyTuFX?{tf&6lg*SLtN!*y`~#HI z#;L&0TI)UjfZ9{Q+WvkBhYaEbZT{qrbNNE%WN|7u(>ncY^}j#jzcWh3$FKM8;}Mqg zm00^v0K#=bDXslEy#x4HR`g$(^FZ_8yM72nd}Dtrjep(>-y>Af$2^%WtE>ODeh%#4 z4P(lG(7kX1+_>yHprP$){p z#~<;TC>Y%h{$csEzyH)M{R7&u>VNE~O+xjj=?}sBJ0WZS`S(+LGS214?H7S?*iR=e zzncTHZ`s*Ku-acD5&m!dq&YT;H>kLP6NemiqgdBpJrF($rS$Q0P2)awEhar!)%@4r zpGU>A>hEZj;cxu3>OOC8QB#Zi=ug=7^$+(Sk)2h@u4w-di}=U>R+{`W)^M&-#6(-e z4kN$)VgA|sKlU&8L-nBXFL?i#Gpgfpo^uz*`VD0#aC`;!x6<(CBa|OeyzXaT%=z&9 z&h>28_~kQ;$D5FEQTz2r6&Zw58vlYg!O?NSb$UD5Hl~YEeo|(yiWS)zU+cOd2 zhA{Ew#?sfR{rdBFbW*VS!}4Q~Gi#pw*!O?KP`!tvRDAyMkz1>2bCVe-jefYrlce}5@_4QD!61FO+kd~VJMgZamw$SRGl=MBY1?~Gd(gTf z$vtip0m~xarYR;_K_cGg-I|_fsnVE=o9DK;0q&I=X{}{#0XRG=_6yemER^z_aecNc zD9#_4x5U~Op1C%t???UL}w;*X91*2hiZ zg_!^tbI7gRMh`H-b)8Z7iAwO!hPbPn?zDmxyTYb+RjQ@pb1ZbER+dxn?%22QZhWSA zomSdx+EPaW`IV>6u9kwe)7Rg9@j)5zhVSv%e?<)z96E9MO1&)HFI%=^@Q5!|>ZGbI zO1>{CpF5oKPLF?5pYL3hzRA-ES^2Ae^nYRmm*=z%p5?6#3+|2ZH>bXnuY89d5AJIM z4_`aIq{P_(+PA(b?|9b|?wixAtZIM}+<&0>vDa+}NX%PTcJ8nt^sHF*PTJW67CFsa zZJMGA!PDSR5tsSt_w3p87k;2P&o=A4Nj8Ay=_kn=c~!`Z_wHC)A`gqe28%2kO{i9T zaQhxG`OjSXVbdOzUjyus{y# zs+GQfX`ln9OHZAfwnP?io=uN5f2;?b?pj$be^5&St8gWa5pt05_6?b)d5+=*U5L{< z_m1S{uH3zE{wK=P#W!f)3=TLvvD3q;{6qAT)>N&&e$5T=G@XWcoPJE|7mw?+6y`_fv#KpL6?vwyPx%kF)O8 zIfefod{oi-*|RM{V)wGg0g)`^HSz8-eaK-ig_5mtj zbHVf#hmP2Q&qI#&db~pqm~&6{8~j}#l=nLjHMpNH=%A+))@QpTn57(k^~ZPfQ}Ck;c;9B_8YtwkrBLqJ8S*DkX7mFtZ@~xC_nZu z)Aq&j?R*r0Qh~nZ)i5qd#g6C3{Hdb%&&A_1)SBoE-=DXQD@>df$^|KOe2NG!kMiTV z438$fFs|a+vl5#hQCtv5$H$5A;&B;xe}~V-_BwKYZg77t2&d!2MR-Z`qJzuF#J`4e zfj=GZzYkzGCE@eS+#E8VIkMUXlu$v+D5c3?V3)|!3GaG*kPK`5yCnKBQ|FHB#7a^T zGb~6g0sblpPmDJF-sN5)Yy7q1k4a>=3)FrCk{HZ!Z5F!@_ap#zu^FVRP}uT2#NO7Xn$&50EH70U`GISKO^|e8Wl1 z7$H1YJ^72z%=ymo4F0kFuv)`gb>jDz~?7H^wr{kDkVf94&`sT@x z{k{|&&tZk+hV>CaaDN+HkmAvcR4ux$-}l4*{4T98Y47o@4t8K>&jlPqje$ zw&?o0J6T{C9S;+m@Hj5R1U;wq|D3ez>cHT{v@eA>v%n5IK2wCp@f50^A>=GO~3O$6o}4GkR-ot4a3uKyDwy%zkrLAgg+U3e9(EaA7fvJ@i?9X#|5s$ z4+!CXv->x$+;J*pIOAM%EPqM#=dO89#$}8ESiZvIeE}vT2@e(wIwHOQIqSaI0u^M5 zQrh_8COUp63x~d*Qoj8UzdsMz?{&v<8Fq+&+WfEIcrU%pli0!u(~?;AhYiBnGV32N z0~^SK!Y>B)r#=6y{vg=(r=<25R;xX$UjWBtVE-x-13wYo*SGjo*x6@lQ2^@~!ShW2 zrty#CGO%BsCV#>EE7pBaS8iX|9pHW@#DgZh6C(IGaT!IHmglIMlcv|5>=VH{ew-1$ z4NCF2;(ry`g`S^|)=D-F0a(unv-vd9cR@H;l#1J>K1Ln)q{fCe9yLY#YY*_3=E+~Q z&KBaDum5$v+wX##!vNOvLcDjg=|2@PXu;Zl-B3k5QA*R_g7uemQADekh0(0~565MA zF!6%>0(C9U&TF{(`{DvyDt{c$@i%cH3NaOsdVX`-sG$7>tNdC@zj=6eyQ(*mdwZ0= zLMcCqzbyBZ8eSjc)3US|Mx-s{!LsMv8vl%@{v<#%gKk5{Od{5nqe&Vf;FSpA{^71Rl(;^Q}`-E%U_{w?EN zc&sP=5iS6wH2NU@b~UB0Y!kaT{T;(EkMYgxzb%ccscqrkppPs)OS#Ih=CMilrF=0RvMHE>uU_f2O zfC0puP!JPl%owMQU`8=uLR8F(7*G_$x9oPab9dg{<-vFV-gDj_kF~@0Z>l;~S69{a zDBUHAV&7`7g?~CPf&KiJ`ncHgLS>OUiAxX+-&nWUP65R1WwGvamxV905(LNk|0O_H zEGQEV?BtX8?xdC#%{TfUu$S7(kC-u1cPCYHe8DW}noEt{YBN}-%Ubf%vDZbG){Du5 zC!fB$y*q;X{;h)Ra3zDBc}I5XhXdJUaQcKnh0z*t$s6l|`$ucRQ!k4)_&!mCTdK!R z>b}AdChW~hzxhQQBu&4%Eo`znIM*=&yd7%+7CU!L_0DJwO3E*F`0dge?3&c+lWRB^ zq^J5T1Z=Vb)um;;Zm|L@`||CMfi16+{FhNBeZo5dw^VJz%lp1lYc{Umd$RZorSG+4 z;qgZwshgwgmK?4sp+2ovBkO{nQYD2tYxQkm7ag0 zI4e|cfi)i}l|5%4FEIQ{sm}f6ckF39xc=7FSqdjjq1oBx?Ys-@Aur-^e8mwBSX^aU zdm*(mv-|G7I1-M4I@%3@vki_3YMm!=8F8@?ITFRLw#8N4+= z{DcC`z0vyMRpr*O*8Ow$4jHO2)ZzZg1G7}2{J>{-Pj<3_xy}l=r>-}G#5@l-TbE1Z zl^=CkUgf6Hv|rBUc~AA==Q(;GYNwb&Fs<}d!~iWw#GT*tV!c4Vtcvn8n%a<`%rCxw z-3cbB9?@@k*A#sI{$*E;mobRgz4Q0cL1v&(CTYHjx{lyM?{2-fM}MHQE_}ba($fZP zzVvNs>KkjoAug`mpy34i?X}Cxy=(?}27{f~^s)rNuTFKVpUMALKq-hNpcEtyC<(l| z*suU-LGeOV;7}00Xp{7wD)aNE^ap+MhVpC!Ui6^s_{AYRUtHsXp4jtS|9ekyKnMqv zutO)K0WS(@Ewh;8vE&91_|Wk_V!RA0j~#lw8t|eAeGluXarWQl0S`LfLyVUUC{1a= z6FQ}9b%C?#{BG0k@C5I!75_kV663K0R|)-$9gGBe(Du%z$B|R3c%VHU-(HND3@B}D zU?Zx3z@V_@o-cSnk&ags<0S)1>l^R|;hB*ppl!AKr*r|nH67ntjF)DROvs2)9`&9F zY6WAZ;ZwUG;P2A#ot5gjs6+UnrJVL|J+ZfEhd~F(qw}G z-gogf3+c~_S4It?f+$UX;eo!tQYsfr*u(yyvo!f}JL7pOx)wX6a3D$z6{H#Dyl-VE zDWm>N<{Xw!W;|$v?<;=WM))z;UNedNauyQar}ptT9Y;eZ1TFFeqfFnpM_n6K63{zJEKuv0|WV*Mwr{Y2&2 z9kPwXH#eZeo+yt4VfLt^lJk#K`8D!=xe;UhVf}*>aXKKpr2h1u+V)5L^UU#s@i?Gl zhw!xi%N^kMfGUeD{c>-eK4bi1JPs(?GV$rW8x<6hP^G#q_~0LQ2(dq?+PMC2ZlX2& zfrK~^h66LG83jZX&?6GMSI60XVRh)@KpYMX(dNHUfAL4p`l=}Z;SaaJc%LDv-+w!Q z+2@Z7YA_s_kgUI5x%2wCb-}FjM>3#9!wc;erCpZ2e&`0f7$Ebxb|b$-#8G312Z)JDSXhD zmvwP?JlU1C{kozC!+{}M`#*eHc#g~+UGcf=ybgc3{kW_N0gY=vGu8*iy-@vq5tX#x zlnYL6GCen$VLzkdgg5$v16s8C!|7Y}jV$)(9_aq{Pe16)?hwU+z(7rWg|3P9y({8xRMMgXNz zbC>$;o5^ZF{!Ks$JfAOQo3M{kP?;l6q z+n!H$tP0%NXG9)(HEhTVMWa<@tm5}EdiOVwOI*j>Uou=vejO7%y7Eju`T0n%*r6lW zlckk6clK+une5tc=xF}smE@7dgOqc+>Vj(@O3QDIF@@&_Rk15oQdE`I)80Ag;A_Zw@b33x^m3kKAFr+TeQTRS<;3Z(5`Z5D8m>&E(rfX+gIK)fu(umt~P^Gxnm229vuy&B5 ziqB~sxP@QU#$Ub#yp(g&Ib2^EzA2f0~x_gvn`sasar^s7jh(3T?A}H!NRe35Z#f&t2Yb3ZQK4xxv@?ZyVZaf9f1LU&HWOA0v)d)#!LFSX?B8e zpEBb>Mo8(P#6}-zNn7VQ18q)FhZm?$e*RwY;ya}V!3aWsJHY)e%}#=bE}NgVjs*T~ zY51%y0AESN4{zJSSwU_bIFA|D1EW$J@c6ch=!P`;Lpv>;L4_s_*Q4Z9!AIQC_2r7! zHsGc4&j_==bTB0mw50Rr@EVPexqM=UQS?kujR#6Sf4H&%kH;(aGfUb@L!DbM?Z4HJ z^~D9)KaTy?wEBaT%u?#B-JAQixxoxOy5nkIUiqlI%YmAHe=< zTKhwibDt_ntKGI@#t(*{1mCy0{H5ZTRRk`my~65e!TxdVXP0b0{-H@Jwq~FIG5MwW zxrre*247>ou*xsB{-~kZ`meco4!XZNqO|ox_~Nz8PD5{Nvn;Hd*XY~_Up!#EfwdDAHaM&`n zM?`N%`{DL)uKd`~js4ZM`Olwl?>!mSaqP(sW9|O6?Qe@3!X8nY{J9o(kExfpZg|yX z_hEf-&ko@_F!6k!U6mB^ZPT+JcPjq1^B4QM-H`mW`75;l+Gr5+pGPz82R#3w zv430T&8oko&7Z8pzYnEf^lb9{+jsRqdm>b$$#_xqn(L=@X7zJoKer!h$2YiR2+@NR zCkI@tF(djh4phhe-x-z1es;<6_hsOmd3Hnkv(7(h?T^L5{6yDc`xD0}u)mtt|5>}z zZjo1upSfSviDZ57pt=12#?MV0es+gEl-|p&^h6(4`@OmRv47qhH59G>p-*)y$#V0p z+SB%gFy=3ASAf2FG4a)f$`xeh#E)lOmNE}?#{JPa`J4OVD)u-P_K#yfJFWiQNTWAo z`R@G#TUB~9{KSow|4?D!n9Qf3$@>S~&X}L*T0DNcp#mYy_7^^Qb-v$VeZ&5}7~>b; zuRFp8Gx1R|!FQOB?>53`T)yNT#5(?C5pFc1lIwrLueSp}!2nkKbrizIAxhJK#dTFL$bN}6 zdAoSvU)%m;klgW1`3uImZ6hmcdi^-3XVYZ+2i=xc|Bgik#xeO9e#(ABa@_Zp5820I z>|e3|O+dILCSK;E#T60~wH|kWnzGtYJcLU`l(zl}{RdgEAI$9e(~2?wQSoN)-=&WK zi26@+4@7V7{<+zBR{QI34%D3Rmpq4jL8P<5<<7``yK|^F5B)RWZJtTVztGParZ|_> z-#NtURzWyrxT$2=htj!JavrrmOur9Rw%S1RLzjirnrzvw#`~_3U__gp#_JDJTlZ(_ zm};~F6My&5=h#$G8_Hde?AYBFzT?4du5II~B%dR}GXwMisC9^_J)jSC1`o>JIHd!~ zvb%M1gLPZb_SLk2A}xL3-)6w#=*b*FEKyrmG*}&Q*IkZy$~A;*PQ^!l)My8Zr%!B7 zT~mY`9ku;yH)_CwBLfz;xu*xS<7>>{%d5ey3(U8UQ@AO4-*}VZ=5XS;?b&|QOyF_#ce`D3OhDcWnZ#am%|OKYjI9et zn1V_BVn6Ob;s~DE?n*jwgah<4{0x?EwFc0p7bnL-1r+-GemXtI4)C+*e)#<1J9(#b zzjSR`4S34=_M?m;vM~F(yRWGm2NpcwWNvNU0#>^mn|E-jBP`OG@q1hUdz8jfzkT1k zZ~>9zykkp+f><{s5)0XTjy zTNDBvNIV?1qE8P)sJi9M>$idfJ3|dzWx5n|;HrbEJGV|zhi^LmOj&u^6h7-y{y_1z z0aWu^5z@|AaPVY=&P_g_0M8GsxgWpHSs+(T(yMbE5H&D0Z~7o>SdqWqE+AY$RYG+3 z#ahGERnO1a`>4Vnzd1kOguSPTtwnhinH6N&^FjBmXB)u4mvSu=Z*sucHj9c|Zv99d zspL^EKo)e;Z+GnTYBgXlw}0fr2`$0G${z*JkE_YpUEVh)_!)o$eT-in&9enywC0lC zwy(+4+y|fXeXQaBmrL}9$C^RIaeBV}Rh;32($tHSb+w_#bGP(;hGvk6@2l=!{*{^} zGw|fG*UpeXdwDv~(-aP@;hKKwX$(s;2bE=+%Ym0)3-|hZ3C7E5E3FSlTEp$`x|L?La6PaCsepyzvos9n9oDv zbq3odI8OxoJp|{A3G*b5%uzoFeujYKxL`f7Vs^tmPoO=8AG{Bwt#iVC-mpau>CZ|- zz%e?$OpKR7`1Xime+xnI@7;=02iSm|P3S%XyyAxe z`k-s}?YQ{QAz&08pC!h(M&;WgN^8H0qJkGx?y&_aT#>*jG8$=%Niv#zs^!V_y)@rpYNzS;@$^rZ zab)ZhFkTgXQA3p0O~N?u1G$&7UYdg#cwA1J{6%Zt4vGvOz`D=- zm*9K{ESI1QH#aXFlRh4VCM`z+xBUnciX_APeOWbAV>UK6z&&iA0H z8R3hs20Xc?^F7b#U%O9|+Wx}&HTQWS_I)y*7dYR8rvIw5zr3SzQ-Zo2>LvTHZ9l;h zDE#0!X*s&a>sLnb&I8|G27*vLV1&Oq=)YcmsmKe=hpq{2H8ZA*uhP13$XTPS9lR^D*86eX&H8HvUzWES^(Y22Xwc z-ri&6IbnIE&R>33iy&`fRzIs$yil$ZRzD-oFR@|D&(VHbN$tL*ZnyutA*=qB#y|fZ znMU4x*G%~d*7e^G$?eFLKleuQ6Y9st;D^ZuJsJIn+rI>*$|6wmELB&7HWXu0!^>;-T#CbZj{ws+&`ivrWpWo@!<=^|_o<{Xw)DhPC zgV&p}s2yhE4oB-pd`-_+X;YKH3T$B3|Gr{x!}^EwOR&HDNCRGU9?j)}Lw3qeO9G4O z_{Cy8&J)3Ls?Y{JZ!|a77(|`u+>ysm0t@N*g<`x1Dj$F-&HfYS`DXf0*HB!L1XAeu z6fwRl!ucYK>m#^ak~qi!OjCHYwI(bIl;Vw6eYq_g8tU(fa9)UFdw@Xa;T*VNG%0Uz z6gWf2&k^JCLIeS zu%0I(t^aI1PK2-Ul52APUzacQ*t*JrHBKFfwKc_UY^mVjVw!lP4m4!A@%FtjRMf6By$MH%A1jH_j80 zoc}H6@QqTZk7tduO6$M=x3n&J{9u1UgEai{cbYdlKAq00e{r5je`f!!T6Bc~z%lCX zUXKo}`cE2vblWD|kJVXeCOLl`ESKDi(SLaSN~=HY zn3vIUX#{KgOT#0vSohDvP=RPfY3si*PF=NljY-AJP=@~z6_={Nc*{B-=wRyGWcgQr z^?v>$D~#2DiSuhlFy$BO4^FI#pAB`x@{s}c$ae<2R*evx}Rp zKUw)VcmDlNo=Wmx@>B|25kyo>g2JmYdE~;cNki65eNWBY;-fjuxSG1P^3=M1j~9yU~5!_y2Jly7j8sNrwEAo<+K=BEFp5J^$0F!>oFR*z@@>GU;eV)}G5C_gZ zIvb_}vR0Z*PyL_^%-_d;y}HR5aBgLDcAwG*N5`d=pMPlv=3KVyZM9Yw60Ub$c6E@2 zBRPrQRi9*G?xw`ay{Ojk=Z;t4W>ssLGTON|WQH8NDO|5jPS3rhp4ZiK3XF{w7k z3o~SZ?Zoh|%YJ1+uSuob33b znB3R$-iLSb7s<2zat*rOzC`vJ8+l-~_60IJG=XDt#0ynT*$MTN!wOP4~+Wb5GfUL~5JN$d0OT=Hi$a zpAR^}3ezuJW1pKt4YiUf2Pe8ibDuh^twVlOoGq?(i|f9UyN1}cJQFAbGd^`ncQ?I7 zT_5~9w)>kq)WY)zMt2XrOTFomwyKHqu50hHJ&p6jYE zIPc^Z=~Ldv0ciG_S+}mADTFH1(myWNfq6Z8SGsqe#(}zTs;**``O>mKRDY6>RaEr_uSnMLQ4*BVxR9++r1Y{yREc> zL`BA~gFcm%{}p5Z5gaF2t>|Yzceydt(J=ldKe5aIR^CbuOWsP3IB!J|Y{7au1?lYr zSkV)rxSP_>&^Md}>F1kZ|0A};1-B8#y@o3q_;>~FyqrYv4hOjFe}5-_v8fCyZ-gk`M+h!0mBX|^<_B%hYugh+IUQdv#^byd zES@^L4}P(twnyjhZBHkHLOQ-sjBky~DF z2H~(DMsS&>KF1RH4jD8x>`5Y6NXIV}M{`mTWJ`L?}jBsX%O75G}uXX=D+PoLQ z`5nSyd~bk?6DH`3DWWvL2@Kg(K|R!DwY`w8`L@Z+G;`JI_B zM#c5V?J6*(gdfTIuQGD@PDA+!#`wp0Y2#mEe@frE)W{~cpWT#}X>kYB#cq{(qBxc8lU+@xwo-Wp;n)o;I~X71UP-puFY8jBZ|(_tO|IBx~#Yl!=g zKlG*7O)7U_#j^p&oBkdREGO=7(RJhJzcf6~TfuQV$^Kj0l4D)%J`jZA8`V?L8{kWv zx6&K`p@E9>{?D|~>~Ze%AlAHhPgEYq|HbV`a1suEBsF&2DB<`=vA!6aM0lJxL(?BZ z{WJFGm~Nq$hq1nx8X&w6qICX)yX>P%4fO~7el(OdZtI0`-v0srd+-%%w6n|av$uz` z&R=QsuUm}g>7+}e7{(i$S^rLZX1*eCkIL~g z+!D>u-*`NCL%8mUO4<)A&!3iQvn-0y{;0Ur`j@-+s@whBzsYf*FFVeBy6iEWv43tX ze^EL1=d*FX3!Y!J@#kN+y9M}tcboRo&>jr_xcvfz#=kIb>@C}=TX-LV%N7eP zq#6zOYasf25TcUpUy}B6?~o^!toFaO@r&7Fc}3U%t^QJFwckPzgHWdYLi?S6vUBzw zxm$mD{V!w9dk#l(_d=A`|NMbB1^fRO*R1pmN*L=OZqLTHKg}+v=L8Ttsq+VwV_p9u zPyw9(Avu2XclX#nc&RF5{9yU}Abej$Y4tCd{O%R?+&ew*>nd&5{%>skF+UNT|91Sb z?|&M{pZ&$!15mx=nf0$u@VQ21lpdCOdUF8ifPNPeem8(Gao!4!zth?;bl1F_)Wf`~ z#JDtfR{zUDbfck&(#DDKxg-6-*$+*uIwWLE!>=;zp(s` zYd`k($NustbVC|{;rUP#d$@bAQZ!?n&w$5+H2#s5R>5cN&6~V_)bRN-`rCCG;~&?5 z82S>!l)u0=`T=FNGp_BD9iFWAdo;ogXX4?A!4E0>T}GBiN3-jHY4!j4CED(jvqO{X zFA|G={Et9#k7UZ9yVJgmx@z3wVOApZ#qf>oKmDRa!9PFN_Lo+F5g#tA{=xY!W03rk z`j1b=N1ihH&8oj8^HwD1A92O;Q+6Bn^Npp+kHl)G|CfFKHI6^~d$`6T0jDzCPiOr> zRWQdzUS|G>AprY#Ma4Qb*e?kPHy%-%{UfyhH_LyTvEtGYM*IL3C;ldHrNTYw0<|oX zGO3ojbW8U_^6-PGN{ukbs&wjqVwDt>+*D*WrW)!Rbos8t3 z!jxZVe}+bHKSE4oo{x!&H`e}Y-uxBp*JN9^h9mTjQKTv82(>;zgY-38&OIB z&+{4YP9JL-)nxx2x-Dz_%|QhgBTCaBLjB$U($ufk`-U>~FP48U!YxFU*8fq1e%zy` z9Se6UU&(ww1S(FXqc8KA__B|2kEzuPn-x7n>>1+^5AJQ(eV+anX<7BTS! zb0f>B0;@+E?vuLw;rg@Z%{Hq4`P!`da|x>VQfB?Z(ALk$-oGz@c-d1u6M)kj-Fy<%1iRZsGeCE?m zf`4v|`GfhdMPITJrRfhQL)JBq241Z9~sr_NJ>ll-o9v%E-w*N>mX z)f7>(V_Q5~Wq*-ssl9rQ?7~Y__V?umhjw41tXnxvG3urXRQC_5E56`2Q@c>6{X6z`i@^TFK`5TMsy{kf(f%Y04eqACIZO(Crg_$UBvgO=5#;TMu0 zKaS(`Nd|sx^E-a@)?cJ*)xy_CecJ&r>)h_62i(A&?cdEK{FDKB{b@v@uP(IR5cFz> zvL+0_(bfJzM-}KY&}{IwqitdA*8_X1I=6=WiXN@^ty6`E=jY7yzNZ3jcZoi|aFG(! z2|GW<{k|%^G<#)DQhOzMSY6H`&a^$Oa~YIOr0~^>re+7K(se%9W|pBxH$7tz?`*;pzhVs%;BAs z0Fk!6gVz-q0545C{C$cpaCT6e`}0BzSa2&V{^)pnuy?hr$q~Ur9ucp5Uzv6H2RX_1 zmY({C7BI!{_12x^lmQXfqic_vn zEI1+SX%;BR>pi~HJ?lYBNZh<%k(ne1`915bOf!B^qviJA9UrU@pp!vz(Gddx3(D4C zOKuO&xxc*{x1%jst=Bc+y{)c$U(eOt7laa_D?ks1eP zwcPdb+HF}_LrjU)8f^@RfATS%qG$y9rQ=i#r*L2~nQK{SW&l%EY_u-8m_q|q%dW=v z^+0L+dn#id8-Q2mT1H(WEWm@9Pel(;bOKvnh2&jnX9DC;k6H5Yg&FYT<%V$98iPRN zFQ+f}(*k|HcB`lh>PdiaW8zQbQNhm~%8E|516d_)ito3u1i9W@M!#903%L0f*RMVj zoFjOxs$k_obx0bFRLb_&0^hP`et$HL3&!6(+J3c_F{rp@n$|sC0r2+k4ClPJ1s(~{ z;{>nq1o!OpzdPwDflX!Ee#cS`K-3D=J%QQ^AS`ak(`mUzpu>1$ooY8ZF#62MXW{ZM zs3@aZAAA024Qgxs7x@~?z=Az@rrb)?ffe`Mcl*r$K&~Bgb^Ld2T~PM^gZA0&g69gZ zSCnv1D1z7>JLK_t(_q=M>RjG2&C7pA>Y8QYsoEI7C9_?vo^^A5_FRmzt|1N-0&h#N)o(R3X9H zw6s+>4G31HTx{FE4UE#YO0DRx1BmUz*UgT*P1Y;P3BzKoVy!0(i_;Zs@vKvqOrw1LWh1>PgGE;(F2|?t*~e2pr(%>*ua4Iajga41h>8`_&Go&&Z8b)zsd!?k9CXf z6hO>g7VAEDS@<%mdMz$U*T;zqKVe=pzq=&^OK@ z%)D=$cZKaQ!J&fTnUN;IWxA%%5tT%sN5|`l@z|a*K>Tt15kGGppU}!Hy?r8ROUJhr z<8eF@|BUlc2$Xle!0WE=DuYBIgA3I2krCrtBfd(AjzLsVf8lwDDu&1SYb+DN*LDp* z5X4t;-nAV1GtT=i5*JJH6-+tq^ND3W?AY_x}cV2bsFTlId@hMgFMmh_e`O?y8lp72^bs$oGKF!W?s8T-Ey`+%d|rOjWV z-?FIF;0}}Wo&Pbvfhpo^hNz_e-#q1xsvFmxp+8XZX4hZZ_{%Dtbr34G12nnnSp&@9 z0)4SWls13)L$BnLZ`a!`nlkK9zZZi2Tz_jMw;Q6g@hkMZPmrBmsnf3;GVmnV%Ot7UuAA3X{5T)_w62n)J9AVu4Ekl3e_LDaLFdw$@ z*H}E}C%T`w{iNd8yq&DZU&4?d%jJZ=xFSlcf9ScIOQd{qwLxi;E35u6k9eOaV)I}0Kaz`W{J5jv`y)!zAF1E?G14Mii-7YuwS|$TsWdM zKEm@NbkAAXMH~wSczz3u3F6?moCm^nN0c^Cg!_k`N-_=+*Fpi-6QW|>04h#&MPKkA zXzQQwxs4@dw^B|Ej_Xy#03o%)#R*UJcbvaX8~>bz>)ueppE>5N>qq0pPjmaPf;H~t zh2-}|R7^y9@4FXm8~8Pm`P?UNe{TfvL6lbis7}`RseYXcpv$MGKey|Fd{mE`W1*3Y0AxhJKLi?!?S^8qnvRMP-goTJTJLHS`53serIMl z!22svu`UhzPg?!0G#5O%>leoGKOlBe?PuczVL^+JO5MwHfm!uOTj z@Q*SN$?e+A^_yLPMj*cZ5T%WO{fJUXRevwvrfcoZI{y10Twf-he__vks$f-c&!PL| z{@DISBo_N~2hzq5survLJpdJmWY)i6m&a#v&fc)m&(z2KWAz`1_zpspwtiueWBjAJ)H72saebd_)CA zcy0)gzxnF4r{*87zbfneZ(RGa>)*eLdq@8z?yb{`AUsw_Md+lQqK-YYksH4RQg@3o zY|iH&p^O#2zsfN`N%^;_O-`74j3T#8>eSw|kn*`*2JOdCltqjD!K<{3DUG@n=jt|H zr0y?D+vjDg0-h#tcAq;zfB|DSXbo!ljdabJ|MuOe7U1KK2UWKdwLr9UVfi*KS%LEJ zLTPul03Q7Ht9$f4O&WKc6mulL3&`8pD_Pm16Hwh#kvsPn07-RZ;o{yJ@cq19M%|vM z!?6M1vZIbD!Q|j1e{BacoSl~3>@Lmfo z2xGTZ?wR$O%<`~azWajU{b7!WQ&-)yf)(bu@B3fVh5f9q$)2`wg07Ri>ON~~0nf*G zM@|*Q`FWvEpRQ24VCdU{$`c+MfE`*({2qoVfzdaDTC8r{7E~+^vrXoz0%*ChPgN8F z-VC@s&v=;%n2~Y+?$B}O;LPZ-^xff>V7jG}Z=A9@SQu4W)uOi}DA~iEW1FA>tn=Ii|D_XkX@DH8xqab~{d5^n zd!T~9YON}$*3CAF^!Y(TGxOnx2RcL5^xv1aWVMDLv*+jdWwn9pUavk|u&EWCbyIzr zx33+ne*L-+Xjfd}*=+{Frc1qpds@TLO*YCy)H#qJVxO9Lnft$W9#$kvTr^S~ z7Zo`5v3|w-TbfxahxBRbwljK}^mC4}4DfG0fq*sFl&Uf+w46pR77biA$@ zkK-LUE-JaNkhFJTAHZxRvCIkBSl28ebLs3-LwY4R(Lyfn3P(oA4O6O71B0z$Ch zKP(oGi%R-sek4^rcUl(#0x+PS!f=2uCF7zryH4nrAr8-3p%pcl)h{DWe$0n1K0O~; z8h+!}T(1eE1~Q(9$M?m<5)W^hT_^O57y0ZZwr%bONDQc_{E$ZXAK=TIwe1rMu>W3o z8@?|PQo(=H?06i{ z#(sNR`w9J8smeW6t1b>>=s!FkEKvQi-yZ*6@Mq!rb$iIe>>ur-8PB8PayXu9hwdXe zfA^&+A2#0}!bfrO6o7(k25?6YYt=lWBypL;`kP1QP?y1 zIGJDWl{{%}${*Gr?Bl<2^Ut5vFYkov@62pJj*r)Es&($P`>7crf4KhaewD`6zc*|B zaXtZ#Z_>t3`o{CO$pwLG>jtU}W{e-yT+N<8IG)-W-4KsU!KG0D@aK;R2Riou+V;nB zQS6t#gc}C!{|+rxx%6{v2H?;tMi5C2_9Kpq;`k=5{Xtl(T5>}Quj`Ji3}8UVmm~tr zrg8mW!Wvh>aZ&6S$NpJ@0PR;kZwGqq-`u}vcm~j;^DjtjkRRK{IKEYh1tW+g70wY`a9@loI89h7B$^1RYO^@!qIBj*Cugz>D_ZrXl@5>|B@$el`4E@C7C`@R!#96F*uRsxQt2 zKk4|~1b{E4;f3Y0idgl(WL#9zejz3f*#A6F>krSLX6o-;K5PAZpoR=ZlxBYj^IC@; z_pQ@klENBS!*S6dgqLi;6%oa|hRj~TYJUVETp*&7_RIByq2b46GygIDDQ*0uKAY*Q zt2&Ie|AUd-IKD~KKipjgtpH(qdwKssX{>l@{L$_II{j$xA#NO=egA~xxi~IKlbqLMfhUe#EFgT|{m?)K9IaC;WD`yLm7@omF$E(@Mlyp##D zlDh!@kgr6rWFntgBEC|#KQAZOHw%Rk9o<}$KNZ*k%C+J`prBP?Oh zqgOpnjc|rpM%stFe6)j?E7jHy@7)RhyeD&T*C9h#*EyGCAFB&>@3dSKp{WB09kKm> zS=|6ugx+uSxw{}v71B2KYCCoK?&r}D+wF{DXk`3huBYI+NHweVN$Dz(2w8YdF;ESh zts&l3sX0PlgQDIwhdTqpUNhQpvI~Sy<{K2>HHQ4+!jD?9@2M31nwYueTk;`T{fhdn!d)2NT0C(z{oZKikuzF#KXA7VGpvKC1 z4Lm7Fz)fFVO9o|jhi3V&)*h?*PUWrh?6$i5PwKVK&nkE!4noVKeolJe4Y|)kJJl-sLf$3b>2Eu{U`eE{Txx(B(07m@ zT2`S6c#3Di13SS>LS5vtwl z=R%K1e)I1PcDTIkmwQ?b5cwZxY_U2?9v-w;^S;9aDoU-kaKtequzz4|j76*?sHk}V zVT_6+AOd?jD_(K}#W5YS&aCzU>)s|=ZT-##B@?)Efiv6zu=mQ>m_Yn*#kIP##I?GM z<5~h|Jl0RxK9{shUn@|^mjfDfSK1H^b7Zo&RZY-bT@Uvwq>T|w`aJm5pe`-t(fh#&UPV>^o= zM0R+8Ey!eNjYI0slb2J=Z8B&^^L>^q1*;@EbRD{qH~4Hd=mzi$2bFGx^{L z9bdf`U^dd^*EjNv+Zq(eSl2OL8GXTVEn5Ex{i5H#GiszkVT#IH`RP(8u z)Zm`-Bi@f4!P-ZeYDWcAw z41dpE=f~Q9cv|52kmSAyXb&$?IQ)w7ycuqP$+#A+|AhI571Ix_*x+y~3f4)vqEM*P@Ld;W?Q^LHhcd-h5WPH2%$%Um9Ky6~OT++P+Bm zo)Dr>lBK)#pFSr_yiQ8?AC8CN_y}$M2=({CO>0{j`1fbsm*IFE2epHwU*Prnu2YZi z_ipn1N4ITQ=OyJgMg>d|rM15>uKr+!OO@_7lCiJD_igU@!SOINCVydEHY@wx^j(|T z^KGT^KR-UMM*E_Fll7lSEcUnvj%(rgl%)Rgy_PchVm|YnxBp-5hvQl}J|#JRcG@n; z*6h=lp+EnB@yGEnTXaL3{;?{%UP0cBiAzj24`Ym9tPiF2Uz$69nyzPbaF+Z|Eb_!o}9r;hh)qNaGW#ue=m&Y4;Ng5x(zs6{W+)n;vCKJSZ)6F46B zAL43!z5F|r#jmm{+nr^bIeyvomm?Ac$ERrhS5X&ri{h`G+pc8HpMKt~gf*`3g5>`X zaU~w1d7jdJuQT+;b-+4)ToK+4QOWr$)9(Ae9+rRld0i`3`$;mcMe9GV^6o+kys>Px z=EU!R?fNfm{-bVTUBCV&uC*|wR~z8rshsfgMl;We6$pX#l}Mh(+i%k3$8jxy3QCSY zZto{kUQZhPkFCF6h;KJUCD)InGZCqKoTC}@2e*ee!r{0UO@9jGBH4yn2mP)_{$u(J z$K!B(ipF2)SI;$Q?|pw!0IU9Q?)dw^!J9Y5uiO1Ee%(%jo?Us&-687pGHO9yJGaDB zInN9S>`SAx7k-a@$#Q^M1I+T|Cy*F<$nAH# zDcHgT^YvFPgf1{*?vN`)ye?2x>-XcrIaN?%wqDiNL;+?_pIq=|qZW9Oa>UWl))<^M zI_48|xE(O}8kubLNgd=KJCyGxqXlHL)N5RBaX_g5NM8IM4{-SQ#Vu*SGy&gYj_LDf z&VbOq9zk4`2eq4CL|X~ovt1Evo0(g#1o_*~p3w`{1N`@~Spx&Kz;d@dHS0tI5MXL< z@Z5`3g>AA*?KA~IY?!fpO`_mE?1#qAi9QArOSnT)1ep76JUqyOYKz4MS zWdZmyvz*pti~>p6v049n(msIYmh_vBXut#hYa=r-?`o0WwiTnm2s(a*7?1s?SiFM` zcu_t?N8Zt~>YGM^{&akQF&?|)ln{<)w?J1#S@7-shOsHRqrhKY&;rDGNxx}!1OHV+ zcTaKzqugW$RU3^0PIUfGV!Wi^6#Ksg=ghrSx@`vL_t=;8-Cz{3r{nF#cxigyZsif` zx7jFQM#r1&16WLH_!;>rD_U*{W#mI*d|UKI5mDT)f=gjMRyQWxWB8dE#=4F1()j1{ zmB$~=s%f&_XwPxZ?%kq6cK7;TGNTupjr@!H5j>F9pg*O_pQO6N zZ}Fvg*7++9|Mr8E=h3`Dto<+PH>J&=YWp75q)DK|NIR2}jPZ}_FOC12>kg~cuKKd} zzcjq4|Jd_su-_E>KPAV{^i8j~v@3LEJ*TO0{Kf0ENFMR{;fVe~V81P`{c;C(zfNf+ zdzHwV*fO3c!tG~_@Fs}T@cc2`o>22I+uod-W%7^t-6Z{{H2y^S%L*#J%S;asbpuBK zBXOIZPb;nc!Qiu5i9-q2@gwOsrO6*P;o4=2n39~Ny|;!nZX=by@SH7zRsTu)O=<^r8gZ*DYSYU#v zQm;|~<{Od*#k`vj?$hxFVm$VnV!z$e2D~WmrHjj#tS-OjgEBgvFUI5N2)q$4UIO28 zzmL=Ts`=m!9nTZvaeciIPICX2cWDnLee^u80`{^5pWm{B?^-1NUzB(04V- zw|ez8IU16~M<_=I2Aw9S&so!L_^7kwC#|7jIdzZ>I~Xn#?^#URwk-0WW?4j@4bMwF z-)Vlodz-#e&pTG+*3AlmKqkALk>WcF6yAz*dZ-48*P%)0^FEPnzU3t)Z_@y90sljs zAb*%h)Zgm)Q4?_euR2*paKOXUJEK++0{^!Cq;L06azMbnBCB_!W#GLRLrVGe6+K^|s;CuQ`0_5~?I5_Wddw9YzEBeG@Rajw~WTa8Xfu;jxrtciv z7Q)RN`~Ob;N!G?xJ_vfR2CLR`ro>M$g&j_uofQAh1S-ebq{MrfLE>40Z|*iTsQ

    m;EZ!<6D?vRD67ElG|h9+QbOuB~mA~h(l zJ*~TPvJH$$Umnq=w;ZhK-fy`73~_Vi`UfA z(u}q0l`pB*K}RYA6`oV=c7M5f*y%fEHotxD{^wuFl)MGqPX+ry)j>wwS#h4QL@gTzR#&ERx_uu3Bacqka`Ww3C;Ey-#fYT|Uhc?%c)k$eUsXe_Xad zqnB#&zm-3oz!C>YXov$qffELs2Urg+M0!c!h8)d}H3s)*FAV;qC_N5BIqHcT7#^=BZ^?lZ*q<)SqM z;EB`qhyZ~7Z6dy&jponIc@pqqv?Hq@UYh*tZ=WL*XZkSCi^ug>Mqlu_5v+FjBRsG9 z)`$tK%d1=g_IC+?XteFe7@_J7o? zec$Uod||xr1DBIl{|eiFvNIOnW1M4L`z9jqqb!I2m_v<_uaTqjQ8n=%Y z6vpi(!imQ}2i@pD!~sg;6`xQW-WY7y5a`Kx-x0o_F~XZ6O6xyfl>JMpx}*A<(dM3v zI1t90ARN|j@6fe?2%kTYf7`c>y1aXn``<1+CN8&A*Jk=roBN(p_V&kd0KD!?>VNg? z6|Y*Hv|$~;mZ-h3KVNbmy7K41jgHpljD09>e`)jg>6ZK@Udd*xacpUL+?|-8=vqAf zaQ=oZDkv%cmuZ*gdYW7uaKV-)v{+-sYO_u-U-4qu7n0ml!pKV5SD3C&+*qVu?# zvHs)nfb+MoKcB{*5WK5~$_+A);w5fvX8qaqXXDzxx%fiX_Q!Dmz-)hT+vzR^;*FEu zee23t|4{M2dtZw1ynN2HqOqCL%1zdPL_(^}xoZYZpZ^tIC-=)=!PYtvxmqoWZxo@^&Vv@YuO56C`q=WLbl&Db53(VGoSmJKKlB3f4`sp=$SinUgvqv zbDr~@<$3PCeckW)jcUM8%0f z^kFcfH2vGYuc)9N&W-b$1z!KL{trTYgC+U1!Lt`s4%O!Q+;=T|I7Vf=*raoC?xkNN%^@`PCcXY$5^cn zar|@VpUv~%)r{-UF-Y!lh>EWtxD_)u@D^D~%>P&)(FiwIvi;iQdflUPB0KGIJTDo? z#`qY7i$zp?{#AOXU6bSbx8L{2tiR^zpZR@x<59aONa|1UzFW@0TSM$~>;JO-Gy9Lm zIQ+VF17UZ@PUKI&(cPn+`wu(g{l$|qdU%mNB>ZIhC51z_~?T2o-&})GL?AWf{ zf@7i!;j*diAI8>Edi7_&+q|=dn|Rl`tz_ClE@}46C6GsL?3$I>e_LC4R;{bw%>5eh zV9|Kx-al1fvZ-(S;RpqId54*097hGFhfY+yajljb*uH;a_yrbJJ2I`!k}Ha^&pkQN zAud+@uV&sC4aSkp1T%= zzE3VURCR#M>ojIxs?&kx(Xl(6Ds7(VvSxh>%>WFR1V9`$4nh2FHcIGYi9}dmaKC>(9Rfw z*wedhTGdfgKlYfCcE%QF7U;f9qa66NGk;cKCt77>yrmXy zlP&*vM+cHVV@LA#n81LD#}6i$nL-=8ZyyF(m_WxtCOcyuuwb=bQLeF)F4%eV-9W=w z9T+z}woA#Sj1D0?czb2uy%Za^Y`6qkX8Pp`buvV$a`(}CDp0}22*Ge*+!{-ogsYt!jG((Z4RgYOxWo1 zRt-Auep$EwUT4TTIA`&mIr=d3`+)+^8Eq)v`GE0cW267A1cVU`2?!%Z2?+e?7oLdl z25cj8#C#%n;hSe&bd||b=?MtfUp)b~xex~&>3ByGUOWNea1%Z=VC67l zaM<-?L>**)09zYWUK!CdO?csroQ3L_@1&iN18h2fwurxY0)kBwUYNkaZe>0vjfw+$ zbiAGjFP?ya1F8hUG5u9;48k9;yzuZ+98jm@)kSz|6ZkUU-Ucgg#sN7xUhV|IVoJj= zU3lB+L`YAG04~NWq7O=l(iXtg)z=HC8-tg933hdp2w-8nH2wsLl%LRX_HQpBdQ$dw zeZv9c0hS69L={o-4S1aSK;3oEtr#}|(h?8|?Zs_nh*!TYKh_f-=fZ2z21cs>1OPVU z0fu-20&N2;_|E6v8maE5+v*w%OjqE zAm0Ckf5j(_6&%I`Y`zN?{NV(I_vpHj@aD{*6gDgMctc7)Ko9em)_?CEb?vI}2mdks z>mqq^0)n{wLrS0as(;Us7(dOGKkDTEPWBC*7!MGnwI8b!^Alc+>|Y-hU?WN^CrAJ} zv`wc&)yjCr@hhHyK=WVeq3mMvQ0wpsbB1vLnEspB{sD~R*9f)S7*SgP2?D5uQq+(( z?7w{g!+d~hisZ(DeDU$SWAQ+Dhu8fX?Z*t^aUub&|5AcE#Z>x1*+KhkmH%@8G5ar^ zxPTKNXz~*`oN~#>UZ6hSC5X{}n`b}F{KXRxX#D+s2VWx|=qB1@i}I#K5Hy z$@+`|c$_$a6EJA{+i=5?AAqu~d30jYrN68{<`-T!&wiQpj}sSg0t8Ke0{^#QhIy|X z^MCFGpl||0e`G)62Z(S$-Zj^OUrD^q6c+0O@H~eT5WEqd)_#Hg*v5R^n0xLcse*nN z5}PJ`PxL(wq|)q%Gim@ofc-wY|A6${q{6@8jhpZ|aRQ*V5taijgkT+Zi^Eb-BCq-5T)s#;N(7}xT$p=Po6j?p+C&OH~QcqiT8K5d`uB3j+(Pg zGyk&x;4uaOJdxZuk$~3z%*f;tzWh1cpJ~qf%kneNzs<8BW;{+n@RRI6+cB;M6fsZt zyVsL_j1N-4i3|NC@yY&%g%m-+zN<4PN{k;o{-n##^`>TZZlV5LG=IE#(Y?X#PmMpE zxPk-uH2bqtCFJfCIp^`6tB5MFG@1ILB$(#W3z42P3<~fn-|y+2i|FleaYzA6^TJmRSE|`@;zc zLnZB(6*TS&xk5M0d~e7Q#`PCYT)+t!H2DSd=hC>#mmf`vkkCJ3*JA&T6A*ABf%yJs zW%|p^w{QQs=Px*M0w)sC`vJ7f=U>elKm5+d_9pCi(fLF3@XP_& z|8OJlh<}MYe&KttoueQ7E**7(EVkWNY#n%tYnQys{6Vlo1Af{Xy@4MEV5=)%HTV^lVqYrnuPO-E_g1 zt)0i(J~4$p!JSK5D;1FokJ*kr_4dio;D|8aPj^Uo+;yg6SLLet`3W%>^AvQm<@{T5Z&KD_e7!%`L; z8&rO;<5fkNxhY@o_{nzg{fAXiYd$N%`Ps9MsE$^KU$iqVtP7N3{`{z#1&+$lcKek@ z8iy2Nf@iDyMM?6|)L?S#GNLWa{}e>rkx_tL@Adck{FH@o+;UR;jRMScdUR>|!FI54 zhufK5Rthj(^Z7MLGc`E-Oz_&SP931fRF4Z|=4(P5OUz-pHr#T3q89w7ZYY8 z&S;l9OE}M1L*s`J8x}^`ja|j-0JVGj%en-1ht)3*-R^Zzmj9wAGrfj4@5#6x7RxW( zWPwV*n?@^AIzijwe7k-eE0~^JqK6gT2?68z!)8*ScYRR>p7y^7|rEpHD8Q*nT&v2^twAOP|I z;kX|@Kd-_+pa(Es0& z*QJ7=VL%gJ4wc9I+BZ#jf^(})1=S(%_^~a~4gjxj1wV5G04^pT_rv>d{_lbZ==3o= zT(GQ*9l+<~LR`-#{%ui3?GT-hD8G@K{U56Wg&zs$`>R?>JOB~*8{QA&eKk%0oJ~qK z)VX4xTNNEG7~>Yw<{h0a10JV`8!)arrQwxWNy(wl92n0Xu~{ggcGKp4!HsLxFjpl| z(MBS16}Mj+|HvD|`{j?}yXYppHhy3Od?^i|uR7OnudL*aU(Lk}%k?>r0oST5$3xc<;PXA<&)!Y;!$RfN5xpwH&+OB^EeMZY^dfeaBf#g2 zf}gowO?Vuy#PK_E`?bF^=0oB)d(cHxFaMJWFHL{0TAw<}JhlavbUe2Yz?ahS&9aa$K)2cGx`r4 zFEm1Unw<&aRySJr@5Dat!#MtR5Dxn%n*ZQ_m-$5PsSK~L=;8YNad%0%_}_@^AIA%E z{EWt*SgTn>SzJ2SWrDeb#Q4SS#PM1jzoX$(9*5LW$(*3`-v{)Rupf+<+J7M9*#&bY zM*k%hFKE9SWB(f>{jd?G$)D*`UQNL}ogcbVk~fZ_;w|1cN|T>^{e3}R?sLX-7h@zy zCrSCM^HzSO+H9Y3KIu&mqy9}0&Rh~t#Oi#aw#zPb7&bxD|Kk2LMK~P46Q4hpf73BK z{XzbZom)uL9}1O-|#j(;5Y!|^-1{1bOqQ?-rw5jKqWD~&&HCzJh1!^i10K7m=% z|Koab+z+20ijV(qDylk*=Y#`wywPX`nv3?IIPT|%Dx|ev5chg@)aTsA1H-`-x&i0R zZ(2X&cp;7-MPb1RLi_G!T@X_^)c>sU0MG;w{GQl!iQ|=h5H7n3FMI(;#~eT4`N$7A z(-p{_)Px79ya%E-O?YA6=%m{*hfMbSfo^oXzXsNeAgwGdfc-v1|rBw7=dAl`9E)xC+tJ53t^^xSy zedSw5`42bp%G5WKSbw47QrC~1$CsQGjuDLhLz@2BIj_pjv004zlZNL7zwLUqYnR{V zFK8#b4`cu1{VtCCyu^wjgySb8wp-9>FbX(fg*W~lC$j$ms638e(cFY!|2FeuGCNj% z6zERJb42zp9{1bO#GidM=NlW0t*xpGyc`ek`dIk0N7MNCN96}0THb^wPHvbh2T~FS z5fg{T1H3*K{LJm$gqNoOZXYIk%y&#+d~ljHytU`Yiyv3CZCU?uS1|S;j{D)b8*Tis z!>rCzwWqH&XuXX9EV}-Q_@?&bxF3$+ofqlPCnQV-4DNSK|NN2&@I~}J|I@@KytMX@ zR4qN3dNcym((&900AEVOrvzA!Vz;wkoPR@5ML6z<*TMJ&M6x4vBFq8h@7k zG8dh4 zjX?rE!h#X-q~nk+*>H(da`AqBQ&AwC6sc3@+~2 zbm8no3IBonLmK~Gd)Mg2PL28P`CBL!^8?JsBDp6ZDn5U9pG|gc*fxOi{Baz@jYpK$ z{_5|Yc+{cR-&hyk+O=%{;n$7zC1ms8p5N3m-Z(!I$(MC-3#7TK56Os7xRPDCL_70AS!OZZ&y;c71_QL@henZ>iQd(!|fGbi|lVI zDli98n*FnDydP1H-(9u(MR`la?{Iz75N@U`Nw3snU|Z`5~I#zioffyEEGk z{nAqZBg;5{a*^C~CFQsMy6FMMYLlX9iJh>FGl5eA}W4qVWT0bTu+&VS}Sy>~-XL;7P}WK>%M$^Z%_JcR#Xu zn)KWLH~Zz%qu%UTfX_#TeET<>KN0xR{r2e7jPbKos3B_*rFD}aeyf=`JY`|xJb>e* z!eTB>`os3N8sWzv%2zVSuTUFAq^7y6tWE;$o4#-SAiD2En*Mm9?(UTpNfPm6T%9z$ zuv`eE|5}SGN<|c(r|^yJ(S42@u!z1i`c}`S67e6bCu#hvPybkXY0UE9?th_J{*3#N z^+@imh|=a?;5VR-oU_Wzb^4$gUaKkjL(ZU zB0Tm(eElia4Ald>zbuel%^m}6>HG=N`IR*NDao3BVCjzmUFrDh1c2BzZ~g$Q81=Uq zRkQ`sDqJzj|GM?oL$&wZ35*ZElP3S7zP^)-H;MLprcOmEYQ%VsbYet+}y-} z5Bhp9q9>Y)3C|A{^oO@;{csj|PRB10;ic)%|AYOh_>x)R2_2uf8DKWj@F6dD&Ob>7 z16d3ZP*xLuKl=UvqBQ?Ab)>8uSbBWwOI}$pWB#Eu{)6?*UhFFECvpCW*fr085X}Df z5US`XqT=g^F7GIh2Wb-}<`2yOF#2!=QJVj@h_*UM5`9O=Q~f?L&fn77kNGh9kCx&y z5rbohim(4xt88F*-kBh=|HE=g<8LUx@0-Ty(BF<9x%&@~etmy7BR&fWg2xR_|LK#q zW|8MS$4@%^tfl++mY&}*KX*Wy{shfa`@rb`@Og7C(gV#-1na-D8ueq5StA(ZhdBs$ z5mE8|gW-p&;kIWz8Tap}5e_0s)4#1>?5pGG<|kw$I{!F__)-%5xkERaohSVdmF&uwX(QqPaDC?y?gFCX{)6-S z0;qmp-@^Dav;5N9&wV9-|HFMx zdH-_XlQw?>EwlQ>t@?bB`lVuVX2<+Ovg=f~r(hc7)Sc2Sf#BT0%3e%?O;VOxw0Fh+QE`@lVg3_D#6;-ReE;03UI7@ z=TAlf{QG3`kDm4!s110ZI<_gA|C6fC8Ld0!x*8m1H0|QbBibI<3Hy#C^+7wlRVSR%?yS2-b(XbLMpIw7>+)yDRCm<;j3ImGf>4uQi1i zKAh|E)2kDl`|{&<>dO}mzkLt2MIqmHJ7gU#`r!}5&vg+{f`!o=`s5Z>$M9P(o>%du;1F zn+?BrT_2Ry$^=$!OX&VW-xPLG{`KzOcvH}KVvkc7+E{@5BQvJ=y=4p*IF7v6X|OJE zs;YjZw%Qz2%MICEx5OS4CXe=YlW7e{js0bqmaPKhi%05^>M9`IxmhZ*BJ>wDtQg&%Zw{ zCOJB|Cw#sj&Er(52DIt8eD0QTZ5SQ1FYf0aQ^;PazqtC`4{Gn#P1|is)nP`({fG4m zCJ^q)sITY0Aku$N%>4T3PH^n6K56@MYRD9&^INGbeUNX{dK6cs6YM&J+L!uD7t9R& zq%QB$6*vr+*9!{O0&#nWEDem31w8AuX_mj9lF-A~Ej{oRN!)tgrTfR*)Z@U3zx2Cl zg2GTZK32~JaEeFAZ_iMGuT3-a+sau3)}51WqP`k~;9H0GKWx_($j1z8ef+x}*m7;B z-#|Sp;Nw(a;Wq9G6{|nc$i?O{RW`VPN#ym%)Z3^DvBrL1sROTT-g);{f??6^=jzp$ zQFnvC_vvW%oC^M=@Hp{^3K*&pR-o{pj^Yf8zGCOC443p;5V1bY9HwQwIzDw7-%h`3 zna+^u0QX%?Ne`OW9Tr5~NLpKJ3$LD-e{-I`E#wux$@Eq00UyMj{W0`PHRUu_XK9zE ztziA2k{*@)e^T7(Yah62{-UZ=>!KY_Sn~Dd5|BH|5YD-jIkj4+17yFp%6&fB6Z$Tw zG7mq@2GOb|$)}#NftyNXzui*|0pWF_OU2?|fNL_)#UWY^1QoabsS=P&WnC*A+Yk+@ z3up3L+4)|fd>u}Y{oMODWqtaP~|R;-XjYfz=0D7%#xJVL8(*ZYjrJcK#YFj zH*9hbn4}Upa`Am#p#3Yy-}!sn{g|l* zhTc7Tc+AMNzb_EyB^5W}h4{JO2vmqT&DOQY!r{%u8~`wCm5 zue%^h+n2_9C~ATkON^!->Go3!ifh;;cON7Vg7zzj%A;JstBBtxC>bO}k9;~I~ z*NX7c)@AA&&aZylAs)=8<7a09%tji1S$%)&p4=eDydp(ZkrJY`{ujh0qTYlSXlwNc zY|KzVMaQJl_!nn8m}P(QVSFK_G`x^)B;&qL1<9p~C~aTiufMv6%vU(`Uh4<*eOdUt zo`vw@`#L@Ct@06v0pq!bH2Kq0^WSt%V9pDdhCh^ZfB!Cdz<92phUCWPLF+%k^E`;m zFJn@+oND2|M&zf2?Ec$*1v6d~$*+efZT}+Jmxm6VvTOR{AmERF7m~qEU=v;oeXlKv=iIKZrji$BsIdA3{dQdH^t*oMZX-1%_QhBn zY5h+<%)jt`XE5lF0Rq|&;7eWf0mrSx?RSBb<4%tS0gU5c8h^}()-U|8n&1De#+i1U zKm-7~`{uvv72tZC$A2{AzSaO$WQi#4TxF9^;8`-`#-x{#b zcfL=pM-RrlFgC*Bcm%GO|Fyt=bL5M3H9o0J7EX1p0{w>hFT|1F41FL;&tc9)}vg#J+RW}a&^^Y4TzvOtukf9+_E2UOi& z;|z}*et%j2@{IGJ6_UHNr2O1N?aN8t9p9;APWO<|AGSYhgtI}ErhmcwnSRBu)N|NdINb%6E*)xmkEV*#EggvFei<_}wh>wzfNEB{h3{@c7xU~$3TA!=Bl#Qcf%jORrsgcILCB(g1x7G+EN4~&=QzfSDmmD|v^ zg)gM#wqu;Xr12Lvi`jmAqIQ!E?O#~?KsS#SD`7vl{VoXSiYU!~Qf%_nKxV$I_O4sw z{#ab07vk%NXdI#h$_v|;c_!&;@=(V9m!?1eX@@#wa{5a6Kg>oNURch8(f>9NzmzdA z(j5uni>P>9u~mh$Vb%UHiM$%zf4vdT3(+b>`6N!^*L(8V=F+i5To_~jd!X`t5vBP* z+c#77L0)K&$MOpu8TH=>;XDzYhA5x?SlehL5OZ!*>iAG+3H@XFrRi_myP>0IasGB( zlEv8n-l)Akh|>JGMUko;;Jke9FfD0f^G@?4VRb(1+_b+ygjC*bf#{n*HE% zSYF|E^Y<@AwR@KP$3rdLKQrsUrSb=$297|KW`E%1x7Hvi@k{CK5?6rt$--jYo7OLZ z2p5bf&HoG5-=`n7cbA#$#JGPPjBr7S()i~L^va`H#v5!_vaKcJ>Zo`#*Y7&NJ$?kY zwZ~gY_&>~l2>K9?D9!!^=U=?-p44JP2Z=s!$bxPJ3z#7CfpL?J4Eev?*a zP?TN3d|yi>!i_`}>y>{g*nenP++Fc_e?trX7xVgETK@^f%4b~vj6!lJAWE};f&V$w z?S`t-CCU5Ja63mM+;~K3<5zJ0H$d^wqM}Zw683}f_`E+_5-&LaTaf3NcyT^UV*P`P zOSL~-4)YUUi^g9JDiDh(ZTt{9-%6<=H}_urT-T%Fk1Gyh_0}(aU1=+Wj&8;r&WH;xE2_-xsr{w~ulQ@5|@c&165# z8-L9BNl5NQN&Ox1tmKi-S)XTBMf~meaRA2k_kYMsO8S?)q<#EI=K)#8ddHky{db)a)$7f7~xf^)s)gN{%hL?)23hasr}O zbyRysX|Hf`u9(&h_N-a=_RA+W*kGB^_R(++V7*cAUD}(D!23ma)W8H}UhXobe3K0*?C+4_%lr$bcrUN>rN#~JE84-HH_R2<$mPg8T>=ms9e?t|I4yAhaLg{# zYd=U{vR??fzcnCkXsSI=cuDSiT2Ng4zz(pz+GbUaGKPV(tfGV3n!^pj4xN40xI^~x z)>e7%)M1c;(sF)vzInp9k@Hz~W`OnsC{f7aJ2QOduh1?%n_`1(=fNs+4=u3Ua5lqd*rn zh^FGA_Jb%XrGfwD(<9`RVY*Y43F5slkKR7yGq?>8U9*Ya5vEbmzy*Ty41F_LNcW2N}YQvA=wZW@y5~JDe?6 zBb6a<{4G!AzIt%5K6~HN0()4}{n7$W>}L^0mz>A3|4e(}JGj&~B_C)yNd8_PE=q56$IXq72kq$ib|SoZp2&?R{=)lL=hzOUbSK0Ef{rIdcxm(e`Kjwi zR>jAI2KAbvKyb`>2R2QbP1Cu9zS=+8^bBLiyp)jr;oj_CC*J z@w`K}i|r-iw3v-F`Gw_}pMRl(DpEyMe4n5<*zW^7wYNl`3Lbau5srl@ZJ#1|e)gK= zvvHk1y0q~A8__ryvJveQq_uxZx$L@$g)S0tDkLtUhCX2Pp!FYce|wrV-~J#fR&@~L zK1mvXSzUW0c-L9toDlPuh9`(UpDx4(GwxGyo(Rr&5MO7{_er?_vtSV8IS)Sn(m?{@ ze&t^Z_Q`SXqs;G=yGra6a5)_R!+9b!{qd51eJ9&p-o#zI&+6~)lX#!cVR?nkY`*>A zeqzGo{1TjRL2ExTBH}3N#>s2fc4`o#{&0SeK4L_}!?a)g_f}VOxe!t6Ea?)L*|FAvd{3a_&{rQ!DeNIMYM^%S)_F~k3v+Nf*{$2k?uo=%u zJEL}YM-=OYe<|?aAhC_lqW@6w7N0ZPqlz356+dSN*9Igfm}>py z{wG@Kf0>^@(=7Y{5B7)iOK_eFt^d+f*sVah+_+m*>%Vva#BH(tHNIZW7x2HG44MLRG ze<4$N7pYV;?=_ZPJ2CFxJP^)L5^uXB;x6^z>Gb>cPHGbSH_Tr=PlU#w6JuIRS*)%p zB!;~s@jhM1MjIe@E$;umsG@(9r@=X^S3)_bY56Rh_MGv(t6m6?^F3(tvsML^P^FQ9 zR^vTiN!-7T+b`ArxU>5P)NA~)^{+3IzaOGB`O_Cx->10mbzg^Bt@~sArM4f*h4m%8 z6pg?B==TAV@}~qWy+ehZeI0aUnX-icLB(5aKRCYy=gH9Y2ZH>IC}3)FG{on}KURM& z)qfyTB+gTywLkf|-BogO+sB?V8+$RXp9Uj5&Uc{UoqGWO`>JyS5Brbl#5n)p{1TjR zLG!%J#^j*&ik1CB45aG1Pq-R|kd>|-R` zzWm_S@WW(4seQ=lGg;)36APb=Q#?iLBrMh=5>Au*sDU3>Y%zo{KX>yy)?F8}O1(Pp z-m1b4t}h#M9eTjm6}E)$4h85iI(9&eydn&Tp)v>d8o`Mp+Sq!UC_tBV<6f=r$ij*- zcUGJD{Ui@5u|BOhY7KQ3r9X0;Y6^I>KMfzJtqXV+Yl?f9@#AHBb4GPm(gQ?D-qU?6 z?@+vJCPuBYEJ2>1*CMZSYmhuw>5<%8eUO=9LQU2%0G#l;+Ei72z&RcjR;lCy?u;Ct z7V%vlMmMzoywLf_IC1+Mf7EaXo9ZQ;S|uy!ZhVllsYA#qixiAuh*RGJZs%^$zqdzX`ABo9bvw_r zzJdSJ#-yackT7+Ad~N5`C$efl(^eyHVo5z2ch>5ORR;fks2{dClOt6DAv5&yW!5i} z7*Y1iPo^XIBIovL^;Bz+&VS`-?=#u}6t@n69yTDes#`VkDJzB3wpa`-`=^)0>;;o9F7`5mR2|J`vJO;P#u~y=1L`5Ibc|9 z#xUFet+-YULtHDSDX!J{vOPTCWB-(?jTp`_dk0g9L@v5&*dj_ zv+ob@9S6MWaTRY-Ttz&tby37WrZ%o4C|o+YaGqBj=tal(65(-N3!jhT^F997Metsi zhtpo`^bC#zCUm@s2#@1h_p%b4Tcp*0$)ZxHQqr7#;01{j3x^8w>YqwOl#S;4>j2Dk< z(bg4H^M4ZH)|nF_DtBf8bqo+thbH|=lRs}-ok6PQjNjfDmOe7-9{4qhab2r|!r@Fk9i;kcT({Uj*&eb2t1$T!AE1wPfB!?)cib&ViGA6B)qZ|q%uk3DjXyT3$OuuI{BZ63 zhg9nI+pLQ@q{O}s6_;v%xEvFIY5m8mTe{0~hQ5UV!}UtT3(GObC2(8|&->!~Z?$XK zwrUQLh)ZDpI39-MYBc?2rmZL=i9(Lf%(!F!*nKIEYvK45O@0pR{$29huUgqe_ilg8 z{%}0Z8Yz^`m}K(h>K;HD{SDuTaod(vN*1V<7zbh#r3XuNENtb-gxii z1L(^)g0KgOErH`&4(N;b_y>Xz%X^Q#J8*m%=e$*co@zrq}i`v{yXqB&!fZSh~FQ7NG_UP^S=?zKhoMCVV!2Y zG=#(G|Nlc=D-O&krc!=B)y`a@%4omR_#^Qd=TB+)N;{pkmWR|N=6_r-&IiTuDe?Jd z&dN33hjV>fC_nRikpU6}$A@U+UvU4;tEF>X-cR$Auz%d2?g-x-QE~e@^mE>rWil>W>5x@BiK1CJu7C zFj(ULaV)qBn6perKLq{Gd|E1!7pQu3+;}_$ljUQpT&=&TeHlzNf@yB|`@(Qn;@4p1)a~;n! z;RhfFfr!%dFIYe94Qc)G_@SYU{zE*jMZ*jHw>fW*;xKtz3H>8>Ew=wbsGCjGUv{{|xlL5R})--cB;39xL)!qTnRBPH~Q zFZ22Z$HQ=3ji!I@IQ}Dj{l*@Z=ehKh$P2)FZI=A}!nnOcoXGxhJTMYfNaGJ$y}LtA zy=iqQwYEEBUIC6rMo8idJ=@-=9;`eWRc2+*=)Z;`To|I_{*!%X?%o$y{=-=@K^ZixJ$`y~mOEqrk4CsL zh>H8~OgXM6ryuxZ{-b&NZ)yJHW&Y#GGZ&MePpCZeyP8IR zOPUqGa^VuPsFZc)M~|K464RYu*e~{zq34SaJjlqV0C!QJ12>LPC5Gk)^|RBdx>Hs5 z1~;;)mHpzM?rU!g2DW{>q^w>ShP7JbIrx|n?8aL=bNNU9%WU*~()&K`4f`zYJ7x4+ zADDb5(uKQc03`gavi$5lVTyH+f{yYg&~)G7l(&m&$$p)!9RrWok*jStytx?ukzAPT ztG)Y;EHE`3tMhHkbIPye(Ed}QYyc}&3Qb#g28nUR0kvCtV7d3zg4i;5c)R1=<9ioq z!JwY+EP9Pqhq3S57u6o`2*I~5KFi+|aDbeaTQy)q?)$V5n=P+M#nK(A4=l|g%NH7k ze$xcQCYrAAB;OHohxnR(%d>*cqbowT`dGt!?;|xKZv6WfKMX&ygCB=Ymk*GiH$nv@ z9-0%`Gguq4hITGGTc8B1gB&MZH!*@o>s?kI@>7EHnIm=Sl87u=Gqm)J^)ak>qo83&3uYV+a zeN{QVooxuq&(AyEcBMX?>62JivC1C8W#%bE{FUJo!+WQKTeD$Ct=aJ1?M>j#FUy_R z${0eorw)@UE~-IpUsn4k+hxFmr~NWq_;Gd9Gtb5gs@1GHqqX24g@J8XP>|P)K=?d)%k0mIbWgIqUFgWfTmbTlW4W|NR2% zb=QuKX$9c-1Cz+(wIp$L#JE$_~Q_abUi8 z6a3-xxUEfi;r*dWy1MNhJ>q~19q%H-%cAl)j*aIh2MI{TCRx$`|0@o zBD}PD@X+hxl%Jd8z!o}wOBTRvq~RZYeBoq2uqR_2NfA|~gedL2LU4|{O}k>&LwnEP zj>EwtBOgqhU@5Tmb2%m<~MCN?h&YC9w~|<4!z| z{SFJpH{eaa$I0Z1G>5WvW{mp?Y5G5y{i_DvVl(cerQvJKst+Cs= zQP`~T@DyLi+RyY+4AKl|e2$ki`K9s4acmq9rtM=2eeH`$i*q}D2EQFF@f>K}9vuJ1 zaddI}9UN=!bmW-}V;n-N{4&PoVRFBp-#n(7bH^w{;9RJ371mf}&a~7{%UH$vd zftRL#sqGh3!2BE)9LL7-NOAk=R61o@!oy&I&ufI$4F*^)9LL7-P~5Nl-vx1~X`KhC zk6kkeurWYDMeh;7acm>>J8k?6&XIYSE%a>*2Ql8CjpN_AewzJ(nJe#7(eFwfj+ce} zw*64N;J5l_;lDlp=cx@DXSX(x(f=8vcAFq7?!W9)zU}z-on-X?()vH9rlq$C`!}++8Ha)%Xb^v zLjTKQ)Soqy-v&`}`x#PUaNe>sL?RB1+b>Q2>*e8Qo&DS-&e58SpBp?f&vihUg#X9* zF6aa9ADaAv=MZxp145xg)j#$e7~5rU)DCg`vywUcsz%L%F^>?(zi}L&=D!LPY>KGK zJx)DbzR42c^^uT`U6cJgAig*rD?b0o-kWa!p^qx#`^6m*9>;@e{9){)dsIqg$lz}6 zK1tl4g~uO`fB&020^Wla_bFhKuQX8QA>;j3((Dh3N8o*m@R|ki_szreT(P`DoM`>j zJUsLLsW|@aiUgwRPjC)h8Ed8zHCLDM{(c;P$MI+y9$2j}rr0Mo$n98EPPVN5qJ8S` zwZHlt-e(H&@&GlrdFS99$@_aSUObLXYkxIWm`^F*i(eXE=JvCf?g(GimH@4Dqv#|3}ee=^G77s-v|XyW=08le@KzAIY7 z{~;J59>=E5AA_38t zT2DIeKGdm7?r%RwybWXj^+$65n>a3a@{UL3a@im?-^%e4>j&(Q2OvD&U(oaq4+dYS z-iDSM=x9et=pW<7OTpR;DtU5eORGIY&B6~;I&2jL}e{<`3GC^xgr@-Mf)lF|Q7L~_R=O6$M$PYnV&1RkOs=@qq*008NcZRg8q;;D>wH{$Jn80|Q+pYrSRshqrIvz*>Gz5pXqK z40T4_quvc1cRwOd6WmBrnPOiq4}L80kH2i73JU5U>gMtYKvbCliz8H~<*Hb(aenSN9GYS3p(cyrko?b7AH$n@l$_bzy80=9Xo z?_i6Mq;}g)D!ec=z=`;2)7hpIC_L1ydd&(GV3}ajiF;fXV z6$4rgoSdc(Z0A?@e*8`q@U8?Gbnl`Lc$MJ+k4pH@)%KdTY}TuefOF;kP5oRAkh$jc z&(7`CK-|~>vjgk-?_Kw`^EztF0<4CbEy~liKv2-kwCVHqQiXPFYM(AwhlO5pnuWh) z0Ozw$V9Lw3kn3^4ZNo?Ya|CQ$sR?Pi0Gv;T^>(^|yZOWUitoDM^$#nz6^iPhzf<+J z9|z6B*!qW@$q8*hW$A`f`F*N;BrvN%})fVALpanEzuTa zjC-Y6s@oHUFSudYi+}jHGxplY2ARHKs)Ov%1#4`9Z7=py6V7`*>`g9aZR8zIjdTJk}g~@e6+Gzz9rmQbK}A{Pc=ArQ75a5hT71=tA4&t zjVk0`4k?TtU;ufi%lC{ckw=t()nN&N-N&&Y;kjYmt>sRji$-A7kqS2KTW?sa;Hw8Y z4M{RiTUfBe*Ybq--%MaudZNyJFaC21>brMrb)JCSf-Jc+xgB77zfb$iI(#8{7nSQ@ zbhU+r3G9hp97o7As{i`^XQ%(IJcuO>c@RrPc@V~;^#Ptw{E2pu?tTv2E0~l z`hg%`i|$9q=W95gC%z9+b^4&N&LIX|qvNlM@N%eH{4>r6A<**xD&CHi``T+bh*6~R zzq6<599KLK;(k*xD0rXv-b)I@_V*tShSTw9M0oK$h*M2?VIG5QLru)Sfx|%%9e+TC z7te#(--H+Du`E4tv~Qn~;a~tAzeR+Xwhqj7`uO0k?{MHt$EWTAn2j`iipG``SJuWb zu48buN~l8db&R89aQ}_%jDI_hm2+Kt^Vy2uUk7^r$orh~*e2yVX$`p_QHH~0sF z;M{6cK{@R4^DUY&kZ~U?O@FvL+W83oE73VP3l+d|2HN=Jj2ci(?Nu$E9{l6?pA-G) z;E=m!GrWI04k;9m`F(2YNPg@d#Pt{b;QaS$A9uz$Y)kcr^B_7PImGQR>WEGE0h5gx z@5gB=e=WrK-{fJWhj|rI)wfD6eUfP>kw=4IQqS>iIRj74ozWl>$7wDe+~L*Mo7FMm zasC93=hEztop$#l*)GC)=*tU84S@g*vt{NYP(kA;aKfR6VT;c*@W&S#*_A8{Uvnqc9| zBK@3`iNKzY&)?D{zqI}z#bM{r?}=Gw zUEQ{G04^si1^_B9m4EVHy@!W?1pM|s?AQGxpASWH0M@UNuUiv;6C{W!qO^Um;C?g< z$GNe(N`Ee&-wg4^`3yAsh55y|C~oj$jzgw_#5p#CN!1@N$K=1I*-!eDsgN~BnNj~Z z527<-bPh8lxPs>))!p54R8D?@g#W_w;QR?2gu5cb8{dDV3C#BlTy(P4LJ9wa@i>3O z8sWt4Z|R3GFTFe#GoAxWYyawuTbg@36By@TX?W+5tQqyL3zlWhtwA_@IsW<{~TkBlavSlb+#)0J^tAG;XmX-#M!(&K?%oz-v~hMpvlkP*7G5mb0*Sh-86?kHh)Ny zA4K}I)<0Ec96vaJVl0v$=OYn>@ceC%!u_9`!&ZZ#bOoj-HSOPUc^rqt=Ya(AHvGX7 z2Vm-9)h1`;Y7k1tr-<-44+8HyaXuhl9Kn0$4&>JD(2iLRLg;v|2tNeL9gZj)Q3BnE zwoZN5qweQdgF$pWON7UH5ICP;cN3m)4ervOe*?kBtQBxI@TcPm5gzAH;5-cR^A{OT zyXhxitpHt4Ok3S`{Bj6%54h|>JO z;CU>(IsI?<`0|(MPwt^}w07|&6|G;Qk=*|-52EoskGe^%7cEE&ldwNrpEUccNvHZ} z^IsKA8&{1S0b<+C^`C9a_RlFd8SP)1`~o?-sf_sXs3B7krS-pH{}i}8vZU^CsKojm zw|@fqfb$t>c)@#Sybp~1lz%>qasALN`T0C>e+k)%`acfwpM)r_p9J@jRvP5pZx2El z?LQvj5)h@$|C!Hs7g7aIJ6AZZ4QgTkGt1x1_A}Z~B9eQGr2O8E@5xM=ec@*K$f1n( zpM-FeCGlaMd*)KJQk_n8HtF-X+t1kl&C?(Admg5tb}vAbX1{{u!0Vi|GMT7lEPk( zE52Mw=>X@ZAGB<{fer7Cy}FV`R#8Ojgs~T^DyY|E+i6=XR8lkZPQv`aDoRUfiP?$5 z*HrqwU6+f!+~9X^e}(Cv+kpu?RiX1P3vjc-bws{h8<4tPtLvk{u7GuAhS>)>XE5s9 z4YMv6ErEB3eGM-=+JeGJMYm@Q&A~a(7k6FO*~7?&69MG|9bwK5S#5aR5jxbS_YTW3 zg}-zh`gW`aFw^Sh<-t3xNfe~!?BS=|jE zzNcXH>2rM^)KNj+bCdS0;kUo*hk@3)EWkeS>#XJJb}+)x#3FdF68t>ym~2HzHI;6t z={dOPFY1bsR{O_o>ZwkvE>=!y*9yX}hig7>)dbF$b5q|AP=`646}H=b`2Waz@2Du6 z<$riYa?Tl9az>({g3}-%2uL)O#DthoF(9C;f`Sne6>~yNs7O%6 zg!&G<-R#_*J9l~E`13jE%OBLtY<;?_b9Yruk1>f=j+}6+_5#uW%Y<2D)<^(uf}gB! zk_o_OtQ)%j$6Es9tY7Y}auLT)Ufp}|XEPxwX`(UTn8NAm1{UaEA_6&AcQ4d3BekQ4 zj=1#AoJ^P+DmG=5C3(?jRGHxtGxFt}jF7SBrX<+l*nQ_`X%bX=Z6ABdlJtBKRj1PF zH}2u=Hof-6Z~S^w)#ugO81R_AY{2onPN2+b%c|XBV!(Iz+NJR&oxw)i>*~7u)j+(L z|7=gP8TbFP{K?x{)OTkV49E~0(SrofR075scOgSFG+u7}*@HZ$WTKx|r9zf`?v|%h zM4fZAt*m$<{)w>5}BN9=_h9EWcowfd6H8Ot< z3FLQu#_P`=HI)0RMgnDRpmMDXaJbQDhvsxga`)6HsSRh10H?GeV)z~d5NwiNax_f^ za13?A4=ynVoMWCpw5??THu37yWr3QcM&S63z*QSy+|~PZ32~60^Q)IG#}Ht-%7T>N`sl-Z`il*aEH@u&VxU1HjQ$ z?!9nZ&=Pz*H9o;I!D?!JqAs;$u$r?feU)Y6d1_UWSl05-fO?qNrRCo>>NZe1@j?p` zOT5@ZIwfABNUKF6@d|a9c(vuA8G%X%wBR#Y;`lNJaePLC`5omR70(@CZ>j?_zH9>#0ZBlDj+YSNso8<|hvEUyx{`XR zeS3p0809j3xpYhtc%udxTgV&1c|OQ)hmuG0IYzZT`Tkm<(9yYDa#9kwPRCyt;3Z+Q z3XtxHlrrNT{vd7*?4J(ZR-c{(3hDSl0bUC7%R+jl70>^!kea!7&$F|VKpq{RC&2UV z^cW^1lnzyY9vV-KKu*cF9SgIQKn@+BBfyJV2OViV*A%)k3CyPBXCDGcO;LDF$4`5? z{voXIbIQSl-Zbvua1}f zIt*CC-}%G`ApJGra}-BRtH1iGeoyi0Ny)|@y@mq8xYz>lZp917@d?{eXYElrKmFn$ zKn>M`KP~|1MpXGFu6)wV{X|f^_o3TfH%ayN83YWFKpypMm9Gn*qj)@8{qyVqgN|*v z^v_!6`_!oXMCm_j+roI)xo)iWCkl_$M)LUg0y`MW7Y8!Z>d#?^h7>U8=Brw-Phl-T z6rW}Y@xuLI@x0GQdGT)r{kNldJD9#bq_pxcd7Sy2z%+YkML1pg*Xobr_#C1B z!t+Pg@l)i%$x1oSfL!1|+wD!AWYyV>6x7k?N*a@Bht#9~j90ew~&qG6T4;~Ot(?70i$V1}$*=KHM8tu2E7n~%t_3C@H zd;U7J&+nM`PxkM^pg2C9sXsT=u$-XYtM#~6=fv3mp!yTles*2b)0lO@yxskW>p11a zv*?bFU;3&B>Ktorwb<%ayB^!i`y)`aII7?y2K9S2Z3^VmUH>-ZB0@lh=0PcA+v`|Q&gfZ7R< zjSK~l9SedN!H^1%KPGpd{5mQ%jM4uPUR3@OA8N1sd%^mnA7tncDJ}m={?~33{llU* zVok$X=id;B3uod(qnjTR_R2GoC&dER{RfIa41;*#`Ijph9vQj+BWwM2H2-bG7qQ0i zMnJtInfV9Y5%-CFhr{|eC#kf1{D#T0t{>W_Kl^)#1E2sD4@WD1-uh#~5$(^E z+gnpM7f6f)Xr0Sv3uqm`Q2ga^h^Nh8yzgQjTDEJ}Gt0pM?GyQIy#Zv$V&O#`q%`@V z#{%n#-eVUn`^Oq@xBUyrVH>}OL56sy{G$GvABgD(A}r58U|+wADt}S(JBl9x1&oH2 zR{p&8>m@^_74;!QfC*Bhg>t=G>u)4{J_=G=JLlP-r5!a3q$&mjWZ&Ym^#qVz^G2IWc?vNB#(bDnExk0hKZ2U^yiKL>LxzBX0JqS@Gc{7$J$}Pv zJ2-y}{G9ys1obDX{P_Irad6Y1f+&tqc>kbmZMIM2Rp?*NKYJWg3e{*S$KGzPc-}nim^5)+O+AkN%odYSY{;+tv#{^ejQrtE2 zcKhwWFkLqJZRwc!A11r95^8Z}_Z;8KHT_npdp2Ue% z^Jj)_Wd27$o2590ZGYWY%6()$zR&t_XzBIU_$B44{ckvPiDKftOW2`o{LS({EB2=3 z<9+)04y@N6i)SXfR=7#dCQcri{tfd*i+{djykl;&D!D$|%``nqjkFu7 z*QqQ`i#$B^S50E1Drr4S?b9^e5MULq9=0!T;$$=!cs->vN!|(`weF)7@QHOk5?^Qr zY-Sf83z+nXQ0}7JrJ%ScP_}74sT-^S%pd>OGMy&{Nb!%eM(Zkp?zL5$-d34`bA(^P z=rAb&8k~2<{W2iI+J<2YS`CEsnS|S~hq{oFC#P*aFxV7qD^M)oR^=G5gb*kYi$4ZXOQ>Zgn+#*eKzYiEw zqH>EETH~By&_kB2ys~8B%6qaT*smQkI9rm`)iNt2%@oK!VPhtR4OJi;f7zFbpO+xz zC9a=(7b;EOFBond;@&`LkL;d0uTg>I&fR?=Va7N7^$X?2-^Juf*FM;prYKc1Bl!5E z<k?-wh9<#^vs3)kqA7fgPB$XsJYW=!t+W{{mV>A)EpyY+b&vRYR!_p%-p zAf|yC#A;E2SXv zf2N{3nep>^l(S+rkyBFLiKI@&;@sOjy0Bjr4z4R$?4I-;2enUT$@ona7WGp zMA^KRQ|@j9Dia&6H#{{4ZZltB?rA1XHg&z95&F3c88fD4s9&HBNxH=J2@Cy6BpFEV zGnIWsR1f)z?Uu3t^Sr_?8b4MgpZ;9(VYQqp*gM7aTs;gD+;9 zk=Uhmj=g^F!<7{^x~)4T2`=JUKKoBdkVTiQ!OSI9_|i?d<)}wb@gn<~B}b^Qn^v7& z`_a_zJ*(pYvVj8-U8Wak$|#4@%aL(~4gKzzm0+Qo3OSTvp~U z9o*a(l!QBqYk%m0!&!F;n;lA^ zTwPXNtx^X>xL($ZE06>3lP*_jU+x0r7Y^KGW6>FuoN}(1IZu<^P@jLS-d7#utjAtH zu+#$idXr4kDpWyVP1{fN^&LR*6Xy$DZ3j@<&(v@U$Kn50z*;m*z*@8*V2z5FKogNS zoG@q;9;e>v4u0rHm6PH3i69(BbhYq>3j)T_0tGp&Y+*VmU~5dl#;pUl4g({UTYsPq zW-n^pFm{HI5sur+#y@zd1}t3itZ*2JqT{0kcxv?L{ZU!r{RuXfT>pT#24MfYlubvs z4+Def_(1}^1jMOAiqb;|AGvD}kdHe$4EWITJ_5WX#3?{p0x5>^Kj5d9e*H$m;bFjw zj`tGag#*@T%|4?Q*P0)QT> z=$7A$CbgEos0n}Q^sxhD-2;Fw9iKl5ATgrwJU%ehlMbi9I41`al7|!peo;0t?mI(M zkm+#3!f9zdP(_hlEqtc?+N}S2Ik6v+>*9d~9WT2NKye}$%+ufAsr4vzX8nMaB1{M+ zPuuYE3|0rGc&4s32xt9(Pn*h*lEGGfs9B(LL;aD0@C+^r7aF3*DMqjwJVePq;#v1n zc3%5G;E_Gx^QXE`5v&daHCTQq@Qc>|=XcwBh~QRm2j{r&^_%Cl5+3QbK`SY{IzG2pe`8I--w&3Rl3`kNZFP+siXKjBv5QiMv!tLkro!|We zBcxdk9=Z^Z#$9^(JM{iQV9GBBe$z_%%Nq{%@;89`b08HqIIJ78klJsEGYod9KMDt| z(elqt%>6+4$BNA^{UzP*4XfGO-#N2-YPGxla(-Mo;2Os6aBN%qBUv3z#<1K_;1w@B%(BTN9{gm#uz_Q`I$gGGU(Is7MCiCYQOCV`)0^8+8@H3LcAHI!tK}c7amgA zOYx5xOhlER{MPNdv#6yzT4(UpR0mL9k@FAYL;2<33k()0(Cxnj%sFfgsURX}e1D;! z=+MFZvl|?Q1J-Eu$GKo!K@_KV)62Z+*6#K%D*vL&KhmqId87op!^aK^Kn^L|_{lSv zr@JO>;X3&mH+<+&;9{c7npBPX8!9ZMV=#iy?b^;VW9`B!POPwx?E`Qp!VPn@!cV%)xUO`%Wc9k97svz z>;AF!*8|G!$&_Ed^v(r>!+T!-ubuzf)_&PvyzK?^{a*ssLZ?@j67eNw_cmSh{$u42 zpnNY#Y4sl(Fsg)z95^WWjI%?#*AFmR*8NA@%1@hh|JNG|7y@Yq5(qzFU)%GSY~-`~ zpcWYlT7FMj*1G@mf&7CZ9SSK1@lT6_o*BHF4{GT6I04=l@<&37#sLb?vmcZ%As(7M zo)6yB@q+|-KZuKfbQh%5_G{sj`}$zXpgWJ$KFtTO>39bLz7OQ@2kF#SJl}qx>}m04 z;QRUD6&-IWz@tFdK!}TO#RHwSuhoFvkhJIOl>90>URi(-fc$+Sec6h~j^xgf04bM( zeko`!02Oq6{?gX+7ghfoBpf|!PA&lJ>G<-+0ErQWUp8Pt;fF`l0UBrcxZqZN5KJf- zQd;}x&KW8Ro~GsQ@IO4Q-2uzRwE@69EQzsxh2q+{eoJNz7z}|4g+ofSAMg&2${RoW z=<*vA8RG{U|3e`z3{v6!%dzwlHM>4Zf4Tp&@4rOVKR;XS^M9N0fpxY{Zq(WIu)o}XIjr;7|M&n^^nds%tErrsoUD=$ zd2j~T?>9j|s_-IF+vi^2E5;WH&*Ce^>xN$>_NtlhFS>Y{xUXPwYlh}kVujq%pm_(b z6KSt61Yw7oiAN4jO66mkiLbM2q_ZRS$gy+OwI}M5#IfdcTTO4BAiPi7_8oR!opjLQ z7G^dnfufr^_nU60fhpqoeflm_0+sdE%VX0FfqtH9md6u0;JV`R%7u4rK+^n`j$Q-J zKN6 z{oA`TK>3l^%aAqFfVA>eXk7jZ=XlMp{Gj_9C!6I9uah_N`c9qQj_+!~!Bs%YPk4bR zil2D9<(3-gdGY$<8{&$-x#jrDfXfn)%0SwQELpNs z+E(60s?MKWU*G8JhOsj^F9tWarf0TOWNgC3nTn9DR49F`1P1 zf(*9MBU4x3dYhwYN+wi~UQ*w=D`~rK`VrOBKBT|hlDOE>T}jJbE+LqTJIR%g_e~pY z@PF$APrfXEHeZ3CjWW)o`2y`1wx9tR%N@3Fh9lUQxul=`KNCdy*^r%KM=PFxz-jn_ zm%HkBP5}LoLA>SnegZ!oT7GdLZa<{RPp4WHdqd^W1mH`@`wH;lkRRFEhqdDQ2fXe} zSNTTlo&Y@QcuxTy*}ssV4XxKH`L|`4cLPyHuHm+&6M!WhZz;eF``Lu;G+4})as>)+ zPRE-I@WOt!{8s(>2Rk&!RY%?`9u4%7f-S%63qDXK>}RWN#aHGGaOZ%d{m{B2 z{`T!&Cnsc2P4paM#t1BJtNs}#!?vvL!~UU3MVJsOo@ppyctG#gbEWw|{T2XO+5!R# z<+koqlpsIymm#}7wNK;u8L!xwM+O8@AIPBN{RMbY<-go}_*^~T1wfjP2V8*E6ou#W zon&2SvYr!lvc4(7)Didg&2gL`VdPmQxLPM9JrsGq;2L9E{yhYXmFO9#UHSl{PHhZv$j?R_W_W)71WSu0S{jncx(l&f3>->rQY|hN`!ww$5L-_s7&S-4x$@*f9Bg8o|@yb2x9uSG6YVMnF zFzKM3hQ0lY%KxtxhS}@~%)3Cnk)Mq=|0!=itPDcusbu|}Y|ijAqxLWCXA|x}aZxWd zuVr!=^9K~$;rS2w*^nJsc>E+U7W7NV<1qR!k}vFMqvfBse#Yk6-+A}@+P~J%h5U2K z&nUe9z(ViUP9AadFYDjY`L_@2{Ez%|-mpT2>o4K*4u=JGHmvmzAkGU?;r3hPuvmMP zj?Ld4KPlZ%f8(nun7?{My^+6+#>ZR#7A;v|sJzkqU#tKBu(SI9hn>}u>e-W@obPf! z^9u1^VvrWG;wn-0Dr4)j&zFgHuF^8c|G7k{-gxS2zWWMceQJ1DlgU?!YlRy}L^&NI zMs(hK_t^P;#NN1mDD$E6LP)v zkCekRzY^kl^;MU(z7f5)M;nz{eJ9c~qhgac08q)1z7;*i3FJF-|Jo&`lLtNvz@dia5L+=dKxbbMZKgBvlQYMx=>@!UqmNA8+<17yF*u zI!jCq?5;bgmFRz$sDGkv@n&QvQ2ymhonq-XqH^lQv!*`O`xx~nHtf@Wj9=VQx#5L^ z3#d+dUbbnZH#s=j(r)@E12S-3`L_=Z--uA%;aBS>$x-jK?2dfb@S4~k>@|1hJyTLT zulvo}#pa}Z#LHeK7i~zXkJk@RnrKG)o8C*3&oCs5mKM5%tTG_$AJ4n{@)(DF7v|*r zMBj$o_E}r=vkLV-$G*VO^A@&b<@g)5guE8nZT+6as#m5!+*NGLutZ~^ysd6elAb2O zau>gsywSO%7CU7@tDTah7P)9#K=Zxu zJSm~lP3gTQ^8i~oykLkQ?Nj=pA29C2J8`Pu!*H*Sz2j5B0b~$t`Tg7)faD@Or7^^D zAw}`{+eXdF{kl5^Y^LL92=K^GiT0_JTk-r4*^6bXOm!I^JJ^7q(L(dj$sV zRGSPsx#m4j0ZZt37Xe<_PWiG`KHr}&)-SHE`-2paO~;!G@S@gMq2)PA5!2(tE@l8{mzOPRe!K}TgNH>ytfBAVQYY3T3J~C61|8_i9IqQe4gzc2V^%ttM z;f==cKJD&*sGMl!N<9+PAF{6^dm~MLsF>icCpu4d(+#eKC|$FH{aAHh0-FGf&*9mNaV zDQWwxq8mg#UR}Q1;p@XNM){%k^gryBym)M>yyGFk7ugSB>Zty0!~gD}or}Hvk)86t z*s01JsdzqY=af@V40^NrDUh8K*{Nvd&$CnST6W^R-=%HfaUuke{5UKd=8? zms;+b9`4RK021NtAl@EQVLQp?wfCfUN_A)WX%Jpi{ga8?#0~u90b1wq#h3#qPNbb{ z&*SwbQ*}D{AtX|tb^a5jKh%@e&eAq~*N)-id^@N=yPX)>DY-DCs6A7+9IO z+hC(HV2dJTXd&KvTib6p_&6HU$B<$ex%9c23h?az!=a+b7%-iVuiev%M|R3ch)Zn6 za}O@vYYC!H7iv1rqYiMS<^*aur&Cz%Ym1t@#(W zQ^p9`EEK~uLH>kq>$X=92N`s{v;Z%v{axD~_VA|I2oOidle+*CBMLu!{f>@91~L51h)tAyWx1PI1}0u__xkxr&8+nn69zNJ zZzSIfUid)z7X5(n<6NB2rWdN(uL3!(&s#3yTkFpoK1cS(`K^5X55RPPpAB;GRbW}` zbLygUSSwys{^wrEd-q}BDzKD}Cx-!aD+a-}CtPWu-}G3HMs#vfh;KuYVs4viMIL{j|NOBzE%|F!GC zK&W>Rq{98@T)dd$H0c<|{0-Sf&Yy@6&DZ?*+E|iJ4d@6OGP`;QY6?2vIudTmusCNXU!s{n2ZhZFlpeOAf zzhJUhd+U#nXOGk94+TU)N~=Gv|Kvi#V{>FdhN?Sb|Bv(;0C7Vh74H9cC4ZEk+pop& zb0Yjeh#SI`U%!(&x`!Jlw$OEj0i*pO{2+)!@s%|FE4OGqA#&WWZ;P2K#kzkIIevZ{ zd(&=aN9{NDto8?y@>}wk`MYCy>}v=2U+nJ#p!LcaSP#PO|Ng{^ck$E*hmd`p&(;?} z_SOSzN5KcQ`m1-@cZ+ypU*|GWeSN!GigMI(qruIwa4fR)k zHU;y~XqfK=NNMHITR&hM4_t33EB(v)XK(*#zcPhIf9Z+_-Gq@nfIa-3Px=6KI~HC{ zhLl$S%0IF$5-Uq*-qVTkWc`4~IEb6b#OK`Xbf35p_CV?$<$^_aUOt;^>-uv%#7$u0 z^XD$DA}mhXHJ!t?S?7OI_0QotA3J=9{X7Lxc#9dFwYE|^tZ~-JUp0xTfBgX}PU&~S zl+S&>+cM$=QF|06zc^h*FS)ZSWBh>PME3tf$?87XGlve2A91Yf?_{V*Dx|daBhUWi zJY|Q@Xv+SF?E8E+_tyHK3UM)*Y+L1^Co zp!lMjal7q5x~J9!O*r4J-Rr+BGmRU^H;c2zsii=@XEOEYmg`Nrh>uPFEXXjMDZg^Xqf$Ko_O`3JU%E5O52Y(gzGWck7G&kx?*23AlU~8$ zoi?oaIZ%-mkP6Q~KORgEuDKq=@ZX~HmakSCxp~yL(Q^#u|NxDm`B|Jx)mi~vQuj6?Vh2G_YB&K4+?V% zD~yinp#8<0b^cxn70HEExc$6+HL7UXxoFn;a}~s`hLl!*^9j$bM7Og~j&?sC`p4>j z4V1fh4*U4A4(grH)L;4a)Vp|$mEQAN2M00Q59+_`A#MW` zUz8?s9{)N&&!ak)`2jP?-r@0QBTOidDZk$Cz-?S2r!envk`t@_WfR10X5u*#&#vO% z4n?l*{@bkG>tC2G>;6wv|9w`W-sNS0RR`NId;M>L3T|cQpUjDRM!7Y(=8oNFvW{P( z^zUf?`FM8w-T#OaF8Gf)VQp#!O0Lo@8?VR3XE(m^-L~T)G4$-|t_@%B63!~|Pu6ZMJ&&fKWf@z=azaVC453JAprVMQD zLe4KLwgQ;P+E*7W0SL88*HTW_B^Rm4O_UsGNG8loy|7J2lT?pfeJ!w&LuS1wh_=yH zCOJJEr(Pw@$vAx}-_md^vU1?i?e}a=$!M)BW;-Sr0fz^&B@P;2@uVe-JPdG6P~;_F zDl6pyQ-m)r-$92o4>h$H&4Oz!W=K* zOQibWJ2>k+K2$Y!81S8s2X(1&xTCt7=zDPZow&!lh)Y=tR$kiDfcwn+llKh`P;z*M z?y+G_gjL<(u@@g|17qKNiW-NNKwiJ)#PJo%VAYy0Rj({mKz`xnlB)|HNcX3sU3Jd5 zk|lD3*Jm782QNB}Te|MK6v$ebSung<4dmn;dNw>rhTJn@@`f}iYp|~O^{FdwQ2JMt zEBj5BCsz*ab0lY!3@B^9`=MIK4!kTpzp9I`5lDJ;{Kb-wnn1a7uUnI{1&FjtE*L!8 z1vt!gl3uRv3TBia?qz)38R)xKjUi8Jk<+w`rd_JZtO&wo#kVtY>i?5udNRr&XJIf|?CHJKJR3s@&lh_;gqsK1S z5K$p-BkxRA1&h`kHCnvo7oNW(t*6IJ4ZzJPe|)W9Db>kG)ZDmZLSQP_*Z7Cs#C^)_ z3^XTNfj!@QTikzSL6&c>tu9<|NoEaLH&VvHf;{{#Vsd_OSyHK3jaysNOzhaFYkpn5 zh9Lbmj2T<=5a;aIxjFjgH)6X=jmfgBRM5x*n<$}ghSE;8s;j4^rE?+SS3U`cYV zj_VQ0uVPyu_SL zw)WMju;Gx_H_h*c{IVj&qp#2R-Sr#4{KCyX#=-;~+CPstyc#3RPc&L2S($)(S!2uT z^15K?;imGKb@tS``n}gKf7An5F0tR5CTjw+^4~ZHs+xj}DN|MVi5Ua=rSFrwpOgXb z*EM7=O8-ve4%fZ8`KJYmb*c?*jHk+dqIKuOULT3dLrKQvcCzGdJ-NeqvmOyiHK_1v&PIedglnf?l{@Uw$$km{|<)K!)j5vIZ_TBESZ21Ny>urF;D$kTY8cEIj#^B2qVUh?_-6t5>G)Cs zUJCNdLVBPT&)1)$wQ;PgOA^>c$L|v0r6Iozr1GtJe)+9y)ZLKpo&*Z$_yPf5)Vk*I z(y;0%kOXq+_}oJPi4ld5iK{ww`@IG0zD7<+Z!wfG#y{u%xW}Gh7jAd|V|Fc3`o}-r zcIHJXyIo5W>Z<~&@V;*2HTwjAk08dr7VRsPAWj)l;r#!4<<)!m*kFcV0J4kRSIAvZ zJz_eYdUXl`c$8YIz&}y>e>e1u^P#t)tZ_A>@H{cxP}Y4hYF64%A7Q&%Csj2q>w`gz z51S+X(XfK-2DE)~d8iI`MAx3llb%uM@CfH0l|S;AXuIyw<7{s?NZ2Ir3dk-T&Y{$dj(0dUlLMsx-iNg zvWslLyMD*72oCD#`3vmdNicwlbb+)MDMrzjxTfF@rKX41gfRLa%BQIMbNf^rT3;W= zh)YIdMB%kB|J2xUoc)|b4ot`jQkwp}xMoguO0QeBV;JKn(%%T;EFl#hzk+)#cXnJq zj$zkFcxnm3`!j=-)_-v;Th4Rb474%=U-x&`1gv-x*PE`5zz5_rw{GCU*k*)owJAB>` zQd;?en)Me6;}KI9yb02PVY_0@P3WY<{iyo)G8F z#Dh*BZV^6*0t!D|@d0Rl&uKU8cfa=nXnx``alHYLQvW>R zMK4I{`M>M*fKc3UDDvj5o{YE@R3D=1uQ^~~0jIkI!>@qki^6X$e$iD@&xdvW1Ykm5 zkP44~*I$mA8g!;NKU}pI_^w7FSkh}`& z^q0$zef=2%^&SMNaQS(re%qC8Hk3841lj8%Af7h<^VUz3$Lw1AH7A?P6cd-0<1rkf92FRb-q?SHXQ z?>H9ymwPly?5Fy#D*T;KoB+BNB_Hvj_RhZ-%wNMGLp-Fk`osKXlJTFa*6usD#xmkU zQMw(KFAAS{tkxvWH{>{;cEAB#4^~DXsjW52QXv%{f5D`H;MyUT|Jv~<9qOG0DQ*1boojVL`h0D+PhZA+1!z8) z1#$BrrS+fu-*=wk=T?L$zaJmWI{(auI4%>feA)aOelyZ}TYTW3`_A4RD0ePXer{S; z1#Wq>bNxiZ>@T-}_V4s&K)o}W`a29RuEw*YKOLQOK9tpd(9!-gAIe?8lwWD&-GFPC zIP2|}9l#iWAiGHW3*tlVjejp#zqLvKtT@*C%Z36LLP~4Dan7MXDYM#^*y^E)f4ToE zv-&UoM_lBh|A>nmL|LE@&C#+x5PyuQ(f9FwX@81PRoUnp?0<%EJ-*I)%+9mKe6Z|(yK+b~y}<&oPt-^%J>o zf7WY(*AnBrHY`*oM^*duFDNr3&laqYRoKBH2YJ-p>8fr{*6*wI|N26Yw0vZ=!D+b@ zsr3AMzr6F(BzJ{a%J}(mWPaXj!uzKLS>&yxb9I3-`F-a3TPeQMWXy#NGnL{b$@d&d z?1hOcX`VJDTfR^qT>bDy_o%rRm>k-iTe3(WWM((NKR#QUBv%r9m)HOku z6;A4c`mD^+nHN9e`7+#(=ihzAf%KxsK7}9gXIawmW6F$xzgeyA%w2k5!t0vk;xon| z&d%*!$&F4Rj$5+t-Q;gLCnP(wW(IX4WPD6`^QQ)!l=`3qn&p7E!;cknUw+3MrSD#= zI3xxdJ+t0qC7i&&Y@MGKc=aP*ed1ZCg%9rFW@b@yUj6e9pJC#tn;Kk6BxUnK}gl}@b0Axz8*WYPx6~B=`&2*WcMmZvdHyw)zeBV zNX;R&C7*R$Kh{uO6Ko20bM(+s1HcFKo;A8N(687or+CN#XwMI9iaKaP`f5ZiUp80= zU?tV7TyK8Ei?kKDa>R8(T#EC4IX79dy5UBn%!;mH)d%u~$tq2-1HX2*%+CaXUSpSJ z3~Rs({>iEfC@}-ty_y^rjZ^`CPlu=;{9p|}?(27^*Jnk5MeNVm5cQi_|NN%qr3cF3 z@#^6zTulcs(?!0=qO)?~{MaUiu!$NZcDplvjg%u(=M+!9c0iNNsr#TY`kXCUJ~w-d zV~HuB&M@ZFujXXdh@rm|CUhhFm%QSR>MISfP_a&?x6b0E+cvW2IwPmWqQkN-??L@DVSUdzcq; zkGkKu=0ML-UEuz^#Q8;@9XVa|T;Zd;I-q>T8I7}~9>~9@Wq4;}7k~{KFMr^rHuzYo zv-IZ}9k60)*C!E=)PTm*iUsNMok6|p8ui`Qrhx1D@VN85CW13&##HW2>N{puc5&cFO9+Rmw`4FFfWd(`J66n&ym?s~=mR30xp`OgG%z+F>! zW@DH+0MDY299(4ne=DwVElXVCT0vYPL(91P>1SL>IM*>F-j33#9YpqBJKm~n+pP%dp>#q%r1e0;EfwQ&-#q2p}? zcxtxb{TV@u?1LEm{_RU`6Uzw21Q13y%!CQPizNYZD0ww_PvLprW!m^L)!$z!0d%M1 zy9@A=kY52(>sCDfysjIL66u6m0_aM|cNO5JAipf6XnjN-O2s>`S0&8*F1Kp}5ToP8 z1bAtPlYw+Iq!?BdzI3QDFu1Tf--g2fM1gNDzyCY{Q2mKomrSuXkhAwp0JU^{?E!$q zh{7jbRhe*kb`RF~wd7zz@{rQj^*p<7@ea3XnV-4~0L|0vb|wtC3pe?ft@{fW#!)UUnu&*9FYsCD?i@*zK-`lAG|f5 z8P^Hf|M2JQwy6nuPIJo9sf;XLex@*_eU%L{Mj;(32yumIsF0b=Y{{jDSvjqyam+TlBs{u zy7?Dzk0S}YC)6e|+8<=^aR0G_388fht^6FmX57TFtoLChT`v4(yMkby%2!v=er=)t zXnv)QKfL*;V8)Rj6-Q&+9oLJ>8TEHz`Sy^(5mH+F<&7W8Ycg*gtBYm$1yOn^9@2q{ z=e7U0KPPL=>>ks8zaFSrVsmqCyX$YCob0$oYQtF9Z*A*8L9FA4Gt9RSq_q0ueOI&o z_Pn35VT-{-RA4Q9`RT3e2N#I*f;1RXiqxvs$^hRX`f-V~azNsL;HS0XT_JxDNZ$$Y zNix4{@#~r@zMRE5Ac2nO3h><^e|JdHdJe(^lqq-d*C5ULK%9=J-t$4XqRKzpNPkFm*ZDvU0b0`MBmpEw6doId5M@U|l~`hFjhrfK*ujqqUv$D>vkWNccOS^lx+h z?+Kd0+0khW@TTLrp#a^A(*Kxu+WC6z&5ZF2;ZeFMK9DwlaJV1e;n@924Fi_`d;Lnj zFe5>b()2I?lv9t#tkg&kwwMV7c8wOsC;-_pKX?%cDO!(E+dr8scV)lOGbo8igUYr4p=y>Yl>U5v_VWVK zd=buP#87-1b-UXy!yKF^F~48llR-cDJCAT9TFW0j4}-rWdkj^7!~t&=keT~5-Cu4p zK<$gqCcuY4TqvYyA4rY=9vV-Kz&Drr_nM89SmU}ytAK4p6LqWppzvi8H z7Q09VFxGEKAJpDPK|Fd+-SXbcTiLCLUhxHchF>4?4T8AAkkZSq<$FJa#?G%hWM$2; zUqJS@)j!3I<+crGLI{qZUa+|~~KYxXtV&LG$ z)D7cGncoXTn zSpRREe0KZc6qx@tkkZCK-uJ>n21M0Au?c5=uR9syP<$8-U;f&=k{IIp_MfhkLRsHy znhNnVAr;<#4!dWyYtyVy#{Lbp^Jx&50x7Njc=OMy(@ytDEP^q9L3V69yqEzgP5+`f zQSXV1vK{;03X+5L<=+eD@3z%nzDI}fT=w}Z6)Kp<%zx#D&d&)fW!LSlpa1sv3fbrH zSy1mxNQK+aGk2YHlJP+d`vYXhX2XjNNNMXwp8e0GqT-@$ALe_7s6Mz5HwRK$`{UU^ zb)FN;r6>Z zbFt$X?Ou%aKWe{=AZ{t7!tJ;E)i3S!IqdJ{EQYuxkkZ;;67lgdaXapx^nbqmd%rid z4CY+*MtoXK--`^g8!dTb;|0Aw;?SI78 zmQXuri`6&#*Gf!UB0@~kR1&_)w0k>l(8Y=bD0G?)2J0I`w1iU4`)D9R_ zi?2TI$#uA-1{NJ(t}!!QkDP!1j!VOG39@skPI2y#Uqt9_qYoze)wu1VqvBug$&d?I z)Z8BzElZMR5k6Agn~B`%cJGy@D3aS$dMa4YbRfkGtd{EhG9fD;Y>?g?r$%ZImdJe^ zXiruzU$AaOk|&wE#BqbpN=*=~E*)|_<_n>J&0^HO-NvBgaj(X+GDd)VO8Ne~U{erW z^?FQGs1cd#@%VYwCUa2f{&IoiHYakA#DU0P%Fd+vIIR;S+?>dZJp$}A6uJP;E1Rb; znkC3*H7c>&tvR5#N=?MiPe#B;Mx$A`yBYX>Qo1ZQgG&ELMcMEKeR5an$g6nK7h-qu zlslsrW8`|rF3uI6zlpTmNu%%THW3Gs*S^28_zMyCWgxh+;4@)AWK4l~sUxXuRPQlH zw;KqZ;2vkROO6~iL?U|7E*sLttB>mt14~j3gk60%%Yp12lP>mo|2M)TFeLDC^cy1e zy~3j2-fE<#mESL&hHj*XX5O(T_iki;&kx?7JKe~lm|hh=RS$99)f0A}?qUD}DptSQ zq@oY(!1-y{a6Ry9@x6fHi<;!nB2qT*6m>qNO$Bz>%myfzbiMuKO;=Eq;kEzxGI4VF zv3Iif`(R{LT}cgRKr>-{c&GAfO^oEeopnwFa{vy%RaGzFbtQXE%cvUrrW?6fdY6Cg zTuP4@F==lD-N>JMdu~rVrUJ+#Uz@tQe#XJU^w(+WZ}9vIg~i=|se+~UdLVY^^RNGl4Rv2ze$5LsW?*4FMG(NR778AL!~8~ z)yQk}pI2aWF;JO5dtF_=6xjW1*hASqasX30u(xOQHyk@_mzw`cLlnU_Gx521HYtGnrX%-8j8Xw5!4jBOsRpUsRbj4p zx-sC4e1iYV)de}bZC+;YwE)s0 z?)6509Wv(P!8my;j=Zl$H|zQzMxgTBp*`c%H~{0G@{k=o1(&v0)^|^J06D%@=^I+HuY zd62Lr=S6Cg3E48pO^r{mOt6|7pQtN_VODcirLVF~JWtJniDfPS45){RU0VKKqizGG z6ECz7vBZllq*LN0iXcx5mUxA_OT60h?>6V)YqLO|<{T!&2=+Odiu`&kMC3H)055zK8CG=RZDtwh?%P35R+~!hz*}bKy z|GdAJECqIIVQ9$+R63vqAHfp08zG3>RTs=h$p3`w2vpo>wZdIf;IRDhW;cJ)=Ye`b zebD|B!*Yl1o8bs-vaRwagiHhhl&sdj072YsXZX+wQl(ZVzTf*qX~F53eiMNo9q%W= zBYUn9#AyiO?erxIQ-)3i?sUAn051XgRUv)XipO|R*)pkJk<^Og=TZ-QVfuXD^O*-6%>v zAJ6_iw;C)zT}WyBzECk&8DP9J<57CwiRR=lYES2>Rv@x*u;$e`oF z3;@N6+_#Lpth_9w?`BrJk2XvQ#SII$zi64c3RSDKK`LE-(eyU!Prmz@kXeuoX43Kb z)7z{+Prc$dtbPj=@7o3DL%9Bqe|+HUvY*R{8$s&mLmY~~rL~{>d+)V@&D3t^CR1?> zXnf|gTems?=dZ0f;a-x(YIhM;|Mw&BZ^}O6%DQhv@xC0G4_f;Ju2W<{m)*~URnrHv z`b|X1$NX zWxc%D-_Ael_+=0Ec4X$C_uko%;bZg2atBtsWmkxEVCJ8U@Vbc~3jSr*SF-)*3FeHF z?|ylN5^MhvRsZ)3l00RzT-%N3Ws5XsEk9?NZ+A#({h!x=P1bBWx>YQK^*g055Qo;? zwDv>p>O|QM6K?6$X0V^9EGqvnd5qRCsYinT(+x7XK}wTfkBc86c#oA;|8o0ff1e)3 z8w036t^e}c@3-n%5|a7@82uNOM-PZY@wc@4c1Ccz#*m8e?m~kOWZipFv)%(^E@<^o~ZU$-{V+JCJ6{)gWx;y?UWxzx_&!QL?&wk4jxRcZ&^8I)CmKT^D{ z@3`;?Ui(64lwbElc-`cFN!t65;ID&E9Gfa}niyvAYO#{c8DjjMLYt2#&l2XP4k2$p zl@Z+s^b3!^q6iM!Buy9VMcLPPR~+p0zzF;^p|^aJogSD|ykf*~TUBs3P|7Ugo-#PG zq0*;8MFHe5AG60PwJQiUn-d(RW&z3;Nw~a@{e<_KxG#6RUju$_ifz*UDUG<<$KkVA zEc}HBo|5Y{K-r$;xV(Gt=E{5A%5~x`<9+XNa_pdf3i`I-&VB#)Mg@96FY$Di&TC_k zzGRG|gEi$Juvorx(?nZvjXUSyiOkzLXM^|`LnjkJ7HXedzD$c;e#=KAG+33q;@m$) z#m$tI-+=#+{i;J&<2484eGEv4rWL&p?balf*UL^dm~2Cq$9LZpqiag;s2*=#JHnCV z?5+AqeJqdU3^2%#)&GrG2H$Y2vQ#3m@TT|q#)e?T*k{Kw=F5}gw$!Y=PMuTZADQ_= z{fZXJdGb$|a<&+Wd7ZlVUAhh*@D0nbnX3l&PAqqtooNh`OuK9LRnP+oF}wU~#Lf8B z$BIwSQTF_T;7%{6C;-X5jhIzTCxGq$UUBqC1ODw+kEw}4VjymsRp&!X?Ma{H6I*xG zs(=Yr4N7-sNr9Y;QgypGQhuiDTu^w)33Tr~XOR)d2Gk#FT)p+67`aOU3-3M86FG2}pK>9~#JrI2qi^x})3^pRiLCfzO1%4p~$gc?LTu3pj zGG~B02Naxe2!5nK87!vb7Yp#B@;_PAtf&8APl?r6oWf30v zGf?uh_Q(6q!{J3ucf7j|W1Mq}%2Skl+w@2K=Y9)jT^EbOmp#@vxBYND>%Izg3*?ue z?JIcu;$CGZGLnw;VVuW;^hezi`6Xz0UOaCub)?Q@lRg01{rKhP(^~!-ups}7Ujj4B z`#{9m=A~+c{bYP+1<4ncf1d?$)r*2(bTA&hoHd?T*e^k=|D0du6~y!#oqSh%1OQXi zV0hHKb^H*ee|lF>mtXsOGrqHjk`sk5yC64jj(Y&ZFM#mKFM<3E!uzt7(qzCyfA2rG zFF^hb|d}hADwlfGWUrO!!LyG*Bs$3P)N%^ zZ~g94D&)Juas6%GS=+Cq{G((W=NZChQU8s332dJ<`7qb%3B{S(f8zG_zwiEc%x7R; zgeISJF6R+7+WyFt?!nCa-*LWLntw_7*z<0m2l`nt><`Pw{hB@cf~G$)%6kOG$t((6 zRMMKUF2#6B@^L(DFT!V0{b63hkttt4%{zxAOp3J5o~`)T`h}d4-q^oNE5A^S)v1(W zV7$ugWA3curwhWjMIp^EB)I3JBtgq%`+f&jzxqG$5`{0eyrn)ZnmF**F1Z%^1w`|F zp_-!lYf}C5Zm{mB$NPz}e_Oo&IW?=mMt_hK<2)~HPneg${(agsQ?RdKd6?7Bi65OA zesNUXga`WYA9#t{aPDL3vhSEP@A>!Kw!#2GsL=8BdmF~leTh@$yIk@~J)gSn4hDo0dsx9olWmxCmlH}uJ$NCDNMfQjJ49qXk@?WL) z`65Yp8SB|=WdFAEZ<_w>eof3vbVV5zpTDS|-IA4Z)r+>b=jCg!;9h z^X%KC7gv0y-t^X6OKUS5!dAs94n-=a1W7i+^5<`$4wDCv4>lSp;Kf;^YhH;(; zZjadC5`ysJ{coOb$-7UnuB`h?FrN{`EWgqZMHQ5XX-?wBYi$|*FN)q`UN9IX)RQS6 z%ycTHxJy4RR=&snK4VMmr)l_7*6|bb68)L_hYqQKNZng9;>5XcZ5ZPxEBz>AaybSS5SR^J(Iuvy`^)t|)j8#iiIQRzGk>10Z`o}Gpa)|oEG3pu+Xvrvl6rC7`K14F{ zUdh8RP+YwXsp4L5SnXd@{b4z{yoApp`)etF1QHO%)W2hFrz0fsUMb^IyP`j>KPxXf z3h6x>g|u=K>CVcvOD5G(X=%F-d@iY@+6^ds ze|5_{>SE^6W2Uc_fbyoL-!@)#0^|Embc#+bB!}29?J@#+YwG<33KRGEs=MJe8 zxzegO<38p3QRCwGJZWI!S-yRGpH}ct@s9;+{U1^rHk)PMF4lvgw^tP$Ut?`KLo^*ykv%4JZFhmzd*etCM8lV9aUR>=NTkZ%a z$7X%eekKd;MsH3TT5Sq=OT&3)y|v)r)_)yR9B%_hUh1mV?WrPM|KLi(QU!BZnBX#T z+#r4El=iH)W~wF3oHA;+w}LfHzZ2DYXN5VO{x0>|*4~;h^vMos6>Vjx@ZG7d?AF8uv z;wvR^JNNq2U2|2SR;>6<%n3bvUUEBGuOSSr?%X3m3h*9%*X_iS}pXRM*(T z)Z1!pvhwVpT)M+oILiXYeb214dg2I6CXE|eZ|n%`7k-%3bGs7+`vO!>xoE=3k54A$ z-jsrc_sz@JPc?$!Y8IQn-B*VGLvCrtPLP2K-L@3EZ8LW+S|4@O}nL~s0JJwSR+okER zT&WHZteSo5a7jHy@U%_Z_IXYco#Ja=_fmiXt_Sa%t~Q0B;EqM*EPZI#)5m{bm<1#h zK7TA)bcFg6(stVM-t}bB)?+glFTF=bP8>EN*gzjVZ?E3vj-3p&>slN>Be^x?ttT9; z{NGYmKe}01DXBv+dXh%L&l-w=E8UatoS?w64mVcJ|4H!<4OuWjmtW5PH}9>9GKIA= zoFO%r4ETKc+V5jJIYG|ab#MQ&b%v!iNs6Am9RIi8XB)@D8;@(`jT>Gv!u=$ke_;PJ zf$m|r^r`3RcH1St&xU#9NYwulL@HNrwj~&HW5l-khuGgo!~Pssgv0zFfzELa+Nu#< za+LjjG#P|5N8yS_`P{Lt(dJ-2C!t@~nF+ud6HE=iJBxT<%p2pM?>6Fv_i&tF8>db@ zm;elMgofV@MR++BUj>DD9fiwJdz#MU^Hmdo933ww!i)399w;4xNIL#j#sLI!>I#&; zP5@sp!PfBmm#jv=mpE_yrV%fEAMd9^`yP{|xS)oPuMy!T%^QyXwRlQ>QY5&A3Cf1_ zZ#DgWw%nqqxo0o00H(O28}PLWpdo1ZQxXP*G74$)W&v;bQT>d@o;m)_<}EW!3%Wgz z2x|7ccjB4K!6^!Uth~1>(i`)(H2nqh{(Eb5-X?g2v-*v(z2oAg;RSw&J?f#BC31d@ zbsrKdaoycNEyYf8yjQc=P5Dz|Kk8j!zlTE;DT2*Q-0z?}G^5^Ed1$li@7t$+69?`b z)9m`&@A$-aj~w$HHe7y~H^#g*ZQYfbSn!Z4Dd)&&j_%9q_rZKK=B;UXJ8EAUrM2Pg zitMMs&DJ05iTi2cvuNJ`54Mtq(SPr%q;j^gyH4R_L>NmvmEzJMY{JsL-@p*~M^Q@5^hW%o_nkJvU{b9b@0VODI zf4!dXFuqyFVcqv3Nj~TMi^)dOGR^M)KGZ3{%`4Gh?0dlZcS0YWQAn@O1iVAAkyqWQ+#uHe z5A(+E%=`=9=ZY+wrJZ5W`VY51g4J(?`DV;p)ABEPA4|IRrDJPW_G2Ux~S5o`K@!0Ga^ZoyUw@ug2e@4Du|7M2X=|EP$HQsN5`CnT5 zgGqy*lHU$WMZw|b$FTann^u18xV*`{bXLce}giy+p%&>-?6`~|HiyA z=6`AOM>hEV&kVGeI#Nyk>Hdp#{uY4BttU(UE$#ZKGJn}{M*Bn23CtS@Gs}N)R`7fB z=!D8WF&6CaLt%eM5ECCd((5)!M6NZr{CMzRyZ&gY{f3}?_d+49{R+m{+Cw%gpcDb(sR_0vBOQ9?|(tX!rK0uq(A3A>%Mc$H)Gyfy#Jr)I6vu~K46SL zSg$6@=SRlll@KRdKVjZ@BubE0|AO&r-kZ2J5evGq&Ob5V9EI@o@=p%kMkNnkzyADu zrvD7lQwsI92nWS5Ic&_tnz;{{wFf8{P*m{J3nF{cMxp)_)8~9! zlwY9ibxQbkOV6=oum6^oU(@iltm|*g8%Lx3i?4qdw5gjqVS+d7_=)-EG0gJIOj%jM z-}k5B;o`pUUpxNAAiZOm`bVl4-67{2CUAHQ+;KM$mVw_hL8N~lik1b+9)Jce@I-w6C@J`*BUrdL?L?JUVj z`*7XDDW8;|w&(2z5s zX1#6R5;JAkX~SXzgBTOIt#gm{Rj;Mteb0NNO22X7v8=bc5lIfPur}E+Fj61Fa~(Q( z^wx%@rnTRPj5mgF18Oh&`e_4BC!bCF7tKMfyxN%OQPv=}l;RJMR?h3jDFHCH_lF6u z)gVvd%Yxa}_8`+W@l^Xz1K=A_pC>iS5VWr49e~ibF_#l=kgj7EL{D2_4wA+t zpKE_z25vf8a`nh`PpDvi<-*KVR*0I}$~O#BmR z;2QdDUp8e8YP(DieBaF)aEFJrp4GtyM9wu%5i;Ym&f34V@0?CIwP>}KsgaQmnm2vcvDp5Hu1HvSpee$kpOl{YQmi~!vo_v4MA$FbxEmEqPXbU+~ox)v-kt&e?b4rJ2t znIgP6;eV(RpV@oWAPZ1FJ7%SA`Z$nI$ES<%;)Fjg4}5^|l-0Jb7Y>dCo9OsWB0P2k zDk8bKKKYLVhm(8CtTT!y#(^X{K1qa^G+@?0T(RijsaPN@G7N%{JqmC(CE;Hcd*sYB z<$>ii#fZ!qjd&%LkTMEs(FFQScTZn>QrDN^u)^^q$q(&Clqp#Hw$NeAegLZ~(i;>0 z;tT%Qi_Wd@d1nNx!|xvmf5C!h%KmMe`tA>FcK$oYxYo^N=$W4r~c z!yOa;2B<)23r22Y;1%jiyl2_BllrXr#~TGOaWB5$=3PHqTgrXb!U?OWpBJhrT5wA$ zKa?$2!pIOsz{EW*|ApmV1yn-V2Y7L(`5$&Tu`l@WMgb1W2d(`I2%q%v=e5s9TQlkp z_dlixhlzXf1!GQy_Tcu3POR;xiRIroP7B2~z5e{_b+^=c)h{CZ5aI*#{UE15AvPfQo9GuJ@RXSJ){1RSc(0g zuzuP!+kWM8Wi_>LvcD*Y34ctu)7npFukQKOwqa|Zbt-gZ*bmOX9m)tM?rHea;h9&d zYbQ%b7MK3v7mbO#tPaPf*+2V&+X>|#6W6r-XUf|>BAxE;3p{nhn^FI`{G1Wq1%)&` zxO3zd8ObwwQE<+iQT`~pMEk+LeMPJa$ua+vjMD1<=@p6ib=Wpx3e2`pU6pFW>Gt0Xytr+d`ukFA7f$;Yz zx|Kl^sTp0bsLuV<^KaJqUjQn1OgJt<&ji6+uiQ@$XzN;VzNf7OlN-P1e}ID<`wvX` z_dvhX>?gEmUl{;JfUG0s}9^o9aQH`PhuT^B$c1lKx#nWswCD8uafXWb$G1n zx2EA2vEqB9{NfEyqH#{>Km688C&(aqIS|z=9{|D|?XM5QW5Rzrdgj}&%TrBlupw7b zYt5$R028~ypG9~{`iF0^SA5ZC1sK?vF8>3sKfsTY@Tu#2&u^#FLc$*IVO>8-k}uGc zx1JS`U(_0aGDK^?uIW1Rps@7El8A-Af4Kj3Wwjqn_)lT#4}Q%rq!xT>pRh&Cm9_m~ zyTHUbE&qi|+_%(_?wc;Gjxl6C=mOj2P$ZwW{ugYx9@_SPsHW!ke{KICiS!=JEI-bM zLlxAs59h=Dp6D_*Y~%iGIKquUp}7BoxNN+*`1BBP|i~)+?#Q7up{3!}0G#Z8C z^9Q2;f>#xTE->cLSpG=#0TcJM`gb)5c}Wp{KL#vzN%_~--x#ESGzw|@C;1+FMiGk1 zP6r;IZ2tT;z1{UrA!}Ik{||&eai9%fJ`ufQYwf!(w0ddK6d-k5T>nk#|A&*}M$_c8+wXWJ7tgO~@_CmJKcY4&XM8>6rpnl`jN2cc zmrP>nul{UK86}f{5I(6>Wu5=yc@dtU(c~xXxL!sPr7k@ll+9qR|CZ+ecjNChT%e<; z+tTrib^M%)%6%FNX?89+sE&w+3dX-O|Fz}!4+lj||Jy#39R3P4gga^C?4JpwU%Sbl zhd%g=oOazSylB8)>eu>_^W1M|P--)|7mBlvQb(foYdc&yPMxu>UUyLH6y@yL{kDU1 z9<@DW`OD)&FHt`xFL0dl`V~2F%f~^lM(Km>aIfNZw{?K}!W;8yFWZ8@e07RD`s;x! zfnf^A13r_FRvayr1({Upn<>#%Kea&W%M0#$r(A)tWruw!`95IrbNxQ18!W-NJga0& z{sqqEYp+&2Ofv-ag>o@DyL5p5F|~d@Cu)Myw?F1s-qQz{`X)`;8ej(0jg1tJB=h$< zOng&ZJVp!DzdvKFdYc1^1}bXzfgBL2bS$pb55gY+ab03Iwa+Y#mnUUiQgHAr3? z@KW6RE$UKEa!pk@lPfGhsMMl&2gW*q4VLGf?e?pJm94(#T)eCdR_k@1>NlN#;j&Yb zyNs>|Sa)spZC->LDBNz{ZdI;2h$MDS*1RVN)K`ABxo@Kn_RG)R;{i25`WxNUurgIp zyAFhF+GzuDFJN7mUaLlJpANuS1SgzI5f?S|fr6`ZRMnv2s z6>8r8dUWaw8Tw&ZWd5^S>bt{DtM$gMq5O<5A8*O=4+=R}v0xj2KU4ZkRqeSWHDF1X z;u$B5v|yU<^xKz@YeDTX9n5ym*MzE__m@3Q;O|Gevv1N+r~$79_SO zxB)AVO;?3qE(Z*HpRER?e~$93SzS*BM2=GMOVNTyM;-H?IMp6^u1l z{c8WewQnVcW#39nCYTDIU36zlhIoXKSaw*zTg1+jkln5@Wso02M&L8 zDLD!_Xf*yn5DuaP;`zO);Li<(_fg1STm}TbHUV>V;)@2YjRH1wyp0Ht{jr!grui)d zy#L%iXHHgZjsgaBynzUh{lS_@u6m<<;lmf! zFE>ULUYz{kgO|cfl|f(%9sf#%$LoRC2uGWD@I1bxQ+ne|3o;c3fr)f{xd^X-aEd6z z^~rw}9?;ZnOaJ{{B7hDZ?;yfUns@ZGsxmY1=nr;a1smk}>;?@%!=EJl3O@(gd$|(< zUY80{Lx3=39#m0)e;|YxOtfjE?5dqItJ!{wgr(nKdhuofygn8r51a0{5URuOw^2p< zs-aMP-ZN!u{dbFD;J5jWvAtsRrrE#Xpo{Z)Z)0=b|8c)DtKUKkm76vS#r6OB^xhDg z+4iiwg(Uk!$u{Z9eIvB?SL?C-CYAHHcE4GqBP(yNiv;MQkcJoVE=jH( zW|aNXZuYu~*JXAu;~y=(AmK|c?q`K+Hk~&?<;A+uAMabSNBPf3A>TQktuxmYxNP1g zeNK)Gw&ISq;rA&U8v9SY-^BvqaDT?fQ%8I>z`h*K$#0aoAcc+}EW#TjoEZwwppcIj zTo4m-f6GQMKQ7?W@q`F(g5sN^kmk1%>{~HzceG=MGZ)OD<4e~!>MzOu94CIJ)H_T7 zmUR4zWPsI_gugrceEj9DGXVAr3vi%cBc6j2GDjh;{mh7xkp&mh{+hpR^-Mcp=q}89`MZwJH zy06+_^!jc6ucY!jX4dvYo7Fz7>uy`5w;hZADkir1gXVW)Jt#+#`~<&I2U3T!^S+Ys zPSQ(5+MMxYeNoK;>D?BEwEi!zPxf`P+rBPqG{5y{^ncj?91+fiCI8WP&#sjTab@+} zI3b)fQ+~nXyP1?sMw|Fs*X3EuUsC>2vaI7r)9~yU)U-hYTv3S2h5sm+zg^N)3ctf? z>Ao}3JYOhAH2yVBe}c9BHVMyRzqrvI<=Yd5H2aB2Qn*E>P2BEVu*Z+#cSq3~7aWN9 zA8O*o>Jcv-R9wEbw>Y*?X*etPqg?&M^^jmj56ZQEI&d2 zzh(5kKAFE91%2 z`jL$O6X(Ax!ug<(R{y+c-ZLuDYkP#E%&y_=$Sst4Tp2Rqu)C-5M#asC;AaCm-*c~}DN`>hXz9kpc7*=`aIsD=BXP>`~M*5FIA+4PV{qJ&f*0~^$)Wpdu!hx>@D)azUlqm7TzNbw>#)mp8i3_tl#+Uh?Xu$D9R&im2|+A zqZ=MX@p(?EUb07DU9bmEMsKq+TDgP%j|{_Ic3XlZ-ICrHukqi%2U*z;-?c%pT0l=f zjux!%x&7hCVaCuXbl(uU8ye8j!&IrwSzTDP-Y9Tgni(W^cipu9v=Zd0+l_v7Ssr-! zrzM0s-lZ(zz7MY_-=o5c@9j7TA5ziYQvM^X?^9hag&P*+U!@|yY`l2th71gN;;)pq z+6tyj(R;gQoHMN5mYuW=dVrTXIbS0URKez_BR{T9)d$>FQ7M-<>jBq??YyAq6;|C+DRbTY%J6zLpQH8~`{y-XqNF`X6Ft`I_m$8 z1Hgo@I~`Naz>So_E{1wK-~#8#scGAE0dam$!Q&!%km;AQw_}tAxNWuZL&gwupc6f2 zdbcN^NxL2jozD%`1Ch0F61_^FQ?4ZiQN7*Np)1(9AYqCu;Jmn2p4qhv*cg+#c7bj! z^&z+R)W#uo)WZSyMyyz0Lwz4~^V^VRwUm$Fj@8`9H563;Ww-ToEoFVh_M2g=S}IfN zYkAu_)l_Q0@S+1>-J!EgO3LzLdl>3`J?q1112|)Ad!siFt}t?)M%c{3z947sT$N#6 zNLZSq&Pz1&0l!SImv;a7Uqn}zo@;`2$n7iOX>_{AW!b_F4^fekjU*| zeB&=)IQDAxQMo{C7=7??4;|NxN*p ztIR#UA1$>4slj&?q_63M!pph}hS?SXD7}+T4d-7GaJnM(_&#TldVa9SxfxC%@@TBe zzK1TL_O4m-D+M>u(CDU)h_;KipE@GekiTTIpPxK8*)H}1zxRnPX!y^B|7EOc!++QL zk3kBt7aIcU*h>w8RP1GbfL9(w>{b3#?6rpf?(qK$iM`eE(WU`>ga1hsuOt7fkl34l z`>s>NchSK?HL-I1PyD1G@P7_ci|yP1Z|L=cYM3XtNbxD?jr@3tz6$*R1%C}$3X)oy z+*^5gzXY<}btUv|i&05-z-$ zs;$ojy)aSL5U&^W`~@e3AAv$Xj~(-YYXod}{+fP{kMBvx_Y~n}P<+f|;Pn_Ee{|I$ zJD~DxLJD-`g0^&gTM-`93z)~o^BI1!wyI&e!0nddfJ?4iU{A-}i}2z+_MJxkHxAF3 z(H5++49`67&jkb>Pl)jHD1K`cik3S<9zFD7ysB&f7t~|IuOVK&===oC`(Pe>DM|;g zL$k&z%fb*YsH5ZSM0iQ_pe@Dv3ctd*;0+!BCJSIOlJM2efiGY3LK%J}j8{S*lu<}q z2MGKy$&_1<#Bv{2Kb|D{XNq3$zqZhw!Q){0lJNJEtFtT9*x%n*MG5hnlGq<_T& zxU#}dZq)k##yk$UJIsG$KAJX<7>bo?uC+j?1lK#Ya|9yE~p0;cr#WQH( zJevK$T5MLBM;2d)q?n`ybpPH5V4hS^$UHxQ3mZ2pJ@f@_9t@^_{z^KXDKp$|!@O_< zmp|sQbrGIsf3R0tDVg|m{(#n9*m)?4<&VUQ7#z;^8$btU^ z`%iDWWGTu-_XU_|6#nQ7a3suQV?J8E{3;`+j~;X=n$`X#>96M&a=yzrF2nw@d`Wm= zJZ;u>oC!(@^Vl@|NgC)`LK)Xwa%#6J7+7F|g0L&Vk4=*=8fS&Lrq_RV+>DBAS9<_+ zEU+Qu0e~Ml=mQ&%duynn}5-wFxfwRVEv_+tnClC3rCcHn*9s>h*iB-W=r*89$1L`16zc{d@!y2 zdB;v9k{)X6n{6((XV^c+WBwcWk2HM1yZPrR1+BkIO!EKq`3t|V|7u$MWA_6&qw;q_ zq4@X{x4N&n|I2m&_m9G8odJs8#C;s>?H}{ln2)5@pWyt6wE20b)7?B8?na~ibpp8l zG5_t3eiiS(qr5@eU6ZW<9$$sgyZ}zDE&AYwLYjQ#^&M_gsnwws-8NRVZ2rJc8|y0+ z)Aarisl|%-KoKw>OlyCF`J>MhkAOI58`g`q+adga;L+2i29#0$*7u*A@wfWpd4e!{ zJAhyOs;jnndgl;9$f7lPp-u}8G{r#BbPsDYfM(+9A zDR1}9sf_x^?b!$6d{IctzhED&?gjJs`XQV@oPYNB_awDHVYb+Llz;H!cKe$j*N)$^ zI-V%JbtdZ+c>;I_bkEBr9e+%C^=##7@@K2N4n)G^idiU)8IplV$)Iy?bHYpAF+y_NQ;Ns|Z!;VDhfP-8;lgmoV;QMAHRi&uzZ=+ zg*jXJ?-kkAw|x@N@0<%~4|feT2JrOUfUb(#Ftb~$&G|j-LD%k=$(>PhAgNmQ)JYWs z=(uWF?15f}5UQE%d)8eCrpFX{s#dCkrbqtJI+Wwg?4P zZ98~IiU`uMQ-R@&l-n3jmVt!gH?!>=F4<2a= zy{7-VAGXLGf;jh&qy4NQw_izWY=9l$1s)mf?`aJphs!@-HP8{f)(O|yKgx3e^eoaW_AB`Cp32bZb+eCPYW^}bCX7C&X5Mn5IwFY?9vn_H;A;V*^+ ze!jT_%GRImEcu*RJl^bR#0&j&M2taHnEwP2h#d+IzXyu^bl5NFf^e@J@xuKUI}djQ z^LtDH-RSskB0Tm};&~jNcj9walPWJhG>@17-066C5gz*~@z32FtU|`YqJCi2>6FS~RgctWy;`u7}GY)dxxlx}t0cg_k znj*ZopE9FSzOei!N{2rmzhDATqT`iBcuD>Al5hQDYU3vWc{*PH7{FpA;X8OdiM!%A zk+IIjcyT`^ZJxqY^{k=-eB7qq%!*?5b4rrmzwqKCs1(`kaWYByM*9^B{TX~S)?XEU zz96HgJ zRewqNx*gh|_S8r*<|#P;*uRhcjWqo|%;vl!GxO_OzdY^6z&BNY*8_W>PD-Q|jxMbAhyAN~ z9Z9nv!8s*`on;>Oc+#%f_K)j{rWgOKrmqtpoA2Ba-MRzoej!Qr(^C18@YsLA=BEpf z>!|N$*N(AY8~z;zfBIs{9M<>Eu%8n93B~pAv3UR2&x&1H+Yk0rVt*seesZ>&KO-}%+(+=X|MB`~ z^>bkVDxP=I^e=AJ^%)5sX6^4*=*}4bar?pkT_BYiLf8R#D|3BreIpdT2K*l+B|84&9JQ=lTfbrN**%5s~t3Te$F5k(xR$ZT- zIXsMUPAaZH?B8VblXi4mDKki?KcoM}@|)Iwu=igcC?V{pr0E}eQSK~R`+CacY1?}; z-WS9A|AU`0x^mSP@JZ^8U6|K-xS6(jWfm%OXFu#yUJfkt6vCU%s;W62cq~r zP)N6*tAD_`^I&OXuJ0_7jHk-J6;J`u3KGNTRRPzCzt|e>nf_`u_t@(C2SF z!A5@1kU!UNS-|9cs{5Llg@x|tsClm5%5Q4VQT1c5JT%a`KxJIn{c3i20Tp6syU-)- z0yQD|K&8>?0!rrdQLmlF7pa1=OD+0*E1*(Jo{dY(H-`_eYE7NYKesG3` zyqUPR+8SiEwmc;FMGI^r6zi>%r9l6!@1sAjQw0ac^z2j;QA!ngpL+AI!VcJN^L4p) z#~DO^3%STsFa;NOF7PUAr3DYp?LA`C@YXQn%qd>0Fiq&{=44)KuK>5S(LEzKNDHci zTi-J>bwLvM&S1_MS2(KjYAgHKDxh0TR^s+BSulA+RPXK&6v4)%d5R}r>jF;Pk;Av= z$bh7FYlkelVh+INUSIdCeI-+CKiYn&e@~|N9hKI5g#sXw^6Fx|%cIbTuc3GFg-T5hxHt5}Tog+-_w#NxV9l|1kOr$(w)2a8rkm zWM;w_?X9M6P-g#$)R0IM@Fg9V$AlOG-o>RGRIWZFc}@|EC#4*K`hkq0?vu;_uM6*2 z=X08%aC!9;Z4DdHdh6SGIb%JTcYG?flB*7h;IT(L&)7|ETs$N7wv86#cr3VQZvB&7 zoSQkZ%UpdpO<~OXHkP`uv_o{;U}-ZDsCI9x(_2e8_`1E(fJ=Oy!qrK8!!IkyyQ*dr zlx+)%^#Rgl0TwW_U~FCPI}Qxqbty@=qb=k)F4Rx@W()O=R28?*wE5rSC8o0Q5>p#_ z3BY&C;PGiF>X%lb5c~CGKfLdf(pmEU={^Xzz7g*_K7Nri;0B%RvBj4Q{ONvef017t z&zJH18tcJNMzDYRV9bw+CEdAzq~l2u9Is8{B6urCZFXMtd zIzCT?7w09!*X1wAy z`djz7jmxUq(E$4&h0#fXU<6i69ep8Qf1_V-q2{g}$(YyTb}LE$T+PUX_f>l`=A~G^ zBs`9XLVR5`DQAoK+QHMd*t4GBE(!0Q+-5JAe|0V`Ukw@ptS07j zFfS}_|5ARIg&n7c0uBZULeN-#lH`xvqw#splz?W}zj2{kz(+`g-E!UQ4MKg(SPW0#!i#IQe%mz00~>v!6=?d{d<_6t_o ztaDhY#ae%o$po-#Gu42#@{SH2ZhG(z=*h;j(7i zvcaQS_kUU;JofL?@Tv7WPpMY7M&0q`pW}(g8DVrAfM5jXvoOCvt3Sd1ue?apCvT>X zW$>yP-?Z`*&9j6!QU56kzw&TE{O#FOSnCh-8JHKL<-gRb^+Src?^8edJ)cQDPY}xI zG`al|tMUe^&M9u;{RN?{yoMtxNEZ~+^yl4Mx|fuFbM5f5cTo(#HntxpgmXrrc>n!1 z)wB1fDSa5{AYr_u@*nFpPoZ@|IHUa|aT4bbp(($T=5^9zt-m%XAy*XA@-Of!*B`l` zv{7>a!~UA8{}SF5%PYGFu*#Q|f1FP&PxvgdU(8EjUVzqq1b(qK&wqrZOc==O*LOz( zFuy><3)){{VOFm_+`-K*e@Xg_^AfaiPT<$>mEnB4gGMBy|HkRIwEQID3o@tg*sy*C zWB&Kw$q!&{e|TQwhZ3aOUwYZ@LMq2U+&XJSZ-Dz5VKhI0-Zt5 z{v_#-`4qs^Kl0>}BC578QS@WK1Ec@K=}MAsvs6y$Y=5g}&mZcy?ce{Pzd0-32PuO2 z1zPzD{JO;F`15nGe`NTTarsNqUzq&Y7Wzfm-`~W1#((h3CqIilO!-Ic&@}Vz$ymSO z^2fXc_V3g3U)pegb8vU%UQteM8Ge17f6QkDpag07P`|rZDWb=YGg(?pzdXiEDnDM1 z>Eg;;#Bb~WCCSI-g!L6Zi^h*26d?qKwEkZ(e*CJ9U*aJf!utM7Fv9gjA+7v24*#{8 zJmz=ufam1S|JwZbLV9CfPJI0Nv^M@znPqpz{jCTlasGkhv6X)qitrzJiS%cq3Q3uP zC1ssgcW?IkOOkv^_7iM1xaxLiU&j4qINiSJLq8OXk3YGAKX%W4&pgK)<0Z+*@z~0* zKZ-C2h2r+>r{=MtB;T1ae&h7Q5iSCSH2Z~>xg`|XchS3Y81wyA6urguKL8~(kSU+L zA+VSNPhM-ER;^?7-~U(gC6~W(Wx3}-*8YDmQe+5I|7YX-9pv9%wl=2Io(HUW$?}B> z2 zXE?&eG4XJX{(b6vIgtOTX~>xWV*Ch%8-+sg{%hV}d!s5+CS|K9uOMx%_3K_RXEa&t~Sqw<#9cuq{>AGL%tEC|&Ber&1zM5BbpqL3!P^itoa zlwFE`Ri&K_>-sSU;bNJ1^<|68siNN6d)mkUXj(^!+*Z`@6@Za+|;`Kc4yO zTU4Av^(KRLI*js1(OcYqb5TMQ8S-;KoSA)^%2~2UcTm4yf4KiEX05-;Nbe~qr1@{Y z6dW%nOJh^s$6oy7_m~j4zZ0q{>i_>?U&PeE?Tbj~6KE5>d+w@<%_O(07kl;LWswDP z!3(OYkCUT%KF_`VIfHz+`mC0Z;ALc#wnbMC?9$1!IJwIlyzQd;%(Flw&U@|2~PFsW$j$*Ngq@KxoJd2a}32tVKCzI@{byY&s2+Sfw?hF+++ zzJ1(Js&3Ge%T>x2(5Uw665laWfG}yDdd%$^nULn1y((EA)RcIx4zwjC}ka(+2vQFcLE2#%)43muCEqMa?x@y-fjY~ z7X4LKxm5#}s%d=gr1p`7r%^6*2F=O4FlJ^voL6DC^{BlB02>%5%q zN3_=frT4G5vgu+5x1}Cf@?1?9%(71PxF4hpcrNmjpMEs~pk%S1_SiNs_d?ed2F9+i zaPG1#_X?e1<$d?oHr=&BsO*v^wyC_gnsbd^H-0TW=Zzg%xY+ zdwRD8FB6Uw9{1tjYbV`msE-i`rnVn#9duR}7Ee3)u5Ez>d^~6V)4IX@dj(&3tMy-L z4X$06D#^9g2A7OKW}aB*26AFPj`aDW4z8;A8~N$35#$}xezmZb20S#a^~}VbCUDOE ziLRHz`1j8ZdVka{S`OxQoNzr{P8UY*;AY=1F@kYRtBdvc_r4`OG?A6Fu!mL(qdq)) zYzwOn-qW!i?EvlG$#s01tPLZRMxU3@m4S*&%Xr4+->5-a(V?qVWMDcpzL7m#3Wnwe z{Bn07AaS8~ONYOt;j!G6Yi38uLc6Z7Yp?6-zylwBHkR?<`;Cm7``J*vmI5+W1s9)5 zLxP$zd-U#mBuD0DT>DV|IgLhx%)WGJ4IT}*t+y%FgrVDq4R#4NgA6^K_OdJ^nd=$KT300NoFlpO<#z0yX+R5jFOGBAXiVVA8=OBe4GHs^J&B@p@fuCD89}%Y`gMJqVBA#3geXou}+B{#qm2Nfl z^tN2}>DOMY_a#ZnKe)4fo9T74X3tYOHzy44waJzBoEJ@`H#QG(KTYT$)oPP;-)5J8 z(hfuWjRDMas*qTT^%qcn;nFUtAXY!O_&yQbuKDQ;_6ayw#`^to3u5rpIG*@E5%K(c zaeNdy7zZ=X`N8^&?-LQXpP+)oBi7G*HlHUucIVvS`18$PC#XwnKh}s3V_oMPqKx2u zBI166nwwjGuD{Wp!PDUUOS0bqS5|RWIlgbU{trIXCC;@CV)$9Ge7sKt@Asg!zf_k+ z%KRzVqAkAZf7;K^{{A%wWd!&8H2V?k6YTV*Qts@KAq@M$_G^yt7AU0UKPg_Zg! z)bqXHLjEvMpy17xf4slN4&_6<|7g2`H0que!SFNT^dz;Pd&*P%=dB*v?EYV%mWK}O z_$NueFk9^Vj2uzE0SamMD;PiBo>9;{CLDO8--SU?<31NB^u0R@Y4uC>Au`XG zQU54E)NUxq?!!>e9~9OtWS7!%rLAt5A$6{}Rh@h)L@%&i7gSf4sj0 z?{}c-?;5z^F||S?xKnx7V8%W*lwCr6p9l?~G;MSlmE8V7)x)_xe_Q{D_t)Tk@-+DZ zKkwcBrymse?#0^wNh&{&iwkUX%eytZ|NGe>fb7X?e;rXl;{6ul?Pn@S(X{Z&;D)Qo zX@4C7e!%-n@O}?k{=rzy8`Pp>yj3crwHWq??MYJph5q^9cg|fGlo7n&gQh>{{N+Mw zZr*#iUna8I^Y`VHk(5kfU&i_em!G8k2TCQ&?QS=evCj_UyP^+%D5Uj20-oMqXZf7u z>h1uqPlVB20g6uepbx$%6t92cYUrILohz*ESCal%4z6$E^MBEQpaj_Pc)gAHiHPez za;<8WVPzoe{M8?&ABaL)`3d$36R{prTTGej7p%`e>=WS{uDwluGrMfA`GozPT}kC< z-$^Qg8s5Iy?O&L!-}nAx5GuD|6pGJ(q+()-^==`}wtr!=g{=116UhxhA#MI4m_HXC zm+$qqZ5ZqPSyK6LnQ8zAZ0pmq@q^Qib^aKN^u~O@xczDSW)B;h?Zc{n7{cRy3bgzS z=3lNxH|LnxnKAUo_S+lb`=F54|9S1*`H<@2q}I8bYu4=X3nj}sf9Q)M;C&)A`KfW2 z3aG{AmS18w8Z+i^Sbs_Nx2nR6|4)}O{$RcEJ`ud%gC?J2{$MY~g^yy&Lo{00{#r19 z5-9p17w1=~_kZ1gwsii_YQK1Y%?MPWH2W2dKhb^j7k=(Bg|+_hK9S)FFW!IepJYGf ze)w?4`~{Z>-d}>>Po&8g%)kA$y!^9F`?J=+B>O>XvDz=*ClZMw((Om1{tY$sRnIrw z$Adp?KZ>mN*V6nq4Ija3fB(SKM*WSa)#oz}Uc1_~YWsL0`Dp0~)yPOC>eKtjPA}yb zkaeJ4j`6RR)K!&NOCn-7Qfft(XLrxsO<8s>ubGvQLgmOGOR{^ANWHjv=qXhePii>( zY_Rf^gXLwGU-Q&;;2iZB&)w}cpx5??(IF2Up|iAan-9Yjpl<8foWfrF$##36D)nAs z1}ofGp7JSqPbw8_zIpuC8XAV#9r+q>3EigO=rR1MEsQ)TU1Rr`Dlpjm;nBRb*1*DX z(atDKeUO`9aIeo8Yan~V@k8(%4UqC~&eu|A6pNsDW$Zp9kxC?L<(%&Vq0sn z)B=>+b+g&YKO7vUIbDAfV+}y%vYzc1>4EPVb`_QrG{BU}Gvn(!$4FS>a+Sa4LipYSpRo814 zy8^ju$pzZ4r9jrZ3(nKNd?$A;_0&p`)`c)_Mfu4j8TcXj=p)TKeF*(~4#+;J4)XuX z_~a062^BV^%x-UB1TCaE>)!RVfw9tSv&;(QKok{samF>i{=E$SHd(2Hpow;~U7eiamGfk@7yi+^=e0=0^}bmIa|f$QXDmJYLxK}6wWnfpo{ zU~e(>WcL|zfOx;k?W2Jn=x4G0K!_~=KCi7N-s$;DVB@o=<>oe)fEYFO;;V2&FnLOD zFO?5pNq9LYC8k;)dVSA7Vc{VMcF#Kr9(0rkyaK~_fvta%CC)GXhJDk8yC=?hXWdZ+ zDz%rna;Q`hCRMvi)%qL2)bj8M?>ZUi2rUMkko`<~-2qi&mTSPIWs37=KQ@5;bBK?n zPm+eIul7uuy-yzo%-GTI@o*0qW60Hv>tO|S&7UsoJEbk?@O*SghK@Z@zv*XCpzQ@# zXdK9yr)LDBZ)=^sENu@sUr*-l-Caup-MWFJ^#KU=8TrFk&;5Uk7wyNwi}q{eMH@CH zyy%;pO>VAET=1NZ zf1U-f7)j%r@vHu$?yU1*%&Re834KsTq4>OJ#g}(`x4#W;wqGGOxBnoubEB18W@AE|cFlhOr`FWS%xsvCNFm>0$TCf1AJ{|N4%d%DRvG3{t)#<~#W zCDq?;@5Ae-KJUa>7hpM(@F>5m`xgyRLb%_hv|OVn4)yHBpk&5c&r+m7-6 z6vksd)g0l)`!DXLc3uyAxv}!%W(db&%HJY4vykdr{*mlDyc?tZuzX4Ne`!xr%C5BL z`^Ax3tm_gB6v2|IKTrP6QIfnm=A?#)E#v*4rs_}Z>oKPFYV#Jpzr)`D;PD>wvf}*@ zue*Iz&1dHOe<-^x=B31WQJVb;?%yH&#}qy5{fyPGC#n9ip18b)&!YbC{|~-DtNl14 z1zk`m-hTXt^eEi3&ym%y?}Tv9D5RC&u8;LssM7cT2j6UZ^{*{I%!_&<{b~J|VEnnJ zcVIH*?#dXyaeZPwwJkIMneA^pp@=y9gKBQd3&ekOi zQ(%mLNL|7meehuF5B90>-=Eo|F_jp7l=1!+&c8(cLBso3vszmJtoDofddzRq@_)_d z%T>xtw@v(T4~1s;--Lcf_p(_dTdIHKI!{>4qV|vZWXwy7`^7)pNgSYN?93Sdas72f zA27d3%RjJ-SVMAkp7p8cpX*I)*9{1OU@h)HCDuO@gzZK6D9S(Pb1}b3(;ss9e(jCQ z<4+CYA2s-I)gKom8!xwUP``B*fs+~SAD2g0R6dyBqvfA?X4eV?S6}k?>OYOqelgw$ z;k%)bhUa>2`a!OBtFb?KaW=z#Fy0s8FfU8PC(Qi(j0R=8__TI$DGKVdmN5f1Z<;`2YxlmROp zBRv@Qi(o_u`p^r7;{9jslW~UJ6?MO@|883Ov)6wZ(z`bbY2{aZZ+saUY&(xQ<K8sK(MeVMZRM z*6#KCjEGZI{G=zViFw&n!kp!6POUyk<@txSP4mvC>NXfFW=}aqea=YUIDBvp<$ms0 z<@b(!|M=$T8NC-OgX0%>>dKb10$Ss4S)NqX09T^HU?={2P!8`udtO_n4s|kegKEa8 zL#w)nc?aI8Lr%~5v(>8(~zS)Um4Z2T(z%l{7g9>02Pfz$=vEi+RUU_KGEdx%Uccv#>2jq3zCSlb_N z>_X~*qNllz#s%gu^|6m*_EIZYTl&?p*C-AoHZC2tVv`9h{n*Aj;)gjbbbBq|zSbGG z-L6ym^f~{1w^4=nvitMTJ6^DVz=nPN`v;d@*436_4H z6gO(55^z#ocqBMN6Pj3#(_QPW2NUAn&MNw<2LqDgdMaJefm7eL{Y&*lYpAf;|N3<` zDVRQbk$ym+9!xH=Ei8Iz3KML#yS+SZ1S40xa*=)13UXxzezm?}0}C&0buL#lhw4^( z$G+t1!i~S$NCh0Xfr+0g%T_pZv25?V|0cj)*nn8?OEQi87LMt;0RUj_dEg1?3=1xYnTXvhdsI%2zrbB^n6KzKRi#yenbA30-j-*q3pIRVbQ=_6GdzY zypIAb7xN_8Plv}F0=<8w|14vAdcSDkLC1TD@G>Y_?5B)x6q9O_v&j*}&z8HPFfkhF z(eZjByf{y?r4cW@Kd|b0zX$r$qk#q;uOY&V^CXiS@j{+tE@#c~ZquTHDjlyX!po!h zm?!Doh!?&;#$7X8IVV0E{KSsu8s!PbbR%ZMlq7`C%Vd${9}?C^K`7H68fNwLfSYTT4HdA%6$;@WS_JH+S@<>TD3ua3ntM&%3ez!#oM*8)*4= zrCQZccb_}QXO?wj_~~(CI9<$l(C{;My{V&kvzOeR`Y2hCRdnak`T5!g%cO?_qug^K`WG%e+@tN-Z%wKWA`fL)P)j z7Ab8;~jC|=gv0bz6uYSgbxjOJJVF9ep8gKV2g1t}8CJXW(&twnaEM z6w>OiLRIlNRXAs5hi<$6bpKb_!u`)*SoaBFeh2d%|F66+kB9Pm`yWflmOVt4B3n`< z70pFLmXak!p@qmc_FW@OBsE16lG3Iqr4q`VN+l5$p^}jjt&*foze)F<`I=|GdOkhR zukY*i%s&Hf;LSeIBg!Ct`{KCP$Bd2$xG%f6jdHx5pnW`(GnWZ=CNKU4P_X z=_l{*T=S3HKP-Bd=^JAK@YNOu|JPdT*-TX_AldQFV?I9uZ~t(9=fB{IirH3nP&Z$_ z!A&$1V_E;k>VJm+Cr~;| z;`2uER#oCye07D*rPtzCLoMq-o_3X?A|Nf)H?-`^08HXn6& zat~(eKXLmxV&U=kz&d{6Dff7H>Vk>T$E3A=-v4<1qIJrkAgocBsr>L{e$RepEbX@% zi^v(14E77F9wLCl%5&=V-4RUb7 z`KPf(Xp@^$G*kYu;DoiN9-@AjVrU|D`+`QLE1%viUdzlEpOv#dY=h9~y?7oOOR&h#{zD@(EZdJsv9Tr(fJg*V;zK84$iK`+GTZyitORDwH+RH-(gZD^j|ti3BJlN# z#mNWe^FV&v$5l>mz7zLWnox}%O++FmI<3Z;i6eQTNngrc6;V#`JIc-1+=yHJl-I(n z`_!-vaaXmu6wrmU%6iLgPC+Ccv`-^Z28o)qmS}A3B<@+sp0a?G0Q>jxkMB3*hbPAU zwd#>dFqoX7alD8fj=A3XG(A)SX_mLYO*VN-Jti1d-NVI>k{ah-^M1yLR6cq)wQXZZ zT7lN4uMG!?LLW*_k_y;?mS?uxME@Nzx1jjVK{k1GYq3VdSHTJBmc@CqlUJk>VX#?t z-pqGYf>p8l?J7QGt(P*+-Afd?s+wCioFO2>ksP&aQ~_}1FGvh?)<9tw-y4VUsUePO zl$_gBr=#8gRhL;Sl@NKBhRNA74TRjSdR^a5Lg_b7rf@jxqL*8x@=U8G(2Aim)|-t5 z5yi(Q(82I4Rp{NM+q&wa$hyYAUij-J*PYXr3*N@)D_;Z!YU2>G-MV z*jw08@FR!48m4SOsw;2jqu;Mf{=AdlSDOR$ua#~*b3g&*K5?4eYORH6s+IO>0w1Vy z?mI-+%zsTyH)bWuN%Qah_)mlHc9>MMhW)>1i*#U}|cJ zmZ)X$u543=;0A4Rfe1CY$8+6a28SY$LN7T8EY*VI8;Qn59UVkSSTJ+hmRZ2pIW6j3 zw+^5t&I4xGl|kOIr(j^QC_;L9TW<1b08fkTzFK)T=*@7+NUu}}d8tSFoN+1;wpTIW zdhc`)Lj!m9YfQkkZubUv(-{a(R(*@-T!46dy$3GdHvYfGWB>QgLB+?hN3r&tfXyQc z%_&7jhGUb2I81)z>H}+WMSp}#+WBi9#*N`{9y=fVjpu*y<6Upx zY<2+&M*NDA`)+x#@Z&N0!-mfV;;>SdzvO>@$Amgn${ zmHu!#tqm;4Avphz^Pz#bV%Ynte!X1!lN(5Ya0CDNpM2_9{zb6xIFEdG6h73v!qW5s z2~INNSB>Ct9viP-b-(aG_hFoD2-soSMuNkPc=HkbSoya#uDosan10_hBVPX$;K_`I zr^KB#*rV^kl82MPBEt94u;UTa7edlB+NsTUQygR)otWlkH^tL zB-7{Ps#xC_jPu_(A3VDKGP@*TS*O2}>3u7F9*6Hg!ue?YIX!>F`v^j}CH9j#teJRJ zJlt6M*XU^1{$6d(v=8KW?Kd2bvXEu_F;@CN(^<s( zALri{u?&swf0p)s7=M9&-!I-j{S2lBSa5Ds-N<@;V!F&xh0GvuHA ziC92g6(Gri8r zUsSgG_Ko)Q|M5N~(wbCZ7m6~=_GdJYJ=%XgDucA+ZxNZ+vG8n;rT@=x#VqZwfkiYO zlMLlg;O%dr@-|Bf$A>Zd|9>xi*6aA1SVS|J(_dG3`UZXS*2m#p_K~Ijzn6d3>HjGn z=dp1{T)qHPXmtDg;b2g*#q~8z{m1{5{-b$phVn<3zuhGsJ*_%qu+!r&+mE&VjW9#t zd@w^f508KQvK}c`u$eNoAGrM%Vqc6gIokg0?<3Zd>R0^7=HCR<+X|BmLN;XL+e|J_)8U8_P^nQ8oi!T#8Pmtzs(`xqGXAFjXNb(CP6Bg%g`{$<_%;ygCa z$1?a&!y@h`>a9~<)V+%pnc5HBexrG82E6rFg=VVO+u3`B4{fgruf=(620X36 zqm@eN`P@H)()5@8m-T&@zvsUMmg{G~g$LIDkMBQNi}}&$_G8toXe~cAEtd9o#c*pd z$zXpy(xGxH>EhRee6%Tlx&37AzrSTa0_*jIA3W-A1FZGk=tm!ZFu(rCd>|@~#HN{l zGnc3(xHU^))*<3a-*}b_GP9X@ zGzdMs$Js)R8>rL#($_+qdZK)J&fe*WlA>Mx#Yhd+&%WTiPHO@LsBfrAH5Y>EPUcJQ zMvB2MQ^nM|``W23k4cl=>=e;8-6-2#E@jkE>XxsG3#rtdUa{H_CtacHd2$DpBwnTN z@vlfTs*r@oG~F7v&+_neS61gZefq(rSxOmG1}1_R@w|48ycm>5Qy$3kNkdc_&GLnu z44wF^Rc#&jjoLjp^TMS`I%wvW^ttCP`H_&UUESO}yvY9WfiT&u5-M%ewAkbdF+@0T z+wf}9R6wQ0gaTh7L`#*~EomzThrVV?R4!10UNgb$lWdZRBsJeOBX|ax=cFdn3D{Q>b$nJa zs>rqG!XbWBE|m9ecBt1mUG%(Xb*)XH0FqaWaGX%xOQpC4OnrI(1JUVJ;EW4LzfsX= z_TcKfJjiUD+TB~n-cvJmY!|gWUsQ|Cl+6nJ;?U|k0vA}AT`DPJIkF1-$rH(AAvP_2}1 zw$nRe)f1Zux11-S1c&kBeRbl)$-yw>6m#&+b-Xwqqm5R?qzolOk z$#aH-ZS6CnoQ}BD(G`klTbseI>;03E%r?~NX*Lz1MIXunP79)jO14ci#MS?A9f%su z;zi%+kr#dGtFw4Vw;pR?w_%dL&&x~8Lji)_W8^*@82dm}e1W9x7yjpgfSoBD8>BD! z0TE|Fe*8}yAt-TzR1?FU`i1{_(WBh1hb;+D{g?mG%A{egZ7yc(fQybTHyOfIrpG1HCK_Gk@IZzZQNbz*>g$@FC(dN;! zR~~;JPlET1`1d3D(FEz1U&;JT|5d$#&0&7l2bzv1NSlA*$!3dtWWi?X;?3eh%m9af#kPnN9ACn9nJf)zhfmkX%RCq(phUElv ztn?2zOIvg0F8ad(GV2an5Yrnc8W{%2!vy(51*v4w^UN1T;P%IPJDdPv$p5iM?Pt^n z^9|Mti!J}h`cHVIcWjY{GSdL-cgv5n@Ep%pOV@vl|CtVJ`{C6Bub!h9SP12Zvw|-( zABgk2`s3knd;k1B@}e3}?BWD5gZ-^fyR=f{Z+b54$TMY{;NbC%CP*3ZwEWn1>a~Mf zAMEEaU-W|OHJ1P4;qdfE>pvDgBp}SXOm`N`0WwaI;zTEd|DvUbX!P~F@cGuBzJGaw zGty6u&Oc7<;sn`f|538*Yuf$U7;qwP7*95YpYe=rtWm@sjGmz6z?x$x2P~KfCcHdw zf|TBs4u2TRU!Ee>NqwMUJ!N9QB$NMO!T)%IE{{c|fJuh(8(v_@(cjTh6eYlNf;^W0 zbXWN0P;>tDMW;NL3ru*qOvUtPu;2Pz)#t=P+Vq4O@{UaH4{ral^d|`Y?;a?K6T8ze z{YNj*R9|Wz9LzNYe0=gV*nGf(|8e=_#HuRBEk$=9teyR`#8}# z+JDm11eesN>9O1(F_!%&6rH&qUpt%SMXh7uxt2}KD!M<5W&fvv<$F3N8S3xwK{ew% z`F5X~&itbK@7n+TGD47zu?bWC`CYvJX7yXM37RbNII*gOML4?s3b-=IS?72l%lvC$ zIGpGl?SIN|0?K;!do$Ia-_;)vhu62CzeoB{oFLW40y6j?$*8N98rQt(>vZq`T!IfL zR`GE=gZ{;|54}WcrEWx)MHrL)aC_jyE>3igu0Q;@=T>QkI*qU%s5QHBL@cz zOEJKI{$BoB>yHzpc!Zk%`vAK7e)1<%cKP<;@II(Jl<%2nN zsL-JNu-sUSss7{TKbHSW)PGsT?Igvr{*Hym)MB~8Z3z|tCpsDOkBIUQsl88H+oyN) z{`2%xCv!D$-)33=#?oKNX!>9_jfbWG;KVLY^o_1RM^0>y>#JscP@4^we_Q7ATXCeO zj;gSX`(okK|GoNShoy@Xqzv}A{&7%C(V@)>-@g6jiyF6e>f`?UQ{9pA6Hct+L?eU# z1PR+6#PP*iQjg}FGWic4A5M_sL?;8DY%SM7HQe?@QQO*p<@jYR|7nok!S_VX5X@&zr8_(HNm?U(|a8z8S+mt2t~xDHBw@2bN_P>RCdGk_P`{= z_+@y5Ly!H&o*CnmnZ_SjaDqGbWdkM|@}C#c^NMQtwYTZjj=$Xg5D?4u#}m_=gvrt4 z_guGN@sdDgrWYKr;Dn9X7e7ogg>WzEZ$q7vUkGEf57|xp+ul1&@iyC&V zi>qJdG1G+@Snxltzdl$*zRc;%L;DjddCNR0?V%n2xc|lV#Pj>}_elFcR{Q%ugJ(Vd z_s0^5z$AnJ53e5@mmEN!_bD*Fpn&Hm0K)}ha`gC_=OW?qj+m)T7rJ1<|G4~uu!zDj z$>4v3=Q{6EH`+P%ElgBq`GP?(h6`iHyKevZkeW1ov$~wxB$ngX5DXWJ$ts3p|2_X@z5Wo1Wh4rd4CO~& zQiO_&xnu&_Oo`fpEk`gj-_!HL6!o&mC3nD(c2! z&xFGFm#Nd&H@-PpkEoq>Z^kV)yF`6oB3&y*-#7C_#GEMbp8ou~)QknR%hdVOdEq-d zu2SueoZu3>#s_@!3QyQ3i-B!Zj_xTU0G73H*4aHCH z3EP%&fNOkRw0wyYP&$?NWCl%x?~+kBpj`?G_fC?x3$V zwRfj>v@}4^qoINi52>}1$sx|}>Ttn_JBgB@4z#PhZW^ZQu(x@4&%!oNwA>};cx#Oq zvW?5{wO_-5Zp zU%ASOj;W59d~K?SJRTf$R1N$_CF?kK&2STe3AeW`tv^dZ1kokJ>(|#%BaKS;X22)v z%iOU0SFJc<^D=>!%jQyud}nY*{R0sce@B6Qwp+q1vGyp1Std8Xs8s|Uie7og-;YLT=x4>IxBfB9kwH~m2V%?CYKvO$dKa&GcPA!Hf#b>(y! z2}DY!QrCLRBhsz+9%@uBAw0n=I*gI(0AdDoyfiZ?I9ab4jR8ip29$|+&7>bR@$#_j{geD)_kL@eGG!X-A{eu~P2xoq)f0z5t4)Cw;t-V6C54W?IXH)1 zOc4pWb$L6kqaPH}TghpcEQ?T9P@jkS1VnDBc))J|ok*(Q+1R*a3erA&g7#nyA3FBx z^t1iPK2S-AQdj2g;Y0H6zV)9fo)bmJIh|f-CxBqJGaUNfKqX&}ls%a7f=EbwLhIXt zsN_#-Rbij{iFq8m)wg`=Bf7ptt2TZbAfoRU=Wmhtk*;`$$Kh5H)aE~wlbj)fk|N7< zW?UCVmd&}k8et+xL~9#avQrRAI_ubNcrS$Vy$m0|+bV_nPW0_}+QW^=`un-|iNB=U zRX=|FtW_E1?ID_1nu{SJ^JkY_TIl=4p6$IabBTU&!vCcU1s1c|XS8@^pAmg?4L)AL z*Lip19T>JxhJVAVm??E*UnqdD*XR7g|2zob!*#i(}_- z4CAC>o~nANr=5)D8{e;i@0X#M-|&H?#VOPL z>^Ugli&xkm;b|ei$`9Y4gyV3&k{)XKLY^{zk)C_}6!2!mqY=FPkND`HDL(~abo*(? zqqdV*jRKyGc*+P~0mCU`ay%yKPJXJMDhF?}=MqWU6!2iglSlAl+0Wr(y||Vh1vW6^ zNg;qIGZub0T+~~Z{`Xt>+aFot@%|d$ufx#)T63ZyBH>xsd!YqGOzT{Dc9gM<;QNe5 zuhS6@^~a#Pt1R1}-_oC+2Ap!c1 zf1H0UmgPSk(_4pG|Kai9!7kH`%3dRu{g)<&!}kj@5hW>My=SU84RN1;?Hp}wU!|-#N z(;xP~;$0V=Y9IFh<@Sg5K?r|p|KGz~vn+oD%x=JJzv23CO$#uTS!T_0{;~kW;r;gL z_CN7M(RKc4o4;ItSnu;U#Pm19Bt!iljIHY>_C7x9@PR{~Y5ax-A9I}?5657aACCZk zz7YFjf=PzT_lsKSeb%T;{6X9BIW;lX&qH1z)ItQk)665tpjXnOb_ zJAK`gA{xae2zlcMU!3b4k5-%dwfWa8!0ZE2uN`j40l6%!RQmK(cuH`+c2tfHJH5#c~ej=_Hq;xLo{zUv%`qjFDjsD)L%(u)` z!8yn}y|6{aR0ZWN>N|WtR2{VT5?vpssRB9wp|R0wHK1+JkBq2M0dlUx%p1fRK&UMx zX|I@#DBk7)Jj$b}v~dajiIR!6pGR z^7$(cMTi3VJK}#f?;%xEWqfR;-Bh4;yj+qcI0>rD6R%_+m<4yX?>HoCrGT0?JyFOo zYNEEBIvT_$$_)e+Q{>d~h1l|Jcl=ptA!wM!p1ozlBy^WpB^O@@XcnnM_00-Ns6KHa zZ^={o0lF27slglqa6vjnNJB{-Ns64)W!p9dipS@v+BK^|rpBg-Q?+u?En9tTg{nMI zn*3sNlBWQ<7LKUyk^)y*-~1vIImmO}S7C5R0m$J8>f2vP|I2~8ZuB+XZTvw2Ydn2j z0@wKkxVfY=zlvQ=U-LXnuY$=&KN_-C`{HJYSX6-hr1WLcPNksyUCuycLJ8DtIpQNp zzwA>yG{x4b_9Tc@PVkjDPz3dbQ)WyzDuRmhPrKF&6~GcJv9MhEL%^NH@%*Y=K1{!m zQnF!l9td9{mAGEr54#9;CfP>WaKQA6bO3~U>k(L{v^DyJq5z&le9AD(4~=o(!HW&5E8o6|M|)mu->Ec?1O0%%xqqI zZc|_)EOX%;jA}{*&6D4*t*=T1-sf@p*{D|eYyx+8OP{w(V&LvLJ!gCKP4L1@>?`HkCLmRe_g-2a18GBC zmwakspeWgxL+yMtNO8>q3H42|>+Z6Wdz5I1vDbGy@i_{Vw>Vy^%#Vinp`M$yGovA> z&w3%^j)LVDFO0)gqafBG_0BAxNT~PL{~R$d65MDZYd=>;!t+Vt#!adb;4o*_13jMz zh~?U%t@kMc?8TR+sI82E&JWG!XOD}3oX;ZT%wC59&v>q98~2C9@pIhnw~N9-+Hd3f zqgTSf+^3-Y#H%n!m*pKuvkimN>DRk6u7?4YCoZKxG7RpYI9f1J5DLZ4eRpTA2?NKC ztHTi~6ucjpUd{>)g}a=V-TwPSAl^ALCwqDbJSdrcv_m`;cueC;S9^v)zuTQT-YFrV zDJ6L3z@!i`yrrw(T@nJmW%k+;3BmC4yVyI0HNkNIHrr)or(g(*uR14e7Ys8W+Z%nH zL4TeaX0H|*1VIr~O9l*rLCZj4d$MRSXpAdcr+Fj@l2`hkyweo~bsD}p>k5P54q^5r z6c+@OPT!H9pBn_>PCMUcS_Hu|p4?dR7lBarRs4e6*+3Bb_$b?e5(GqbkEA1wfnYRY zB6qM-5Qx0|-aacV5Oiv%(5B7`g70$&Kbe#ULQ$ot@Ohs=C?`&EKDj>-vV8_`ary^B zSiyn)xi16Z?bFXEWy1p@vc_QTdbdD`nd7W~aDE_6e#@=VGAjR*_>Znz-cmT{JPJAf7F%W`gaz@)p27>txvpX;8IPN>_ zY+|zmVU2=D$@bO&aFjCD=hznjGcvN4w>SmB!bvNKY>NUw(&wVD=-L3-*km-TQ6~UC z`YkZi^9=xp_t9If$p*mklvPiH4hDeF(piRyn*LyLJm~c#(EymLZ2riaI{@;>g?b3J z`op50#gSFd{o%NxysYg4f6!d`#q%*Dfs1ud;ck*YlrCKL^7aOQs6YGW1^Ki;?0h1v z+sN$?j&3_kLW=xh>T}}zxvKuq6spEi*FyqA@;%>yb`sQ%JNtA-ia+#Po-;J(qyG=b z*oz*KKs)#Tgdz`r_#${dPpY2;+d@4CmihTZ<0g^)%_I_}3?81HY3>i@PA^LZZj<0H zkFU?HX>>gWY!>rI(GSyp`ao&Bn?LX@Ns`@6PY*fm5>>oN0$&G*Cw!?S@c#U5-~c_I zw8X<-nz>2vAm*qQIzob369s~g=8)j=BWv5-eI%#|a`Q6N^#_5EoAQ=vkRU2QX8p(6 zByiff#p00>3AEB}*Qslfpu9o7M)I*AB)OcH&CB$qw~N7UN2N$G|GIzMgyVi-l62av z^@AT=IUG9wijE(6pISt=k|BZSfy(>lyZnGVIFDV(%nu}QvhSh3@`KOextHFFlc3Cd zn@X*=AE;dAn;kNX1jl!te5yW?uGa;flF~*$=#yC3pnu+%etd(0)91M)(95XIytl^> z-Z%?}NtXEzcR$;N{QTCsc>0h6{6gG(+pBmE3lDb39>p3smV zv0`e37tneII;Ko_0eRme2VcE%2B7SUpvjYwkdupk){#KasA-j~O!5b_pnmkk&kf}* zxxT`3V+iOd2Q0N^k3w7>S(7;^!JyI+JWs1{7338pOs=_WglM{pz2~lRMcb;U&6pYQ z4lQK!+@xc6Xq)(H>GP-Dfu=G+N-d2D@+lt(MP2g%mQ3l;VOIj+yDxlrz7-Psx?ZTR z#SqM>_2yN{uBcl~jZ*Gu2YSU+n>G55katt6us&-MDt_F!Eq3}cRBat+b1H8+cg{i;{C-d(Dz z`(VKOcQ&Xcw9`~}y*X^F-2cqe-3c{(6l}XF1V~f$L6>5+D;(49v_6!$430JMUQfGc zgGe$CXSQ6J4aMJ{FD*x=D1Bh%o>HlGuqr*piI>d*k*x+=l_zMTyc-AGyLa0FA?u)v z@Nr?ZVwdnj$y_Vcdt26shjT8tYRUK9X$M3W+u%Eye(glz`X^mpSC@nSb&a%ov=X&U zo+G{6!3NAkYs|bh*a9h2JMHK)A|hBt-PgOO04iS=-BFrvi;S<`xt0{a3|!Y4x)v+x zft|Zj=&g!n=tAa+(|0!lxPI_zqhu>W%eR5PAZ1HPdbKV+VC`Z=DcgSb(K{Vve3dh= zFW(L_wY(K_IV};H_Iir1$_(JCvEhYRrigax*lU-<`ADdnM=j@@1DH*F#(6%*91+q6 zOauiCpy7+Xi}6-%SivS*d%$xE$WM-_nwMvf2p*a*Jh&bbX#&sNkHjegnq;bPb508g zsc-II%N>uZ-$!1$&uN9s9AC|ADX<5!Xvod7?c+fxY`4?x1R|ovoZy}L$`Hslb3f}w zPC{h%r5h?g^8tl>nzv2JOc45h_qpgRT_kknZR=Um0t5>$MfjwsqNu2Jj?Mk{Q2q4L zUEP;UP%%++N`3|ana_j&L7N3~CCKq_*=h?7)EckB41GjXx$V>KI}4H0pQIW_>H+X~I|caXQzae);rT|HNC%|+z+?)R-8XDk8NvnUb{D1BTBsrBj7Z~cEhO(;5#;$+8+r6RpVPF|5abtb8srPqMzq4c z?>twiBFb`F%IR}PV9l#PzjII*iHR4;DPCU;YV|YYqn|jVAfGL|m-QTgz~4Up=+3Di zuYIR`et5@BtfzDjZ`g#SF_J7 zF#;Z9{mNK*OC%&g*tNrBDF|&j(f*0L2<1&Va`A5FOhicE>t1<-7phM0ONeb+3Y@P@ zbher-Lgbke=>btnsCI&Vo?Y`|xY&7i_BZ{7Xz=-yjj8iYpSY2a)m6r!Vby?qu~zfx&{NknvL0Vnb4V^hfNt}Z`$WIlrYXr=L%3P=WVWl)wF z0xG&x{c4^t8v|E-SpJ{veh=eSnwQY(jlh8!z4?Q2xzGs5YC@%9C zUv39rc_CLR!U&y}5RJ<(G8*2!vW@RYw=+D?2^_n}SuLGlYWc7fK0Z6)&XIc>COlr7 z^DOclJUVM2UJ-r@UP-)Iy|ec;w1ssy-cBlngeeA-PLT6KFYC->UAcV7leSnv*m4}6 zIYpZ)ROWzt;LeF&k;mYGN>lx+ynPUS(Aa66&OT7NF%U;Ml>=GJLesynXG7-9vrE+P z?SaW{hpu+5O9!E$v;;B#U7)$gvtrR^3M^?qGk9)SCT!)&_MA|V21DvMuTxXEL(8Y@$ zvX{T}{T7H4ESK+3+6q!P1+uu>;^FSnMT>oCaS)zw&@pFx9Dqcbz>IU7p+Drlb5Bw{ zXisZMUF8)A<0i)E)unC$kH(lK8H5B_^H_N*Z&@sSiRhkODiQ~GB;u?$=q12~!ddRi z)^CP0{>0J;yW-&Fg<0P?9?&O9UAx><0^`7J{6gCNZZe#RE?c=*Ck}RN&G+f{jD`pW ziS!WPXh@db*s?)97ADpdH(e5*PB@E{qCzIP`-ybua2pWc$693BnVGO``^c+%s0dPYvR zDjXL1&2+oQ8v&F9X+BAn(Qu&3zsFQF3W{oWD;t@|z<2khd5#xjps_CF$R@sUSoeKR zN=f7?n4<4xAT%{Kb9VTuI zvy;N$blV5#no|0NCz>FoyeSxN%Eq+6qYsRi9nPT;q(h-pYVE)R(NHk!SW8u)$G6Qd zH@h}47>-z4PUAfq405-=3>`8Jht#vstJxL^?$t$6!t|H8pUZ7n>w7R5_=<%MyXg}K z``w>qn(hXI^+)x*_N+i?PV@|qhzo$~^IfI$`vRfoOu{(R)?nb+=j4Cza0on&4(W|m z@rP*XyEWb8f?9x;35H>2N^rb`v!IV#h zt<7SAAZ}Fcq|y`!99*`!CMQTh7I9mD|62f5!mgN=Ujm?{opX!e+CZ2l60WZ`F$mZb znml$p20>eJ8)OXyLZb$}YW+fjK=<3chl&EBYJWl;IEBK?#P$$J89(@D0L0%bmJsNAm_9!qF!PB& zoIE?{N`GMhJSwQ5ELcv0*o}Twwb%UN(vE(Du(S^pR3vsBT@(VAw5MsIp(JRjS1)Zm z><0<{kLE=sl3@2oT6#vEAMCVSYB?Ab2$ij0=46S4fXR5{nH#(O!Q+IfZrn?Mh+iVs zzH*@-Oqoz6eMu=0u1NAMTkh`*3!}r=AMd5xw|yaH4lliY3PVJX(e<4BD&gAO5+B%i z&qDR)W`9skcy*~zGXPw!U$u>Y?gK|RWj3sF@(1fhVJ7n3-k@|`p={`FAY?UDYA)RO z0lTy^&Bm?%kYY?;b8fdUWT}4YJ$@wsY9?=rKTO>S9sN@5g)jVIudeAr!$1<;54hGL z?LbdQQ;Gk&58aMe`>l2#420MFt!}@53!k0ZIaO zEU4E0pcHbjdHZV;P%f|0^D-sD^S;_|T5co=Q|x%iwVgfzti0v5btnjYPp`{VRv>|@ zP~rrqFn_47-dyNxPJ&d2gfbER0Px?xc%3)d7mS>j$sYJjf>jpL?raJEaJnn(s55=y z@+>k%;GG;jf99H;d$s)ml+1*!bi9D=N`MKwtT(h%=RNirqTddb{o?pO`b5<0u*N>E zBu|LE@PM;i*%!p9^#Q`3{y!%=yuW%Jm-LOh>5FK?D`^XPeg#TQw@Kf|=@Q_(A$_AV weU*2cfUk>NV34QJnjpUbdM{;B?V;kK8oV|!-EHFqI)2H Date: Mon, 3 Jun 2024 17:33:08 +0530 Subject: [PATCH 2/3] Add Improved Models --- .../MoreModels.ipynb | 8630 +++++++++++++++++ 1 file changed, 8630 insertions(+) create mode 100644 Hedging with Real Estate/New_Upgrade_Bengaluru_House_Price_Predition/MoreModels.ipynb diff --git a/Hedging with Real Estate/New_Upgrade_Bengaluru_House_Price_Predition/MoreModels.ipynb b/Hedging with Real Estate/New_Upgrade_Bengaluru_House_Price_Predition/MoreModels.ipynb new file mode 100644 index 00000000..29964f9f --- /dev/null +++ b/Hedging with Real Estate/New_Upgrade_Bengaluru_House_Price_Predition/MoreModels.ipynb @@ -0,0 +1,8630 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.pipeline import Pipeline\n", + "import pickle\n", + "import numpy as np\n", + "\n", + "# Scraping the data preprocessing pipeline from the existing Pipeline\n", + "with open('PIPELINE.pkl' , 'rb') as file:\n", + " pipeline = pickle.load(file)\n", + "with open('dataframe.pkl' , 'rb') as file:\n", + " data = pickle.load(file)\n", + "\n", + "data_pipeline = Pipeline(pipeline.steps[:-1])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "Pipeline(steps=[('step1',\n", + " ColumnTransformer(remainder='passthrough',\n", + " transformers=[('col_tnf',\n", + " OneHotEncoder(drop='first',\n", + " sparse_output=False),\n", + " [0, 2])])),\n", + " ('step2', StandardScaler())])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_pipeline" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Index: 7651 entries, 0 to 10664\n", + "Data columns (total 7 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 area_type 7651 non-null object \n", + " 1 availability 7651 non-null int64 \n", + " 2 location 7651 non-null object \n", + " 3 total_sqft 7651 non-null float64\n", + " 4 bath 7651 non-null float64\n", + " 5 price 7651 non-null float64\n", + " 6 bhk 7651 non-null int32 \n", + "dtypes: float64(3), int32(1), int64(1), object(2)\n", + "memory usage: 448.3+ KB\n" + ] + } + ], + "source": [ + "data.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "X = data.drop(columns = ['price'])\n", + "Y = data['price']" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.ensemble import GradientBoostingRegressor , AdaBoostRegressor , StackingRegressor\n", + "from sklearn.metrics import mean_absolute_error\n", + "from sklearn.model_selection import train_test_split , GridSearchCV , RandomizedSearchCV\n", + "\n", + "x_train , x_test , y_train , y_test = train_test_split(X , Y , shuffle = True , test_size = 0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 5 folds for each of 1176 candidates, totalling 5880 fits\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-47.027 total time= 0.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-47.426 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-48.581 total time= 0.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-49.476 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-51.104 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-47.331 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-47.979 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-49.854 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-48.490 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-47.679 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-48.269 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-50.282 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-49.113 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-47.874 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-48.998 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-50.646 total time= 0.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-47.737 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-47.932 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-48.804 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-46.554 total time= 0.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-47.384 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-51.388 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-47.792 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-48.987 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-47.376 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-47.600 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-50.936 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-48.515 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-48.145 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-47.335 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-47.629 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-49.033 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-51.758 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-47.643 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-46.991 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-43.134 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-44.723 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-47.921 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-45.516 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-43.048 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-45.768 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-43.109 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-48.420 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-46.118 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-44.608 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-45.248 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-46.878 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-45.033 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-45.867 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-45.036 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-43.724 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-46.721 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-48.213 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-44.819 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-44.943 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-46.269 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-44.929 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-48.054 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-46.757 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-44.384 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-44.637 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-45.367 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-43.408 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-45.974 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-45.522 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-44.389 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-44.358 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-47.715 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-45.476 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-44.775 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-42.292 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-40.214 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-43.914 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-42.545 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-42.712 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-42.079 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-43.719 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-44.275 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-40.960 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-43.431 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-43.453 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-44.939 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-43.028 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-43.192 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-43.354 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-43.500 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-45.802 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-42.777 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-41.519 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-41.497 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-41.530 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-43.517 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-43.521 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-42.250 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-45.237 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-42.514 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-44.287 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-43.913 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-43.856 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-43.117 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-42.329 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-43.407 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-42.672 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-44.286 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-42.309 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-38.506 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-39.499 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-41.835 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-40.497 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-42.928 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-40.710 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-40.324 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-42.019 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-40.445 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-39.040 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-39.290 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-39.584 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-41.582 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-39.474 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-40.175 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-39.998 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-39.135 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-42.849 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-39.986 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-38.788 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-37.408 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-41.330 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-42.653 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-41.051 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-37.679 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-38.798 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-40.407 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-39.850 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-41.750 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-41.049 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-42.316 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-40.928 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-46.847 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-44.840 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-47.150 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-46.159 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-45.009 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-45.310 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-47.040 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-42.413 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-41.787 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-48.243 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-45.953 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-38.908 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-44.477 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-45.223 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-45.954 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-48.669 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-47.135 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-46.065 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-44.547 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-47.838 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-49.400 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-45.807 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-44.746 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-45.970 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-46.234 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-48.149 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-45.446 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-45.300 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-43.881 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-46.597 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-48.193 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-45.715 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-45.672 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-47.385 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-43.958 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-47.410 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-45.077 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-45.287 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-40.306 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-42.056 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-40.712 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-40.468 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-42.520 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-39.983 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-40.622 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-43.673 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-41.245 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-41.127 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-40.778 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-40.608 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-41.602 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-42.659 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-41.863 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-40.389 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-41.722 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-44.767 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-41.092 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-40.953 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-41.823 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-41.055 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-42.963 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-39.943 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-40.593 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-39.454 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-40.509 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-41.306 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-40.557 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-42.891 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-39.212 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-40.891 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-43.363 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-40.398 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-39.566 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-37.665 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-36.710 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-39.068 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-39.139 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-36.586 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-38.428 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-37.951 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-39.686 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-36.351 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-35.356 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-36.285 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-36.896 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-39.296 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-37.909 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-35.915 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-35.890 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-36.770 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-37.648 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-39.054 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-36.641 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-35.612 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-39.401 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-36.963 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-35.993 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-36.519 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-38.676 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-37.474 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-38.508 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-37.521 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-36.552 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-36.746 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-39.044 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-40.368 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-36.409 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-36.942 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-34.232 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-35.038 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-36.936 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-35.160 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-33.710 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-33.990 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-37.210 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-35.313 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-33.978 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-33.894 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-32.286 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-35.236 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-37.003 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-34.544 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-35.178 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-35.362 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-32.768 total time= 0.9s[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-35.979 total time= 0.7s\n", + "\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-34.140 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-33.816 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-33.129 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-35.616 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-35.089 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-32.960 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-35.670 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-32.661 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-34.863 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-37.140 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-33.833 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-33.867 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-44.322 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-48.501 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-33.845 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-34.881 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-35.030 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-34.708 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-49.634 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-47.455 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-46.792 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-45.531 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-46.271 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-46.361 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-47.122 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-49.186 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-32.611 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-46.190 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-47.383 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-49.765 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-47.245 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-45.177 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-46.723 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-44.827 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-49.081 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-46.868 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-46.426 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-47.829 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-46.138 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-46.484 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-46.128 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-50.297 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-45.842 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-47.458 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-47.525 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-48.942 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-46.366 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-46.638 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-44.982 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-46.493 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-46.770 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-45.657 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-40.476 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-43.007 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-41.755 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-43.071 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-40.510 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-42.057 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-42.869 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-44.877 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-42.496 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-42.147 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-42.619 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-41.944 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-41.782 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-44.221 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-41.271 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-40.603 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-43.450 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-43.585 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-41.485 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-41.687 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-43.335 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-43.037 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-42.673 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-42.041 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-40.449 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-43.580 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-40.757 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-41.732 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-44.234 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-41.869 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-41.928 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-41.979 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-42.186 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-42.609 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-42.279 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-39.534 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-37.932 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-40.305 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-37.917 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-38.107 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-39.196 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-36.822 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-40.073 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-37.238 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-37.387 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-36.900 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-39.445 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-40.411 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-37.669 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-39.009 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-37.604 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-39.931 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-40.942 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-37.773 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-36.229 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-38.277 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-38.693 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-38.659 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-39.943 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-37.080 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-38.130 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-39.969 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-39.417 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-37.414 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-39.068 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-37.225 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-40.808 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-39.945 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-40.314 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-36.419 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-34.234 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-35.145 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-36.084 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-34.258 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-37.056 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-33.760 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-38.561 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-36.584 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-35.347 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-34.176 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-34.180 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-37.165 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-36.502 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-36.969 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-35.393 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-33.367 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-37.975 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-37.018 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-36.870 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-33.863 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-34.438 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-35.577 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-36.950 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-35.303 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-33.213 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-34.773 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-36.620 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-37.963 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-35.876 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-33.533 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-42.963 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-33.421 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-43.913 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-36.273 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-46.092 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-37.844 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-43.138 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-42.673 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-36.592 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-43.532 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-42.327 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-33.660 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-44.914 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-43.511 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-42.416 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-42.718 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-43.586 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-45.313 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-43.283 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-42.691 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-41.527 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-44.961 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-43.771 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-43.080 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-42.672 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-41.814 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-44.318 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-42.414 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-44.726 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-44.583 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-45.328 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-41.903 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-43.601 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-42.404 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-41.772 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-44.408 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-42.675 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-42.996 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-46.357 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-42.856 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-36.142 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-37.431 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-37.219 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-37.578 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-35.828 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-36.649 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-37.174 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-39.400 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-37.908 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-36.122 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-35.709 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-36.821 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-37.553 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-36.878 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-36.304 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-36.599 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-38.422 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-38.319 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-36.357 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-37.378 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-37.710 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-35.335 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-38.362 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-36.285 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-36.897 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-35.977 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-35.877 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-39.940 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-36.373 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-36.631 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-37.274 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-37.572 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-40.333 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-38.052 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-35.349 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-31.944 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-33.362 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-35.106 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-33.669 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-32.294 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-34.193 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-32.493 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-32.636 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-32.707 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-32.856 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-31.443 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-33.730 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-34.492 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-32.926 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-32.660 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-31.598 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-34.438 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-34.174 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-33.580 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-32.929 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-32.687 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-33.222 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-32.979 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-32.810 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-34.367 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-33.781 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-32.982 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-34.350 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-33.270 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-32.254 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-31.623 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-33.590 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-34.363 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-32.740 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-32.529 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-29.618 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-30.224 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-29.472 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-31.753 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-30.392 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-29.854 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-30.014 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-31.227 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-31.638 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-29.784 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-31.424 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-29.970 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-30.541 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-29.245 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-30.502 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-30.597 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-29.819 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-31.776 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-30.212 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-29.389 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-30.567 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-30.410 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-31.776 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-30.308 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-29.346 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-28.891 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-30.010 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-31.717 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-29.964 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-44.189 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-29.303 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-45.218 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-46.359 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-29.020 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-30.435 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-44.008 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-44.141 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-43.251 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-30.029 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-31.464 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-45.970 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-46.475 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-44.127 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-46.000 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-43.115 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-45.779 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-44.712 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-28.805 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-44.311 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-42.828 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-44.719 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-48.539 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-43.742 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-43.080 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-45.110 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-43.780 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-45.588 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-46.554 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-44.492 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-42.435 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-45.036 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-43.010 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-45.991 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-43.820 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-43.454 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-42.353 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-44.010 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-46.561 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-45.113 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-42.752 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-37.893 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-39.008 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-40.721 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-38.787 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-37.742 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-40.922 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-38.152 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-41.009 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-38.513 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-37.474 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-38.091 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-35.885 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-39.231 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-39.037 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-40.809 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-37.891 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-38.068 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-38.544 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-40.744 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-37.816 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-39.993 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-37.387 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-39.029 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-39.845 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-37.468 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-37.009 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-39.488 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-42.164 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-36.965 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-39.162 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-37.895 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-38.795 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-40.118 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-39.623 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-37.451 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-33.481 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-34.605 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-35.946 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-33.280 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-35.195 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-33.919 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-33.790 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-34.286 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-33.247 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-35.803 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-33.694 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-33.717 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-36.361 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-35.020 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-33.305 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-33.926 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-33.145 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-34.856 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-34.136 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-33.263 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-33.654 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-34.724 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-37.513 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-36.040 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-33.297 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-33.122 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-34.531 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-35.536 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-35.004 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-33.648 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-33.492 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-35.159 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-37.313 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-35.003 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-30.008 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-32.808 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-32.932 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-32.147 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-31.285 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-33.168 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-31.394 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-31.625 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-30.695 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-30.350 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-31.516 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-30.425 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-31.795 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-32.907 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-30.400 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-30.900 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-30.673 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-31.249 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-32.935 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-30.836 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-31.035 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-31.545 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-32.930 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-31.865 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-31.320 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-29.392 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-30.211 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-31.701 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-32.141 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-39.613 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-29.815 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-31.324 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-30.552 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-40.918 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-32.291 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-30.261 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-30.962 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-32.084 total time= 1.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-41.530 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-40.805 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-40.487 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-41.437 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-38.917 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-42.800 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-40.716 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-39.913 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-40.274 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-41.048 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-42.138 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-41.080 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-40.035 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-39.566 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-42.729 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-41.458 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-41.692 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-39.436 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-40.158 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-42.237 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-41.116 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-40.073 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-40.132 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-39.814 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-40.595 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-40.558 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-43.808 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-40.732 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-40.340 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-39.859 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-41.432 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-41.818 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-39.611 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-32.364 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-34.117 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-32.913 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-35.230 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-33.610 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-34.005 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-32.792 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-35.979 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-33.889 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-33.723 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-31.545 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-33.455 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-34.985 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-33.669 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-32.928 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-31.738 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-33.824 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-35.677 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-33.919 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-33.022 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-32.099 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-35.316 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-33.812 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-33.418 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-32.629 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-32.287 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-33.934 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-34.775 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-33.349 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-33.889 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-32.804 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-33.430 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-35.382 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-32.736 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-34.092 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-28.056 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-30.119 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-29.426 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-30.634 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-28.215 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-28.759 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-29.789 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-31.209 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-29.233 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-28.689 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-27.815 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-30.018 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-30.494 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-28.822 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-29.136 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-28.061 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-29.902 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-30.299 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-29.542 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-28.649 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-28.637 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-30.875 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-29.649 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-29.107 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-28.530 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-28.257 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-28.927 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-30.092 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-29.546 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-28.452 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-28.135 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-29.873 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-30.019 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-29.704 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-26.746 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-25.569 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-27.815 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-28.345 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-26.459 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-25.723 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-25.416 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-26.181 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-26.307 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-26.960 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-25.637 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-25.466 total time= 1.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-26.196 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-27.876 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-26.824 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-25.290 total time= 1.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-26.085 total time= 1.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-26.339 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-27.596 total time= 1.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-26.672 total time= 1.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-25.507 total time= 1.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-25.123 total time= 1.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-26.379 total time= 1.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-27.516 total time= 1.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-25.752 total time= 1.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-26.133 total time= 1.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-26.101 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-25.338 total time= 1.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-27.278 total time= 1.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-26.362 total time= 1.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-44.431 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-43.793 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-46.142 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-45.680 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-25.994 total time= 1.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-43.195 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-44.094 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-27.036 total time= 1.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-44.015 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-26.691 total time= 1.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-46.589 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-25.254 total time= 1.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-45.004 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-40.542 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-47.164 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-44.350 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-42.804 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-45.703 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-42.777 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-43.292 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-44.018 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-46.408 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-44.501 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-26.204 total time= 1.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-41.795 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-44.063 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-43.669 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-46.990 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-42.826 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-41.826 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-42.722 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.01, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-25.999 total time= 1.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-42.839 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-47.379 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-46.598 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-42.880 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-43.777 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-45.094 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-45.187 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-43.380 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-42.592 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-39.150 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-39.124 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-37.620 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-37.032 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-38.383 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-37.932 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-40.344 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-40.920 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-40.019 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-39.215 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-39.470 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-40.643 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-36.188 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-38.400 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-40.097 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-39.815 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-40.373 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-41.387 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-41.672 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-33.638 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-38.247 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-37.299 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-36.706 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-40.332 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-38.595 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-39.439 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-38.081 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-37.075 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-40.467 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-39.964 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-36.220 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-35.670 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-37.310 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-36.581 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-38.555 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-32.907 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-35.480 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-35.194 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-37.800 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-35.461 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-34.828 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-36.248 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-35.729 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-35.407 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-33.014 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-34.106 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-33.984 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-37.368 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-33.969 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-33.567 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-32.587 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-37.216 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-34.783 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-34.691 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-34.378 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-35.530 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-35.137 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-34.964 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-37.327 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-35.220 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-34.155 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-32.888 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-35.161 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-33.780 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-37.926 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-34.690 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-35.578 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-35.113 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-35.988 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-32.922 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-33.978 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-32.247 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-30.279 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-31.891 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-31.293 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-30.619 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-31.905 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-31.820 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-31.733 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-30.919 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-30.159 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-30.334 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-32.864 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-31.316 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-29.796 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-29.659 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-31.143 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-33.761 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-33.881 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-30.461 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-31.198 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-31.110 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-33.692 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-31.117 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-31.752 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-30.159 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-31.346 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-32.453 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-29.774 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-31.758 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-36.601 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-31.152 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-40.566 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-40.353 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-31.816 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-40.929 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-39.442 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-40.320 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-30.178 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-32.860 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-38.076 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-28.908 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-40.512 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-42.253 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-40.885 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-39.678 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-37.750 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-41.757 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-37.032 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-40.464 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-40.275 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-37.281 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-41.714 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-40.414 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-39.920 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-37.372 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-36.923 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-37.850 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-38.019 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-37.959 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-38.570 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-41.279 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-41.623 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-37.681 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-39.458 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-37.322 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-42.423 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-39.279 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-39.886 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-39.860 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-31.646 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-33.905 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-31.744 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-35.011 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-30.315 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-31.207 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-34.352 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-32.549 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-32.440 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-31.135 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-33.303 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-31.832 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-33.378 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-32.416 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-31.421 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-30.456 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-30.676 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-34.311 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-32.952 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-30.843 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-31.361 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-32.708 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-33.551 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-32.051 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-31.829 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-31.606 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-34.756 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-34.434 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-32.187 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-33.425 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-31.085 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-33.721 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-33.757 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-30.675 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-31.246 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-29.613 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-29.671 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-28.728 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-32.517 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-28.551 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-28.930 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-29.142 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-29.544 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-28.680 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-27.809 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-28.534 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-29.064 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-28.878 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-29.363 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-28.170 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-27.785 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-30.612 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-29.579 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-29.399 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-27.580 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-30.463 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-28.033 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-30.719 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-28.955 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-29.455 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-27.944 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-28.340 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-28.574 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-30.208 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-29.227 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-28.232 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-28.293 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-29.041 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-31.380 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-27.426 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-27.502 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-26.716 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-27.854 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-28.449 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-27.705 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-27.748 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-27.081 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-29.059 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-26.755 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-26.931 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-27.227 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-26.727 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-27.896 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-27.667 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-27.119 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-26.840 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-27.148 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-27.359 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-27.404 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-26.428 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-26.456 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-27.403 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-27.572 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-26.899 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-27.339 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-26.371 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-27.624 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-27.779 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-27.556 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-26.810 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-39.777 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-42.150 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-41.564 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-26.551 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-39.267 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-27.451 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-27.371 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-41.730 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-27.601 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-38.715 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-26.985 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-40.579 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-42.767 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-39.710 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-38.850 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-36.309 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-38.100 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-42.833 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-37.973 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-40.092 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-40.128 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-39.983 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-45.274 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-41.649 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-40.544 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-37.806 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-42.744 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-39.841 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-38.278 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-42.205 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-38.640 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-40.585 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-41.598 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-40.874 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-39.807 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-38.564 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-42.140 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-41.045 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-39.071 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-39.085 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-31.983 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-33.029 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-34.965 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-34.899 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-31.675 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-33.119 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-33.463 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-36.914 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-33.624 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-33.159 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-32.208 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-34.520 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-33.281 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-33.571 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-31.447 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-32.130 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-33.376 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-34.420 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-33.793 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-32.234 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-33.650 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-35.121 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-35.169 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-31.193 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-31.779 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-32.795 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-36.155 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-33.073 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-34.440 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-33.614 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-33.073 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-37.474 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-32.850 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-32.146 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-34.599 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-29.780 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-29.009 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-31.133 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-29.907 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-30.699 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-27.888 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-29.654 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-30.982 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-28.115 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-28.343 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-28.363 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-29.247 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-30.054 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-28.503 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-28.711 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-29.609 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-29.940 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-30.588 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-31.889 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-28.060 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-29.175 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-30.039 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-30.774 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-28.831 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-28.242 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-28.134 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-29.487 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-30.371 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-31.083 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-29.711 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-27.364 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-29.510 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-29.469 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-30.918 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-27.741 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-27.114 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-27.282 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-28.152 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-25.870 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-27.627 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-27.588 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-25.982 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-27.676 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-26.907 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-26.380 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-26.651 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-27.511 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-28.892 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-27.685 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-25.797 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-26.480 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-26.889 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-27.713 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-27.758 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-26.039 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-25.689 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-27.387 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-27.653 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-26.511 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-26.616 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-27.496 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-26.860 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-28.397 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-28.323 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-33.764 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-26.954 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-27.142 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-36.745 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-27.978 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-27.026 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-34.439 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-36.387 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-34.021 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-33.378 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-26.642 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-34.296 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-36.183 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-35.349 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-36.499 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-27.468 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-32.827 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-35.779 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-37.462 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-34.814 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-34.647 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-36.959 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-34.925 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-34.477 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-33.416 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-36.530 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-33.612 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-36.423 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-36.041 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-36.833 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-34.825 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-34.584 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-35.170 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-37.789 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-34.400 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-34.601 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-34.459 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-33.577 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-34.720 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-35.918 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-34.407 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-27.832 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-27.982 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-28.658 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-28.357 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-29.594 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-28.204 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-27.473 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-29.950 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-28.160 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-27.166 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-31.023 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-28.121 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-27.449 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-27.219 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-27.699 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-27.335 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-28.793 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-28.800 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-28.072 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-27.936 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-28.652 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-28.514 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-28.614 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-27.755 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-28.240 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-27.320 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-27.724 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-30.155 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-28.491 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-28.281 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-27.411 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-27.341 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-28.331 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-28.469 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-26.062 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-28.514 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-26.419 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-26.660 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-25.314 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-24.993 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-24.557 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-25.129 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-26.249 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-25.122 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-24.544 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-25.124 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-26.074 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-25.454 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-25.332 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-25.104 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-24.538 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-24.787 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-25.965 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-24.477 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-24.324 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-25.069 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-24.595 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-25.243 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-25.759 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-24.977 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-25.034 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-25.563 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-26.202 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-24.446 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-25.212 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-24.280 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-25.253 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-26.065 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-23.263 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-25.556 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-25.099 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-23.970 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-23.431 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-24.382 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-24.759 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-23.216 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-23.992 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-23.657 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-25.034 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-23.800 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-23.061 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-24.939 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-23.460 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-23.504 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-23.763 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-23.686 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-23.999 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-24.347 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-24.537 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-23.559 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-23.250 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-23.665 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-24.395 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-24.146 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-23.416 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-23.595 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-23.166 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-24.972 total time= 1.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-23.565 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-23.120 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-36.298 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-35.950 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-23.435 total time= 1.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-37.945 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-23.499 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-23.328 total time= 1.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-23.936 total time= 1.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-36.432 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-36.230 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-34.878 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-35.582 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-23.176 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-38.880 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-38.391 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-36.166 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-36.384 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-34.597 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-36.682 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-35.858 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-37.145 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-35.461 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-37.143 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-37.432 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-35.544 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-36.929 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-35.673 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-36.295 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-39.358 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-38.321 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-36.591 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-34.597 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-40.634 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-36.423 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-37.272 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-37.400 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-36.792 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-40.564 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-38.100 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-35.767 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-37.316 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-27.072 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-31.070 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-28.795 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-27.456 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-29.382 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-28.176 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-29.366 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-29.653 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-29.081 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-27.351 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-28.416 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-29.304 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-30.134 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-29.150 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-28.106 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-28.612 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-30.741 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-29.385 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-28.563 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-28.283 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-27.752 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-29.223 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-27.975 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-29.646 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-28.811 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-28.827 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-29.088 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-28.862 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-29.782 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-29.018 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-28.352 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-29.077 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-29.368 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-28.699 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-29.027 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-25.068 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-25.146 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-26.689 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-25.343 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-24.081 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-24.600 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-25.312 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-26.885 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-25.917 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-25.932 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-24.880 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-25.370 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-26.295 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-25.797 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-25.064 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-24.572 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-26.361 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-26.128 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-23.602 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-25.159 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-24.569 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-25.281 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-26.735 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-24.992 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-25.524 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-23.972 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-25.525 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-25.908 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-25.686 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-24.691 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-25.399 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-25.016 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-26.722 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-26.191 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-22.971 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-25.418 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-23.618 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-25.088 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-23.226 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-23.148 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-23.439 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-23.365 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-24.515 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-23.176 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-23.666 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-23.113 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-23.426 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-23.549 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-24.130 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-23.365 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-23.058 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-22.851 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-23.800 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-22.677 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-23.448 total time= 1.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-22.772 total time= 1.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-23.204 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-24.508 total time= 1.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-22.511 total time= 1.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-22.917 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-22.887 total time= 1.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-23.481 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-23.133 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-23.194 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-24.742 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-31.850 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-29.871 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-32.345 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-22.706 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-24.143 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-24.047 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-30.717 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-30.916 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-30.053 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-31.687 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-22.366 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-32.845 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-31.852 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-31.839 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-23.113 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-30.518 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-30.894 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-32.197 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-29.966 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-31.328 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-30.425 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-31.076 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-32.199 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-32.158 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-29.803 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-29.438 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-31.740 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-30.541 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-31.215 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-31.226 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-30.344 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-31.700 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-32.245 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-30.933 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-29.632 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-30.019 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-31.938 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-31.440 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-30.657 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-30.965 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-23.899 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-25.551 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-24.858 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-24.661 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-23.472 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-23.568 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-24.988 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-25.001 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-24.442 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-23.757 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-23.641 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-25.101 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-24.423 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-25.294 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-23.996 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-24.327 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-23.583 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-25.834 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-23.561 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-24.613 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-23.457 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-24.575 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-25.866 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-24.021 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-24.371 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-22.922 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-24.524 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-25.152 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-24.263 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-24.331 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-23.890 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-25.972 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-24.292 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-24.126 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-22.751 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-23.920 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-21.010 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-21.562 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-22.786 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-22.741 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-21.745 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-22.107 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-22.579 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-21.405 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-21.906 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-21.660 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-22.045 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-22.198 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-21.721 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-21.537 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-22.341 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-21.710 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-22.170 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-22.175 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-21.741 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-20.988 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-21.664 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-22.443 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-21.852 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-21.805 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-20.944 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-22.094 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-21.964 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-21.400 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-21.582 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.142 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-22.191 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.578 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.162 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-21.011 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.153 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-20.766 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-21.243 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-20.771 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-21.068 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-20.612 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-20.738 total time= 1.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-21.127 total time= 1.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-20.907 total time= 1.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-20.609 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-20.514 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-20.907 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-20.801 total time= 1.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-20.576 total time= 1.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-20.101 total time= 1.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-20.675 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-20.952 total time= 1.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-20.422 total time= 1.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-20.547 total time= 1.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-20.986 total time= 1.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-20.097 total time= 1.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-21.053 total time= 1.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-20.810 total time= 1.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-19.907 total time= 1.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-20.158 total time= 1.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-20.448 total time= 2.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-21.030 total time= 2.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-20.660 total time= 2.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-37.773 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-42.849 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-20.295 total time= 2.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-20.345 total time= 2.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-40.947 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-40.935 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-42.308 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-36.385 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-41.658 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-21.107 total time= 1.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-20.582 total time= 2.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-39.955 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-38.659 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-37.913 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-38.206 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-39.359 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-20.970 total time= 1.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-41.805 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-42.156 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-37.894 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-36.037 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-35.757 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-39.945 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-40.771 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-20.554 total time= 1.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-39.094 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-36.619 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-37.786 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-41.818 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-37.231 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.025, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.900 total time= 1.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-37.097 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-38.145 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-40.452 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-39.675 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-35.479 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-38.157 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-36.425 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-39.496 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-41.049 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-36.513 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-34.633 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-31.901 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-29.934 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-30.054 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-33.708 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-32.887 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-30.226 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-29.724 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-32.268 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-31.887 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-29.668 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-33.090 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-30.189 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-35.131 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-33.848 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-30.435 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-30.391 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-32.825 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-31.489 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-31.690 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-31.887 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-30.999 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-32.922 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-32.781 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-33.315 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-31.214 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-32.194 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-30.885 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-31.563 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-30.231 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-30.405 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-32.006 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-31.769 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-32.136 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-30.474 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-33.741 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-28.265 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-27.725 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-27.385 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-31.789 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-28.339 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-30.435 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-26.840 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-28.988 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-29.138 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-28.134 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-27.541 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-28.967 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-29.397 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-27.630 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-28.470 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-28.508 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-29.890 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-28.670 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-28.029 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-27.689 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-27.408 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-29.615 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-29.691 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-28.894 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-26.923 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-27.180 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-29.222 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-28.416 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-29.600 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-28.203 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-28.033 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-30.043 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-28.412 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-28.323 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-29.625 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-26.917 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-26.588 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-26.598 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-27.144 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-27.867 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-25.306 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-26.653 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-28.430 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-26.325 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-27.194 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-26.072 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-26.553 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-27.659 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-26.827 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-27.221 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-26.334 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-26.049 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-27.171 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-25.019 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-27.679 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-25.723 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-26.071 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-26.477 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-27.334 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-25.379 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-25.644 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-26.046 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-26.212 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-26.980 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-25.641 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-34.103 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-25.740 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-30.559 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-26.491 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-34.649 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-32.690 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-27.596 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-31.935 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-25.964 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-31.057 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-25.423 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-33.678 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-34.229 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-33.696 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-29.608 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-32.250 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-32.522 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-35.958 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-31.438 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-34.483 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-32.706 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-35.260 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-34.616 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-30.013 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-31.653 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-31.066 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-34.339 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-31.289 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-31.182 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-32.685 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-30.723 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-31.678 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-31.876 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-32.907 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-32.464 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-35.192 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-30.561 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-31.010 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-31.420 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-31.492 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-28.328 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-26.623 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-27.193 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-27.827 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-26.652 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-27.385 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-27.949 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-28.101 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-26.238 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-26.364 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-27.109 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-27.440 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-27.359 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-26.929 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-26.899 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-26.315 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-27.340 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-27.999 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-27.240 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-25.866 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-26.540 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-26.274 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-28.867 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-24.905 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-26.647 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-26.675 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-26.910 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-27.276 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-27.454 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-26.175 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-25.740 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-27.417 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-28.168 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-27.035 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-26.007 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-24.407 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-24.704 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-25.480 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-24.196 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-23.949 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-25.300 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-24.877 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-25.127 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-25.302 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-25.094 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-25.710 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-25.553 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-24.097 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-25.349 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-25.240 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-23.771 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-25.390 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-25.143 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-25.515 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-25.113 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-24.906 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-25.168 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-24.986 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-25.213 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-24.175 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-24.604 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-25.069 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-24.576 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-25.085 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-24.758 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-25.347 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-25.175 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-24.521 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-24.882 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-24.950 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-23.605 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-22.863 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-24.877 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-22.857 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-24.615 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-24.400 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-23.813 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-23.866 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-24.287 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-23.857 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-22.784 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-23.353 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-24.386 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-24.216 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-24.869 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-23.395 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-23.424 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-24.427 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-23.407 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-24.470 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-23.245 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-24.006 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-24.058 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-23.176 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-23.343 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-24.440 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-23.430 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-24.556 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-23.956 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-23.406 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-31.189 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-23.725 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-36.049 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-35.569 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-33.611 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-36.596 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-23.664 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-36.257 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-32.162 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-34.342 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-24.395 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-24.230 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-32.943 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-33.185 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-33.846 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-23.707 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-31.776 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-34.502 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-35.328 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-31.435 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-31.965 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-33.430 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-32.921 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-33.397 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-30.376 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-33.604 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-33.510 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-36.824 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-35.727 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-32.740 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-32.823 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-31.534 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-35.266 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-33.447 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-34.840 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-30.792 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-33.147 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-34.686 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-33.041 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-33.390 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-25.941 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-26.782 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-28.431 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-27.401 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-28.172 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-25.483 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-28.542 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-25.634 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-28.026 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-28.797 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-27.250 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-26.520 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-27.500 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-27.316 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-26.750 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-27.876 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-28.104 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-28.499 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-26.555 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-28.021 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-27.060 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-30.176 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-26.219 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-27.558 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-26.430 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-25.644 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-29.154 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-27.247 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-28.322 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-26.112 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-27.353 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-26.040 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-27.987 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-27.274 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-27.021 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-23.784 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-24.519 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-24.728 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-25.751 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-25.182 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-24.635 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-25.064 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-24.562 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-25.127 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-23.711 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-25.294 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-26.002 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-23.394 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-24.280 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-24.708 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-23.900 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-25.018 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-25.780 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-22.975 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-25.345 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-24.481 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-24.981 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-25.464 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-23.780 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-24.730 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-25.365 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-23.732 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-24.652 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-24.783 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-24.628 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-25.527 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-24.718 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-23.983 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-23.729 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-23.393 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-23.250 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-23.102 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-24.402 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-22.999 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-22.547 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-22.208 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-23.133 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-23.192 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-23.087 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-22.271 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-23.872 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-23.221 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-22.817 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-23.208 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-22.802 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-22.280 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-22.931 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-23.033 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-22.936 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-22.768 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-23.083 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-22.899 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-23.917 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-22.935 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-22.886 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-22.090 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-22.347 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-23.863 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-21.962 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-22.062 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-30.303 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-23.187 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-28.185 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-22.606 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-24.021 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-27.227 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-29.379 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-26.687 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-22.662 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-22.903 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-27.036 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-28.200 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-29.706 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-30.618 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-26.477 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-28.048 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-30.241 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-27.935 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-28.768 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-27.466 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-27.984 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-27.127 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-28.162 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-27.397 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-26.916 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-25.925 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-27.315 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-28.251 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-26.334 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-29.970 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-27.538 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-27.503 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-28.194 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-29.072 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-27.117 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-27.822 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-30.605 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-28.258 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-28.357 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-27.299 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-23.593 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-23.582 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-25.197 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-24.710 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-23.541 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-23.359 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-24.539 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-23.264 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-24.415 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-23.661 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-23.945 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-23.675 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-23.750 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-23.734 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-23.480 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-24.012 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-23.615 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-22.917 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-23.871 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-23.685 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-23.215 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-24.072 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-24.346 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-24.034 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-24.089 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-23.752 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-23.490 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-24.377 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-24.745 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-23.690 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-24.129 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-23.554 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-23.907 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-24.127 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-23.859 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-21.706 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-22.199 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-23.498 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-21.466 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-22.386 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-21.571 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-21.980 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-22.777 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-22.166 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-23.148 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-22.144 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-22.907 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-22.561 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-22.270 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-21.420 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-21.794 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-21.574 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-22.657 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-21.887 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-22.357 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-22.071 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-22.149 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-21.407 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-23.371 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-21.674 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-21.117 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-22.530 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-22.964 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-22.079 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.998 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-21.564 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.282 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-22.267 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.827 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-22.820 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-20.844 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-20.800 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-21.665 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-21.171 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-21.163 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-20.900 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-20.874 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-21.031 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-20.793 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-21.106 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-20.632 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-21.071 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-21.515 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-19.771 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-21.499 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-20.573 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-21.388 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-20.909 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-20.101 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-21.170 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-20.528 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-20.661 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-21.061 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-20.932 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-21.756 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-20.364 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-21.180 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-20.505 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-21.054 total time= 1.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-21.503 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-21.799 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-21.431 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-28.855 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-20.727 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-27.057 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-29.854 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-28.666 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-28.217 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-27.778 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-33.048 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-28.368 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-20.844 total time= 1.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-28.704 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-26.719 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-30.417 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-26.982 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-20.858 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-28.979 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-29.100 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-28.990 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-26.610 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-29.305 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-27.597 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-28.781 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-30.799 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-28.436 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-31.183 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-28.207 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-28.240 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-26.696 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-27.908 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-27.971 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-29.964 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-27.413 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-28.595 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-27.667 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-29.764 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-29.058 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-29.614 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-26.626 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-23.212 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-23.712 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-24.383 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-23.845 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-23.028 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-22.670 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-23.420 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-23.907 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-24.978 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-23.077 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-22.502 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-23.092 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-23.240 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-22.431 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-23.739 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-22.972 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-23.745 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-23.077 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-22.530 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-24.186 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-23.656 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-24.723 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-23.344 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-22.726 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-24.199 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-23.444 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-22.648 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-23.965 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-22.588 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-22.175 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-22.983 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-22.658 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-23.623 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-23.049 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-21.998 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-21.723 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-21.854 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-21.854 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-21.874 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-21.852 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-21.035 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-21.710 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-21.298 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-21.532 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-21.286 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-21.360 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-21.171 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-21.414 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-20.946 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-21.396 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-21.717 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-21.499 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-22.406 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-20.793 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-21.208 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-21.275 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-21.152 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-21.077 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-21.074 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-21.406 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-19.709 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-21.548 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-21.069 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-20.937 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-20.868 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-20.652 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-21.632 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-21.158 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-20.738 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-20.785 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.586 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-20.151 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-20.311 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.861 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.837 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-20.797 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-20.951 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-19.608 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-19.218 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-20.342 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.260 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.547 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.719 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-19.563 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-19.761 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-19.813 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-19.850 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-20.093 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-19.458 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-20.240 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-20.090 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-19.985 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-20.157 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-19.732 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-19.872 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-18.976 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-19.792 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-19.241 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-20.250 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-23.303 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-25.236 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-20.683 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-19.872 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-19.513 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-20.774 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-25.793 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-20.133 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-24.641 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-24.333 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-20.283 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-25.225 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-24.423 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-25.106 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-23.958 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-23.284 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-23.179 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-24.025 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-25.050 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-24.564 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-23.675 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-25.743 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-24.524 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-24.574 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-25.137 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-24.106 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-23.794 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-25.036 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-24.236 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-24.442 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-25.285 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-23.794 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-25.093 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-25.782 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-24.599 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-24.287 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-24.566 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-23.413 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-24.782 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-24.078 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-24.967 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-21.126 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-20.785 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-21.688 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-19.998 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-20.622 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-20.830 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-21.180 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-20.815 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-20.585 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-20.557 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-20.620 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-20.586 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-20.496 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-20.285 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-21.542 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-20.049 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-21.257 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-20.279 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-21.505 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-19.986 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-20.978 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-20.637 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-19.882 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-19.945 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-20.891 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-20.118 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-21.225 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-21.530 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-19.943 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-19.500 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-20.460 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-20.823 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-20.362 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-19.857 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-20.101 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-18.540 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-19.556 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.260 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-19.240 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-19.907 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-18.725 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-19.182 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-19.679 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-19.387 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-19.256 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-18.439 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-19.514 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-19.688 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-18.482 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-18.742 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-19.129 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-18.770 total time= 1.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-19.393 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-19.263 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-18.638 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-18.836 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-19.590 total time= 1.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-19.409 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-18.640 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-19.157 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-18.943 total time= 1.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-19.635 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-20.071 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-18.668 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-18.362 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-19.151 total time= 1.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-19.649 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-18.604 total time= 1.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-19.517 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.885 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-18.798 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-18.595 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-18.843 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.912 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-18.208 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-17.776 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-18.617 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-19.228 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-18.204 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-18.150 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-17.641 total time= 1.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-18.752 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-18.714 total time= 1.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-17.985 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.716 total time= 1.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-18.415 total time= 1.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-18.614 total time= 1.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-19.095 total time= 1.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-18.132 total time= 1.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-18.028 total time= 1.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-17.526 total time= 1.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-18.619 total time= 1.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-18.762 total time= 1.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-18.272 total time= 1.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.673 total time= 1.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-18.477 total time= 1.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-18.722 total time= 1.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-18.731 total time= 1.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-35.993 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.695 total time= 1.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-37.533 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-35.663 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-35.710 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-32.685 total time= 0.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-18.552 total time= 1.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-33.240 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-33.000 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-38.806 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-17.742 total time= 1.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-18.708 total time= 1.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-33.889 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-37.061 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-34.835 total time= 0.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-18.526 total time= 1.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-17.756 total time= 1.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-37.056 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-33.296 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-33.923 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-32.930 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-33.521 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-36.795 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-37.672 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-33.233 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.05, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-18.458 total time= 1.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-36.821 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-35.205 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-39.580 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-38.542 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-34.307 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-33.223 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-34.475 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-32.212 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-35.111 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-37.597 total time= 0.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-33.598 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-35.183 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-32.272 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-34.962 total time= 0.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-33.699 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-35.640 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-29.341 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-28.803 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-33.833 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-27.239 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-29.704 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-28.000 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-30.412 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-28.798 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-29.069 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-29.277 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-27.337 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-27.837 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-28.378 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-26.862 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-29.911 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-28.535 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-30.188 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-30.071 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-27.221 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-30.400 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-28.382 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-28.630 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-29.994 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-28.876 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-26.652 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-26.780 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-30.472 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-28.503 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-29.435 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-27.301 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-27.009 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-29.135 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-29.516 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-29.415 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-27.737 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-25.903 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-25.455 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-28.007 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-25.036 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-25.480 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-25.138 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-26.366 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-26.489 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-26.985 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-24.781 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-26.023 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-24.852 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-26.738 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-25.843 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-24.419 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-26.738 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-27.398 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-25.710 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-27.094 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-25.405 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-26.241 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-25.566 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-26.318 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-27.279 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-24.921 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-27.125 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-24.144 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-25.769 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-26.066 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-26.469 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-25.564 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-25.942 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-24.349 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-25.305 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-24.929 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-23.907 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-25.176 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-24.692 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-24.176 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-23.563 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-24.003 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-23.349 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-25.466 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-22.939 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-25.021 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-25.381 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-24.020 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-24.550 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-24.082 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-23.840 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-24.457 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-24.488 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-24.238 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-24.844 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-23.590 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-25.208 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-24.242 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-25.139 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-23.555 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-25.964 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-24.675 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-24.235 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-25.435 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-23.903 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-24.378 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-23.909 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-24.106 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-28.592 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-31.782 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-24.672 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-29.617 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-28.657 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-26.817 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-28.613 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-25.037 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-28.961 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-23.160 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-29.493 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-32.231 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-29.504 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-27.829 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-27.498 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-29.095 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-26.462 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-29.330 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-28.130 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-28.284 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-28.803 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-30.469 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-28.813 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-27.862 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-29.286 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-28.519 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-31.775 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-27.373 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-27.491 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-28.708 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-29.159 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-29.050 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-27.832 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-28.222 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-29.916 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-30.751 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-29.177 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-28.498 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-25.639 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-24.369 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-25.981 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-24.939 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-25.137 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-23.700 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-25.338 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-25.568 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-25.704 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-25.407 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-25.269 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-27.131 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-25.517 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-25.005 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-25.672 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-23.714 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-25.842 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-24.804 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-25.251 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-25.321 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-25.846 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-25.033 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-25.644 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-25.168 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-24.226 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-24.800 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-24.830 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-27.275 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-25.207 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-25.013 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-25.528 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-24.972 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-25.525 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-24.264 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-24.820 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-23.029 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-23.952 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-24.567 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-24.157 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-23.872 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-23.264 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-22.840 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-24.526 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-23.157 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-23.604 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-22.869 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-24.520 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-24.895 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-24.113 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-21.361 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-23.309 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-23.656 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-22.980 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-23.167 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-23.978 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-23.137 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-24.043 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-23.538 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-23.462 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-23.649 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-23.332 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-22.931 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-23.453 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-22.706 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-22.457 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-23.716 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-23.846 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-24.063 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-23.846 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-23.711 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-21.479 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-22.247 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-22.005 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-21.184 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-23.301 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-22.220 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-21.550 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-23.314 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-22.288 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-22.079 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-22.624 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-21.478 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-22.449 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-24.253 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-21.266 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-22.901 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-21.727 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-22.475 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-22.177 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-21.487 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-23.362 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-22.544 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-23.025 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-22.679 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-22.314 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-21.821 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-22.017 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-23.223 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-22.896 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-24.031 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-29.381 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-22.128 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-31.177 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-29.764 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-22.894 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-22.904 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-29.556 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-28.151 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-26.830 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-22.188 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-30.618 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-22.810 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-32.911 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-29.694 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-31.332 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-27.259 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-30.829 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-29.342 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-30.669 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-31.634 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-28.735 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-29.401 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-29.166 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-30.451 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-31.360 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-28.512 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-28.924 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-28.141 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-31.208 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-29.469 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-31.724 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-28.338 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-28.940 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-29.377 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-29.285 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-28.321 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-28.187 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-31.656 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-30.902 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-30.749 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-24.229 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-24.684 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-25.105 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-24.041 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-25.851 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-23.641 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-25.007 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-23.698 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-23.772 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-23.643 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-25.027 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-25.726 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-23.538 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-24.975 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-24.763 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-23.786 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-24.329 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-26.512 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-24.833 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-25.106 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-24.312 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-24.630 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-25.410 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-25.172 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-23.747 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-24.627 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-23.837 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-24.032 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-24.220 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-24.042 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-23.258 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-24.411 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-25.077 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-25.307 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-25.000 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-22.482 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-22.168 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-22.333 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-22.103 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-22.335 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-21.391 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-22.361 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-22.814 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-22.197 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-23.313 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-22.539 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-23.231 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-23.674 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-23.282 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-22.418 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-23.435 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-21.986 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-22.542 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-22.792 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-22.408 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-22.390 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-21.435 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-22.228 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-23.913 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-20.792 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-22.178 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-22.875 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-21.892 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-22.330 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-21.879 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-23.587 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-22.563 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-23.434 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-22.410 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-21.302 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-21.605 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-21.328 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-21.286 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-20.675 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-21.950 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-21.411 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-21.009 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-21.310 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-20.750 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-21.846 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.518 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-21.852 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-22.295 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-21.263 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.489 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-22.348 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-20.888 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-21.636 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-21.629 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-21.195 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-20.937 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-21.087 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-21.666 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-20.404 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-20.010 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-21.810 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-21.473 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-21.249 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-21.274 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-20.575 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-26.442 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-24.560 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-22.518 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-20.579 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-21.116 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-21.298 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-26.905 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-24.036 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-26.475 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-24.667 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-21.392 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-25.300 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-26.678 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-25.148 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-24.842 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-24.987 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-25.089 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-27.247 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-24.746 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-24.741 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-24.374 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-25.621 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-25.740 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-24.685 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-25.154 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-24.643 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-25.274 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-25.198 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-25.491 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-26.470 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-26.108 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-25.065 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-25.299 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-24.879 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-25.532 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-24.493 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-23.743 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-26.877 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-25.210 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-25.433 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-22.611 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-22.595 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-22.089 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-21.393 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-21.288 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-22.247 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-22.341 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-23.248 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-22.501 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-21.594 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-23.072 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-20.896 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-21.993 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-22.123 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-22.350 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-22.604 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-22.775 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-21.939 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-22.097 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-21.085 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-22.068 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-22.956 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-22.102 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-22.841 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-22.937 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-21.289 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-22.452 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-23.239 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-22.413 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-22.091 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-21.809 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-22.057 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-21.186 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-21.445 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-22.293 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.689 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-21.023 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.486 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.469 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.189 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-20.788 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-20.462 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-20.750 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-20.238 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-21.540 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-21.248 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-20.228 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-21.125 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-20.940 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-21.704 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-21.156 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-20.877 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-21.023 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-21.380 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-19.925 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-19.648 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-20.759 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-20.804 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-20.994 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-20.156 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-20.666 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-20.589 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-20.682 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-20.270 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-21.046 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.119 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-20.179 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.235 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-20.612 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-20.353 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-20.212 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-19.945 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-20.764 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-19.958 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-19.968 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-19.627 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-19.943 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-19.987 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-19.456 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-20.223 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-18.926 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-20.779 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-19.674 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-19.544 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-19.526 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-18.847 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-19.949 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-19.476 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-19.709 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-18.528 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-19.043 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-19.408 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-20.200 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-19.130 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-20.002 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-18.567 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-19.343 total time= 1.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-19.632 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-19.122 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-19.489 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-18.477 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-23.681 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-25.336 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-25.823 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.634 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-25.316 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-26.585 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-24.908 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.178 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-25.583 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-26.706 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.547 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-24.912 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-25.979 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-24.303 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.617 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-25.562 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-25.299 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-25.847 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-26.528 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-26.663 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-24.634 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-25.733 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-25.906 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-25.545 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-24.306 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-24.765 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-23.489 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-24.380 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-24.278 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-25.728 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-23.952 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-25.370 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-26.751 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-25.627 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-24.646 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-24.554 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-27.193 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-25.057 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-25.481 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-21.983 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-22.746 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-21.724 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-21.229 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-22.334 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-21.194 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-21.380 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-21.899 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-21.706 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-21.373 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-21.218 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-21.341 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-21.384 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-20.182 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-20.517 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-21.000 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-21.994 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-20.782 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-20.815 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-22.134 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-20.760 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-21.549 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-22.162 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-20.158 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-20.348 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-20.320 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-21.132 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-21.375 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-21.411 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-20.292 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-22.068 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-21.767 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-20.882 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-21.384 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-21.922 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-19.803 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-20.364 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-19.999 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-19.069 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-19.984 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-20.054 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-19.245 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-19.416 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-19.968 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-19.510 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-18.870 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-19.966 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-19.437 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-19.284 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-19.242 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-19.572 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-19.994 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-19.732 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-18.979 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-19.914 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-18.858 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-19.681 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-20.028 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-19.005 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-19.042 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-19.361 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-20.350 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-19.197 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-18.845 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-19.520 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-20.400 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-19.518 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-19.997 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-20.160 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-19.857 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-18.676 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-18.547 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.485 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-18.790 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.736 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-18.415 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-19.172 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-18.464 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-19.187 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-18.825 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-17.297 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-19.300 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-18.655 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-18.332 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-18.133 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-17.962 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-19.077 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-19.396 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-18.361 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-18.257 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-18.264 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-18.420 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-17.875 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-17.999 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-18.908 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-18.032 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-18.324 total time= 1.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-19.112 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-18.233 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-17.666 total time= 1.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-19.315 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-19.280 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-21.821 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-19.360 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-22.624 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-22.886 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-21.571 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-18.468 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-21.390 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-21.788 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-18.061 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-21.358 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-22.725 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-21.808 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-21.608 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-21.651 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-22.749 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-21.504 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-21.576 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-22.175 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-22.890 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-21.480 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-21.895 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-21.285 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-21.862 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-21.784 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-22.393 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-22.194 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-22.553 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-21.706 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-21.372 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-22.216 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-21.722 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-20.784 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-22.240 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-21.363 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-22.256 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-22.153 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-21.958 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-20.765 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-18.993 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-19.894 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-19.644 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-19.778 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-18.771 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-18.931 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-19.612 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-19.670 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-19.588 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-20.223 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-19.285 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-18.877 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-19.774 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-18.894 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-19.943 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-18.359 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-19.589 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-21.051 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-18.795 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-18.619 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-18.573 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-19.729 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-19.823 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-19.079 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-19.396 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-19.796 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-18.246 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-19.558 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-18.758 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-19.611 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-18.754 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-19.241 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-19.488 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-18.378 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-18.981 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-18.847 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-17.934 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-19.247 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-18.256 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-18.595 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-17.408 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-18.503 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-18.330 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-17.899 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-17.975 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-16.916 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-18.202 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-18.250 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-17.207 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-17.781 total time= 1.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-17.615 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-18.537 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-18.408 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-17.359 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-17.888 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-17.190 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-18.301 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-17.949 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-17.565 total time= 1.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-17.768 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-16.940 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-18.389 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-18.819 total time= 1.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-17.545 total time= 1.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-18.091 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-16.739 total time= 1.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-18.578 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-18.342 total time= 1.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-18.015 total time= 1.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-18.050 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.952 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-16.518 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.940 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-16.862 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.644 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.440 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-17.993 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-18.030 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.749 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-17.627 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.392 total time= 1.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-17.648 total time= 1.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-17.681 total time= 1.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-16.486 total time= 1.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.893 total time= 1.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.600 total time= 1.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.826 total time= 1.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.204 total time= 1.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.082 total time= 1.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.166 total time= 1.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.253 total time= 1.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-17.665 total time= 1.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.709 total time= 1.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.852 total time= 1.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-17.940 total time= 1.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-16.406 total time= 1.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.483 total time= 1.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.534 total time= 1.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.032 total time= 1.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-33.367 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-32.227 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-31.991 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-32.282 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-16.839 total time= 1.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-31.155 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-29.658 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-35.548 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-32.139 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-17.653 total time= 1.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-32.780 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.061 total time= 2.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-17.225 total time= 1.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-28.692 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.552 total time= 1.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-31.775 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-28.596 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-31.422 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-31.599 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-27.522 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-28.741 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-30.195 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-30.579 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-31.013 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-37.174 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-30.097 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-35.585 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-28.715 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-33.846 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-31.890 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-30.264 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-32.137 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-32.769 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-30.350 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-31.635 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-30.911 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-34.436 total time= 0.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.075, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-17.284 total time= 1.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-33.117 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-33.491 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-30.221 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-28.160 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-27.430 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-26.177 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-26.511 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-26.487 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-26.138 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-26.111 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-29.179 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-25.975 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-26.010 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-26.058 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-26.962 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-26.477 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-25.917 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-26.132 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-26.359 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-26.274 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-27.184 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-26.533 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-26.154 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-25.546 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-26.688 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-25.523 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-26.683 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-26.086 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-27.694 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-26.586 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-27.001 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-25.501 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-25.843 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-25.307 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-28.365 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-26.974 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-26.057 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-25.403 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-23.482 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-24.787 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-23.963 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-24.177 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-24.536 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-22.509 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-25.652 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-24.683 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-25.323 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-23.905 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-23.915 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-25.607 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-24.981 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-24.526 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-23.114 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-24.983 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-24.260 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-24.664 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-23.859 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-24.677 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-24.283 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-24.931 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-25.246 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-22.126 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-26.040 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-24.148 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-23.212 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-23.805 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-25.097 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-23.549 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-24.754 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-25.255 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-23.357 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-24.323 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-24.362 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-22.695 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-22.970 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-22.992 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-21.813 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-24.116 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-23.857 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-22.462 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-23.709 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-21.538 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-23.643 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-22.743 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-23.485 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-22.801 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-23.743 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-24.235 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-23.829 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-23.182 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-22.998 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-23.792 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-22.705 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-22.341 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-22.590 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-25.271 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-24.022 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-23.525 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-23.946 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-22.736 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-22.826 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-22.315 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-26.287 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-23.916 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-22.085 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-23.795 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-29.201 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-28.476 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-28.614 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-25.912 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-22.614 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-22.322 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-26.463 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-23.146 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-27.685 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-28.847 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-29.468 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-27.028 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-28.955 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-26.593 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-26.834 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-27.416 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-26.387 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-27.925 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-28.041 total time= 0.2s[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-30.062 total time= 0.2s\n", + "\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-29.316 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-26.037 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-29.047 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-27.267 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-28.434 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-25.846 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-25.332 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-26.724 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-25.681 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-28.682 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-27.864 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-26.578 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-27.906 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-27.062 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-28.386 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-28.238 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-27.306 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-23.709 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-23.437 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-22.496 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-24.941 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-24.328 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-23.902 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-23.963 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-25.324 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-23.622 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-23.953 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-24.571 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-24.180 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-24.997 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-23.163 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-25.905 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-23.961 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-23.948 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-23.793 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-23.775 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-23.947 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-23.776 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-25.241 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-23.609 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-23.296 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-23.583 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-22.996 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-24.364 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-24.266 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-24.762 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-24.125 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-24.093 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-24.469 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-25.061 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-24.006 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-23.679 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-23.411 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-22.996 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-22.348 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-22.405 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-23.739 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-24.080 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-22.388 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-23.134 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-23.020 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-21.824 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-22.382 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-21.916 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-22.521 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-22.113 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-23.536 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-22.169 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-22.011 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-22.525 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-21.083 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-22.967 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-22.947 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-22.041 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-22.782 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-21.627 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-23.055 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-22.807 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-21.395 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-22.411 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-22.206 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-23.017 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-23.655 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-22.425 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.782 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-23.096 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-22.827 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-21.487 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-21.379 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-22.233 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-22.792 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-20.121 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-20.922 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-23.238 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-21.327 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-21.224 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-22.543 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-21.163 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-21.472 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-21.379 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-22.446 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-20.244 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-21.046 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-20.711 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-22.288 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-21.417 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-21.270 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-19.759 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-21.703 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-21.536 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-22.054 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-21.399 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-20.247 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-21.096 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-22.099 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-21.015 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-21.941 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-21.821 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-21.950 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-25.674 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-26.674 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-29.300 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-20.762 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-28.305 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-29.067 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-26.781 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-21.461 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-26.673 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-26.936 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-28.709 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-29.336 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-26.740 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-22.170 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-25.810 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-26.815 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-26.651 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-27.272 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-26.565 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-28.411 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-27.829 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-32.292 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-28.396 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-27.136 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-29.067 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-27.904 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-29.716 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-26.370 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-26.203 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-25.945 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-28.409 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-26.802 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-26.122 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-28.188 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-28.192 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-27.014 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-28.236 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-25.688 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-24.017 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-22.766 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-24.745 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-24.520 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-23.425 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-22.098 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-23.570 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-24.203 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-23.094 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-23.605 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-22.587 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-25.055 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-22.908 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-24.497 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-23.769 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-23.217 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-22.222 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-25.049 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-22.942 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-22.315 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-22.444 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-24.017 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-24.233 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-23.487 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-24.034 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-23.927 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-23.040 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-23.787 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-23.341 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-21.182 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-21.817 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-23.109 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-22.953 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-22.609 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-22.350 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-20.216 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-21.653 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-20.893 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-20.708 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-21.671 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-21.330 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-21.521 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-22.719 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-22.108 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-21.622 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-20.996 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-22.467 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-22.072 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-21.183 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-21.485 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-21.279 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-20.606 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-22.972 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-20.615 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-21.242 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-20.080 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-21.355 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-22.777 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-21.449 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-21.988 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-19.966 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-20.539 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-21.244 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-20.599 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-21.732 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-22.427 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-22.054 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-20.903 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-20.537 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-20.862 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.331 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-20.338 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-20.978 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.882 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.825 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-20.082 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-20.555 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-19.918 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-20.436 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-22.369 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-19.631 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.264 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.956 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.041 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-21.100 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-19.362 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-20.557 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-20.769 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-19.663 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-19.146 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-21.105 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-20.982 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-19.964 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-20.181 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-20.351 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-19.896 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-21.242 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-20.164 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-20.390 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-23.363 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-20.640 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-23.633 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-20.408 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-21.276 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-20.984 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-24.637 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-24.648 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-20.305 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-24.052 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-19.531 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-24.101 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-22.380 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-24.442 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-23.875 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-24.317 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-25.081 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-23.857 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-23.694 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-25.686 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-23.677 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-24.320 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-25.087 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-24.901 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-23.062 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-25.556 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-24.874 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-24.016 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-23.413 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-23.277 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-23.927 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-25.653 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-23.310 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-24.912 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-23.301 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-25.681 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-23.574 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-23.160 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-23.535 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-23.015 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-22.622 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-20.163 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-20.980 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-20.992 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-20.719 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-20.599 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-20.126 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-21.666 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-21.107 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-21.495 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-20.326 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-21.748 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-21.072 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-21.412 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-21.766 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-21.229 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-20.527 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-20.700 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-20.827 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-21.146 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-20.915 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-20.944 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-20.497 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-21.336 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-20.641 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-21.364 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-20.313 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-20.897 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-21.185 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-20.360 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-21.233 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-20.826 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-20.873 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-22.431 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-20.554 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-20.859 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.282 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.414 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-19.477 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.007 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.297 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-18.783 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-20.049 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-20.081 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-19.875 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-19.353 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-19.422 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-19.784 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-19.560 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-19.510 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-20.258 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-18.893 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-20.332 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-19.975 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-19.259 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-21.550 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-19.576 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-19.506 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-19.816 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-19.431 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-19.074 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-19.230 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-20.219 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-19.082 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-19.930 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-18.840 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-19.924 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-19.606 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-19.808 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-19.792 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-19.208 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-18.121 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-19.168 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-19.451 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-19.987 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-19.228 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-18.536 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-19.031 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-18.720 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-19.144 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-19.293 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-17.998 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-19.014 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-18.617 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-18.195 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-18.639 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-18.239 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-18.921 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-18.654 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-18.769 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-18.052 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.592 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-18.692 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-18.763 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-18.215 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-17.772 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-18.232 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-18.897 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.571 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-18.790 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-23.114 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-23.607 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.990 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-26.134 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.141 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-22.617 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-24.739 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-17.585 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-18.790 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-21.956 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-24.600 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-24.330 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-18.037 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-23.657 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-23.885 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-18.613 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-24.415 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-23.846 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-22.794 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-25.364 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-24.029 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-22.144 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-23.623 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-23.274 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-24.357 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-23.359 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-24.409 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-22.412 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-23.241 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-21.558 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-23.534 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-23.598 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-22.644 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-24.336 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-24.050 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-21.370 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-23.869 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-24.769 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-23.699 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-21.852 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-23.022 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-20.657 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-20.630 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-21.528 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-20.022 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-20.305 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-19.563 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-20.039 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-21.058 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-18.957 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-19.005 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-21.531 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-20.457 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-20.025 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-19.465 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-20.604 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-20.519 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-19.780 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-20.683 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-21.065 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-19.929 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-18.842 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-20.340 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-19.643 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-20.230 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-18.788 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-19.102 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-19.655 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-19.884 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-19.813 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-20.256 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-19.473 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-20.073 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-20.630 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-20.236 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-20.028 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-18.363 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-18.894 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-19.167 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-19.743 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-19.609 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-18.404 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-19.309 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-20.194 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-18.818 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-18.567 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-18.396 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-19.587 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-19.411 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-18.273 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-18.658 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-17.545 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-18.923 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-19.494 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-17.930 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-18.043 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-17.302 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-18.949 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-18.303 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-18.211 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-19.412 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-19.428 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-17.564 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-18.996 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-18.504 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-18.785 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-18.688 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-18.986 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-17.628 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-18.765 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-18.327 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-17.913 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-18.349 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-18.729 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-18.112 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.138 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-17.907 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-17.653 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-17.570 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-18.026 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-17.849 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-16.580 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-18.120 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-18.035 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-17.325 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-17.721 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-17.005 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-17.898 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-18.184 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-17.608 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-17.593 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-16.899 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-18.476 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-17.752 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-18.397 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-16.957 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-16.982 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-17.922 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-17.660 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-17.799 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-17.194 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-17.251 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-20.051 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-17.729 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-22.617 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-18.257 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-21.575 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-21.561 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-20.942 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-20.868 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-21.059 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-22.325 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-21.690 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-18.119 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-20.897 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-20.992 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-17.842 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-20.932 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-20.225 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-20.515 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-20.876 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-21.005 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-20.782 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-19.707 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-21.356 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-20.773 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-21.749 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-20.880 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-19.836 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-20.054 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-21.396 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-19.586 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-21.431 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-21.138 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-19.331 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-20.798 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-21.190 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-19.856 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-20.082 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-20.627 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-20.424 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-18.184 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-19.205 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-19.411 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-18.865 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-19.080 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-18.771 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-18.086 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-19.118 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-18.113 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-18.123 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-17.456 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-18.438 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-18.730 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-18.552 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-18.327 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-17.732 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-18.402 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-18.427 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-17.972 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-19.627 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-17.569 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-18.934 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-18.355 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-17.948 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-18.324 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-17.615 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-18.744 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-18.318 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-18.207 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-18.848 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-18.287 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-17.114 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-18.073 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-18.040 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-19.088 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-17.966 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-16.995 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-17.669 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-16.996 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-18.353 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-17.079 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-18.004 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-17.813 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-17.029 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-17.611 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-16.127 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-17.655 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-17.695 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-17.008 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-17.373 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-18.103 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-16.381 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-17.578 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-16.872 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-17.172 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-16.339 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-17.906 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-17.784 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-16.972 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-16.891 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-16.386 total time= 1.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-17.346 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-17.617 total time= 1.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-16.402 total time= 1.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-17.236 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-16.309 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-17.785 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-18.103 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-17.024 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-17.333 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-16.216 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.749 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.442 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-16.775 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.240 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.080 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-17.311 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.504 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-17.390 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.720 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-15.651 total time= 1.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-17.382 total time= 1.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.994 total time= 1.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.233 total time= 1.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.324 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-16.003 total time= 1.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.272 total time= 1.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-16.899 total time= 1.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-16.505 total time= 1.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-16.543 total time= 1.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-15.730 total time= 1.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-17.148 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.995 total time= 1.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.359 total time= 1.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-16.010 total time= 1.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.335 total time= 1.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.098 total time= 1.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-16.926 total time= 1.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-28.640 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-16.095 total time= 1.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-15.981 total time= 1.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-26.821 total time= 0.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-15.791 total time= 1.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-32.527 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-27.588 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-29.465 total time= 0.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-28.748 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-28.384 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-27.260 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-33.848 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-17.077 total time= 1.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-27.013 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-31.604 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-28.055 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-27.466 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-28.993 total time= 0.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-32.223 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-26.563 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-27.415 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-17.162 total time= 1.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-26.974 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-30.288 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-27.640 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-28.377 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.058 total time= 1.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-30.763 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-26.245 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-27.483 total time= 0.2s[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-27.479 total time= 0.2s\n", + "\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-26.908 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-25.930 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-29.956 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.1, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.719 total time= 1.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-28.435 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-29.116 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-27.472 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-30.168 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-33.775 total time= 0.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-32.374 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-27.992 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-25.360 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-24.799 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-26.243 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-25.463 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-23.991 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-25.008 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-24.815 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-26.557 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-24.552 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-24.793 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-23.616 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-23.951 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-25.029 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-24.079 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-26.459 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-23.939 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-23.771 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-24.438 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-25.892 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-24.900 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-23.082 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-25.032 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-26.141 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-24.266 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-25.413 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-23.513 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-24.198 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-23.301 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-24.415 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-23.721 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-24.352 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-23.896 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-23.905 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-24.678 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-24.155 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-23.513 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-22.091 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-23.672 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-23.293 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-22.527 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-24.121 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-22.774 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-22.596 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-22.510 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-22.543 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-22.736 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-23.976 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-22.240 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-21.482 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-22.929 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-23.885 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-23.076 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-23.654 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-23.050 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-22.667 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-22.718 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-23.057 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-22.164 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-24.576 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-23.332 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-23.045 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-22.743 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-21.757 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-21.467 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-22.088 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-23.094 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-22.445 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-23.786 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-23.352 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-23.738 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-21.974 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-22.587 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-20.128 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-21.828 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-23.319 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-22.853 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-21.317 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-22.056 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-21.908 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-23.379 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-21.306 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.550 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-22.334 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.694 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.939 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-21.922 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-21.414 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-22.072 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-21.643 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-21.507 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-20.474 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-22.104 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-22.100 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-21.492 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-20.725 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-20.072 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-22.241 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-21.417 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-20.828 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-24.259 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-22.434 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-24.636 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-23.315 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-26.516 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-21.613 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-21.875 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-25.003 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-25.279 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-25.566 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-23.229 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-25.383 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-24.685 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-21.994 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-24.983 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-25.436 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-24.825 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-24.429 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-25.117 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-25.909 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-24.816 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-24.420 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-24.925 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-25.542 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-25.340 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-24.507 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-26.342 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-24.865 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-26.660 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-24.147 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-24.830 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-24.475 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-25.347 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-25.025 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-25.329 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-23.819 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-27.205 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-25.671 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-25.053 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-26.123 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-24.699 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-22.465 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-22.972 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-22.420 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-23.311 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-22.110 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-23.259 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-21.622 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-21.854 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-22.853 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-23.056 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-23.970 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-22.271 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-22.188 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-21.198 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-24.647 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-22.319 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-21.626 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-23.815 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-24.167 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-21.912 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-21.441 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-22.133 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-23.065 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-22.592 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-22.053 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-22.198 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-22.708 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-23.225 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-21.726 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-22.322 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-22.411 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-22.421 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-22.447 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-21.464 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-21.333 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.689 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.755 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.918 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-21.172 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-21.781 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-22.329 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-21.743 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-19.957 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-19.954 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-22.074 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-20.491 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-20.655 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-20.440 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-21.501 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-20.783 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-21.854 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-22.304 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-21.238 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-21.431 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-20.994 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-20.074 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-20.971 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-21.046 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-21.155 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-21.273 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-19.910 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-22.468 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-20.752 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-21.729 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-21.458 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.092 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-20.968 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.407 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.226 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-22.402 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-20.325 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-21.252 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-20.899 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-19.355 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-19.584 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-20.496 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-20.680 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-20.143 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-20.616 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-21.144 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-20.282 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-19.848 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-21.133 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-19.176 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-20.760 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-19.122 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-20.597 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-19.540 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-20.469 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-22.248 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-20.415 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-20.964 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-20.635 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-19.317 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-19.820 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-20.373 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-19.103 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-19.512 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-26.586 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-20.310 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.432 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.839 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-20.955 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.620 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-23.737 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-26.434 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-24.468 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-24.587 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-23.521 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-24.689 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.903 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-20.268 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-24.197 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-26.192 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-24.331 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-23.576 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-23.711 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-26.000 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-24.671 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-24.423 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-24.959 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-23.477 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-26.778 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-25.143 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-24.189 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-24.659 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-27.656 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-26.053 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-23.805 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-23.925 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-23.745 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-24.360 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-24.137 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-24.947 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-24.987 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-24.484 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-22.671 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-24.782 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-25.467 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-24.524 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-22.507 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-21.439 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-20.171 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-20.930 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-22.505 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-21.816 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-20.471 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-21.425 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-22.014 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-21.261 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-21.128 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-20.550 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-21.747 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-22.013 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-22.508 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-20.807 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-20.848 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-23.078 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-21.786 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-20.359 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-21.813 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-20.583 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-20.786 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-20.874 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-21.099 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-21.672 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-19.860 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-22.011 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-21.761 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-21.188 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-21.777 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-22.132 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-21.774 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-20.896 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-24.089 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-20.385 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-21.386 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-20.665 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-21.338 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-21.073 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-19.654 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-20.185 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-19.684 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-19.611 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-20.807 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-19.850 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-18.781 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-19.914 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-19.341 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-20.299 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-20.334 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-19.662 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-20.469 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-18.481 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-19.061 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-21.503 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-19.750 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-20.947 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-18.748 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-19.902 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-19.316 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-19.557 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-21.114 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-19.781 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-19.772 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-19.611 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-20.002 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-19.053 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-19.237 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-19.942 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.079 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-21.141 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.510 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.262 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-18.524 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-19.232 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-18.485 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-19.720 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-19.325 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-19.775 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-18.200 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-19.491 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-19.903 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-19.723 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-19.711 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-17.368 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-19.265 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-19.251 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-19.223 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-18.559 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-19.459 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-19.181 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-18.981 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-18.743 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-19.227 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-19.044 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-20.496 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-19.936 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-19.215 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-21.052 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-22.942 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-20.094 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-17.752 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-19.595 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-23.552 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-20.413 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-21.866 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-22.075 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-19.341 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-18.729 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-21.934 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-23.731 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-19.026 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-22.179 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-21.725 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-21.418 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-22.731 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-21.671 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-22.303 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-24.852 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-21.993 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-21.868 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-23.091 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-22.348 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-22.227 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-22.230 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-22.351 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-21.845 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-23.536 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-24.519 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-22.433 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-22.423 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-21.387 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-23.339 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-21.881 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-23.085 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-21.491 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-23.037 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-21.893 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-22.905 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-20.435 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-20.548 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-19.297 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-20.537 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-20.631 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-19.412 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-19.952 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-20.751 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-18.345 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-20.525 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-19.681 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-20.023 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-18.271 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-19.698 total time= 0.6s[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-19.808 total time= 0.5s\n", + "\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-18.934 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-19.953 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-18.451 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-19.864 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-20.645 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-19.236 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-20.511 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-19.192 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-20.256 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-18.749 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-19.616 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-19.764 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-19.388 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-20.729 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-19.737 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-18.952 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-19.423 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-19.915 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-19.151 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-20.141 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-18.208 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-19.124 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-19.226 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-18.483 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-19.216 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-17.922 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-19.342 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-18.545 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-18.633 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-19.033 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-18.540 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-17.589 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-19.378 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-18.492 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-17.982 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-18.392 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-17.814 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-18.217 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-18.019 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-18.045 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-17.468 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-18.580 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-18.591 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-18.440 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-17.581 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-17.417 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-18.813 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-18.649 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-19.599 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-17.729 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-17.275 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-18.055 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-18.445 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-17.976 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-16.893 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-17.420 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-18.416 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.957 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.753 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-18.720 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-17.221 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-18.520 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.839 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-17.835 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-18.268 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-17.203 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-17.572 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-17.654 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.969 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-17.422 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-16.263 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.714 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.725 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.905 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.505 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.838 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-18.046 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-17.566 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-18.226 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.729 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.901 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.504 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-16.564 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-23.209 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.489 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.233 total time= 1.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-22.235 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-21.965 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-18.219 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-20.982 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-18.752 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.687 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-20.672 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-23.344 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-21.570 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-22.102 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-21.410 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-21.212 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-22.538 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-17.048 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-21.911 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-22.780 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-21.156 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-17.243 total time= 1.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-20.900 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-19.761 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-22.338 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-21.925 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-21.738 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-21.812 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-20.323 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-22.572 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-21.777 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-20.570 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-21.878 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-21.445 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-21.557 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-20.787 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-19.895 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-21.763 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-21.111 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-22.572 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-21.519 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-20.193 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-21.482 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-19.111 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-18.771 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-18.262 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-19.597 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-18.606 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-18.811 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-18.196 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-19.653 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-20.498 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-18.902 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-19.465 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-18.677 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-18.820 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-18.115 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-19.711 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-17.563 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-19.259 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-18.620 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-18.690 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-17.896 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-18.232 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-18.547 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-19.065 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-18.888 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-18.191 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-18.228 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-19.366 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-19.349 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-17.845 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-19.129 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-17.755 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-20.258 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-18.615 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-17.944 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-18.879 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-18.390 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-16.901 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-18.252 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-18.534 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-17.843 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-17.692 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-17.555 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-17.984 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-17.638 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-17.639 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-18.127 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-17.058 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-17.751 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-17.040 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-16.951 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-17.538 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-17.562 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-17.964 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-17.150 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-17.767 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-16.293 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-17.559 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-17.265 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-18.624 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-16.796 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-16.999 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-17.876 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-16.804 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-18.085 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-17.686 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-17.070 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-18.002 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-18.297 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-17.647 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-17.473 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-17.448 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-18.026 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-17.103 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-17.426 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-16.861 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-16.120 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-17.782 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-17.056 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-16.540 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-16.494 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-16.135 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-17.884 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-17.168 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-16.954 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-17.038 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-16.195 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-17.101 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-16.947 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-16.463 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-17.204 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-15.986 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-15.948 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-16.751 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-16.298 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-16.509 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-16.156 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-17.156 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-17.133 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-16.567 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-17.377 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-19.157 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-19.102 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-15.948 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-20.508 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-19.907 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-19.053 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-19.864 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-17.383 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-17.047 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-19.965 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-16.456 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-16.743 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-20.040 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-19.769 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-19.619 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-19.900 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-18.845 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-19.728 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-19.173 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-19.040 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-18.364 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-19.977 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-19.502 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-19.472 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-19.711 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-19.046 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-19.697 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-19.066 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-20.088 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-18.993 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-20.031 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-19.572 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-19.060 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-19.780 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-18.854 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-18.572 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-20.031 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-20.491 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-19.035 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-19.405 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-16.778 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-18.371 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-18.198 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-17.227 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-17.050 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-16.624 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-18.866 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-17.813 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-17.172 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-17.295 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-16.646 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-17.777 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-17.903 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-17.709 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-17.195 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-16.338 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-18.108 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-17.802 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-16.563 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-16.146 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-17.347 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-17.229 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-17.991 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-17.608 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-16.466 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-16.387 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-17.646 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-18.124 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-16.923 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-16.955 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-17.093 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-16.473 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-18.004 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-17.409 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-16.299 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-17.566 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-17.556 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-17.526 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-17.167 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-16.186 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-16.246 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-17.762 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-17.270 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-16.309 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-16.168 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-15.578 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-17.577 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-16.971 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-16.746 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-16.217 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-15.535 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-16.038 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-17.678 total time= 1.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-15.871 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-16.341 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-15.776 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-17.442 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-16.773 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-16.288 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-16.698 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-15.540 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-17.009 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-15.880 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-16.994 total time= 1.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-16.347 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-16.254 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-17.032 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-16.987 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-15.748 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-16.054 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.240 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.068 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-15.941 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-16.493 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-16.604 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-15.419 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.630 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.079 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.012 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.536 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-15.371 total time= 1.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.796 total time= 1.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.619 total time= 1.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-15.993 total time= 1.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.317 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-15.258 total time= 1.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-16.807 total time= 1.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-16.126 total time= 1.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-15.244 total time= 1.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-15.981 total time= 1.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-15.479 total time= 1.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.871 total time= 1.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.153 total time= 1.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-15.621 total time= 1.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-15.993 total time= 1.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-15.190 total time= 1.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-16.660 total time= 1.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.103 total time= 1.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-15.778 total time= 1.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-31.177 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-16.204 total time= 1.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-25.387 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-15.553 total time= 1.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-26.588 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-27.042 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-25.724 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-27.190 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-28.637 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-28.347 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-26.730 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-28.629 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.801 total time= 1.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.716 total time= 1.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.014 total time= 1.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-28.048 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-26.532 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-25.346 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-27.380 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-25.958 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-26.491 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-25.518 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-27.295 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-27.552 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-25.437 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.15, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.152 total time= 1.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-25.751 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-26.406 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-27.767 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-26.523 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-26.906 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-26.853 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-25.436 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-25.872 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-27.659 total time= 0.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-25.725 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-24.374 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-25.491 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-27.762 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-27.209 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-28.767 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-24.108 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-25.032 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-22.296 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-22.206 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-23.959 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-21.456 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-21.834 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-24.391 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-25.300 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-23.605 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-24.163 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-23.374 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-23.808 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-25.029 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-23.686 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-24.231 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-22.493 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-23.306 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-23.076 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-23.590 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-22.118 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-23.773 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-24.770 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-23.161 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-23.109 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-21.841 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-22.954 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-21.894 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-22.893 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-24.547 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-24.407 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-21.649 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-22.543 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-23.733 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-22.984 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-23.324 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-21.289 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-23.013 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-23.014 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-22.760 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-22.148 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-23.401 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-21.253 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-23.770 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-22.634 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-20.950 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-22.078 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-21.637 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-21.196 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-23.884 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-21.857 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-20.902 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-22.692 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-22.034 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-22.070 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-20.653 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-21.544 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-21.670 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-22.504 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-22.659 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-21.284 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-21.933 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-20.453 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-20.896 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-22.470 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-22.459 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-21.006 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-21.469 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-21.860 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-22.235 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-21.415 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-22.177 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-21.272 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-22.099 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-22.449 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-21.345 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-21.934 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-21.235 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-21.019 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-20.698 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-19.285 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.060 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-21.345 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.567 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-20.577 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-20.814 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-21.044 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-20.557 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-22.384 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-20.783 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-20.173 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-20.902 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-22.714 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-19.554 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-21.390 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-21.964 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-20.944 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-21.487 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-21.469 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-20.305 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-20.255 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-23.906 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-25.425 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-24.555 total time= 0.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-20.334 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-22.852 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-25.333 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-20.552 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-21.989 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-25.275 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-22.869 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-20.612 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-25.703 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-24.721 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-24.861 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-23.964 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-25.218 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-24.304 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-23.739 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-24.959 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-22.925 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-24.798 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-24.876 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-21.958 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-23.740 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-25.032 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-22.914 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-24.693 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-22.667 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-22.771 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-23.454 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-24.369 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-24.641 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-21.896 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-24.838 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-24.371 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-23.720 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-23.667 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-27.585 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-22.158 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-21.748 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-21.704 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-23.204 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-22.643 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-22.026 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-22.877 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-21.311 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-24.252 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-22.909 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-20.110 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-20.928 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-21.260 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-23.789 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-20.585 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-22.093 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-20.034 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-21.273 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-21.132 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-21.243 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-21.590 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-20.661 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-20.053 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-21.392 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-20.785 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-22.013 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-21.975 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-21.129 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-21.663 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-20.098 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-21.504 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-20.465 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-23.100 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-22.699 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-21.805 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-21.602 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.013 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.242 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.092 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-20.103 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-21.319 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-20.191 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-20.848 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-20.561 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-20.050 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-20.600 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-19.964 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-21.238 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-19.604 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-19.690 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-20.782 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-20.266 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-19.731 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-21.019 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-19.850 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-19.702 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-20.957 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-20.406 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-20.295 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-20.640 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-20.594 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-20.203 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-20.014 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-20.178 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-19.375 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-20.850 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-20.268 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-21.353 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-20.372 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-19.285 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-20.739 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-18.966 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-20.460 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-20.299 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-19.837 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-20.491 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-18.595 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-21.174 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-19.522 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-19.139 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-19.104 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-20.168 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-19.694 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-19.912 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-18.560 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-19.666 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-19.890 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-18.167 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-18.083 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-20.336 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-19.870 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-18.218 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-19.289 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-19.716 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-18.517 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-19.265 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-18.428 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-19.870 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-18.848 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.129 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-19.269 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-22.665 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-18.000 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-22.691 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.651 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.393 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-23.678 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-25.081 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-19.838 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-23.994 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=3, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-18.266 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-24.337 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-25.794 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-24.144 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-23.542 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-24.583 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-23.021 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-23.247 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-23.250 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-22.524 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-21.972 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-22.712 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-23.529 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-26.613 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-20.859 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-24.094 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-23.476 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-23.948 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-24.495 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-24.009 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-22.558 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-25.614 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-24.082 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-23.820 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-24.038 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-24.931 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-22.266 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-25.972 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-24.355 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-22.952 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-23.356 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-20.908 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-19.830 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-19.900 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-21.538 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-19.884 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-21.755 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-19.533 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-19.892 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-21.425 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-20.582 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-20.437 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-20.624 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-20.043 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-20.126 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-22.188 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-20.615 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-20.782 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-21.141 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-21.252 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-20.395 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-20.851 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-18.993 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-21.512 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-19.925 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-19.058 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-19.108 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-20.765 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-20.324 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-19.898 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-19.565 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-20.447 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-20.949 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-20.044 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-19.721 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-20.153 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-20.616 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-19.002 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-20.962 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-18.860 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-21.488 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-18.604 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-19.723 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-19.564 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-18.899 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-20.416 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-18.130 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-18.931 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-20.412 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-20.619 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-19.485 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-17.958 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-19.569 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-20.365 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-19.216 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-20.339 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-19.504 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-19.162 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-20.411 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-18.857 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-19.412 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-18.837 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-18.250 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-20.370 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-19.363 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-17.698 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-19.283 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-19.114 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-19.875 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-18.948 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-19.416 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-18.575 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.361 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.632 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-18.861 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-19.798 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-18.517 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-19.597 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-18.378 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-18.070 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-18.455 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-18.621 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-19.472 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-17.586 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-19.093 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-17.729 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-18.567 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-18.784 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-19.546 total time= 24.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-18.297 total time= 24.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-19.365 total time= 24.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-17.968 total time= 24.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-18.220 total time= 24.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-18.311 total time= 24.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-18.496 total time= 24.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-18.839 total time= 24.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-17.735 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-18.925 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-19.305 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-17.539 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-17.720 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-21.913 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-17.928 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-18.503 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-21.887 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-22.317 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-20.663 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-17.614 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-21.885 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-18.430 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-17.673 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-22.149 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-21.509 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-21.144 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-21.002 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-21.792 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-21.647 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-22.020 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-21.452 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-20.959 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-21.413 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-22.303 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-22.170 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-21.568 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-20.844 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-20.073 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-20.476 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-20.775 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-21.539 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-21.298 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-21.044 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-21.440 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-22.378 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-21.559 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-21.312 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-20.101 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-23.194 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-20.261 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-21.480 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-20.600 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-21.199 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-18.444 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-19.326 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-18.831 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-19.348 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-19.172 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-18.211 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-19.387 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-19.412 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-18.507 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-19.111 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-18.242 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-18.937 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-18.994 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-19.454 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-19.201 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-19.383 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-18.089 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-18.356 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-19.854 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-18.325 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-18.845 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-19.156 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-18.606 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-17.356 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-18.296 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-19.371 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-19.305 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-19.259 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-18.373 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-18.365 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-18.754 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-18.917 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-18.510 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-17.918 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-19.732 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-16.921 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-18.788 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-19.340 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-17.434 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-18.220 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-18.445 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-18.417 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-18.220 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-17.021 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-18.390 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-16.494 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-18.603 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-18.036 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-17.054 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-18.185 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-17.114 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-18.580 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-17.689 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-16.756 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-17.905 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-16.758 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-18.131 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-18.368 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-17.408 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-17.747 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-17.320 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-18.776 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-17.630 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-17.226 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-16.886 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-17.368 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-17.748 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-18.124 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-17.920 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-17.405 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-16.552 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.575 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-18.125 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.666 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-18.113 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.892 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-17.479 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-17.332 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-17.344 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-17.102 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-17.868 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-17.613 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-17.125 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.582 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.427 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-16.472 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.801 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.180 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-17.133 total time= 1.1s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-16.736 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-17.446 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-15.767 total time= 1.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-17.266 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.828 total time= 1.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.574 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-15.897 total time= 1.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.497 total time= 1.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-16.710 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-17.896 total time= 1.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-16.240 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.215 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-20.089 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-21.479 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-21.388 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-22.910 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.5;, score=-20.015 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-17.641 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-21.089 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-20.324 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-22.019 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-20.860 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.919 total time= 1.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.618;, score=-20.498 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-20.952 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.520 total time= 1.1s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-18.745 total time= 0.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-19.999 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-20.629 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=5, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-17.249 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.8;, score=-19.632 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-21.811 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-20.584 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-19.491 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-21.045 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-19.922 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.85;, score=-19.463 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-20.575 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-20.402 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-19.822 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-19.549 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.9;, score=-19.729 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-20.302 total time= 0.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-20.855 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-20.771 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-18.668 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=0.95;, score=-20.304 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-21.720 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-20.365 total time= 0.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-21.816 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=50, model1__subsample=1.0;, score=-19.611 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-16.872 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-19.410 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-18.787 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-18.167 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-17.087 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.5;, score=-18.946 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-18.090 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-18.850 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-17.629 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.618;, score=-18.301 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-17.527 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-18.324 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-18.447 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-17.955 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.8;, score=-18.907 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-17.756 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-18.918 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-17.355 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-18.505 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.85;, score=-17.398 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-19.006 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-17.570 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-19.175 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-17.798 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.9;, score=-18.168 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-17.368 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-17.660 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-18.448 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-17.300 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=0.95;, score=-17.767 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-18.322 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-18.336 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-18.277 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-18.436 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=100, model1__subsample=1.0;, score=-18.519 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-17.049 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-17.330 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-17.259 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-17.395 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.5;, score=-18.008 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-18.563 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-18.759 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-17.508 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-16.788 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.618;, score=-17.484 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-16.875 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-17.557 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-17.440 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-17.476 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.8;, score=-16.923 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-17.832 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-16.582 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-16.726 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-16.876 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.85;, score=-17.232 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-16.343 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-18.063 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-16.738 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-17.149 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.9;, score=-17.042 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-17.154 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-18.410 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-16.906 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-17.574 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=0.95;, score=-16.653 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-16.837 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-17.605 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-17.642 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-16.589 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=150, model1__subsample=1.0;, score=-16.535 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-16.853 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-17.406 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-16.934 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-17.200 total time= 0.6s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.5;, score=-17.212 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-16.236 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-17.501 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-17.584 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-16.623 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.618;, score=-16.413 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-17.275 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-16.983 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-15.768 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-16.005 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.8;, score=-16.255 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-15.421 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-17.067 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-17.159 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-15.976 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.85;, score=-16.567 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-16.101 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-17.112 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-17.069 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-16.620 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.9;, score=-16.912 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-15.875 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-16.858 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-15.931 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-16.579 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=0.95;, score=-15.571 total time= 1.1s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-19.046 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-16.116 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-19.398 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-16.983 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-19.048 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-18.628 total time= 0.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-18.299 total time= 0.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.5;, score=-19.605 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-19.361 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-18.207 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-17.438 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-16.731 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-17.990 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.618;, score=-18.230 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=log2, model1__n_estimators=200, model1__subsample=1.0;, score=-16.394 total time= 0.9s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-18.463 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-18.000 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-18.404 total time= 0.3s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-18.264 total time= 0.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.8;, score=-18.517 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-20.164 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-19.350 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-19.082 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-18.498 total time= 0.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.85;, score=-18.035 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-19.648 total time= 0.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-17.945 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-18.583 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-18.311 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.9;, score=-18.873 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-17.634 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-19.317 total time= 0.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-18.847 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-18.054 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=0.95;, score=-17.772 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-18.493 total time= 0.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-18.359 total time= 0.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-18.567 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-18.491 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=50, model1__subsample=1.0;, score=-18.602 total time= 0.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-16.540 total time= 0.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-17.905 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-18.621 total time= 0.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-16.371 total time= 0.5s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.5;, score=-17.664 total time= 0.5s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-17.735 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-16.456 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-16.241 total time= 0.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-17.616 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.618;, score=-16.920 total time= 0.5s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-16.589 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-17.718 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-17.243 total time= 0.5s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-16.845 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.8;, score=-16.693 total time= 0.6s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-16.087 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-16.803 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-17.833 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-16.099 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.85;, score=-16.895 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-16.060 total time= 0.7s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-17.655 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-16.907 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-16.840 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.9;, score=-16.917 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-16.204 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-17.014 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-16.008 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-17.255 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=0.95;, score=-16.659 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-16.507 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-17.528 total time= 0.7s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-16.797 total time= 0.7s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-16.774 total time= 0.7s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=100, model1__subsample=1.0;, score=-16.872 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-15.950 total time= 0.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-17.514 total time= 0.6s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-17.220 total time= 0.6s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-17.289 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.5;, score=-16.512 total time= 0.7s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-16.132 total time= 0.8s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-17.489 total time= 0.8s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-17.071 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-16.290 total time= 0.8s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.618;, score=-16.715 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-15.117 total time= 0.9s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-17.257 total time= 0.9s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-16.699 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-15.624 total time= 1.0s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.8;, score=-16.523 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-15.494 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-17.182 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-16.833 total time= 1.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-15.763 total time= 1.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.85;, score=-16.363 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-15.671 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-16.719 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-17.398 total time= 1.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-15.980 total time= 1.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.9;, score=-16.410 total time= 1.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-17.165 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-16.559 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-15.813 total time= 1.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-15.594 total time= 1.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=0.95;, score=-16.420 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-15.413 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-16.463 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-16.988 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-16.414 total time= 0.9s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-16.076 total time= 1.1s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-17.254 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=150, model1__subsample=1.0;, score=-16.670 total time= 1.1s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-16.561 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-16.570 total time= 0.8s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.5;, score=-16.262 total time= 0.8s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-14.915 total time= 1.0s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.578 total time= 1.0s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.617 total time= 0.9s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-16.567 total time= 1.0s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.618;, score=-15.417 total time= 1.0s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-15.474 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.980 total time= 1.2s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.383 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.658 total time= 1.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.8;, score=-16.071 total time= 1.2s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-15.455 total time= 1.2s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-16.539 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-16.162 total time= 1.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-15.336 total time= 1.3s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.85;, score=-16.263 total time= 1.3s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-15.428 total time= 1.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.856 total time= 1.3s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-16.516 total time= 1.3s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-15.464 total time= 1.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.9;, score=-15.622 total time= 1.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-15.290 total time= 1.5s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-16.766 total time= 1.6s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-16.314 total time= 1.4s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-15.581 total time= 1.4s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=0.95;, score=-16.311 total time= 1.4s\n", + "[CV 1/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-15.682 total time= 1.4s\n", + "[CV 2/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.456 total time= 1.4s\n", + "[CV 3/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.420 total time= 1.2s\n", + "[CV 4/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.117 total time= 1.2s\n", + "[CV 5/5] END model1__criterion=friedman_mse, model1__learning_rate=0.2, model1__max_depth=8, model1__max_features=sqrt, model1__n_estimators=200, model1__subsample=1.0;, score=-16.080 total time= 1.0s\n" + ] + }, + { + "data": { + "text/html": [ + "
    GridSearchCV(cv=5,\n",
    +       "             estimator=Pipeline(steps=[('Data_processing',\n",
    +       "                                        Pipeline(steps=[('step1',\n",
    +       "                                                         ColumnTransformer(remainder='passthrough',\n",
    +       "                                                                           transformers=[('col_tnf',\n",
    +       "                                                                                          OneHotEncoder(drop='first',\n",
    +       "                                                                                                        sparse_output=False),\n",
    +       "                                                                                          [0,\n",
    +       "                                                                                           2])])),\n",
    +       "                                                        ('step2',\n",
    +       "                                                         StandardScaler())])),\n",
    +       "                                       ('model1',\n",
    +       "                                        GradientBoostingRegressor())]),\n",
    +       "             n_jobs=-1,\n",
    +       "             param_grid={'model1__criterion': ['friedman_mse'],\n",
    +       "                         'model1__learning_rate': [0.01, 0.025, 0.05, 0.075,\n",
    +       "                                                   0.1, 0.15, 0.2],\n",
    +       "                         'model1__max_depth': [3, 5, 8],\n",
    +       "                         'model1__max_features': ['log2', 'sqrt'],\n",
    +       "                         'model1__n_estimators': [50, 100, 150, 200],\n",
    +       "                         'model1__subsample': [0.5, 0.618, 0.8, 0.85, 0.9, 0.95,\n",
    +       "                                               1.0]},\n",
    +       "             scoring='neg_mean_absolute_error', verbose=3)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "GridSearchCV(cv=5,\n", + " estimator=Pipeline(steps=[('Data_processing',\n", + " Pipeline(steps=[('step1',\n", + " ColumnTransformer(remainder='passthrough',\n", + " transformers=[('col_tnf',\n", + " OneHotEncoder(drop='first',\n", + " sparse_output=False),\n", + " [0,\n", + " 2])])),\n", + " ('step2',\n", + " StandardScaler())])),\n", + " ('model1',\n", + " GradientBoostingRegressor())]),\n", + " n_jobs=-1,\n", + " param_grid={'model1__criterion': ['friedman_mse'],\n", + " 'model1__learning_rate': [0.01, 0.025, 0.05, 0.075,\n", + " 0.1, 0.15, 0.2],\n", + " 'model1__max_depth': [3, 5, 8],\n", + " 'model1__max_features': ['log2', 'sqrt'],\n", + " 'model1__n_estimators': [50, 100, 150, 200],\n", + " 'model1__subsample': [0.5, 0.618, 0.8, 0.85, 0.9, 0.95,\n", + " 1.0]},\n", + " scoring='neg_mean_absolute_error', verbose=3)" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model1 = GradientBoostingRegressor()\n", + "model1_pipe = Pipeline([('Data_processing' , data_pipeline) , ('model1' , model1)])\n", + "parameters = {\n", + " \"model1__learning_rate\": [0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2],\n", + " \"model1__max_depth\":[3,5,8],\n", + " \"model1__max_features\":[\"log2\",\"sqrt\"],\n", + " \"model1__criterion\": [\"friedman_mse\"],\n", + " \"model1__subsample\":[0.5, 0.618, 0.8, 0.85, 0.9, 0.95, 1.0],\n", + " \"model1__n_estimators\":[50, 100, 150, 200]\n", + "}\n", + "\n", + "gscv1 = GridSearchCV(model1_pipe , parameters , scoring='neg_mean_absolute_error' , cv = 5 , n_jobs=-1 , verbose = 3)\n", + "gscv1.fit(x_train , y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pipeline(steps=[('Data_processing',\n", + " Pipeline(steps=[('step1',\n", + " ColumnTransformer(remainder='passthrough',\n", + " transformers=[('col_tnf',\n", + " OneHotEncoder(drop='first',\n", + " sparse_output=False),\n", + " [0, 2])])),\n", + " ('step2', StandardScaler())])),\n", + " ('model1',\n", + " GradientBoostingRegressor(learning_rate=0.15, max_depth=8,\n", + " max_features='sqrt',\n", + " n_estimators=200, subsample=0.85))])\n", + "--------------------\n", + "Best score :-15.883028237152882\n" + ] + } + ], + "source": [ + "print(gscv1.best_estimator_)\n", + "print('--'*10)\n", + "print(f'Best score :{gscv1.best_score_}')" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 5 folds for each of 84 candidates, totalling 420 fits\n", + "[CV 2/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=50;, score=-26.372 total time= 2.1s\n", + "[CV 5/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=50;, score=-27.088 total time= 2.1s\n", + "[CV 3/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=50;, score=-26.715 total time= 2.1s\n", + "[CV 1/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=50;, score=-25.348 total time= 2.2s\n", + "[CV 4/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=50;, score=-25.086 total time= 2.2s\n", + "[CV 2/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=100;, score=-26.744 total time= 4.0s\n", + "[CV 1/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=100;, score=-25.348 total time= 4.2s\n", + "[CV 3/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=100;, score=-26.622 total time= 4.3s\n", + "[CV 5/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=100;, score=-26.748 total time= 3.8s\n", + "[CV 4/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=100;, score=-25.202 total time= 4.0s\n", + "[CV 2/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=150;, score=-26.890 total time= 5.8s\n", + "[CV 3/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=150;, score=-26.645 total time= 5.9s\n", + "[CV 1/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=150;, score=-25.387 total time= 6.3s\n", + "[CV 4/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=150;, score=-24.894 total time= 6.1s\n", + "[CV 5/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=150;, score=-26.645 total time= 5.9s\n", + "[CV 1/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=50;, score=-24.991 total time= 1.9s\n", + "[CV 2/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=50;, score=-26.346 total time= 1.8s\n", + "[CV 3/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=50;, score=-26.766 total time= 1.8s\n", + "[CV 1/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=200;, score=-25.515 total time= 7.7s\n", + "[CV 4/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=50;, score=-25.298 total time= 1.9s\n", + "[CV 2/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=200;, score=-26.891 total time= 7.6s\n", + "[CV 3/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=200;, score=-26.532 total time= 7.6s\n", + "[CV 5/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=50;, score=-27.005 total time= 2.2s\n", + "[CV 1/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=100;, score=-25.314 total time= 3.7s\n", + "[CV 2/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=100;, score=-26.803 total time= 3.8s\n", + "[CV 5/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=200;, score=-26.698 total time= 7.8s\n", + "[CV 3/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=100;, score=-26.577 total time= 3.8s\n", + "[CV 4/5] END model2__learning_rate=0.01, model2__loss=linear, model2__n_estimators=200;, score=-24.803 total time= 8.2s\n", + "[CV 4/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=100;, score=-25.254 total time= 3.7s\n", + "[CV 5/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=100;, score=-26.913 total time= 4.0s\n", + "[CV 1/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=150;, score=-25.258 total time= 5.9s\n", + "[CV 2/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=150;, score=-26.809 total time= 6.5s\n", + "[CV 3/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=150;, score=-26.447 total time= 6.8s\n", + "[CV 4/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=150;, score=-24.951 total time= 7.1s\n", + "[CV 5/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=150;, score=-26.679 total time= 7.2s\n", + "[CV 1/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=50;, score=-25.386 total time= 2.4s\n", + "[CV 1/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=200;, score=-25.422 total time= 9.3s\n", + "[CV 2/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=50;, score=-26.250 total time= 2.5s\n", + "[CV 3/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=50;, score=-26.737 total time= 2.4s\n", + "[CV 2/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=200;, score=-26.686 total time= 9.2s\n", + "[CV 3/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=200;, score=-26.658 total time= 9.2s\n", + "[CV 4/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=50;, score=-25.580 total time= 1.9s\n", + "[CV 5/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=50;, score=-26.830 total time= 1.9s\n", + "[CV 4/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=200;, score=-25.116 total time= 9.0s\n", + "[CV 2/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=100;, score=-26.602 total time= 3.6s\n", + "[CV 1/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=100;, score=-25.356 total time= 4.1s\n", + "[CV 3/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=100;, score=-26.684 total time= 3.8s\n", + "[CV 5/5] END model2__learning_rate=0.01, model2__loss=square, model2__n_estimators=200;, score=-27.227 total time= 8.6s\n", + "[CV 4/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=100;, score=-25.274 total time= 4.0s\n", + "[CV 5/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=100;, score=-26.652 total time= 3.8s\n", + "[CV 1/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=150;, score=-25.268 total time= 5.7s\n", + "[CV 2/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=150;, score=-26.732 total time= 5.9s\n", + "[CV 3/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=150;, score=-26.630 total time= 5.9s\n", + "[CV 4/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=150;, score=-24.954 total time= 6.1s\n", + "[CV 5/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=150;, score=-26.748 total time= 6.1s\n", + "[CV 1/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=50;, score=-25.364 total time= 1.9s\n", + "[CV 2/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=50;, score=-26.787 total time= 1.8s\n", + "[CV 3/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=50;, score=-26.749 total time= 1.9s\n", + "[CV 1/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=200;, score=-25.473 total time= 7.9s\n", + "[CV 2/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=200;, score=-26.736 total time= 8.0s\n", + "[CV 3/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=200;, score=-26.548 total time= 8.2s\n", + "[CV 4/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=50;, score=-24.982 total time= 1.9s\n", + "[CV 5/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=50;, score=-26.811 total time= 2.0s\n", + "[CV 4/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=200;, score=-24.844 total time= 7.9s\n", + "[CV 1/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=100;, score=-25.591 total time= 3.9s\n", + "[CV 5/5] END model2__learning_rate=0.01, model2__loss=exponential, model2__n_estimators=200;, score=-26.769 total time= 7.4s\n", + "[CV 2/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=100;, score=-26.933 total time= 3.7s\n", + "[CV 3/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=100;, score=-26.444 total time= 3.8s\n", + "[CV 4/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=100;, score=-24.917 total time= 3.8s\n", + "[CV 5/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=100;, score=-26.747 total time= 3.9s\n", + "[CV 1/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=150;, score=-25.888 total time= 5.9s\n", + "[CV 2/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=150;, score=-27.203 total time= 6.1s\n", + "[CV 3/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=150;, score=-27.176 total time= 6.4s\n", + "[CV 4/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=150;, score=-25.419 total time= 6.2s\n", + "[CV 5/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=150;, score=-27.821 total time= 6.3s\n", + "[CV 2/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=50;, score=-26.879 total time= 2.0s\n", + "[CV 1/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=50;, score=-25.002 total time= 2.1s\n", + "[CV 3/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=50;, score=-26.390 total time= 1.9s\n", + "[CV 3/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=200;, score=-27.587 total time= 7.9s\n", + "[CV 2/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=200;, score=-27.336 total time= 8.0s\n", + "[CV 1/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=200;, score=-26.051 total time= 8.4s\n", + "[CV 5/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=50;, score=-26.822 total time= 2.0s\n", + "[CV 4/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=50;, score=-24.807 total time= 2.0s\n", + "[CV 4/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=200;, score=-25.302 total time= 7.9s\n", + "[CV 1/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=100;, score=-25.628 total time= 4.2s\n", + "[CV 2/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=100;, score=-26.727 total time= 4.1s\n", + "[CV 3/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=100;, score=-26.781 total time= 4.2s\n", + "[CV 4/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=100;, score=-25.207 total time= 4.1s\n", + "[CV 5/5] END model2__learning_rate=0.025, model2__loss=linear, model2__n_estimators=200;, score=-28.541 total time= 8.7s\n", + "[CV 5/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=100;, score=-27.716 total time= 4.0s\n", + "[CV 1/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=150;, score=-26.616 total time= 5.9s\n", + "[CV 2/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=150;, score=-27.046 total time= 6.2s\n", + "[CV 3/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=150;, score=-28.370 total time= 6.1s\n", + "[CV 4/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=150;, score=-26.414 total time= 6.2s\n", + "[CV 5/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=150;, score=-29.287 total time= 6.3s\n", + "[CV 1/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=50;, score=-25.198 total time= 2.0s\n", + "[CV 2/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=50;, score=-26.655 total time= 1.8s\n", + "[CV 1/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=200;, score=-26.720 total time= 7.8s\n", + "[CV 3/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=50;, score=-27.133 total time= 2.0s\n", + "[CV 2/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=200;, score=-28.136 total time= 8.0s\n", + "[CV 3/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=200;, score=-28.638 total time= 8.0s\n", + "[CV 4/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=50;, score=-25.101 total time= 2.0s\n", + "[CV 5/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=50;, score=-26.817 total time= 1.9s\n", + "[CV 4/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=200;, score=-26.590 total time= 7.5s\n", + "[CV 1/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=100;, score=-25.408 total time= 4.0s\n", + "[CV 5/5] END model2__learning_rate=0.025, model2__loss=square, model2__n_estimators=200;, score=-28.912 total time= 7.6s\n", + "[CV 3/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=100;, score=-26.572 total time= 3.6s\n", + "[CV 2/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=100;, score=-26.907 total time= 4.0s\n", + "[CV 4/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=100;, score=-24.833 total time= 3.8s\n", + "[CV 5/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=100;, score=-26.936 total time= 4.1s\n", + "[CV 1/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=150;, score=-25.826 total time= 5.9s\n", + "[CV 2/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=150;, score=-27.032 total time= 6.0s\n", + "[CV 4/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=150;, score=-24.995 total time= 5.7s\n", + "[CV 3/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=150;, score=-26.583 total time= 5.9s\n", + "[CV 5/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=150;, score=-26.968 total time= 6.1s\n", + "[CV 1/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=50;, score=-25.717 total time= 1.9s\n", + "[CV 2/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=50;, score=-27.099 total time= 2.0s\n", + "[CV 3/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=50;, score=-26.506 total time= 1.8s\n", + "[CV 1/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=200;, score=-26.097 total time= 8.0s\n", + "[CV 2/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=200;, score=-27.395 total time= 7.3s\n", + "[CV 3/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=200;, score=-27.245 total time= 7.5s\n", + "[CV 4/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=50;, score=-24.930 total time= 2.0s\n", + "[CV 5/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=50;, score=-26.646 total time= 1.9s\n", + "[CV 4/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=200;, score=-25.398 total time= 7.9s\n", + "[CV 1/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=100;, score=-26.074 total time= 3.7s\n", + "[CV 2/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=100;, score=-27.306 total time= 3.8s\n", + "[CV 5/5] END model2__learning_rate=0.025, model2__loss=exponential, model2__n_estimators=200;, score=-27.452 total time= 7.6s\n", + "[CV 3/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=100;, score=-27.591 total time= 3.9s\n", + "[CV 4/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=100;, score=-25.225 total time= 3.6s\n", + "[CV 5/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=100;, score=-28.105 total time= 3.8s\n", + "[CV 1/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=150;, score=-26.989 total time= 5.6s\n", + "[CV 2/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=150;, score=-28.638 total time= 5.1s\n", + "[CV 3/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=150;, score=-29.079 total time= 5.5s\n", + "[CV 4/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=150;, score=-26.515 total time= 5.4s\n", + "[CV 5/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=150;, score=-29.297 total time= 5.7s\n", + "[CV 1/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=50;, score=-25.436 total time= 1.9s\n", + "[CV 2/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=50;, score=-27.036 total time= 1.7s\n", + "[CV 1/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=200;, score=-26.971 total time= 7.1s\n", + "[CV 2/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=200;, score=-29.073 total time= 7.0s\n", + "[CV 3/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=50;, score=-26.669 total time= 2.1s\n", + "[CV 3/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=200;, score=-29.721 total time= 7.2s\n", + "[CV 4/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=50;, score=-25.134 total time= 2.0s\n", + "[CV 5/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=50;, score=-27.369 total time= 2.0s\n", + "[CV 4/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=200;, score=-26.742 total time= 7.5s\n", + "[CV 1/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=100;, score=-26.845 total time= 3.7s\n", + "[CV 2/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=100;, score=-28.270 total time= 3.7s\n", + "[CV 3/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=100;, score=-28.576 total time= 3.9s\n", + "[CV 5/5] END model2__learning_rate=0.05, model2__loss=linear, model2__n_estimators=200;, score=-29.225 total time= 7.6s\n", + "[CV 4/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=100;, score=-26.877 total time= 4.0s\n", + "[CV 5/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=100;, score=-29.187 total time= 3.9s\n", + "[CV 1/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=150;, score=-26.872 total time= 6.1s\n", + "[CV 2/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=150;, score=-28.735 total time= 6.1s\n", + "[CV 3/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=150;, score=-29.280 total time= 6.2s\n", + "[CV 4/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=150;, score=-26.721 total time= 6.2s\n", + "[CV 5/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=150;, score=-29.001 total time= 6.4s\n", + "[CV 1/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=50;, score=-25.659 total time= 2.3s\n", + "[CV 1/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=200;, score=-27.080 total time= 8.0s\n", + "[CV 2/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=50;, score=-26.975 total time= 2.5s\n", + "[CV 2/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=200;, score=-28.544 total time= 8.0s\n", + "[CV 3/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=50;, score=-26.439 total time= 2.3s\n", + "[CV 3/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=200;, score=-29.546 total time= 8.5s\n", + "[CV 4/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=50;, score=-24.858 total time= 2.2s\n", + "[CV 5/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=50;, score=-26.853 total time= 2.2s\n", + "[CV 4/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=200;, score=-26.514 total time= 8.0s\n", + "[CV 1/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=100;, score=-25.829 total time= 4.2s\n", + "[CV 2/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=100;, score=-27.257 total time= 4.2s\n", + "[CV 3/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=100;, score=-27.179 total time= 4.1s\n", + "[CV 5/5] END model2__learning_rate=0.05, model2__loss=square, model2__n_estimators=200;, score=-28.813 total time= 8.1s\n", + "[CV 4/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=100;, score=-25.305 total time= 4.3s\n", + "[CV 5/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=100;, score=-27.313 total time= 4.3s\n", + "[CV 1/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=150;, score=-26.909 total time= 6.4s\n", + "[CV 2/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=150;, score=-27.855 total time= 6.2s\n", + "[CV 3/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=150;, score=-27.931 total time= 6.1s\n", + "[CV 4/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=150;, score=-26.456 total time= 6.6s\n", + "[CV 5/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=150;, score=-29.084 total time= 6.4s\n", + "[CV 1/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=50;, score=-25.876 total time= 2.1s\n", + "[CV 1/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=200;, score=-27.229 total time= 8.2s\n", + "[CV 2/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=50;, score=-27.411 total time= 1.9s\n", + "[CV 3/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=50;, score=-27.004 total time= 2.1s\n", + "[CV 2/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=200;, score=-28.374 total time= 8.3s\n", + "[CV 3/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=200;, score=-29.248 total time= 8.3s\n", + "[CV 4/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=50;, score=-25.397 total time= 2.3s\n", + "[CV 5/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=50;, score=-26.989 total time= 2.3s\n", + "[CV 4/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=200;, score=-26.862 total time= 8.2s\n", + "[CV 1/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=100;, score=-26.618 total time= 4.0s\n", + "[CV 2/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=100;, score=-28.514 total time= 4.1s\n", + "[CV 5/5] END model2__learning_rate=0.05, model2__loss=exponential, model2__n_estimators=200;, score=-29.431 total time= 8.1s\n", + "[CV 3/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=100;, score=-29.250 total time= 4.1s\n", + "[CV 4/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=100;, score=-26.471 total time= 4.3s\n", + "[CV 5/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=100;, score=-28.832 total time= 4.1s\n", + "[CV 1/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=150;, score=-26.906 total time= 5.8s\n", + "[CV 2/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=150;, score=-29.573 total time= 6.0s\n", + "[CV 3/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=150;, score=-29.823 total time= 6.2s\n", + "[CV 4/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=150;, score=-26.744 total time= 6.2s\n", + "[CV 1/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=200;, score=-27.169 total time= 5.8s\n", + "[CV 5/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=150;, score=-29.435 total time= 6.5s\n", + "[CV 1/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=50;, score=-26.897 total time= 2.4s\n", + "[CV 2/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=50;, score=-26.937 total time= 2.3s\n", + "[CV 2/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=200;, score=-29.870 total time= 7.4s\n", + "[CV 3/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=50;, score=-28.102 total time= 2.5s\n", + "[CV 4/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=50;, score=-25.168 total time= 2.6s\n", + "[CV 4/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=200;, score=-26.520 total time= 6.0s\n", + "[CV 3/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=200;, score=-30.599 total time= 8.4s\n", + "[CV 5/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=50;, score=-29.373 total time= 2.4s\n", + "[CV 1/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=100;, score=-27.103 total time= 4.1s\n", + "[CV 2/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=100;, score=-28.695 total time= 4.1s\n", + "[CV 5/5] END model2__learning_rate=0.075, model2__loss=linear, model2__n_estimators=200;, score=-29.580 total time= 7.7s\n", + "[CV 3/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=100;, score=-29.037 total time= 4.0s\n", + "[CV 4/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=100;, score=-27.283 total time= 4.1s\n", + "[CV 5/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=100;, score=-29.050 total time= 4.2s\n", + "[CV 1/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=150;, score=-27.005 total time= 5.9s\n", + "[CV 2/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=150;, score=-28.830 total time= 6.1s\n", + "[CV 3/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=150;, score=-29.510 total time= 5.9s\n", + "[CV 4/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=150;, score=-27.172 total time= 6.3s\n", + "[CV 5/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=150;, score=-29.082 total time= 6.6s\n", + "[CV 1/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=50;, score=-25.923 total time= 2.5s\n", + "[CV 2/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=200;, score=-29.138 total time= 8.1s\n", + "[CV 2/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=50;, score=-27.028 total time= 2.4s\n", + "[CV 3/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=50;, score=-26.606 total time= 2.4s\n", + "[CV 1/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=200;, score=-27.365 total time= 9.2s\n", + "[CV 3/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=200;, score=-30.241 total time= 9.1s\n", + "[CV 4/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=50;, score=-24.863 total time= 2.9s\n", + "[CV 5/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=50;, score=-27.079 total time= 3.1s\n", + "[CV 4/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=200;, score=-26.523 total time= 9.9s\n", + "[CV 5/5] END model2__learning_rate=0.075, model2__loss=square, model2__n_estimators=200;, score=-29.318 total time= 9.9s\n", + "[CV 1/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=100;, score=-25.943 total time= 5.9s\n", + "[CV 2/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=100;, score=-27.944 total time= 5.7s\n", + "[CV 3/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=100;, score=-27.708 total time= 5.6s\n", + "[CV 4/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=100;, score=-26.430 total time= 6.0s\n", + "[CV 5/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=100;, score=-28.646 total time= 6.1s\n", + "[CV 1/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=150;, score=-27.389 total time= 7.7s\n", + "[CV 2/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=150;, score=-29.762 total time= 6.8s\n", + "[CV 3/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=150;, score=-29.792 total time= 6.7s\n", + "[CV 4/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=150;, score=-27.048 total time= 6.6s\n", + "[CV 5/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=150;, score=-29.571 total time= 7.1s\n", + "[CV 1/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=50;, score=-26.658 total time= 2.0s\n", + "[CV 2/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=50;, score=-27.466 total time= 1.9s\n", + "[CV 1/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=200;, score=-27.924 total time= 8.4s\n", + "[CV 2/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=200;, score=-30.876 total time= 7.5s\n", + "[CV 3/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=50;, score=-27.306 total time= 2.0s\n", + "[CV 4/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=50;, score=-25.437 total time= 2.1s\n", + "[CV 3/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=200;, score=-31.075 total time= 7.9s\n", + "[CV 5/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=50;, score=-28.778 total time= 2.2s\n", + "[CV 4/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=200;, score=-27.601 total time= 8.3s\n", + "[CV 2/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=100;, score=-29.409 total time= 4.2s\n", + "[CV 1/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=100;, score=-26.418 total time= 4.6s\n", + "[CV 5/5] END model2__learning_rate=0.075, model2__loss=exponential, model2__n_estimators=200;, score=-29.966 total time= 8.3s\n", + "[CV 3/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=100;, score=-29.512 total time= 4.4s\n", + "[CV 4/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=100;, score=-26.786 total time= 4.6s\n", + "[CV 5/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=100;, score=-29.130 total time= 4.6s\n", + "[CV 1/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=150;, score=-27.319 total time= 4.5s\n", + "[CV 4/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=150;, score=-26.593 total time= 4.7s\n", + "[CV 1/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=200;, score=-26.848 total time= 4.5s\n", + "[CV 2/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=150;, score=-29.988 total time= 5.3s\n", + "[CV 5/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=150;, score=-29.264 total time= 5.0s\n", + "[CV 3/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=150;, score=-30.200 total time= 6.3s\n", + "[CV 2/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=200;, score=-29.540 total time= 5.0s\n", + "[CV 4/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=200;, score=-26.805 total time= 4.9s\n", + "[CV 1/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=50;, score=-26.922 total time= 2.3s\n", + "[CV 2/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=50;, score=-28.483 total time= 2.4s\n", + "[CV 3/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=50;, score=-28.846 total time= 2.4s\n", + "[CV 3/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=200;, score=-30.674 total time= 6.6s\n", + "[CV 4/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=50;, score=-27.086 total time= 2.5s\n", + "[CV 5/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=50;, score=-29.395 total time= 2.4s\n", + "[CV 5/5] END model2__learning_rate=0.1, model2__loss=linear, model2__n_estimators=200;, score=-29.650 total time= 5.6s\n", + "[CV 1/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=100;, score=-27.133 total time= 4.6s\n", + "[CV 2/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=100;, score=-28.815 total time= 4.8s\n", + "[CV 3/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=100;, score=-28.877 total time= 4.9s\n", + "[CV 4/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=100;, score=-27.097 total time= 5.0s\n", + "[CV 5/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=100;, score=-28.623 total time= 5.0s\n", + "[CV 2/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=150;, score=-29.527 total time= 6.5s\n", + "[CV 1/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=150;, score=-27.396 total time= 6.5s\n", + "[CV 1/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=200;, score=-27.143 total time= 4.5s\n", + "[CV 3/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=150;, score=-30.140 total time= 6.9s\n", + "[CV 4/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=150;, score=-26.424 total time= 6.4s\n", + "[CV 5/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=150;, score=-29.732 total time= 6.7s\n", + "[CV 1/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=50;, score=-25.902 total time= 2.2s\n", + "[CV 2/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=50;, score=-27.178 total time= 2.2s\n", + "[CV 3/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=50;, score=-26.940 total time= 2.2s\n", + "[CV 2/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=200;, score=-30.017 total time= 8.1s\n", + "[CV 4/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=50;, score=-25.352 total time= 2.5s\n", + "[CV 5/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=50;, score=-27.355 total time= 2.4s\n", + "[CV 3/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=200;, score=-30.277 total time= 8.7s\n", + "[CV 1/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=100;, score=-27.081 total time= 4.6s\n", + "[CV 4/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=200;, score=-26.679 total time= 8.9s\n", + "[CV 5/5] END model2__learning_rate=0.1, model2__loss=square, model2__n_estimators=200;, score=-31.132 total time= 9.0s\n", + "[CV 2/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=100;, score=-29.336 total time= 4.8s\n", + "[CV 3/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=100;, score=-29.367 total time= 5.0s\n", + "[CV 4/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=100;, score=-26.544 total time= 4.9s\n", + "[CV 5/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=100;, score=-29.363 total time= 5.0s\n", + "[CV 1/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=150;, score=-28.340 total time= 7.0s\n", + "[CV 2/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=150;, score=-30.323 total time= 6.5s\n", + "[CV 4/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=150;, score=-27.793 total time= 6.4s\n", + "[CV 3/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=150;, score=-30.548 total time= 6.9s\n", + "[CV 5/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=150;, score=-30.186 total time= 7.0s\n", + "[CV 1/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=50;, score=-26.800 total time= 2.4s\n", + "[CV 2/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=50;, score=-28.015 total time= 2.1s\n", + "[CV 3/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=50;, score=-29.107 total time= 2.2s\n", + "[CV 1/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=200;, score=-29.185 total time= 8.7s\n", + "[CV 2/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=200;, score=-31.752 total time= 8.5s\n", + "[CV 3/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=200;, score=-32.065 total time= 8.5s\n", + "[CV 4/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=50;, score=-26.944 total time= 2.1s\n", + "[CV 5/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=50;, score=-29.014 total time= 2.1s\n", + "[CV 1/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=100;, score=-26.938 total time= 3.2s\n", + "[CV 4/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=200;, score=-28.113 total time= 8.4s\n", + "[CV 2/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=100;, score=-29.185 total time= 3.3s\n", + "[CV 4/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=100;, score=-26.793 total time= 3.0s\n", + "[CV 1/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=150;, score=-27.100 total time= 2.9s\n", + "[CV 3/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=100;, score=-30.317 total time= 4.0s\n", + "[CV 5/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=100;, score=-29.459 total time= 3.4s\n", + "[CV 5/5] END model2__learning_rate=0.1, model2__loss=exponential, model2__n_estimators=200;, score=-30.882 total time= 8.3s\n", + "[CV 2/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=150;, score=-29.733 total time= 3.2s\n", + "[CV 4/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=150;, score=-26.855 total time= 3.0s\n", + "[CV 3/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=150;, score=-30.200 total time= 3.8s\n", + "[CV 1/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=200;, score=-27.234 total time= 2.9s\n", + "[CV 5/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=150;, score=-29.424 total time= 3.5s\n", + "[CV 4/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=200;, score=-26.725 total time= 3.4s\n", + "[CV 3/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=200;, score=-29.931 total time= 4.0s\n", + "[CV 1/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=50;, score=-26.711 total time= 2.2s\n", + "[CV 2/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=50;, score=-28.741 total time= 1.9s\n", + "[CV 2/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=200;, score=-30.120 total time= 4.4s\n", + "[CV 3/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=50;, score=-29.135 total time= 2.1s\n", + "[CV 4/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=50;, score=-27.871 total time= 2.1s\n", + "[CV 5/5] END model2__learning_rate=0.15, model2__loss=linear, model2__n_estimators=200;, score=-29.226 total time= 3.4s\n", + "[CV 5/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=50;, score=-28.892 total time= 2.1s\n", + "[CV 2/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=100;, score=-28.994 total time= 3.9s\n", + "[CV 1/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=100;, score=-27.825 total time= 4.1s\n", + "[CV 3/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=100;, score=-29.971 total time= 4.0s\n", + "[CV 5/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=100;, score=-29.868 total time= 4.1s\n", + "[CV 4/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=100;, score=-27.004 total time= 4.3s\n", + "[CV 1/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=150;, score=-28.126 total time= 5.1s\n", + "[CV 2/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=150;, score=-31.275 total time= 5.4s\n", + "[CV 3/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=150;, score=-30.378 total time= 5.8s\n", + "[CV 1/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=200;, score=-27.669 total time= 3.3s\n", + "[CV 2/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=50;, score=-28.071 total time= 1.9s\n", + "[CV 1/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=50;, score=-26.720 total time= 2.1s\n", + "[CV 4/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=150;, score=-26.776 total time= 5.6s\n", + "[CV 5/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=150;, score=-31.601 total time= 5.6s\n", + "[CV 3/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=50;, score=-27.730 total time= 2.1s\n", + "[CV 2/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=200;, score=-35.911 total time= 7.0s\n", + "[CV 4/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=50;, score=-25.381 total time= 2.2s\n", + "[CV 4/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=200;, score=-26.689 total time= 5.8s\n", + "[CV 5/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=50;, score=-28.791 total time= 2.2s\n", + "[CV 3/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=200;, score=-30.667 total time= 7.3s\n", + "[CV 5/5] END model2__learning_rate=0.15, model2__loss=square, model2__n_estimators=200;, score=-34.106 total time= 7.2s\n", + "[CV 1/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=100;, score=-28.081 total time= 4.3s\n", + "[CV 2/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=100;, score=-30.827 total time= 4.1s\n", + "[CV 3/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=100;, score=-30.774 total time= 4.4s\n", + "[CV 4/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=100;, score=-27.432 total time= 4.5s\n", + "[CV 5/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=100;, score=-29.845 total time= 4.5s\n", + "[CV 2/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=150;, score=-33.362 total time= 6.1s\n", + "[CV 1/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=150;, score=-29.644 total time= 6.4s\n", + "[CV 3/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=150;, score=-32.834 total time= 6.1s\n", + "[CV 4/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=150;, score=-29.157 total time= 6.4s\n", + "[CV 5/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=150;, score=-31.698 total time= 6.0s\n", + "[CV 1/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=50;, score=-27.303 total time= 2.0s\n", + "[CV 2/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=50;, score=-29.153 total time= 2.0s\n", + "[CV 2/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=200;, score=-38.467 total time= 7.6s\n", + "[CV 3/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=50;, score=-29.147 total time= 2.1s\n", + "[CV 1/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=200;, score=-31.899 total time= 7.9s\n", + "[CV 4/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=50;, score=-26.414 total time= 2.2s\n", + "[CV 3/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=200;, score=-37.271 total time= 7.8s\n", + "[CV 5/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=50;, score=-29.346 total time= 2.1s\n", + "[CV 5/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=200;, score=-35.352 total time= 7.6s\n", + "[CV 1/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=100;, score=-27.731 total time= 2.2s\n", + "[CV 4/5] END model2__learning_rate=0.15, model2__loss=exponential, model2__n_estimators=200;, score=-31.143 total time= 7.9s\n", + "[CV 4/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=100;, score=-26.814 total time= 2.2s\n", + "[CV 2/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=100;, score=-29.735 total time= 2.6s\n", + "[CV 5/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=100;, score=-29.852 total time= 2.4s\n", + "[CV 1/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=150;, score=-27.222 total time= 2.0s\n", + "[CV 3/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=100;, score=-29.899 total time= 3.1s\n", + "[CV 4/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=150;, score=-27.079 total time= 2.0s\n", + "[CV 2/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=150;, score=-29.628 total time= 2.5s\n", + "[CV 5/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=150;, score=-29.230 total time= 2.1s\n", + "[CV 3/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=150;, score=-30.047 total time= 2.5s\n", + "[CV 1/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=200;, score=-27.010 total time= 2.3s\n", + "[CV 4/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=200;, score=-26.844 total time= 2.3s\n", + "[CV 3/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=200;, score=-30.440 total time= 2.9s\n", + "[CV 2/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=200;, score=-29.900 total time= 3.3s\n", + "[CV 2/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=50;, score=-28.398 total time= 2.0s\n", + "[CV 3/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=50;, score=-30.276 total time= 2.0s\n", + "[CV 1/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=50;, score=-26.829 total time= 2.2s\n", + "[CV 5/5] END model2__learning_rate=0.2, model2__loss=linear, model2__n_estimators=200;, score=-29.852 total time= 2.8s\n", + "[CV 4/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=50;, score=-26.690 total time= 2.1s\n", + "[CV 5/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=50;, score=-28.866 total time= 2.1s\n", + "[CV 1/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=100;, score=-26.860 total time= 2.2s\n", + "[CV 2/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=100;, score=-30.215 total time= 3.7s\n", + "[CV 3/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=100;, score=-30.178 total time= 4.3s\n", + "[CV 4/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=100;, score=-26.595 total time= 4.3s\n", + "[CV 5/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=100;, score=-30.584 total time= 4.2s\n", + "[CV 1/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=150;, score=-28.027 total time= 4.4s\n", + "[CV 2/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=150;, score=-33.914 total time= 5.9s\n", + "[CV 3/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=150;, score=-30.750 total time= 6.2s\n", + "[CV 4/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=150;, score=-27.549 total time= 6.3s\n", + "[CV 1/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=200;, score=-28.548 total time= 4.3s\n", + "[CV 5/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=150;, score=-33.242 total time= 5.9s\n", + "[CV 1/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=50;, score=-27.374 total time= 2.1s\n", + "[CV 2/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=50;, score=-29.672 total time= 2.2s\n", + "[CV 4/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=200;, score=-27.443 total time= 5.3s\n", + "[CV 3/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=50;, score=-29.363 total time= 2.2s\n", + "[CV 2/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=200;, score=-46.436 total time= 6.8s\n", + "[CV 4/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=50;, score=-26.355 total time= 2.0s\n", + "[CV 5/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=50;, score=-29.277 total time= 2.2s\n", + "[CV 3/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=200;, score=-31.668 total time= 7.7s\n", + "[CV 5/5] END model2__learning_rate=0.2, model2__loss=square, model2__n_estimators=200;, score=-42.953 total time= 7.4s\n", + "[CV 1/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=100;, score=-29.277 total time= 4.2s\n", + "[CV 2/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=100;, score=-31.727 total time= 4.1s\n", + "[CV 3/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=100;, score=-32.275 total time= 4.1s\n", + "[CV 5/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=100;, score=-31.129 total time= 4.0s\n", + "[CV 4/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=100;, score=-28.799 total time= 4.4s\n", + "[CV 1/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=150;, score=-31.904 total time= 5.8s\n", + "[CV 2/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=150;, score=-37.566 total time= 5.4s\n", + "[CV 3/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=150;, score=-36.363 total time= 5.5s\n", + "[CV 5/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=150;, score=-33.962 total time= 5.4s\n", + "[CV 4/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=150;, score=-31.493 total time= 5.7s\n", + "[CV 2/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=200;, score=-52.550 total time= 6.0s\n", + "[CV 1/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=200;, score=-34.798 total time= 6.3s\n", + "[CV 3/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=200;, score=-39.547 total time= 6.0s\n", + "[CV 4/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=200;, score=-33.937 total time= 4.8s\n", + "[CV 5/5] END model2__learning_rate=0.2, model2__loss=exponential, model2__n_estimators=200;, score=-42.545 total time= 4.8s\n" + ] + }, + { + "data": { + "text/html": [ + "
    GridSearchCV(cv=5,\n",
    +       "             estimator=Pipeline(steps=[('Data_processing',\n",
    +       "                                        Pipeline(steps=[('step1',\n",
    +       "                                                         ColumnTransformer(remainder='passthrough',\n",
    +       "                                                                           transformers=[('col_tnf',\n",
    +       "                                                                                          OneHotEncoder(drop='first',\n",
    +       "                                                                                                        sparse_output=False),\n",
    +       "                                                                                          [0,\n",
    +       "                                                                                           2])])),\n",
    +       "                                                        ('step2',\n",
    +       "                                                         StandardScaler())])),\n",
    +       "                                       ('model2', AdaBoostRegressor())]),\n",
    +       "             n_jobs=-1,\n",
    +       "             param_grid={'model2__learning_rate': [0.01, 0.025, 0.05, 0.075,\n",
    +       "                                                   0.1, 0.15, 0.2],\n",
    +       "                         'model2__loss': ['linear', 'square', 'exponential'],\n",
    +       "                         'model2__n_estimators': [50, 100, 150, 200]},\n",
    +       "             scoring='neg_mean_absolute_error', verbose=3)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "GridSearchCV(cv=5,\n", + " estimator=Pipeline(steps=[('Data_processing',\n", + " Pipeline(steps=[('step1',\n", + " ColumnTransformer(remainder='passthrough',\n", + " transformers=[('col_tnf',\n", + " OneHotEncoder(drop='first',\n", + " sparse_output=False),\n", + " [0,\n", + " 2])])),\n", + " ('step2',\n", + " StandardScaler())])),\n", + " ('model2', AdaBoostRegressor())]),\n", + " n_jobs=-1,\n", + " param_grid={'model2__learning_rate': [0.01, 0.025, 0.05, 0.075,\n", + " 0.1, 0.15, 0.2],\n", + " 'model2__loss': ['linear', 'square', 'exponential'],\n", + " 'model2__n_estimators': [50, 100, 150, 200]},\n", + " scoring='neg_mean_absolute_error', verbose=3)" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model2 = AdaBoostRegressor()\n", + "model2_pipe = Pipeline([('Data_processing' , data_pipeline) , ('model2' , model2)])\n", + "parameters = {\n", + " \"model2__learning_rate\": [0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2],\n", + " 'model2__loss' : ['linear', 'square', 'exponential'],\n", + " \"model2__n_estimators\":[50, 100, 150, 200]\n", + "}\n", + "\n", + "gscv2 = GridSearchCV(model2_pipe , parameters , scoring='neg_mean_absolute_error' , cv = 5 , n_jobs=-1 , verbose = 3)\n", + "gscv2.fit(x_train , y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pipeline(steps=[('Data_processing',\n", + " Pipeline(steps=[('step1',\n", + " ColumnTransformer(remainder='passthrough',\n", + " transformers=[('col_tnf',\n", + " OneHotEncoder(drop='first',\n", + " sparse_output=False),\n", + " [0, 2])])),\n", + " ('step2', StandardScaler())])),\n", + " ('model2',\n", + " AdaBoostRegressor(learning_rate=0.025, loss='square'))])\n", + "--------------------\n", + "Best score :-25.98007300710056\n" + ] + } + ], + "source": [ + "print(gscv2.best_estimator_)\n", + "print('--'*10)\n", + "print(f'Best score :{gscv2.best_score_}')" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(12.311008461717156, 12.823689637660669)" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_absolute_error(gscv1.best_estimator_.predict(x_test) , y_test) , mean_absolute_error(pipeline.predict(x_test) , y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "# lets save the Gradient boosting model\n", + "with open('GradientBoostingRegressor.pkl' , 'wb') as file:\n", + " pickle.dump(gscv1.best_estimator_ , file)" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/Bingumalla Likith/Library/Python/3.9/lib/python/site-packages/sklearn/svm/_classes.py:31: FutureWarning: The default value of `dual` will change from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.\n", + " warnings.warn(\n", + "/Users/Bingumalla Likith/Library/Python/3.9/lib/python/site-packages/sklearn/svm/_base.py:1237: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "text/html": [ + "
    Pipeline(steps=[('Data_pipeline',\n",
    +       "                 Pipeline(steps=[('step1',\n",
    +       "                                  ColumnTransformer(remainder='passthrough',\n",
    +       "                                                    transformers=[('col_tnf',\n",
    +       "                                                                   OneHotEncoder(drop='first',\n",
    +       "                                                                                 sparse_output=False),\n",
    +       "                                                                   [0, 2])])),\n",
    +       "                                 ('step2', StandardScaler())])),\n",
    +       "                ('stacking_model',\n",
    +       "                 StackingRegressor(estimators=[('xgbr',\n",
    +       "                                                XGBRegressor(base_score=0.5,\n",
    +       "                                                             booster='gbtree',\n",
    +       "                                                             callbacks=None,\n",
    +       "                                                             colsample_bylevel=1,\n",
    +       "                                                             c...\n",
    +       "                                                             max_delta_step=0,\n",
    +       "                                                             max_depth=6,\n",
    +       "                                                             max_leaves=0,\n",
    +       "                                                             min_child_weight=1,\n",
    +       "                                                             missing=nan,\n",
    +       "                                                             monotone_constraints='()',\n",
    +       "                                                             n_estimators=100,\n",
    +       "                                                             n_jobs=0,\n",
    +       "                                                             num_parallel_tree=1,\n",
    +       "                                                             predictor='auto',\n",
    +       "                                                             random_state=0,\n",
    +       "                                                             reg_alpha=0,\n",
    +       "                                                             reg_lambda=1, ...)),\n",
    +       "                                               ('gbr',\n",
    +       "                                                GradientBoostingRegressor(learning_rate=0.15,\n",
    +       "                                                                          max_depth=8,\n",
    +       "                                                                          max_features='sqrt',\n",
    +       "                                                                          n_estimators=200,\n",
    +       "                                                                          subsample=0.85))],\n",
    +       "                                   final_estimator=LinearSVR()))])
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ], + "text/plain": [ + "Pipeline(steps=[('Data_pipeline',\n", + " Pipeline(steps=[('step1',\n", + " ColumnTransformer(remainder='passthrough',\n", + " transformers=[('col_tnf',\n", + " OneHotEncoder(drop='first',\n", + " sparse_output=False),\n", + " [0, 2])])),\n", + " ('step2', StandardScaler())])),\n", + " ('stacking_model',\n", + " StackingRegressor(estimators=[('xgbr',\n", + " XGBRegressor(base_score=0.5,\n", + " booster='gbtree',\n", + " callbacks=None,\n", + " colsample_bylevel=1,\n", + " c...\n", + " max_delta_step=0,\n", + " max_depth=6,\n", + " max_leaves=0,\n", + " min_child_weight=1,\n", + " missing=nan,\n", + " monotone_constraints='()',\n", + " n_estimators=100,\n", + " n_jobs=0,\n", + " num_parallel_tree=1,\n", + " predictor='auto',\n", + " random_state=0,\n", + " reg_alpha=0,\n", + " reg_lambda=1, ...)),\n", + " ('gbr',\n", + " GradientBoostingRegressor(learning_rate=0.15,\n", + " max_depth=8,\n", + " max_features='sqrt',\n", + " n_estimators=200,\n", + " subsample=0.85))],\n", + " final_estimator=LinearSVR()))])" + ] + }, + "execution_count": 105, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Now as Gradient Boosting is performing well lets create a stacking model using GradientBoosting and Xgboost Model that was used earlier\n", + "xgbr = pipeline.steps[-1][1]\n", + "gbr = gscv1.best_estimator_.steps[-1][1]\n", + "\n", + "from sklearn.svm import LinearSVR\n", + "\n", + "estimators = [('xgbr', xgbr), ('gbr', gbr)]\n", + "stacking_model = StackingRegressor(estimators = estimators , final_estimator = LinearSVR())\n", + "stacking_model_pipeline = Pipeline([\n", + " ('Data_pipeline' , data_pipeline),\n", + " ('stacking_model' , stacking_model)\n", + " ])\n", + "stacking_model_pipeline.fit(x_train , y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "18.38473245692642" + ] + }, + "execution_count": 106, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_absolute_error(stacking_model_pipeline.predict(x_test) , y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 5 folds for each of 100 candidates, totalling 500 fits\n" + ] + } + ], + "source": [ + "param_grid = {\n", + " 'stacking_model__final_estimator__C': [0.01, 0.1, 1, 10, 100], \n", + " 'stacking_model__final_estimator__epsilon': [0.01, 0.1, 0.2, 0.5, 1], \n", + " 'stacking_model__final_estimator__tol': [1e-4, 1e-3, 1e-2, 1e-1], \n", + "}\n", + "\n", + "gscv3 = GridSearchCV(stacking_model_pipeline , param_grid , n_jobs = -1 , scoring = 'neg_mean_squared_error' , verbose = 3)\n", + "gscv3.fit(x_train , y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 9e1a6e69668540a39dd843a6c2c3bbb07cef1ccb Mon Sep 17 00:00:00 2001 From: Bingumalla Likith <138435877+binguliki@users.noreply.github.com> Date: Mon, 3 Jun 2024 17:44:09 +0530 Subject: [PATCH 3/3] "Add Stacking Model Image" --- .../StackingModel.png | Bin 0 -> 137859 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 Hedging with Real Estate/New_Upgrade_Bengaluru_House_Price_Predition/StackingModel.png diff --git a/Hedging with Real Estate/New_Upgrade_Bengaluru_House_Price_Predition/StackingModel.png b/Hedging with Real Estate/New_Upgrade_Bengaluru_House_Price_Predition/StackingModel.png new file mode 100644 index 0000000000000000000000000000000000000000..bd785a5c6eda5b9520d75a8b56f6e5ed4723f74f GIT binary patch literal 137859 zcmce;bzGFq_cu<9AhL*pl1oTQsFd`oARrymAuYK`vq%Yo(v7r|BCvFqB1p+1-6h=( z(!W{szVFZX>-~BCo`0T)*NdHtYiF*RIcMg~`@GM&c%vvUNkl+FfPsNQBrPSbjDdmM zfPsM>f{zF8FfjE zqyEA8i;2;LbuqJ3`?=9Lw{?tn&tEc!&%BGrm2d; zZN`;_1$>Nl*wOyh8XjzB^@(I4_) zWQ5{|7(8zwM{{%XS73<*g&ZZ}F!lknjFWefoBSOm_vL7~j3Bq>Q(0zUO394={HtfO z&1amI0!5g#{RQ23Gu{_&34Ey;YfHY$+066Wtjx)fA7MO>{NlyAAp?x-{dt4_He#BIKBJATUX zBAMRf9{Ea<;y3y0-$~|z-&}ti2)lkgJyEFt=2hm#YzI-PEo{SRqvszPnYBzp6A0}e z%+v@pB3*Hxe=Kw{6x9iP>@KVuK}($5i&RmP=-T)XPVp>*Ws6Qw@y7fi3=uf@EOyq23dV#P%-)x zab5fpqu&*uH%=9FYk_XlBpXY_IfSSNkqdL1W62v)-{oDzE94iTqsc665vNyYpMA&N z^?6b$b##Zkg16V<3$`uohs)8=MMfd_ejvXSQ||jDk3rj&nm9TMwwYJ!J0|_J-WR3a zQ&DV#1c){5&4(}TE!p_6ZRwo7r8UVl_c@rmw0FFcvi)!mw}9wu=!*91)n=3-bK&+N zNiOE?!f6eL{s8Le>Cb(;;)PXsHBD?kTKxo5J%3WV6m7}Q2@D823wbK-%@Ss{O>}v2 zOW&1aYis#tRy0L^zhx%iK>o{HP825+qotm!ZD1hbdXqDDm*okn;|LogW%}gg#J}F& zpc!*;8MFNC{dyt?p@(2E#y#iPT#;lf0y-XapUQplM$Pd);b>rJ-=ig;yjEl)Ras2#PdbX19)G@DK%weI^ptz>vXi&_J4`A}=Fc~5Np$cAKI>K> z1V0mgCmi?g#D5tE5o~~6f~YhSJcsE($bJOk(2+>7M+BwQ-*|mJoQ^xpRf@F;D;vf~ z$J?Se1F^dz5L&`e9_}y2zeRE2Ysf;>cRyIk(&1j)gP~{lC_+OdxxcqQqZ6dneHoM1 zw;*3aBl1R1JU@+kfv|)a`z=MLf1E+cb;9YVN*V+)A<~7K8W+|4o)|f5kiI~v7hcZ2 zaP*q=IUcH!dWzt36REAJ=#7+DTwiZ(th$JdztnG{{ZadqA1mppxGmI$q{8=(@1=&T z5AM7VDu}iXv!z(ekZ%y85C0%pLWlTN`&RZFy*x7~6Ov(#DH&QuN=teq#TbFv>OJ!? zfPPczAlY|j& zg4M>;rrbvMm~{3^M&wr9M~Tw+hlCRPzsQblQKaYS@uhaWU@7K~% zPsl%Xs^zQZtJkNVD*L1wWPI*_`%dYDQf8t4bi|`jCW#)c$h6j;#0<@BSE=nx(-g9Y zmcD9HYRG=WJZi1^(y9{a;r`+K!&s{a!wIDd=3=H#FA?JTe>VGOWMzaYZHv~s8r z)D+ARtacc7Ksc5<>N=7-W-X~L(e$l;|FV<2TY(Tj$n5Sdj(tDkX>`GNdu`j2O6T|x zdC4_jOm#wE|AT&Nz4lqvDKmEF{jmFGpY43`e2)Ao-q#ugOz763=C^cdm!^$Y z>#oDZccDig!fTasyByLw9_2l9|H|~0?(3E5(yv)TZn8VF$8troYH?KDi+m<;590%5 z)#GUR-BG`V!Z2fnqi_sW`)liF5v&=W+;*L4Q8R};`vb;SW7sO(LFmXb=Wc) zUM$HM@?v&rlFdPP9nl^<#W!s2tzA5#?o8~Q?Uv+L?w=v~Q8Kz&F6Q#B_|mtIsL071 zlL8~#ujeJXobzAgyX$$n3L(tg);HEDOt>H4vuOX&EIKDDoFXSmT_-!CIuTq)?P2O6 zTyIe?c}jMQb(VM9Iq0;)z9+xejxmp6{^_&VJ{1>A7WD?kew(p?v4BHLh=uM0{lfhM zSKCLn*0%81+ATX_r0;#dZ+xG9&tLgfN3`5;gmR9Ak308fA{h<29?2<7gXjY=GYV>I zKE&*TTew>Ij}|``NK>%Z4M(wICWPJ2)OABy2U(MEJ%c2L+=iWB@BCo;y87CUoEB2g zb87R_`X&2&0VRg#I)-vTj?zD+Uz4Ub@(YaZDcv@d zB!iOc5Mk^mGYiyaij$2O%+~z@WsPx=-HWe5*yZ!+RPhqGQl<>N&Bykf(Kab7(l;h1 zd_l-YC@L$RSmgP!Uv;y$-+Zr!OwLX1y3WrLhZlmLi0wsMwA->%cnm-`+Wp0~&n$^zH1taKV0=DHSlZQvF*o3r|j zCmbIU_3{O4ZHTj7N6H}nD4U-pN+p~9nPGCfef@nV32zbz`NYN|DrQ&Uxf2#;6gC`V zhmHv@+Rb}|s~o&Eyu3m|PV9LSmL{cRLd~l+HMeZljgpMUGRF|rGW%X4MIxR1nQOI$ zTrc#uJ^D|pu+=VnynOd^OfSQ3&ypMET}nZUNXil7SJW0ZTQ-6&gNqww45pH7p-VKn zh#-X3Y2oSgtL7tlDfykmZ}$!=Tn)F!RE*?xE#H`%3sHLb)LXQ7HZX~gF3*IHcj zxBWQ_IC*p&>NO^o`Vkw><>Ti) z!CBw1P-gjd^v;vBo@ zahx+YkO`lfSlgZ7+m~@sPX3{e;d4z+;lkuDAI3r}#_h?2AVD?PQ1?cRVwSf-k>VDvtX%Z zL-CVe!gcPLZY@O{s_uv@R(^&>k@muUG@Tg^JcV_{(Un`7Yot|Jdh^iLT0MYs7?Vn_I4TmXMv0lzNqu>Puz+wczi zuWRfO@Eyi|m50*Opj0ukGcmETe+GAW!LZ;1Zd|mL(zM6GAiIhF#gtZN+yKuXFjv)Z z(2$cAG=f`m8W_V3O*mbwZPCxc5Oxs+m)0f@22dAkD;s-37ZLjN8iL>&eVdCOdS1oB zQiNVZP7(SLZf64Jc zxN}?hy#62G{L|xqwAA>g>k3cL7xty|LE&?5P6I2Rb60zFchiz}#t609=x4`ws?VEI*oYfKC$d}OFB z1_lg6TKvAM3+Bog;V4nx;ipYz`pRYcDAI5lMrFFbE{TjQl~Mc=p8SsY#Iw^FqeC9E zg{ZJfr>aZaT+3i&C3(O|_xMfNQAWb)IyWlbbS|lOqISP}-(x@dL_0-cRg>G&wEqw} zWK`d&=hk7sob2)=$&Kf1>yToYVEQ(@ymtP2~CxdF$O7fmBX|21v*F8zP93 zy~E}FdOfghjORNVWVmV>FA&r4XfBRc7GLGm8AK(#x?}XUh1T=fpok>4daY`CX5$NS z`93!xSN(C(@#)bz)2$>y#|V0ffI-*d+fFMQ2dm{1vTA}(D=ZR$WTo4t2BQ_vw?G&1 zxjJsErFM-ZlAz*7+pYW-@C3u6i0J5>O##=6w@vAUgtRYH-FsTp{r=$vfvpyX)f&y~ zVjeXs6ZI3u44lp#yaQ63KblrgzBT0J*RdV#t#WHt9xml%h`+hwG|pbLH*8ttysj4+ zy|+3d(;9ITG=F>B;N{9takFuTZncy0M^#oKIGLX3iQ`bMTY2l_kuvKHhsAEtRyOgT zlGEz2Nl|yE93`ttW>6A8A-rbOZ)LQy2iC%zL%^}oGxAL^hW9(+z zhQO>{w~UAC+^bt3=cwh)d`Jr^0<&(5V%^&A6idj}ah;8}+v$=V0TmsWRENr}6Ivg) z$8gNPH3}&N6^BdAiyW8LBBO61D;|W1>}h~8j=$KJ1N{ZIKGIp+YUhgGnr$CBihET) zj*#&>M(a+@Ud+}AzNsuLZ$rT08cr@j!2MZxP1z8cTgY@;GA`aYs1Z-%1M ztai$4ZL6G5zSWnbUJiOs3l)vvwd{YJn`n;`u-j^7MoZp#O-Hj9QQG>rCsQutQ7{D% z(u?EG=B?cU{e;{^_q`$IVpBOFP0@oHQq59}X!P8rBbk(Q)HvM4if_Zmg%6f;@@3U1 z_-)urEeFa#KRpU!(b2cm<8yf|dZpwAX0L+gbDb$%`W^=vt!l@IFy1KN&2; zK)W^$`zXt|D#&F0N{K*Yuq;gZ1x|K)W=neHfv^q0mMC&qRE~_sBchN3vIJWBdA!|e z0(JnCWpr23c)CeRt~5ekq?~_IV0VG0q2%p4@czhFx5&f)pj%1@-K@FC+v*p?mvs9=g2x^TBs))Pd_i17VGaE!h`vL z71D?BnA4G2x%0v#;*|2k85tt-yogUf%Ur6@1I^F{Xf}HYuL8}`g>-mKPbcJ1vms%J z+t(xJwzOE}f*C2iyOZ&7sFCp`C@saYMp|ro!Hha`hda{4X^ZLPTY5^8Y$xGcB4qovf^ZM!I6v3F)4<7A7u@|0>WzJbTnt|D;Cx zypZj#cin;0!haQ!J8+g0?Y4wp1>;GA>>1xS(|N%yefG7deit-D7oZu(E?gEgLlb#flPNg+nN?F9eQ@8seS;gAI1kXL ztaYT4Hhpd7Qb#i-(^S0D9j}?(aUuWqn!V#JX9wi ziv(+m4r?kI!@0$)GKPX!d-_@IF#{T zo}NFaZk0yqbrFOEL9ZX%zk$(vVC?sJH6B3`KqOrWxOT+J!c;9b8A^YEBM1c3kRNkV zDqiU+K!1cmqNVcRI(SMCeTM(#x$>Z{JW&kEYds*m9aHa7p9FJgb@Zb@&@K#y^Lh*? zox%K(H<%XJ?ZaNdJN!MpOT-pFf8xhK2Wyk*y`o0(>W`|JBv2>Pu#of{xIo}FpB7Y> z8~v%B-adIRc6Q8N%J#_mf6ELlecwSMa!jlPQlLaJvAus2FFu`OjkvVA-MEBuz5zqF z+Vs_I#q6RemM6n(wa)vTLnY6Ba!(FrG|QgVeM{I*UKy!oZVZp87Svr%(z%K9gCWqW z%Rfym`$M{3ur@-~Y&{j^(sv0?n;|r^yQ<_)Oe4&)E}sC6Yz~cav{aKQQK%uzu&kY4 z{j>?ePlY|kX;|*fX4qXGh*c0h5bw{^j?F5Lfq#GJ{VjoCp&zN6V0NHYYSDVbERk+| zzB3jaweywbq}FNW0?Pee&)T z_Ebj#f2=mVwr|f9z#|iIN;-{Ke=jnTSp*=p_OO*XC92YXe%N)rAtP3gjep`raV_HK z#?;p53$%l-WS1}Mc%JO`qY*34#oq(Lk$MMkf!*23{)qi!i=MjUEt#%Po%B(xPSK-W zD%Y9tJwNxOy;ke;G1Ga?-yV_ocdRG&kGvnwM^eT1yga?_Y(!MZc@B2Agn#_l+s_nK#aWF^c zs74Czc1l^)z8Slhe;K`Y(bFXs*$GRuYh!il087XI#y#72N&B3aDEVYV#7K9YN6Bd2&IGWYc zjs2%fne27$2QeJU@ce|rr+Ld0!y&OL9NM14#@6}H2nO?s%ACZ$k~m$DeH8WGNfff^ zMXT9fl?$i1*1GMytQwf6?=o%~U06BH`$9vt^E&5zif5f}4^Wwk-iu8Mp>^Gbk@9@r zjyIZTYt`#*uSpnW`39DgoX1(^;&}=OmY>;DUz4{ZwB>em3;X4ULN&2~_YfU$?bc!P z8bFPa0ByJB*Pkv`i$p}a)?cJhzFk5#;zD|v3qpe0@* zA83xP%5LF{S}BUTE(fdItzPAX*bwNC&uJ}o?dRW*pt!VdZ>csa=_jeY4q&s)_N`&5 zysF(<_>+$^?;Bpt`mgu5lBaNmIcLh>ep04KstY&d=d`(tFV3Mj>1}&bX_K#4o2xW# z*`G_2v}D|q`EUZ~urw2BCiSyD^|jLu{)rY91(BO*B(1MxIVR1V#3+K;32TeK)qc3U zEFl@?d9+$i*KW3iXOkH>yj?Plxg+U9nd$x77Uf=FVL}`pl6u4{N zonA1TM9IwoL1MGM@6J6#sV6I%{T-WXT;RTm}j&p0bNxIpD|Llq>dHa+_3}gK2__lQ z1T(mTG0^PbH+Co_60KOdJOEg^#7=f1Tjvhq7q(p0piglt;_z}GnqNk5K-e%o=xv|R zv@=2SN0V-TWtW9#h-!=$bXm1Z?S*o=_E7mB@p*rmrimn^4t#nJ2 zg=yc#sn;eP*H-fO1qwKS7?`m4_&l%}kXdvxpXU@V-j^^KEcXoy>(0e=S*UR4aIwlL zPDR|;;0WwrM*$=n#_nw^@)@aHoo+vmN=<9}l7ZM=l0G{<(Ult#BeKhr*_F*! z&ajh%t7ppI7@$fU_B#&2rv+Z7W$ys+8+D2G6dakCevuilySNS(;bz5IBUzVtsRMMO zX7}gMI1%D^ETcU_4rac@ZOwo7LD3^k)*Tphi?vz~d2@73Qai+z;q|beaDkq_Yprqp zs00Us>(T;>y2Vr&99cA z;1lSqKNMhSpk3&BvbR1mUw`6hnWPfDfKgXQ-W%)gw(mQ}-1}8(S$Feiy>zjR*5kbo zXLEwRV(T7K$Y=WlW(A7g8!r7q>NhpKF|d>Xz6^~I`Wq{G|GfAUw}Ibgl%;&kDPfs$ zb)-C2K1r~$f3fq8cDc=}mh;|_Svxq&rnKfe7O>kUfCs&9p|01dUT7%cHU?-3dWJ_q zXunm7vwGz&+Sx+$1gVa?buTK`f_A49!IBZ6dD#8HD5je zoQO%^$0z+hFwgclOYVrM30Q@w?8(O*B!SzO=^NNr>K>mJD zjjO%D{-`~84qIw-_l4xTjRwO0hofI;c+Aq|FW4W<#>(VrmF9AZ_iEQ4{{%KY&;P4J z0w2dmvy~Y~(K3c}f({b==@o}oyDqV)!Rl6DKt^|Q;8}h48MTny$AMhZt?$%aV%lY= zC9E?}#Rdxt(#km~bG5y~)7sgS#X=D(p>9ONHbOs;OyogPmZwGVCH@hnn&ZSEs=e2( zReIA;-~;zt!7i6YuL?sW=D$~kC{{RLL*U#uNdbcfUmfP!#mod_z;EmwHq*GtTJ-0d z&!3R-ER5!9^ViGmRq>CzJR~6Jw3_E#7|+)i1IOS~WcZ?%luwO_+g=oa1S3Z-m$yEV^M+v<)gmkJq|Y&)q8LKZV~9-3GLihW-PW^6=lsL>CrnQR0yp zccb%6Nk5&Q_eL&dm2~XLT0wkt%Ayi|UU`Z>*rl_T>Sj{2Y<(*oNBgVMxn#i)LM%en zYgb8&fY|S#S6>{bhLE1~n4_AHp2xxLQ{JHdUq^M=543PfZ>VI-w)Vw)o-FGZ+08z7 zb5F&ZLcE;tJQJ~cswQdYyx84DQEH{mVs<~v!S!%4E01InwL2B#=zCD{e7fOUxawtJ zON_AtiI?Sc78#fhM5b;kp)?}7i?%h(4`&@2PjsEfu32y||FW@Cuh9p=%*=3>R`X?E zjsTmL;hYqa`tmu2dz*~zg(~R`4a>Y%j6NwHWqaDSTZD__mC^1&&&a@RC+_Ties}mz zE^>!1rQG2e-9(hYIcLZ4vJGxU@#2ap`0!VyQz<$!s+mZUP8E{@mGA<$4;w~Z1~`#z%iNHVY7D((nV z8FhEugb1=c9|^Xp8~@M&nCnRNrQ+MB->%2qd!Cxp$eNW%e{Q=28M%#HAb^IFXOv+5 zWdvb5IC`G&!YDSCenB;V8C1lo7(95Pf}1SY@kEfl8|G4(781U>&R&2jbeq3y?%cIV zlGLfq(vR4$TUV-_Y1`YI;=v#1nxA?{IRENwpI>jcpR`%X$%x+%7w4`x@HqS&9P~PZ z_B&MPOM3mC7oUCT6gwL|bmhj}tU-9Mo`df=7Kk)dXTGTa9X#%?iH^A7gKF!MGNdCB z1y2|_=tq_vIBibshT{z5D4JIC?Nt>3IoB4$VcD^}>h3iUK#fJP1K;c}_h$fQqbwbE z0BkbqsLk8fwM+thmno}WO~p_LqAz?+@P~+M8ys2#z)E+j1mVC`tv#|?kT-xvmBYdK zC_5{eZFi~9{-i5^B$iW`4Op5138BT~sb(tsprip@UeCEWvs_F(!RAAb@=?Q%8*A+8 zDm}&~CI=z6onwrEpN_WHE*E7}>c4s@ng%{%p1<_+h#~c1GX?&DxpZcy7|)j0G$9AY zlhB11;|~gZs~@3S_RnU5yqq&Jot>gxX;BWyE!_~XRwg$?#(t{3jmF2(03!4f;*Za4 zIx@Aun##P4(-@4C|I25oz&*yAI$WPq5IbR%2)G)4<>up-a7miQ@kLJoBBuSNzINvX z&7luU41n8nlkGJt})=1nl3za!6P zkx6?4**>9~8+L)mg$+@5mG*Cm0xEvQv}q(`{zZl8L!n!lanHTvIsC=tgn$&j%h=2DY+{Y}PrsHlkiQp!+cjN8JR zXUnK2_sWZkS1x_poh0jnautYTB5x=GAao4#zkbhjnUJkzXsCTc4_&)P7m9YC!?Ljo z@fw;#X}N}m{AsRVLvbbpll`t_!iO5zJNFxWR&SqhcMPgsL{4->WQ!V$cB~KX* z40};F^OCs$Ka`SB<&X4^!NK>=k^&Uq0#m z@J9Kl7tiSk;ZXTlElPR87blkPfb4Qfufdv{ zqxxq7$FV`=pgKOOx72dO0G+GGXEg{R(G

    vK}reOg@_u-sBz7VHnVJ%d?N>eSA`P zv{u~jnnm&aS`d`m=<6j*53BmrY%2VLYy+MGYh~c{&d$c_^Jy;kQQ~_7iag`R!4~pv zmocE{(Ktq%r&^Kh*B*WQH|`tu+~I!6=+^7WAgGr6&*6o-^Beq~8@m{UnDB~(`QU=i zk>W3-F2ti>S$ntfLCsR0f2i{clX$ddFzhKhlvZX*SY`msw;TsA^mHx(9w2%<(D$4Z zfia;$)$T+S@XK1^^(Uqs*XqoBn7S5a9ppEFS1r**+6i+39;;naHTV;$)S>khm?OLS zBxf!A#QM|2<;uM`rcEFkGYdTXow1wGyf>atf0YI_wfhJ~Ya54lS&JP1*i~tzw%>aV z?oFs&5>rj{qCpU)E|8YyHWw5T!q`NCPb-Ls=>2FP?-(OEy^ENGMIpc3>s%d%7-T}Rr$Ce;62vlkp7emI&;3mKq$Mp$ykBcm zmBdz_yJ&KH$ZlfQQ-nop`QD3fssfcxV;??Nn{0=61Ah+bPJ^(BLK6z5oMJtxZ++&T zz*SH+huGub_*9x5Pnc>r6%ltR; z*jG5OacHSp^nRcN{w%TPH#pBBh&;_8tJerB74#?x?n00$%?=Kg+hoh)3c)OA1<1S68W(J6dYl3Bla%#Ld|m1 zX!j5evaOHh`)>$S7P!SJo)@1Bx~4+XOgeIwP=qzuebNj((9IcHs)1e!;?v4GtR`+xxG zYC4bK73U=<;I9`%s0@yNxN|$=f%Pdlc=75v`_m%j?Sj{E;W8Bqpc$P7mY!Kt>#oXD zu#4JGdf7*p9)H3nZUHPxo=JUWZO7$9h(Z!^uh12pa`ai)03l))DuDLVIDVCx0*Tp0Ut3Cu(TUC_ou-zO<^~?-{H9S6CBf00QTi_ zUFubJm)o)o9r}8{%P_FsT(u239xrx_6}B}S(Aj<^>E=PiG;#J5pH*||`&G*vb?kc>mB}>*n+gd@cYocbmK?VlTNq352=mJ+L}=kffqu zeTl5fcwz}08EsLe3R6i;P2-TyFP*i*$Ap}vQnZV=L~aJ`_b#fPFKwC`68tK_ZoJ#K z^*1mVzYp;iIVOOc|)oaxOyy2q)WgdE<65g4n_{rSpRjI*#SIoWhE2_sCYr zXX+56LY(LRscnf*#Wli=I8T>4v@H91z)TuDoED@=5;7#BLAAVzVc zcW5fUt%E1=^2qOPod}!$8k_;2s6&#z0Nh-6nk4Z+mDJrgR3u11_>~S67<@@LYzjaw zEtCO#qMqz=Xg+{|X98}(4#dG9gBZ513c{s*F^cK%yG)XY@#*owct_=y;I0gy#4-Q{ zp^aZIG;fMe2r&NZ3Y9)b1NfSZISUk*!)?3tqsz1U3?ouVqgiLY8DWD;wi`+(4MR$hh@Nmq2Bjv|v#UNSx?ToD(E^ zjp9I_nJcQFF`V3dXP=bw2T>$@>kP1~Q} zh9`^l0n&-7J2{;S>lBsW!D?NZ{rhbV{4}k$yW3H&i|AH~#fiq}y?twc*dp;0M z9MyL&Zz8%G&4wcpM3mB{6j@TQ9!F=0XLpmK#>c9Sd%hAC?JaYe45c32_v%%sLf~v zk2PlB@5qq13joxiSxn6j{tCoxaef|Gvji{Fuw-%Af4QY}ru&3v%{Y;+7~8y-2Z(SylM ze)aS}s?HFAsz`n_!emf&a@SmzARuWFWsAIODu3lET3c(Q&*Ife zo+;)01l}=4hfS2k-&6gk1F4r7g$ayM`+)x^NnGsSmie{)2>01&b;$jH8_gY{0@i*y zRpwQ+3Up&{W;O`B-n)aOy7qgS{f8`H`-7pou-FC3f&{YU*4p)FLi{Qh@B;sl$6r^l zfQvweg_qw8nlpoiwpzu0=h~cU{B`w^fWP*~uZ?=X$R2{IwD47dM@)c{>YN#OE=fwr z#`cl;y>I>z9Sqt8Vx{RC{)$N@=oqDwZp>Q(dv3X)Tay1G=^yC$HBA5&LnL}F+N}!> zdw?V^jY^Q`(o`7pFHZ-YF9fI)9li#Ea+nJ`Q2vW=`xn8rsDK*D;#dD;bpNxKlo?nO zi=%G6)PD-{S0ktbsNs6W=8&D=>Aar!QwI4 z#|o`B(jFNVaZD45+`pWDv~K>^QaIQYZ&U;9@P7g&?K`(tl#a@BBiqey|3{r)wf}9j zHkqyb^FjYS?XN3XIv4_dbn0K`^RA6`p&%f+WRdS%CB@yuxWnG|w zkNc3_|C#~X5(_r)i_JprKgRfbTCk5`G77sisUCj~=s%}?e(wOl_++lS$(2!%-IsG` zx;d0sKJD3Gk=wt;gU0iJW(P$2tK^7%Ao{cW$*WMO>E5R|ycfXQl!TMDh=71pk+%8O zKdR!0gUtaGj4-|W7EA^!O(BmItoXdscYJ>i*-OQ1Fj&RM1Sgdo_#U;I(EUkMivJ6# z4AU(Pp(Vqmo@b}9vd}*=8va{?z{{a(w^*y;iu?T@CmHP8JokBZ!v2)vUvUX9m=`XxX6v!}NLgOa zD`3;BWE1#0N<)IAK%8V2#7knoTo(E^_YJsM!Aq z(J$ZD&(mN_nUi%ZGF*HxRA7_0GFmt`te0sekgbyu-<$2}_bW=D)T49sJ52B2HN|=D zE|?SS5Ff16l)A^yei_^UkcoCqt3rrfUt$II%kJ@*NAn5_ORSO(_Fe%w30-RX{8c@F# z(0FLRK31&`vRWY)_Q}gWhS6pZS-oJG1ig8lnU`E%_@aqxWYfz~vv%J*48}u04)&^S z33uh;jH^P<(Z%t6#eu8il@IYohn~c69emSk#=>g70=6x?If_&j7`^+eLo6drk^X5o zY4?EGA!gnnek2`EFQFsZ=gPXjI>HP%LHj)BNKvf&7oAGs6MBM`4xDg5`x7lO!)rGKbW8t#qUQzeiw(2Z$Y>h(3&YDi*T?7k*&q3h(6ckjfGt^+ zE})=@c85#N(yYk&dssfRptJTHHDOup8z5xBdV0LAa0^yy+Cg!!QrtNMvIg!XL>zuh zV@%++oD-Y}K%5!)@y>Y++p#dkm%4zw5(2r$!0|gEga+Kino@e&q~Wl$(4~yjsVs0? zK6&KxLy)86R(=gVC7%_(_ITwTmH{_L?+w70%lKcWPV5M^5MWVL;*D>>XHoS?|1IpjV`7 zZkZ$>*7!pf)h>33&7ioeFwn@HNXy} z_B>+b?)#wh5RaHp07l4~RSI5{Sx5X$kbG;8yj)2Y zwVVWVY2h@*#xkdybiZwyg4A?^=um#2S?|bWRoSxmwl1LJ;aHWLZFT0FqpRvOA?*WJwPoj6VlkT zyX%%b3%^9c(^45Q`vPB_5}!W{0jM;F!<&y4k^7#<)3mAeinp^B-#<{U+Idg%&Q#Y! z()U7Bo6AN3>?8g{6icV6LV3<~(q##Lz(jf;?W(gzYztq4cW0~aTu03$F=e1hmwMCa zV*GY|Mp>}78lDN*`hor485V-di5r#OzG5f@<`kyk{S3s|DT(~fwo}f6ES6p#m%Icn z!OqL_^`D#5_8t65DF6ohD(6c8D*No`G%+A&W$I}B;t>?#15#P9+EAyKI3L#HCSWcz zW?76__~H!Tb0(mbC4Id8oQF@p9of{=4XiOi>f8n{yRNl*wy!v6wF0w8FKE(cKW*01 z)l6fyUToS&u-KoS0djnaMR?mhyyk*f^8qV<6fajpAEpRYa&dNc@&*)GU~EBw2&Nbo zr3SV#=k;-^0F`sH4T?gCI>q(o>rWhN)_d4;#%~wvpZKhP^2P>n6S9MuNQGQhVvw>i zFNida=d)%bqU0+XSl*NuJ8=-oC#*l-3jCHNG*BwfEfd2YE?_@5qm_RPCA=+bK3-F) z`a$vY#{m#*GRHme>^RUY>Nf)PkXq7?f%_ZzalWO4ufdee^=GHmCC|DZ#PgUN_Spl{ zNUau7oos+dA=KnZlBotv0A2aAAIQ{b2P1kA(Q~slmyPFPo!LyJMBSUdlq1KSj7$zr-haf>So;04}iIoT;)!=zF%Te^!LF?g?plMW{{Ox-)J$ z?zS#+(CK+<6rhb`D|L-xe2#G&3;tU zq~K*bis*|!aV+5fgw$W@^uNo;Q|5s!%K}Qe_+>xJF`UyAyvdMyB-A4?pU6<_wogV> zA`!te_<=fBgw2!tth*FVn<>e~FD-}IlU@#v*CgtR|KC{)MRee@>@6K|^GKnM=9X8%2 zh=^0g4#-Q;ngdBvDiwzPWguUN)@|jEC5~MM=_0m4wc|1w@^v3=sYRb%v@00rY}GQ- z-aYOq!NRTs2$c9GDNA`ejedM`YeL`PUTE6DOAl{|bk)&XwS90&|NiLCqGyK*W$W`T z6{ZMS1&x0GHKGrKks%c8Jz1gl(Z+4NG@&pT;oPee;2qhU*&gqwVs}J((`WZ}i=w^iErm5@@xCYHZHhQW!ol`@d;Qr7JhD{pFT;jegWhMx*_Kl@m-U! z#3j8XpdkE`2j7TRJz|!;yVf4$fuR$Vz)_=xb~JOu2y*!j?d9Z1nPgcC1Z{tO zyZT+=*db~eo%6X!aaYA#jRE?DoY7uB*f8k$WltB*2cDKi{(%abGmtA({^+HjQ0!35 zK+eSL4UqR_>)36L&W7c6m(-gNGO5;w3P(&Yv@C)Z%d6fcj@w|L#L`GmD_VoO^2~$! z>E#@i&kJ8jzGQ&J3jdt)q5e`!^`R2;$X2aCHnuO)a$0&!D!LGwrB;M2x^PHgPor~VG zq#J}02e=K6jq5jKb$h(?*`s&KJul}I^=nkV&WNLH8Gj0p}r=Xsa4EZ6PY z3c#XiksWyBXFi@y0-K%N^jksuTim1xZOM;9ksv3))ginkAooNgKyETUp^CUB^`8(jf`myTyc)f@73w@QHa)-bS za|)JMaW~z4(7%%3L$%;Q0p0;><#l`&(J&iIG#RS z??PvbwBPsX0|_ZL3$e6XW+#S^u+vcK+rvi!LhV0mn^i!TsD8v^ed}DPmDvfiLNdGH zY!J7}Usj@bd~_t~S zjlheR6Xq3AV*;#5XQSS}IXAxw?Nzm#5}$AyI$C*tio-^qZNy7sdECDXECC)jkK(K> zMQ$y4j}I8wr%5Q*lRkC*%6=hkiUoG?P9CsuCMK_5ggp(W;57!(OXL$6er_(|8$FhqXL4OUR)e>@ zKp43v0bXa0ThSqybfz_5=$r|%-DVK=(Hz?S@rI2@?F1)Rq)#5+tlxKG!)XBFf3vRr zG(0!Q;hXE^^qC@p>eYLa6<2$gMQFTj^R?O45SM_&>`UtOVi9?+>*|NNaUM#h%Jl0* zb5sC4T7fK;DSoGV8D!mQzP^k5ZKIFEcKU1C#mB=BprZ<}9N&-uC-Rv=2(1I!iCmw; zA8GF3dB76Tr27fLa%L#hhS8@gTGtsT$-a%n95@_I!KZ6Vx_S8 zF+jzuUCI>KckpBm_f~HS#*c8#@0DTz=(nzPi@sBYVl;9) z;jk&HV?9S7Itm{qtrv*gHAn_&bLxX^jaOE-+%z(i8--S-0d*zr(>3n3Lc~A%G`MKM zecWX_SjW2q==crZ(^}~)NqbZs}URRog7TpfIt(A2@Bb*HUa2C51jrAqOt2%qF#_`T#q>{h?O z_X+$0@BJu0^=_N`Nbcg)@KB^HNKegUl@ZR#vjP@@Vx`~wrb89P>{H*m4$9GE)!wGF zvj_-~>t}W{KpnP87Ta?jcI_PH75%QR~oHqbx=Z7=n zKwicyLGm)9eo@~cAV@K7Uqt{S3SQYAuvaLd25<3pn+{875h6A|Us!$N)AB;0|&=R_Pt`$usg?p{V#yMK_m2Qmg>%nJIaD%k(uHXlse2zKCmmeI>hZYyfQHy zb_!i{>d{$`QwF-MdYSjm41nSFONn>pZ7Y);U{~uxB0giRwzRw-G zk&#*UieyG2*%ZnsWMq|*q>!1tBYR{M*~*G!Z?dvi*|*3_$jqq!^{t-w>3M(8d;E{X z;potPf5&HBpKF}wd2zmJ`JdK>sZgps7YF+xYlFo#ToxkV0d5D3qRj~Y95?&CHdq7rE8=`Pr0SUA>kn(N`(2q0s+ zCm@ymqR;&yJ5lKJYetAQoGzZ@H7H7*DoEa|22i88LG znJ#vGS`dmgT;Y_gD1T*NT%%Wq-M~wFHJ1Jpoja?fkW_wp;$c?b+5Jmpgxfy82H=azeShh|5}`jmX+YF(d^3ZyLn}anDghGoMa6{XzwtmSvx_3tw?`S>(s?8+0|E#U{-t&?>{RZ-h$1+E<0ZES z)w^$KP8We;DzKkasz&)dKX$-?GQTXle1vUFI&zX?alv3>)eDcIC`)IZL3YF4?F9qP zwUARS8@J=%)(^5q9>=)bvdbH90beHYdjeB*lp)iB;g7x8JiQ75-XY?pt%4oBnjKN~ zoSlpkrSduLyv;}MB%Q$ya*xthi7=yG=W)n5kpyzQh{cmb?xzy^wpsEzbnebi{hzr? zBk=oz;e4IgOXpa|FYt5#%rSEXcgu9j;Ar%RaBd_L`@60g&iM;IWY#eh{$T~m^OG5h zmiik+RQFZGo=1%3;MO-vd&nHp(|5VX&rNliPlJ7XgH(@+G@b z^X!UG4~9d&5s6f&OtY4hiEo z)&QnisPKgBl-}}Y63}g4xl^V#=$nn!d3Y3D_>?@BuCq<}0uJxwv<-vSNCHuCd+HaO zOp+DnDW`zwZwvBN`&&9^jy9^VJEsVk2EJU~s(sP(FhHoq#;Vu0g_X3R?!=YZ8fH!M zZCNG;K!jhXauw74Qg!&a$bYN*`1hXf{MqGbL*EH`VTsMb(-&Tv3%;ZqNYg%cfG|T9 z2*J{u_bF?Tc})}e68e&3kyzFZ6py2vz(rLV0rx|A{MX&Y_ZHIg@#G&T zGBjD8b1q+Q-H{88#)S=RuB;-u$R;1sOoRJ*r~bMbv)kIs?g2;x+srTNb<)&teov5P zy!RsgOH_3KDbfOlT!)(Fr|L+y^X1D*hm|vl=O5VQ2c0ADtdS0*4}(3y5wUYrTms+A zn=D7ICM&q@nPrOm`&9R@!?cC(omOSIz1BL%^tiB(GetLBPt`H@zr8#rX@&Ux*kkT zN6z(h8{GXU7>V4$TAoYE-v-^j+)D?LX|EsTXs$_5*hspq}tx2jo?@xEu z$T!Z3MVY=@+O=-FKmzA_VLT#6@cB;NJ?ldx4H~5?p(6odzr`M%OS)NuRju<1*MpMK zn6UGdc1(Ixte-Z*bF19@Hk-*+1HL;qByM)1O8cFc3wbuRs4iocT7?D}hoI#* z0B6e{-6}8)cr<0@oV-kZ^;1yxT~V$W7as;mpeV>q(xyF32x-x0DF>+M{KgYCAHBvF2`g5K&B6HxVJUmZ}AW`?)jWm;!^1kifP` zmEC&pLpE$~b3j!%QLhk#!rbh&(#R+n@qB(%T6qs(%X5-HzJ;}S0MKggy>VFSMrG>$ zUC)P*DIQiBM^s1b?DB;vWjT`PIAb6W<|mRWZ(`k;8-#Jgq(ePUYrCi-p@JVXS~@NBL5U z7Py&}C)8U3@7?uP(5a?iQ@WKMQVrK$Xcbx(55E+3+MjaKkEgezD2*SvIWIkeRSU73 ze7W;I@tOt|@q+GGg(Q)KS~a0tLAeNaOu{tBKYkR~h6>!rMLKlP>t%gLI$cO`o5hZH zI*0XJ3}rBgI|oeKDhI|!Gw}VIETt-^OQ}q_ptN^}W2C_1#_gUj`d=Y*+DPIPE8M$B zdhor~w$_)|{w_`a5LfKgoo=m9rL<$m171SWpxnl$=okf5PQ8-9jF?zvxu40q`q;Dk z!OL`>Eo^r&9Kn+_Nvt<;54=q6lR&swV6;S-rhw$p;3yjG?<)qI_rSheH_FM&kFD3e|E`qO?V7iiEEOzW$=2 z46^bXNf{Ayi(R!hwxEYU%U~}uakWC4L^K5KYoO-26K$-S0=NfEBg5af& zX|s|{jrd{*%C8CRExZdQ)5*l9Ks)V+qEVLI`YWRwMhI4AI5r*65E4>r`yy#nHi97m zPh^ndUL#H#zOMzTrqA@`^_DCfU|fQ!**F0M6T`Y%*(hB5sG}VP#%OLrm2#LOhZGEwiMgB)O`+)@`4Si>tGg z*We^QCYMz_ITz|!KXqrK*p+RDY{9)77Ml>=@)te@$l3uLv4gdy;RUl*YTVHj(XcI` zSJd3FnX{idc>RRiUZRD zB<~|YoaTdl-O`Jf89`>ms{l-Y^1ZQvFPc|>)LG;KOo!W;@pj+NJfM5?c7oldDS5xu zv_^>w1$H;AuKai=?s9psXY!3H;!7zV&b2&jrRUh|y;= zuWZ^86V-9!<=i`3_s8cXR#|dyv>tMaz;bT$aXW!;$>gM52|GL^%C^xH;CCe2{%=R= zEVEv9ykbNWhodN@LLgLG0hOJ!bWI_Vg`MzblQ%N+w+fJ&g4AU!r2Qr>02kMEEh}1PF040`&moR2y?CMhO$fp??u!y= z%+C)y+{jgHNf^_g7o3EoU>+0`-aHti8d~=@*!3k>DVmhMmu2|ruHk|Q!kO7J>>W#4 z*nU{UaZ}{$M_a3a@xaJMj%hc~JKQ|e4RNn>Ua3~Y_H5RD`q4B2P8X%+bR1xm5h9PA zJ^8tEXx~=ZC}SqlDtMIlEAPp%ag2VFQO~uF;h9noNg_Uow0FiRwkkn5p*g`SQR>m4-DgiJ zJ@9KfjjBW?6sYXh;!! zSdOf*M)ErVC)dx`hsxEvxU)^Ap~q0tq|?qMGJO3_WpRNGB z@6?Hwf595DAxJ=$^VtL$@KGrTi_H-DXw6BNKVUz9fu#Ng-_UjL3V+~lBngsK|LdcQ z$m_}7SD{n@58UhX@B%I5TAT&9{{>1Gc?tqyo&F?_92g&;(UR+LUV;}r%m4vPppELk zT^!AJ6VjJyeiz(-gZ0gkZTZ)&|NK`t2CgZ1fJ*)L=U@N$?A|L+y}yO5%2=`NJ~ z<8J(BjQw#Pc=wC|Fc}n!=ob-h;HCp_mS=Pyg3OAcYUsbH5B{$N?B7fBKkviI0^@T@ z)camWKFrYTmC9Ysq(pO9@e4Hn_oe?OUq7zoc1`>LYN!0`<635|Z_VEQze6P@hFA{u zC}Yz!cm$=-_9^FMIo03Ztg@X~Ny*Rq4>a}<9OY>Rs2t$t_Eh*FRdRHV0_`9F`Oj4# zgHYBKn|`j`f5Q=aF(DP|Uu(Nfz5ZS1C!Sp}mzA3KU&eKSul)IDcKlyLc!fxbnu1fU z8C1<)8Mk&IY^ZSra7SSU;KB zZg(X4A@t}Zbtb3~UI`UlI&F5`!s)k?+}N`2oBNzU$(+K3pkjtdVt}Te!v|BF@rSL* z^#GXE`Kc>WS(CS7mMm8zHxfMc)#{DV`{U((CYgUJxq%oO)H4v4I(!h0bL3<|$JeU8F+xxXFQesgUniz*GxY~5rR zk6{>K%TFBcOMGp4Q$Ff-{^%X6{x|m$mDMf^ZL*iD%SOHC13??beVP4cwiVqKa7k;2 zB+e@qQr6t5{`p&}-$J!e+Un=;sLh+h7N9SN{AP2rT5xGj+^l)NdOT{gCTsPARsT*x z?YvU|PC>1Ijp9_*9>aOXRa|G)HTD|n1@Q*9nz9A)w;)cIwsRtC(;#z)8`R9ACrd!h zEM@XYjpC}CGs!u{)l6sAE%ut&CGnv@)y&Lho_Q$vxJc}{){vFY+xCnsd%Dz~3IDlh z1rQWwmLc{J3lE5?@-y3`I9R=wQBkUeixD|H6 zx+}R2)_)EfsO=hf_8f9fUDDuZMCna^t2frdv4O+K_M|pyT&aT8o3~zwVUr=t?T<|x zuvU@slBo?oF8xJ+H0Bss;Pz`OKDO3^%04P-f#1lcX?my`FaBY*!>LfNUsQuE(<09j zSi7~NTP@KC05=zj^*&YK^^}l#0j2j*diD0`pF*OnAfM^YQ$JPO@Wt?E>?63z6JeDg zLAVKWoj)Gummv#B90P&ZAI%-c;qhBT1Zqe$3iK|##2zcNQeAy~&E=1G{%t9kJmD*- z_qpddbHSiSb#%4=PZJV}=(K)-1R*vKfm|x6Jq$aMKq$#HKcDgElY~FQme}E#j1xqj zX%RVi^<6@pSv{pRQ13FSD5?GaI3E?R!e_Hh%dVTllQD53PtcgO$6*c`;T!FsLz&@j zn#&AM{+gG_(Q^)e;Le%4aCXO2?$BShPX|08IdavuQ*bM4#XAMlO)_`3UD!(#EX1Om z6W{!eK{k1Tm9j5bIxm<$p*I!Z*YjH7A>5JNEKyS)Fy)#PmrRXGr)k2lL-hX`0|i0k z5q12pPvqc~*QU>;@uMnWaOYXt-%$c`xnxQ(cS!GJ{NUK@zk%*d>bUT9x#B4&S3d1^ z2fJrQKS5yTB4e*b1%wA)FY%tC^^pS3S*aFO8IHM>5dL|{Wca{S4m^*|G0uajfp#g9 zIKF<(V5XWZ(pbjQ+P1_zPPbHA$4Ujn42yPTvKb7vaOm>07y< zBlhQ$BahZjj%2{}hMouMjThHYoY6R)M$Y&bJtYk2DZ_bzcNu?skfc_yqSvYB9)Z6f zi2_Dc=~Ah2Yv|KF#^^teJEoz(p|&r+{SCFnIDE485TSpA9Ov=K+AP^m8Dy zi|Y4=E_9VnEk$=C0SlRcXj0E1@4a6*9b$NH;$S6%YRJsye^N~r6^c4}*ToZeSBh@B zJJTFqhtCT#Fl`WdGHjpNvq+HqzRP<5N`x@@KBv3jF;3eAZy|P^+jjp5PzTT$0eg5+(UM2M;3_Byo)BFzcR=@{cM@!>t0c|;nA@?bGLC2yr5 z+5~pF5jH)(#O{atTBNSOQ>5jg*E4StU06-)ywu64UhDmN*D2Ap%soUYk$>3vZWgEO zFIuS=JJ&DCDn0qf8x>QZOqo5w{36t*rwA5UaZY6->Y&Iaqhq1~l@^~R~ zQy>ko^kNW1xp-k7K%l46^vsPHY#u-Mr!F1Q^VlDoa`kyFXx9A{)8wD6JK(xJmU)%B zVkVF)Lm`5tcFcYbs=2ezT)rqONQp&C?E+|J4iaxfI(14P)_zk|jVud}Hjb5AP;Y$y zyg=2~(Gf{ZFIukUY=hG%&SY{tK<&SPv=`;Qe$;%Uw2|GBfB?*NiuDH~b+stJ+Ua@G z@>SXL!rH#=<+xaG`-PxO0PJ*`m#w?@hH%cHWQ-)3Um-h1bEX%2DCA(-n`=J}dUhK*V6e&k+C~(xI5S<8LtcUD4 zjX~6WynsQ7gao9(3>W8hpd!x5WgDH%HEEBm_;k!nZkL%JlnKso?v7O2FLxkVxtA=W zdv^2P$=iFtpzW;p@=$KNWpxV@?u`Ts6dVYSwsTk6KaIA=%X&i$e>GOa1LOf?&%dx_ zRHd#S$gu0W#|%6=o9HK}n&!W255DKnNBBZlRj>DG07UrN3-PE~XIN?iBH0KUYzFbZ z-Q<0DK7UXLkJ3A*z#C9VHPOBP{1Z^PFBpP2_aQ0TQJ)Go!5kt^JAlO8@CUh~eslNgWN$M zhj4)vQel*Co|BMK%S+kd(+RP@-n`|%lGYHmdtg67lj`FgV&hLB2z z&S0tQ+mmJrkhIJD_ClyP+iL`oWB}zkIiIVmbw6rfRtpZiHdi-)U-aBII+#{i#r?;j zqj_JNpZz!_LjyvG^(t&Km6Ano4Ci+q;+0(Rd}9l^)8hLd1T1cVN81wYe%7@A0_pcK zj{{jGKpCLeztM$2^*}cHg+?w5KpDaT2i!~$p19SmwZfOoXTbQ(8MIEWK*`4hRNORy zTzZ&aHrYY>)cy-VAyxyd=_7OjDvp=B_)zGC7zhTgspf%eWoC%U@!Fub#(zeg>=1187?=YM}k2x16vGg{v|yU zx*&VSxp%4qwCM77kPGJX1y*l~ZoCuBKfmarvM-%I)wlc+W~}s!;2wi3KtE-=g$qrs zDi_(cTsE<*0Vi0r^t{fb*CmX-Mio@7cw)=SR1!uw9XCgF0Nwi(U_(oM$uiP#KyQgA zi@P|qIRi1mNv+P^ZNGPqU%#e1xqbC}_F>LW(ly0>{X#D&PkpFNVSws-%uCQa0-0(6 zjS!Z;v~bH=Hdx)b=P;~e_T*Wo(!^IthzA*r0QNIs_eJW*e?fnpe?x!g@5KCaR00ygD3)KhVS*gCDK-)ME=0xZXSAX!akZt6OwzRF z!5qrvyMl<32|_g}M#}D7^$VkM@|S(?(G-1UC(1Jq-vX%ax~0vW5a}>fho|Zjhlgmx zM>yH+_DI~AGK9^U6w2gjZUq7>{)jI`;j(d_S=rg?3jbs*NOT1VIC zZ|Usg-TiSnmJHH*84Cd$)d)Io^1|eh=8-8-8hS`XDyk0Bo3l{3D$|^B-(Nvw&BqeA zu2NX-Zzc?GxsMctzI6v$_~*l|gGuvqza+|h;P4!qd*^MCjwIViBzEib2=)`E0R2`9 zlIU}y^575UTd4cIb#K2&)b<;~>=07BIo6Xmz?Zlwp6{h?rZ(S~E`L!=$FLv3uX}{J zbs59=7|xjMB7k!)CdL=RI>>3NyTcYGT(~DO#OIu*jG5G>sUF@BIvONCd~2X_+)6jB}F&_48$e6RXP;bU%>nZvpeFOY42Oib1bSu{$U2nU;?< zME3WGv!8j|-hA5Eb1VXw03k0T&4jD8_awK2murOXG^-0(&hk%vG@0mCt{ivpFXdqv zNMEa%ij9x{X{|1R>s)aR93fVmcX!q3r4?jSnQ#y){e|zlA6X?z4W~sX0j?W)?4&@m zu=a}9bt2+PsI*jEP6BX_&~9$Sk86rynO;0Z1#{6eP>Yhv5oUTh?{M_i#*3?BZ&X3{ zl#;I3cnLjgovtaHtR)|@y*R)zvMv+d!*wfnKhuawOv6Pcf5iWk!`Ov>{@or6+sG4F&4pN8n!I5?Lzz=nplQu_ zh`LgD|5!9smt~_#N+(@vEH2RdO#(<;Y`=?6UH;QD^^r-w%kLcOq#nH<$+l{VE4xZ8BlRbcu-dCoN zcuc2pp&cdqz$dhF`zj50-z-tvDOOSm*Inzr+?#2NlhcV`mZ{NUvvD*U{Y*LroC;pn z^!NoJ0ksJFhGfaKLJ1kR*~_mEE>HMh>;{v>2`m(19X7O=^@F5=LGWqF>R(CA7c6UV zIc3V>G;WAy@6?<)L(0G#kUwS#YG)&LrtV&A)k|q(_8rlPUS2_(v!S|V9aH5q-Bk}! z$|r*GIPQ>5`yuHvk6kyk*}86pPo&KJ{JFS>z?n>CGPS!W6fbEy2(XYbr$297NV(yl zAaJFRca$*m_EX>f@aP{K6_WGcyKSGjq&TI_SM+SSb}!#>Om=y@pEOmm^DSxh@ENJr z1?Q7V+n8>AqjFt-KkKqbdrpPE))~1wj!H5ras1N6Vrx?3RRQ}d?JOLN5B55@a|m=Qm2?_r;{9IN?hGx>*-V%w&rR|7h>Y)a z_!H)fIjoE`&zC(oal_p*qS}4cvD1HEk%=BBXClJ~4h(h_MPo^>5P1%vAr+ZttFEB8 z=ZM=uUP(8Z_P|WkGBj1deS$uT?dzw+iOp^E9^?X3#V{z8CH^2w%i0{_@+2HVH+h+o ze68m=v`_gO59A+l-R9Mc+c8#aX`+g$U)#w?9e5?CQ5JL^+YR!Yx~bjNNQ7z@QqK@> zkrrmAV;Mnmd%&iP0Oo{X+kDX(JU#Y>Ikow%2j}rI)*rEj*`2YnyOS?2XQz$&dp>#9 zc8rt^y95W%n6!lI(e+$zGArDdR&oF^)6epuei8a>> zC83=L(v>0a>{0L22QLl5g^nq-tYO%tZOMouu#^$$_bYT#s(uYF2z1j;u^J$`c;KA4 zg8F2AGHn>&v*q0G$H|{j+Dvmh3tepsrc)nRiNBGtmLch_WN>LtIzbx=%PY?MrfB?O zHP0!h-L;Vs<7+!c%qn^D(-e*Pn6;>|^Ud1+b{H1I0&i%B%Evf56?E8}u%$UnZ5_Uneo?o<=@Pf}dtOgQA#bUW$#B?jl6x~f zlzwI3O881)cm9fTS+X}SNq8>dSN6MSImc_S-zdwup1iYHBl$w<b8i)y?q<>N-zvoh#o#B5C`|+C2w606sd%=rF1A*GWZ1|*V3yr?*~n>ivWBOO-+6}gI!2U3O(BMqSaLG1 zNT7}i3s1>c958eaeb&U@0wSLN>Yi1{cE5}qVL$$*dP8OZX(DMT{t@nlK&<4H z17i7QO7YHwueEk_Vo=Krd$0xR)Y;p&_t2^tbyYf;^g<>+@na|W>zCyBE}ZIKo-bNu z_igQ$?>gu7*$}l(fKmVCZm#RoggU4`-`e?XqKZZHsmvoexnL>OdF(=ukx_hGe;gZM zEWb56^96;W*;_PENDIwGu?zRhIeob#D4HqpE$va-^#$Oo?{Rjn^5;1)^Ky2!rJ}FX ziQr535nxnUUL=MYs^9Xxi?ggw2|Jjhj6)@jP>w>||1lv zuV~xKtO-$9(}G5SK&tu?izibL;%rCwnIZkaDJ00Z78Yj~%XV%8xFZ^q&SIZ0 z;$zmguM0k4*bkEuE4Us=by1GJOV3j4(|n5iQ^KD6MvVSr&n=!>+dT@w@y362San{+ zo*_bNn;bU7;RCuGL>J;N`#p&eh?4^1UVeY#@U?Z#c4f5I;&oCjwsKsr0hNo&)2L>i zdS`XFS`w~@1A7B25**B@X_)DZo)>=}9C&P69K~m-eK$c`2QyP0MJfUMizg-BU3(v> z47W#&+c9Cokr0q$?R4ugkj8FY+tI)YzLaHX$E`L3g_*cwe<6N$s?F(7P45+P41oAr zs-5dzH@cHfN=$fL=`^Mj<=U0%&0Cug)V@Sjq;d=-_Gz1Ym1v#nm5);Cgiu5>`x-wq z@sEN`l*n`lv?A~Y1}X4Z)u{5M@ck?*OZB3 zl_F}rukYMmhNaKy>tg}hRGS%j>mS-LMXA$c-lB(B?^u&H^3`mrdFeh?XrO2$UtCr3 zsB2^V7_83U>R2L~HebK)+pauH6wZt4 ztV*(kImjL1FVg<>zIscrTAO=ddFQ*e>AVn`f)MsS;av9agW?d_0QW8WM3$Qx&Z$^e z^O)hwku_4DAeafnDI@h`=D$Qhs=ap7?HnpDij*RR)EzXX<>q!o^mH>{@+%Nx{MF z3gu_iRF|{J=b|Q@+MX?}9~h+Bkoy^vDK2I)Hq5ys>tX?W8_wgocU5BMEN9+C-DT*W z^N$L@Q`v*ol29jYmLu`KE1nwGBwx%h?Ts@hvnF!_i6gjEdK7vT(ZWs*Kh8JXiD#&z zTjlVY_wJ&oRQ%RR2-mcIIBj4ZUUd9Iv3WsUuLVy!-gSxX>|2q!MYe=0p7R#l``X_NYCf;txhYz5cYC5^g$*$v>FtRR4`ip` zddbcOhdM^F|&*bv!sK~pG?Yibxh_iN}L z`Dhhpy_6Ged=VSZqNXh7*VcRwRa|F9KAAPn$ zJs3^lDkFA(cV>3FrtGSCP4PPNqDHL?>g}j;^4P;{J!)xK-*7Ce zie9fZ<4Encfb6-$$!d9emk(2~;^qMemK*t|tS@x62rWEvR*FT%jXOr-9<}eqlhRn< zYo`uOa;GiGeZRXM`Es4g-!V)LbPnQkbbSl8S%eKIPZ_z{mz}mIax_>zTI|^KC1B?) z3O^hR`DvDgAr~8bM1mhK_4arUl%{Xo(N1tWo_4&E)6+#-v}!;ExFNV{#*lr=(8yI| zj&_5@4^B{i1@14KOqEa+I4CRT{$l7*MP?T;W3p5X%~M2jY~sGQea~kuJgMy)RG(Na z%df~`?ZAsrb6cWOc0x3$ASxehtzab@cpNn7~?vw;IsNOvt$AfD~z$6)2{ z|JWWCx^nH#5Bhq>i|luMM?i*gA^fx<^t({F(50aA(GV8Oz@sfl|7lz5Y>F{q86^#J z1jattfB?pCT; zetgj4mwbh>Fl=rAaadGT;+xlzn;krXBddohTXPr4n6Sy1yxy@%F^dU~g=Dg0lLbV0 zlEtx9Bm|uQU@aqpyLOjT;F$_m0oQb+42gBNAh3Q8HF_nu-(u8cNtU9V50eIJqe!2$ zpdWgaV`0C%+n1Kc$34%+eL)8sl*UEnHgAG-ot(#<0X{}Myx;u#m0%LkbhRkI=i*Fc zBs3lthaFP|G4gAtn@C%_3Lpyc?2r}BUiJ(#e*OF;lk@TepJf%QB7{+04Fuj#E5om% z=4#D_K0o^C!I3PdGqFXer(8ehd-Aj|HHi#aP}|+WA_cUe;jKnllC0@Ki#uakGU$=c z+1bE($hgEpX7*+nRWV~Bsl?r0Cdf(NzUHiAr~sK|Md$6$Cn@;GeV>0gx=7ae>NNjb z6Y*4T?M=#$Hszj$erv=ZUq9maTeF@m-ng0hLdfKEbFRbOWn%i%>XQk#7!xn9qcQZN zhNnj+B$`#0I=-x!HdXSie0<~xu~}FdU3D0af+vnby$8-|-~B@6el?Z=XEbDa3~qik z%VG<^k20tug)@VqK58N`KG7X=jyNeVWtoydd^(+w%r(%G_cES^wYFasZn;jy`deBb z-X^1U7_uVj;$xLL^kR?$K?T`~-@lgz_ht+8JomhJ<*1#6MX(2?dz2oV>vO&}GE>Xa|T zVs6uWef*(4_V9`UUyp3_V-fwFYtO??Fq5;OwM?c&n%d2C^Yzb`eSz70*8<6{C5?IO z3A6;Y44g7~OrDFYiY{iPy7tO5y=_u0SGOkr@M@QnN;-sMdZxwB?X26L-ASQ)PltAr z_Za#I#~LW^58;ro8-dX`qn0k~6`IgKozfnVv_geZA=ibv230w~8n$7wCw(otPgcOs zdh-Z(IH54dT}BSCA@hiSFvQx2+I-m+Fwb8$TaNUE%MTVKr#-BDS4R zMxc#jj5ZKPn@eK_)$HNv(kJGOf{$NWp*z%@>GW?lX@kIWqdf> z_Si!Uyj^tyLdlIyc@amR*H;~@XWTvFMdUJ7n6?zru>XQEX%e$aLl>@`>LI!7Q=;K% z43$nk&?W(+*Z+#fTK>8259#{BmJo=Kbu=sPJX1Kvdmd@&C{2UVE1q)es1Zx--ny6q z2lx0I9IU!q0xiONvU^3n!<~!lajfncw_-YjSE-rl=4>`TTEyr`p7*onmdIhJ*?cq| zcwVmR_Cpmxk&1WxA8*;D0Y>4I`PH^zH%?g%AEsP94ljn0zMVeCKnl(@`LZ2O-&U*R z#IH_9DLB`&VUO;CXHdjm!&|f2AC6DZtP0*vp**C;?@|)Zd7Y>Nv1g0VO=sUqY#NuS z%57vSRLh7Ee0+^&?>2s@p{;7%*g{8pebRdQ{4PWlVb;NC??}<}w|gq`2QMxN#s&1Y znh{{wg%~8)8>`gvH7BVpsvHm5cP9IV)9Tg~2ARA`oK5oR)T(_cx0Z#t=0+Kw8(z6| zrFEqeES%-HH8Fg^1?)SD<_PxOX8|jhcvH};(wbixi@~Z3jWXDIsBJF8Hp3EkvhTp0 zFN4=tUiSo=s))=#=OnMlw?v0PlIO>U7o4rX(&rmGjtS$M2?tr1?GJs!C8R>TZY(it z`C6ND621~0y+wd2@9C->^s9ww#dY%)*4EVr>h*kgn!p^*l9i$*fFxa;~vdh#x{+I z`aI=+7dM7E3R!})!y84P>6FBM+cR7hJ>AA*yCMbs0_D*p^G!N&pzZ2u2ijHI6Oa=$-NS+QWB0Qn&0PRb`_mDg*InYDNOn2*+AHGLR))=+$T{v2q z{pnbsFnWAIBs+9HJo$nU_!{BpfL&rgp^Go;kuGTB|fz5=;pXo zJ3@Ez#@j=oe%DzKi4wP-lUkBt&Y}k&SVxYN7flbhSaYX-+aokie?#m~xr-~lH%e&C zq8~85gTwt!i&x)Qwg)w}FD~2e>#E>+IOZSH$YM$XzVOK*y>>2cyn)$QrXAmzdO=L% zCDW(I+uu*qUyWG7nGV{AL}es6cOsQ9dY9{f?%%1!`dSu;%vbZa_fXZ{?p={MYMnR5c&3gL{?N|TZqr#%3rTkvg z6xW0^FlH7lxi~E{NdAAzzb{@^K(iv_-GqHEwP3>AjdZzW6DjCzWk|zmyE?1#n4jfvW z&J0hg%t?>=FpqZTG9E$`UmGZKjul+dpjjKs|Di9!6N9fsQ{%j)R;I1HyCbZ>3c?F# zPZM|80kaC9y9nG&sy!c;qr^=8vPzl-8t;}ry^11bFxSTwBq~4JAQzc9cW!SP(rN6w z&ZpFn1D4Pt!Q5$LYHO2u_ahfkN&cqD`_>XO5RV;ZquQ%ES-p^cCqb;68&!0y?%S8! zZxShP?3KQZX+P-6YJZWL(pg43(%DV#6r>ue zh`+4no+>{>KD7_Il#&Rn(!~4sZwzxr!_k}_`6g^*=GM~3x3~M?yec7SYAV`Cht05eLO?n9;h%ej&92M;en`qSN=xx@In zYQ~cmZf4DkJaMrFqWheN0kI3T2)AVK==*d-(41)ds!OM=(^p7y{{CH_djy8{aph8V z1ZM3t%9ZQQUg(=Z5bB(v-`B>W2uc!Qi^ZxX%K;4k5MI$yY<6iT>#Y4%Vq^MRcPYje z5pE78-w~bc7#ks;8$DeDQgc5v85+$r{M;&x1ir;uUa((O6TI;SFc>73~WS;F4 z#{4R`((pfuAHkQCt=E$hOmKN8V!#`0p4DYc*5-g3v@EXi)2TB-awGQ}Pe#_>yoGOc z?8slfIW*xUWwOxN3`VSKuW&bH(YuOrc9PeraJZtH9NoZQMFZj?mw+@aWK0`HvHS!nn#?iYAHfdP<0yViVUXaJ?Jq!8=$M z?1H0DGB^3)&fgy-K8*?XF~9OqP;eV>Nc1l)fPXyo&zVF167U3eah&y80eoM$JA*fy zuqwg`*K7d^>6k<;ZHs^Z+S*wdb_q*5DjrreoRR@|jF|uH>HZ$tpX+nx6f7G98^oJu zN=MU8rFz|%g!IcDjS3y@f8N4t0Tzd(vt}@43#3pLmm!cXC>2@0in?&cvv$ztHAd&b zA7AiFVu4Xex@V~wgN&{b;;OLgeW0xXUWMiykWmwAqD{JN60i&dY%9O%IQ{umI%fDP zB#Y_t*-I1Y9z4<<6NF_ZE*t*=f8CV1WGpN*Ov%$tOn~+6e})VBhnErud{4cZ$+-WxO6 zW-gBfO2}t!C45+cR26%@1Vj9B<6klS@842cu)#dC%9uJCL%|^v5v{(Aihvyx_U<%? zku`tUlRMpuS8TR+lPujepZ&4InB>tgj`B33@-G!v*yU-T4Q&Tw`C0c|yW=23rzBW) zsO|j6VEo?9@OGcsVKr5a#g<-`fYsD)mUR5WQ!cIUGxMO0D415w&Gy@j{o^6A@Mp}t@R5E%SKL7qto_|%^WSFT zm$AUY2VLH&{Q-1}4)S-;9(ea1rz5W(!KEijQ~89fLx=0D1INwiy5?oo(d-@W8H=+k^ZAr=)}_Df@XzP_&Q`zU?(v53>KqZg(WJG> znTo5h2EV*-GJaX4WI&b!dV|s9fT*fbiZMrQ?H@n8 z0r0$TgD1EH=b`rbDD)}*rxP$z7lx-ThvsfAU4A_O=i>eQ)=Y;;skDwr+xs0mY_^iI zo|1k>X!WXj6X+7_+{)~7{}|4{7r^v?ji2Wv(-s+ZgR<*KO~lJwUYt`J#UKxE1}nn z5~o1te{EM%Rv4&Oba0{gFEtUGKlnMx3>n+Aa1!)`uwgKWQJEwb`b@ zc9+w}(_J*Ib#;3A7FzSjh7KhS{pS$>hgHS?0iplLALotm50&9-bz}aSh(qzee-y&u zz{kP<>VV|on0jm7TwbQCXRCAtqe`CsJ>}t-aL#BIa3gqA6fVL0(wjBTrAYss?X!*w z^@J$b)g5n^0pu=TpOIYN#j)s8SV{co-q-|eUw<~z$Mw>9^lV7Zmt1xh6!s#4mC19T z&fwUoYn689oZ3aHZnvS=M6uPB#D3gG)>q zla#nS@%5}5aBV=xP(BaoJ;OP3Idu?vbRmr_^Pl(~Ar@g`+lF0Y0$rP#=bgNf%NB=7 zWuY;Ujfw)S9~=4yfUIXh_L)Sq^~eu0@Z3Dc9-q3J1XJ96QowH<+0kWVQw8FNRQD;y z+tpB?KkAGYk07evK#2GT{x0xO+1?&wt5nD$oK(Mu_K zrIPW2Co1nhg53KFQjEH%>@ng8CeD&EhW9M2;wS4LCt$3T-0E5C8=lfLkAYuh=0aHF zZa~&X!CVa_C4u|zi&9@eTM&H^*PyrKrN;wIL^YCqJ6@6ny@`&qf*~`(2WzF%AAa&0 zQSFYI6zi*ihvc_@KwZa*4Lb-9ItQE}EIf4w-}@Y}u~vBA?Kvr?0ws&t$Oih+$`mV< zT`EuUTSM}iu=lAOkJS!gsP+7ICS6nwJPz&c+kWmR6CN*kp7sgHDSC}MfE~&_CZ?yc z3yJ(fr6A@3#-ux(b2k=izYH14&SS8x1=Euw4XzMpDayY))~}QbFilN-5XVdS z6v^*G)~19ito{lKAvLy~HHtncvlnLZ*5KS;6P60ooJ;xkb?h_N0$#gVG9* zewx!-R;eKCDIt79Fwd#SQytP9rg`z35gSX_Tf80vy{tQ43`71aC1l7r87_vnX%wfg zNp(x?-_KRg4h02QX$0vif)`5z?X*jf&Uw(B%k2Ze{@y!-P`9GW#g%iNmHE&`O)cjd z^M^MN5<$FJ80n-FFKlJ-et#>-owN~@OwMp5S$pf}fx_=q&{AG8{tP04jL<~qbE>U~ zcBNgeE2wcv&o`7q#%{X;fOA^VknR*BS_@Ed!UI=oE=?u(gLV0DAcHf9D3pFoxCps| zpNi%Z6VRqHsLYL}sKls+AgIpW66!Ii5v*gdG2>-ZfhX4w>pvA`9BBby#NqOXAYj*l z(9lm^je!torvsENxq$im6j0oF6Y0c(fCNWkl3JDqoSUGBljj#ucK?G>$Ve22D)GsS z)~mp`;03)j<$?YMGlOrs`6@GD@)7QdAf^XHeS^ix;4a7jgMU9PNi_#4E{ zIz1)U5!a5odS&1Rx1YGU9(=?~Y!yKS2W`Q=-~g=gV7mWj*I);g2y9i3ndTUcyOdG|&A~SX+Q;@{o ztr+H*yT%fXtzA|xRv7yRC_Q`6OG#dR1DzOxc##2Cnb{=%+uleg;XQLMzKQwsIF?GJ zOBg^|$H0v1c1!+nJ$zjnrYLLMfI-@hklCI6M#Gt^2j@vN5KcueyFqO)6V_qq$e?2I z%Mm@>5K+5vQJ(2);8J?+2Df7grs_cpW76P473`=a5ZH^Qv#!Txj%D7I1Wh2DR(eMq z{U)}r09R+QQ=zXHC4WF0dh%I`b$scgbt8M-HmWp<-DM0Yw7gk**g~nbknOYG_gICz zUOM8}?nMrkTM$Kehax8oInFJ7Kdd0SqhxDbUQqc_1$cL4k!03ZaUE1Rz5r(|O1cf#pM3YBdlQi`nwzA_Pw#jmGfjidBv19XPl=&17>dS;fORo^6Gm(f=5a;e z^A?r_m^f{pIs4bxRFh?s&M)cd)2euV$EefBy>7VzBKxN1@)A|{7SW(k8IP~=Mi6bY zGUToC6*-u7qmK`dkoI1e7r)ie4GLHOZr!4pD{Q{9y9|PNf=#gt=8s!4Mx89`cO-zk zC-89d`Jx)1e5PoWHUC;8`4qqBm(80+Uh~8q{KZNfa}IU1{9XiVT<7*zHIi3K6w5mo@G)+Co3F;>7S~x;d{`$H&ptFd3ZoeO z(eD16=jus%7w5NJJPOv0-4I8KDG}n9o=?Le&n+LV%j|+)f^j+IZxfkOD{05cV>wFior$aFwpGtc?duK}B>1Ee{4rV8VHy;iN!WLc!{AXKHB(vwKl zwL7?9vol$8P}%6n?V6r|L8wCe?Qa-;t#>ypK~h@ZZdc))ex_8;ci2pyMegCbYhtMN zNmL51Tho7U#;EVS6YO~^OMF4Du4S~<ch@!;Eww=`(Tghw195$mme z%r|Feh`EApJ>kDYE9NoXN?Y5FsiON{j$vu0Xu;ew0dXpa%J*J`ks#Fle!d=?oZmTM zM2Mi@Gv&Uvb`#@8?wT$E@K3ngjB4Qk4z<*~B_8VBSSYMF6t~F42gsADUNCEnM$w@{ zBF~&Yom}SP8f45m!@6RV$+Vu9(|$;*8mRq6Zqte zf2~T9&*RgxZ{QW1xzjqU{Xe?CIx5OF`dUg#VF2mw1_hCBkOt}Q66x+zP-&2EMUd|9 zZV_pLp-Z~EzGw8_-}>$sYu$fbmzjCrC(qe?pM4NoSUldwgj^*3l>-(G{E?ikPzFfi zW%`~?N9$7dU=Tc|=rX}M1V!SCa@jwN=MLTx`>J9(oWear3bUbFM7{$((6OjWY~~u& zVS2d*qN;slN`X9)K!lGEAP-Igx;sHcRGjHF2grtJOAq{;QH+B7A3B>XCFt6fOR!A^ zA>hA^A|ve}fPd2E0H%u@jy9;!=@pP*Wz7P~C!}I&Pa>k0i7R}X-~%}Q{I=Bq!bB4M z6V_7zn|H$Zmss|TTR-Ndu_qmr2_~Q?>jlyjl78L61;~t$!bCI*HHJdp-7k(JYOFH> z#~R*AvGh!zqYysa3Rj&{xDFw_lt=g=`hBwO&5uP%QUsHlnuj=&n@_zZ3@6i# zQ0aGjr5$FoOoI2dYlhGQ0N23SQ4WMZZ?kx{dm4RrgWbgDy&P~l4$nhcOxcRUQ6peM z8q99)W7xZ`%hiq+z);nR4s}?2H2}I8_u)$*&Y8(m@M+s7pr3{<9ZMv?^`c z)Ga(Coq%~=12zLwO4`?D&|XajuU8sSa6X186>$Xy$Oz0GU4xVW$0rc}{@3aDRBdeM zDhb`@_Xo`DpiD;VuC$zjw#$Qy5yhB%a>*;852IXA??45m*GwFU-*+~T4kc_ zBssoP(u&${uOjN@(ppPoH#CUCGr@{%NEv=O!6wT65TmTD`mP&N^0jzm9X6KfMZ2fh zb>y;bKrr@`#N$2Us1yJleRq28t(D*zqCqfsx?U_%Fldjx-m?xlEJ|0m)- z4kK55xr>GSJ9_hhIMfCtJO_{m+5Y4u;n5a%2eN*rcnCJH1C?gb0dV5KDLGkE&{#4-V zOW(zXrWb4!D2?bG-g_(|sOgfZ;((N+E7IwUQWT!97m;_9USq+h=-Bk61EfIKzRz-w zctJvE4h7NN&zZfMYUV!4@Ugn0qU}@SbUJeRFo#@M%AcSlntL>O5Ojber43t5O5prHec$~I zzNqccCcuH%`f0FL?sfB%4h1K))hU1^^_YljfSl`dSH4yKpOP}GAof+mq&b=VIELbOJFEucgm%X|6^ z8}%1r7H-GHW6*LS0ptRPq)u}1qKKeDHk%fT3MM4O*bz_80~BDq#oK#po^ph5{S6^z zPVf1c3wqXqIHf@5!{7rSJm{c2D3@C*aD#M}FYbW?-|_skd9YK~m%Eo9G=sR9GHmmG zn7u(~RtUI15A{&Uf!80beZqIPf)#m4M|y^-L#fG?i~A8y3HnmmsFXK7w#AP$Mp$Fj zSJ*)Lh1dIB^73;kEHa9A2CuTJ7hBmu1_NTA{ghWwES8RvG$#Nl3>D5tNt6#LLf&UK zm!M#nivBwRugoHloh5=@iaar=*T(WYYcOyu>IP```TXqm%?Oe4Sue`>pBQ*;(gu2b z`vAP<`he8_RF!c~smCO_3Ps5Zhoka27VLW)BS1jW2Q(t1YC8Ak+dwGC;kmhLIMbi= zUU$ft)(3czc(4WWYxA07n}N!z$yVU_GeUIC@47|fK%Mgeyyy}i5}VqI!>ny>e+rlN ziK-JQ2h_qlzmm~M>GgD8CfqQw>ICN53|+Ymv5-4ZRfpa(Y4QgVkqnrLplWAD?UDld zn-A0jA7ELLI3Hi4bTM&exl9W+#8o?<9N{2*CJn3h2aK??P)DPe$uf*+j|X5HDTeA7g&m4ExVIIq)RCO8K4Xro2IT@ zOB!o1F_i=N8-e|oiy&yK#S`KzE$klpe$2yW*wR#8M$2-d*7nx&B3l7%XN_+48(MCtgSd2y;z{r_R1%gbZ zgVh@SlI(d{5j{|2k`$u1djiSDWy zv^b&*Wg5K4&g0BHNF)j9_6~>~tXX}Y9+M`63n7peHZ)or1en>}5Ni2}& zd{zA>9}|p@FAHph)Drn!*ra`i)SDNc+o* z=oL~5sRd zky8qkB(9x7a!qhzJS}Qs2eK$qI)Efk1a;QN+}~g#BEpis#ZN4g00Pr6Der}q?VMpB zU|>s=0getPO{s@rU3OK@T{=!rBR+n_;sC(7$9rz0$S3z7sUxF-MpCIPf)1$t>-K>* zI1%(K<6sIjpDfZ&aKI>RlKuj!_!2O+$FiVJ?D1keL3njyjumKAgOZebx$V9HKbAlN zuR!gu6@&>3^2uGZD`@3VKJY}z$k&;m;ve7!T1}@jit%jm05NQIcjoC;2Xf;k+IOHh z5d`JP8K+#DEI33@I$US^r#HO)o$5H${UJv8XHxuSPm*B-)Ot;NF71ZV7Na8Fx;VgP zg>0VS^~XQZ%UkTZyS!>Ty(b4qDTa+-65Zl`v>+ha8vOZxbugc zlzk?;>EE)`Il0Jx(hEe*emn;VcDVqCiXX@5dTc;b|Tx0Lj#t;50VV3bM# zx}58k0i_3|3O9fWNN}9qu)f!ljSA^5ENK|fId8Z9F6Bj#`NDRF2AEn@9k)+05qwo^ ztD6UnPqu%OER0{6vJun+v*Y^hl14S`1m=WUyT&1%pCdw-3m5|dT+B~10OWcqnmE+o zW2PIl64nId@YCiWd$>YFAAKP=R7^$}`RbPkGC+>o9Dde<{890FPVZ@CsaYL45}+}p;6ju+5&#d<^MVw84+q>dzN3&$ zwui`LF0~Jim0kqG8Z&AC7J3((PCrH;D1jOW94#vdVBNY-SFT|4*9c;67;Yerr|LY2 zE_?w*_|`cHay(FU>sp7qwz<*ezr=FjDpp$(reh;$8xxFG zSIJc*9USKF@{(_11F7kjrBcB_vb4~_zV85It`_`@t@qV5RIC*wjKXzYZ@meDy+YT+ z8O-~qA%Xsn@?m84xPt}TCMDRsg3x5^Gg#y0YvUWQQZFrYx);Wi55|TC8|sY zbQuUBQQZ)smQw8oVl1tZ7xwcc3NA2N$shXTBO(l43oOKD2lpAyDrj7OO2zn1^gj$8 zp$w>jc=>`DeU}um28V5(7-Gd2tZ9 zIU-)5YWHvvqNgFj5@=EC3bcPd5N!;TVi-T}S%y(zfI0*4BBhN5U}>X;;C(0+$-URp z8WHC~uSgjELjM3bLttnFT8G~18P>mqQQ!_O7_J>#-N|rRc!3R5A1J@ocKT!WmEr?@ z(6v>lHQs?rCcyJ0AxHfah5QqX5X0CyV%>OG6%buAU_(EN_<(2Z?PcBGTOJgf2OLEIiCzAF3eX)e&aJXcS(`Q$&;b!|`Dq~d;Cyv79&AbFNwP3Zt$5iE*ui(6 z2Ot0YIT*iPS+1^450oIfF^dVX1DaAm$WGfGA9<|ET1BIeqD{!|!4l#(vjfH?f7)4<%M~~e_rc<9`gfWdv>hkCTRr0TjhRe+;;+e zZzG*?;Q#Z_rQ3iYpyy>fDfUM|s~psonJ*~dGHX;ZRRjEbr;x<@|HJnZDuTuGo|_^p z(+xb;*gPT&Y&Mxtp0Mft8n6IiNPb_W=Rb?|U#>Je5RAmwgLLgbGyfj8z$qVhn}C1O zybQ>UrtOJx|IaEHp@RTz1YH&Opfqf`fvrI)0Ja7*_@PkP%yzdWlm2JS{+~Y(zhhGK zW@2E#1lSz({|McT714pwzpTHK8UOp?I2flInwp%G1V-=)f~A`_EdHM4vhu+N>jK2# zn(JU)45!tY$oz*Jr7!?QV-$>YMT8+1KV@0IX2K8)=k4q=8-Q5AXxdPq;bdo`GBJ|M*2CB69BecwWQ?_kBBDH_%8cS@m^7+<#V+t{b$Y}pw@v&Z$&4_07Vzz=z^dv?I425 z=M`;>%8X8T=sk{{dZcJ`PZ}6q zRDXZ_nQroheipGSSK-Z@|g;1;Unff)&@!%r18q^`Loz6fv!9U0c% zGw{RTum4DA1`PlYyR|lR&;68;jp$zfIbNfmg7XEH`gvG$Xoa0&6zd&=MeU#RTPtBSTc>1M-*9TQL|GX^bCL! z?Xn8r>(dY`a^~Bk`OGahBR>$@-STtKBv;Fmf$``!O;u)eema!5ZeqMbvG_pAcwA(W3%V*!%5L;cSOR^bG5gIu=Xc_s4_@Ss1-G(iGyTZEdEr z=fvjwd-@z62a8o#kIp;2{olW!4oimv8bQv_FdqXQ*d7&{MSSASS`=Nnq(F3+hk4cabc$hy9{*mn^AB{BM3u;f>XksI@WZ9H)&n#U1ft6MoJbb0t>u|;5DQ68#OPv=iyCYxHG28#%c zu=6yj_tX0YGIx7@-kZaO0yK+{10P!_>Y}=WR&}X}$sh_5fq?T3dZZejb$H{M8NJ9^-|=?gA64Xhr7UB(yC@Goem_hXboH&D6!x zHlc9Sxuw-{g^mzRRE!+aMrHOKY#zcnpLyI2cJ%pjGub;Duz3{k3+{G^S#V)DArL!b zYDA92acVnWJd(rH{w4=ME!l=?IDE0xEZnFQUww!JA`#*0hl8I&zzVfADWv`KokTwN zLA=aWXaM;Y&u!sVfn3>B*t9}$;Doh!d(@1gsE-NPpS_}!g4b50NdNm?gQh*I|G#YWCQ`vvdjYmh`^s3P3wRG1Z#UpO#=E!x;}Yp}Z|`!Yn)Zj_VxSQ9TTd zZ&r2>EHZHre;abqrzFP%)B_NSdsYPw$Q?Uw!#98)jZb4xnYd2f7s3CdF#=X zUyMKe{TcEP$|o!oP9mZ)2nhEWOll%%_}GjPp2X1TZH-8u_c>XK&oHt3$l&X*PUX+4 zD6E$?fh_B0hJ!`(8!W8)M`=bQ@fk3Elea)VAkUC4VfW2{LgF`UwFcVIAGnJg%pdo* zR-BjqdZTk95@UjlA1wywD3DA!RZMdENX}y4WQHbM@PAfkuB0~3pVbKqLn{jfwTZ#M z@WBKGh2N>`6Me`9=aN%KoBj1&yr4hb`!Bylsc6yY7X$<}|9oAM|B)SbAMU>sRzEsl zL=RhaW<+3=k|#}A*ufO*!FG-OeSsqvsXY*C^_jqz!7m(ow;>G(x5w)>zDfRmZoubu1nGXj~6LZv|3si^Z7>^8OOC*%i& z2_}o+BISq+AaBVy{BzQihbh1=3T-7=l*jGpf@|Zqm7fqh1e%|)G!TPRk|R8T+~DJ; zAy+5g<1jgRMyi7;L;wDL?{l4cTqZT?P(0>@thBMzp-i~L>#64ZnY&iylwfCzfo=Bi z__Z*63H3U!$He`h(q^DvL3ieGNvg?Z1m5YD$dhx9i}rz$!Kc{ey2l5O(XhgcW^svS!uCmw5x57Eu99At1dzd zNi-krzEBG@+78HpIC-wW`o_bVD#v#$m&?weFX`9u5>-v2=K`V_{5uXCeL}+5$HTL0 z`>hCtH%Man0c%_B$mBaZ%Ro=v51{a(ZDcZ!&vA^-dDeQu`oHQ;KkQta8Uhi^$~uVs^+A0{jc@1x?iOZ_eUgs6p}#TUv9jtzer zP`8$z?i}nNo~`Y_V%O|XWf!LRKHsTXar^D_MbG^ja!p`z@uj<|`qBBj_^N{@oAg!l6pVF+CNa zgpJzAA{`sv@At|{DG_vhIFgk5-NSjdM)zH`76?y)+NBnu;F-47WRrOxmvH857ax7? zMvH3oE@HbD^}XhM(WzxW9@kKpO_v(q+wCFU)q~EcvZ&bl$~WCk)0eY~%waRt+p_ti zIbVO2C=G|Looc@A9(ZkMQ0Edqo~O;6lE;frj~{%n3x}mwFFxJ8&0T+<&?2g_c&cPW zb^Gv94fHdQD~ddiApenQ@^i;DU&6_ycVvXbWdf|m>F-kGD&U?$x51GvRl1EW=jHRh zTa1~1xg*7U9y;x2PQ-2XM%#Uso@(d!+a0K+T+R>2Qz~ftpaDdh+g;cPb{qMz&wR3q z4uBoh^h^R$@FTG6Qn0WnvcLU#VQOMLI^;DlL+&;PxscV0=zYQEZ}JBJG69DL!Ap9* zGrA@r8NRf+k+p(*#ci<*TupuEPBQXM9cfh*!%Dx(IN`0=Qx^sXd4`1rHqe8J_|;X+ zZ!*UT#a|UO#5~6HvLchL#p>#xTHLqHy_0YV@ZOo8%2B+@7NOK6!h zTl*yGCh&2ovq!Nis##BD4BR?y-J@llmRdxgb9o2JTkaL#sOK9cF87jp=K$^0nPYak z3wlM&Kw|OK*wEZRHO4)2`K>eF+)B8V!C?gWxgdaTd5cDk6xAI_yMzmtE`v2g9skTyeQpT$6= z_YGoDsj>U9mK5R;alscLaZRxTnG7A+^nqnCA4#jiB}5|o9Cw|mkCm1>vM7+ngg zX|NiyAmj19`mqDmXKTE|W7NxL$m(yXW?oB?`%!*2;r}f)t`p<1M>3SWh(w)qtbC1= zg>-x@b>n=&m$|x7qYAy;c4OaI-)|c0epaTI!a9LoGxD}WP!n8D@qRsC-=e_PbW(2l zV;Xj2x>cEWRD&DysTiFIJQnKD)&i}&N^1=v9pLm(q3KH|W;cU+{Rt4P_yR#<6^|mm&LP6i5G`pyt#y3&2Nn z0wuw6wUCT$!{NFYkJzIFq(Bbof%vI^l?5F5yt60mxTPvNp{^!?R%*xh05HQMA(%1T z%Ztu@C%;~d7h~tSLvi1RQf7PKSgx)__376x6kx0kMl8tHJ4wy-`ptcT>`f&cy4M3v z|ATvMapO^Od%9kh#F&aJaT-IEQ0(~{%1v12RD)=r?YFQvr*3paXhD!f*tSH84(|~m zo~C>M?^F;cSRCi*q71`s@5-sN@ni`QBhyvm4Q@$+Ywq?J6AKQA7&Z`L0giXKx9H-TowRd~&{1?9a2A3}D^ly=9 z0rO9n%559BHDN7#yAqYCnv%ivm}vc)^~D&lce(@BP6Jg@LS=(hzOye1?RqCl*?Th` zvR2IAG7;nL>(v=$@Kx2^mNY?yTF$OgvtJhflw^r2R#8t$pXrFqb#s|w2+;{rO1_D_ zxjA-Y-UL2)nt+O6luPuXJYN5vpq=?64t6n}5|NN=J+BTwM<>A0HC5dw z&bUJ^=I&g2T#`@Li7WQDOU?G@1ywG8F*%L)N33SadC7)+qCKTCnYkAustXNjOh#A+G)9CO(jc<$mG^r; zl+HQ0HT>FNzJ<(J9x3^<|9LVof%Q7_9jQ)DQ5rO_{5k54{);z0vR!sZK(pL;(?<2l zW71~6PPqkLAnKr2rBH)3U%$4b&HTwx$n&1O@U#5|_WjoL60S4bnL1H`$CWA z88=dfC)3TroI8h0U-Q;0GIFk$Xru&JAI5230i4VF*Wq|1W8Wl-gN#e~ zxf4{@CH&rLm#9!Ek9~%0m^ru1_gabLb_KIo?gG2Sb#^R0OM9aX@-+M*-op%BbcDTS zpk2oHIDbtSfpC9-QDM_>GJT+sv4ow(&nlAgXs-mxt#0u{spZYV{C>du+`o{bj|gBp zF^K{tLGB_g1Sjkx_VT^}?i?`~eI{aVw?ocsr*31{)LF{#CzddDAw__TVSrO90%)3k zTc-2pj(Kt{o&}DUC^!c`c=Pb)z~}O`mI{qzFp({0kZscroz8-fr{y%V(M)8~@Jqmg zH7AWY%KZz9k9uy7?t#%;coeUMIDF!suxhZ-3|wqvBy5+~bFBJg<48My=UfrX@?;F! zzBQh_VPDN3`MSD>-}_-T1V_;8EJ5m}09L&Jj5ZwHO{hU48lIOkdeTQvpH+g*(Oars zh7c#s5V1wC-+|Ywq6+dVQ)S&|Vzpsx2`zy~RKRlyXZNcH9k2l!MZb@=F8OUsYTQ1K zTG~vD@3zU3iA47{4L-?s=BUzi!9CPIV{9%f-2X^9na8e*kaqcS$X%EvH`BKTcYoo* zEOSG3;t+9*TT`ibsde^-x+l(SgF31HzYDV3+O86J?UxBm4xP!+O2x++3qk4wYZ^_Wr*ZAZ_*ydqlk( zpZ%!m@C?096>j6I7YciWkJhbAgVLg0mh(4y0@0qj;|GIErH5P6{x^jzT8_->q4u7=mlB!k0m=m+NrueRJm+s3BmH zP$o+_QvH+bp-F`Q1IPTWU-|?7W@o?xYv;MvEnxJP<1>xzwu0%uEK^^kWO)4xT7Pw9 zP{V+>-GC&g@lbNaKR}~cL*H%hm+>_jX6VHNT-U+GHg}`Wc=OXc-VxTE^wC!v6yIA9 zf5bt)bXimSn72{QDL^&Nm35y6(3V@3^B=C^uMW%$s#oRJ=Hqo3Z$2y>axm`tottgB z&)gvyBkDd+*GcZnV?*M4n6hmbhfLet@xdf&yj-t{*UMd`+E+chfjr6meG9xm#0_l0B5yACRD zrT>%$_5>phev5Ea=3%t!#N8m|DT!BT4+e+MrkKa`ybgu&o+IwZBhDs95$N*Id6DEN z)5kw6esqYqPNQ>mzqyP0O3OXkqba_T?rb6bLeZ+;cL+yr?j#&I5i}F6G!xV|5v`n_ zL*)DDseqxNlD%)i>008C7f?T7o1+QsjPGn(|GRDNotB>c!My{7VNkIYe|GZ|V3Sli z@DynDs}h5eC<4tO2c78UQ+MjMcL%<0u3d`x8kKGw(ViJ}LL()boc4n7G^!eC5gno9Ux>kLu6&D7I@H+2x~;8(dUJ zc3Fiu?Orve_&yrB83{Ob4AZb>F(ynfr6%*1$nfT~4-}FJs(#*OA_#=LMR299n|QZQ zKkoqDYIf4syX$NXPvv|0HL@nEd@N^dS~S7fecrd!rM2z@iS`}C4YMt#J4RXY^|-T#J{ShY$X=oQU!-egBV`?$2Q&)WWm1K)JU4-SmIK| zQ^|H@K!EflIG};&YICD#xMvCPL5YG9V?N>++4!jVZsyiFAl%4H!GJ5l;LAw9@8`W5 zGNqQ1TcJ}}OA5Fqkx%eBozNjXKhg3u?+9C_3-WF!?bf}yq_UbQiqTj32o3 z&}$PMz~tDQ&Rr}2@L^`EdjF)8)Mf1`UhS9?b*0n%eO*OzuU5Ow&wViJVCQp*qoeyH;zqJ!{E~4 zi)+4-2!b%xB0V$=mR7J2klPa(2zMS-cZKGJA=vRnCcb6!A3IE#Xad%4txM~=Ip?^V zIxBly@yyxx5mVC|D|Pp=+Q(}_v5GHZv1#$d<@crwqs9wVr<~N0@bL&tDWowU6*+!s zk#6U?ygcHHgg+BM$4o%pYwZ1juwuAz+@NK69xx25OA#l#OkZNu(&YoE&)wOoGWv=G z7Eg|Y@Q%8$!y{08g)Pu4gj$C~%ysi@P%`c^9v2O+R*v6ouWYb#?Rx)RPuZIF)SxIb zxs9PFe~xT|lMBLEUAn@$knlt4&M?Qp!e<8lm@;Z8J|Hf`Xjif~O&<`C0Ch8L88hY$vg*zC z;gEsrFHzpRhOX1g!{$G7$BN0nE9h3myx|hN6}ZlKJXLz9TmrfjK_->f%f5)SQ0h*! zKUq8>|NL>RrE_{RcfMf|`-0yNdcboX>&(sE8rGOWAG?rjW{w1BeAdzJ^!tms`sA4g zJ}X5xB$}Q8c zlJj;s8M$FL`CKS%k3l8%JkL}gMRSA7cH~8A)1{*Hb5)w;vuS7m`&QF%uew!t1Le$-Q&+82<_`Sh!D64#SwTa%wz5h*XS_FX;8W(nBqw{HiAOvq!oes43? zp)Pspgq$eHW7a6X#iskTNYs&L)3z`gzDcgzazPo{i&JxRmWf7IR}bu0EBx>M*O#!c z`JXQ0U#1UhOq+X|-^3oZj&xFi>VB;I2gwZ-3$_C>wAeTuFleTHR3?1!l=G4GgQg2; ztdmIFkXk1WaX%_Ow@eBJs8yI+7&m+~t1gZNRHNsxgY`6*eJtXO-Cp$}3WIBqkDBIU+Kq?b)QscE1 z`8L0Y-Ob5ZO&;Fo9vu=`>Se!Bb9|l$Rm~@EB3V&S35nD-h&;UVmZlQB0H*)hcGa?H znzrdb_Nj&i?<)k?zw8~5Ms5V`jneB-3dC3zE|U#T{*#sBSpegQav<%9grSWh3?SF} zBJXtc2ze~c<}9tCiu|e$9IWw>5+dxoFSjfo#RURz6VMcezmId-EFs|Fc`^CaA6|bZ z-@C$m)s@U^`K8(+JG8XMix2XU0`l8?9yt z8(9zs-a!lLC*Sl&1@F=8>%$WG*xvG5o>@9s%qE~os^KjeIM#AT7}Ng~r#w^(mxX_Z z1?COVsj(s`VBRRDosJQa$DlUndIhd9tA;IL)xd5$aW>Ohz!+2*dZ`ZK4wkJY_bMQ} z!jwz4ovU7Q+1|fET`2Sucp{qfM7wUop2w8RE)^9bn|vCQN4zRk58n zE?E#BeQrc5vQz(ULHX^deNv8+WU@1+Lx!IF6X)=NHG*J?9V>xioA6rp!M04yIu;{P9P=}j7+>fYy&ng&UUz6~?R16<256jK<#;V@ zTPA^lxuOw=Oo2sZ47u#AmI-z;S5u}L4Jr=(h}yV2>;K6gUKjTv)aTu84pvLmZ*r}l z(~la$Fa&zn*|jOn2gxj6hIu?<-skAXs9JI5Y5W@Q?U)4<6$s%EM<$ASWSKTG`Dd*p zXqpNPd~MC8p$b}=4z?tKpC>)=TYa*~mh07hRI^q$dptjAS*XfOm44hg#p&mKC7`xgE@(7x{N6yCNWAZ*&iK5Yth%H580EI-$phAu{!nnE+hHF z9MZwSJ5#~5!n7ZjwTYYL8*3}8sid9;9-{Qg9K6G~vI~XR{hd(}A9EPo^h)c*f4y&u zco25C?>}R;VZ7HS^%S~C0W@v~XUc;1s;@ZaFgG2We_{TQ>8vuX_bKbUY||;Z;yQL= zepv&8YY(;a32Oo^7Uvxa<`Voc^8)!XtF^p==*Z%!;io{=KQSaHs)ygPM0_)UJ=c3v z&>L47{Ia&1g~F$moWOo@<9@K(dZ%0`ehxZM1ZXTSvhM+|Ps_;OlQp=tYNcd&6{Hb( zl&F^~b8dB8xhj)xE_qH}zAb@EWEmq&oG*fr$(1Sxs5gf9x!<2e{|Ur4OU&HNHdSmApScwN-} zWjr|3{hqPm-u@Q(_cSTL_FcQWo^Rnbf-5$S>%!ob@5oLkE1I4|-eNo?GI(eJZ`d&U z(OtE1_iwzik9a^8nEK?^`L!}iCf7ZB{?wv}de`S-wu8EQf}h(i_u^4~)l(bne0XtM zNeJxqQ9d_V^~_~PWMV@))#mM=;!Aji`Q5^yKDX7Au79^2z8HSoqB}|Kv;If?{`Z<^ zckzjx7xd)uAuBJX;`O6ixCesowS$EDw(e~zNr$cE5JZJL}zc-!{FmFG*X{ZDW7Yy`bwg? zqQ%e5Eys_$^aHN84~Lqp5+fbarqnNB3m#RXk4&)hdP-xh6L0y;-dz_nrB82ZtBzl} zxn{$9ZmGWZO~;yw@8Rlx0izJ!}H^DCOL&`7M9(&P)## zw(YU0)A@A;#j0Q{7K0E;7WIqEjos0m)%T)!iv-SxBs^Jqyo~yE3&jJKrkPb^_2u`r zPQ$*Kd1h~GAe~Y|FXVe7Jv(Y7FhdU(L}>z_jMUg(EAKUWe{MQmw?6au9XELoZ>MU+ zO2+8H7(~z4Q&>UAVdu%)^Hsp0`NMCGd2T3&$Q~(&nmV^xVdE(9EB1S!-JdusuOF+O$~hVc!Y>|E6wA^S7NHao`zV33!9N)a zSrP^Y;1{&)>Z=dw}oEnwwsVF|@Pz`D!&ez%HXEe!Q< z(0$Uytl1>e#wt#U!l5iBwb??eg2#*ZZziO(C&$1A=0C^u*cWcF_hn?l zyry0bTYs!lc=W7Y{fJOc3KAr)yd;RQA$>~un_{v}ItG1E;q}wIB7=G{JhmkI%pYl# zK>Wic@!ijMboFz;rfX?EtkAmH@kt*Aja^SuRyCWt&1Mfz^bH7^m_r!{r=W(?_W>zy>tIDDfjb7hNN&!4d zN)lpl?{x9Cnj-TTreB}UUa$X{bAJ?#1sC=TF<0ofIr+q~Vl^bP$@QE8edBvvqus|F zq#k|Dh!~6FV<>~~!4K=Bi|E;tH#~a_+&*b((5f8QA@o`XFS`0SYrju9S%`p?6Hc!> z6?jhSw2JyGCU;cY)e~D`nd-ladI^p+^;u9fp?`P2qgCJR-;$auJ*)s5+r!@Cgq(}8 z;iyXX2!h+VlO5k+-<_&hTOi5)JwXsv|ZH5bYVD#1c zXdJfOZOQSL8?d@EL_H#>O*Hh3@C_#|4LWeAZ)Qw%X>C)yPTjBV|MDTBI?8l<#NS8? zTbGJ8Azv5geWlum;W3?FGE;vQ;nxSZPGiNjA6RSd#J!e@?FW-B({Wz3_?7=98jt9n zW|a#~?Q@;Gwlj_l*OL4Gh9eYs{W%`#YVx0q@H-1YQM!Fk3*tvtgS_1QmTs!HghJAT z9N4e(^gp*L@&z5VA{@gB@BXMoBj^o$`CFLCaY!cZOcrIK!8L3=&m~Sj=wCkgnkRvjJ=g(-93rBo)od3_ z;_8xT4?SP-)@;c1FA1fKoxc{*sTG_Pa+?Xv;b2L?BJ;RV4&0x9{mwAhVeW|BHKa!n z&F7fR=HmN#=rt^x9C#-6tK>2C=9$-LKTJ!8C zIa8JfpV1w|S1hGgaI66?i?_?U)~G>((Jfj!q~nVnGjtEreIAxj4J7_as6a(mDUw6C z1b&C3-HfGkad7a2Yc=Wf1Gn}RbQB27l3ibR%271>nwjL_=@I<-?zbIUkDlvY0HP^dzT9WyigSY{Zbgab8I)CY3N*v; z2D6ogzCIj3ru(9DyXo-5uBhL#BiwK@pE~nQ>;&)uNMIF~9vYCE-E7MgxC$pck-^eC zE`()$KmKqCr92LD@CGnzATH%^iPk`Jv!N5#IG)Ik&SvDnXN_|42YXS+@3>_PD2zOT z8TbmH!5B_gG+`8DMsJ(=0;bTUgi%;(zG67wd~Ga+w&Ot?M6EC<#TmKON)ndOt6gXh zxN3p>)(sej-uIT48EX#10Bx!D=BQGQ%|9vKt#X~!e0e)ITcZEdS^epDOG4#LbveFW zAuL~V*`t#3uRc=-dJq)T89QZbz!ZYFqB;T;dUq+%_Y8w{D9#tU(#@P z1tBx?zGmg_2NfkcIB*{e-zGv&CFNu8`1k#3SaoaFwNa1wYQ_1zMFsW1;&z-b6bh|U zlTL(0-qh}2YTjMZm(u*}v1dr3bF0#qgCHU)tn=kXwrUw)@)JQOCtb5l=i5Idd67 zud_VnRi#Y2J5GnU0aQWJc3$j9K;mqWdd{TUkI!lv_lp z;lWqP-Wq{D+OKu7M30SjA~K~2GAmO@@bXx(q)8{Q+HEqq4bmB!*_);HYihuN-u~6Y zy(0=krdgx}QU)NN%m->gN&)&*!KzUbdGX`}c{ePeb~&GE-MT8B9O&?@9BVBy70Lf=`A!jxi^i-wQt~Lq2*{{#F4KwZXJS}!# z3+EhG8PTt;6iPQn{q2QVXUO|aOp;M8FWR+1wDWx=RR~)UbrvK1rq$NIaFuM%Q!e zLxJ5R1`zq8-|Y%0=LJz)o;j*0AHw1?5lk-beApQia@=XS8NDt~eaA>;+XL==UyC4~ zchH7rV4i_Q?sWofd@ne?-S+2cOIvspiPA>}_9UNvEpBBDS`k8-o?~y2h|Je|_OymQ zrrh);5^e2WBY6%GefCT1buA}46n}xI!!B(+w2tKXUm$VJ(EybT!opt_JKiN3K?MGBo4e_;!yIDMm0zG93#?4z~V zX+B(lJNT|-sjXD3?jNLA`rRQSst0KFG)o;VPiF}OdZ)i(mhd2t8IcJL2*JZVXql>A zHb<+}e}L%8s_-K+VH6>kz-zdtwKTatCn0UvGq5n4`gSPw#Q>M@br8y-qGzFVKVHZA z&OGaFNlS+Tit5^SRrB$lch3DTf_PD8`tmXqH}N!DlfGruO`EMDJ2%|ZLa)zN6$LY7 z(Pbqexxgv(qAgnt6A+4-;m_s)3P1SF4@i{~ z_D`b+?%m-#xar>7H?Y~K&Cw$^EEVvJE{Wx|b1L#V2H324QI81WC z;C=t;dCU2>ZLcr(!KVk+#Ozia#d@%9kFPuTF0wds2=idU~b6p+1L6-gFpsP zDXQ_S079P*{iQ=uDcV*rzzV#~Iz!Qfm$5o-A9SCBGD6*s?%Q(=r&~%iYaXpVSDxIj z&-ts7>?+^w3BMRMNrp)CXC&_rdJkObkYQoc3xTblq%1|xI2J3xdZob=&mR<+(E z%Jja7%`|R+U?k$8K*lCJCyH{{Y3Hg7{K`Y;Bt zQTX46Qklo7kV)&4RkL9hYxuG$*%Y?a*i9sCjJ~nXJd1y$FS4z%r2>(JXd`wiqBc@h zsKwE;1U~R|e*a@_zQ4I&fx~$tEqTF5=yLUk({S4HtBB_)OAOzi=yX39HwsdQz7EAi97TB==F1JB})E@`nTiyA|ZS>0+%m&$Z7L-j{{eH zu)e;(2koO~=XR_XY}KcSCpq{Fj6~J;Gx7t1Cs5RM1E31ksEicL@H8FNeh+wtayeaT zE+PW_;SHinw+t0Hbt|rr{ia8|kGk^(3@q0$NWB9lmWGWMgHm?uFN^l`i~1Uog8d;lPob_KD}@{k5-hrl!XBR7s4& zB!q^EaHK&&_uB2a;dCoUawVrxmW)+jkAmObkG9$CJie08P4*h?&Mbanmq0Xd;QG3$i8egev-M~n`9Hdp@?vXQn$HcE+TlU`R6WlCpT4w%)IV~Ov=h~

    Z`b-=-BGFqy6_l}l%uz~i=r&yvEi3!Qa``LbP*2XJ7*jO10QfNQcR!`pC zE_EO1dAx1jd$yZpkZI%VIi6+C>@CfD{)#=Gk-KQtYofQ1-DnE0BmtPSO}itc2`;9+ z@fRv|JgF=`oZlYL$5|miEJin*hw`4?m~GcnQcI;16wucwx3OpWoy)h~>n>571wYQ(+%n3s@YHtoAuJJ!6?i_Vn8ndW0U;&kol+QePAfG3|L)XAE+q?VfEy(0G-f@$c}HT_j;7m+Qf?KF<%SH(Vt&) z4M%ka&A1UEWo%hia}Cw5bB}RAgH(te9I4_*1u{b}s1$NBtgSf{-p~I<*;_|t^+f%n zh^TZ5NT(nzpwc1TC7sgJA>Ak;-CZi(-6<#?N;fwTx42`DojdhdO+Lz* zDpC_@(VS?UJTe?EXxAZ@vJ8zD1q;#sYf4@Rt2K}vmVn0_e!v?!xAw{-qen7VsP0>F zbQNQSxd%4^2B-ob_?aZK1pIOJ#s_)EDy`FJ}% zX~4VBK(BYG?m5);vPy9Bcf1=lT|i8v#azDOA_bq-+%g!htClY6b9w`EB;v$#Hi8oT zG_!y&Q#zgZxEk2=j z@_~cDk?F$|R1~EQPpa49f}=a>th7p_qspLlj##+c2BjdSc7glu+Pt9jfrGrRIGXM@Ah7TFFM}YtJqg;PP7dp(bM$@KeS&RtLfD6f-b~c1zd~&Sx z7F;b#AD=JqP}w`3a}0rtr)8>7Tg+eo*?a`-IIl)GwX(VYNibRm+O@_2>n>!Zzu9V z(4*&&bU!}^UPW_HZfg3@-TRXpzlJh0?1@y#Usw2`(|!#tHQ&b)nFHOd-^vj6pA6Fl zBX5k$M)zx8IUR70GC>ayM^$`8>Pn(|Y@0bXx}S13_SN~Icb!xn&nFZWF`A7R=yc8u zq2E*xFQENcV$aCL6c-YJmaqFVpatAr6uv87jn!S|)8H<47-xFiJG7fFzbO}ZaD`J1 z!-bzmw)Jq|kTm;&Lykq-oJecMnr5bihZi6r7-;ALa43gCK^3#9mP(`5Wj~389CD!b zADELZR)wfU4%W{IH_RVr=rd!QUFc9z?WG#;u z?|8yuKLF8_FQy3Y`GNyQ4ZU_(7x(NZ(rV9Z$kI@LvCFLfR^UMRgK2x#n_qe@O6q;F z*G8Y+;p+W5%(UwhKDjf_8Rm#!#yttYb5u*IJ%^kekzluE#;3dQUha>QrN{kzfBu*@ zw`R0|@I^h>C<##a2fwy*L-Cc6L;ufS0-#c>l7a$ekW(X3k7=TopDXwtU%}HTjPUuE zD2LuP8Jp=*(aBho7~Gu*gl=$9T9P#iutz%eo%TiQ;Ikj^xezX}T^8{%q>rs#l^W%A z%%&@>Hp%X{9*NiAI7k(Ig{9d7Q=ZM~dg1xYnG`m=pI-~`@!mOuqt5ThhY=7wFge|p zKWv`tv**7m_4Uv!Q>U4Ai@|XJB!Pgb0IY)(9WyT-IKK5$|6g-y+>RA9O6uy5l3)D5 zL~wYRr`OuzDXPCyITRH`#DV3AlHb6_o2zO?QYf7Ug&GOuSW+Gucc-mb;c*gPSFiznV81YKxJ$OUlFxnJKopsi-cf-7I{vZ{6sh~qO6o{)=I~0vPgx; zeRJ0;g+sGv&$EB&%iim-?4gCbmoG6d^{F!XTk< zGkuitBel|YFelx4=}*+)-tL52Zuj-Yy8cwHjozY8oZRZAub~1oXW@JifagOZ?g#Nj z{hmXUzf4%|bgeT>PhVe53E%m2ZA`;;{_Av+*O)#sB- zAVZBLfTDn%2@8m&WpK1#?>z9C3)FlK;K-0b9Qhro?KEYK)R*`Y3cZLCaF<>#1_Yh) zw)142dBZe-?lvOOex8$1PwM*Wa_a@7dRf~^&38E93T=f_W&Dj1U8ol2K0L(7?*p)< z+p@6OchIOG)8H;!oG3mC*}m;2m^m!o(sS2hp6V~ z-YcyS{p$q(=X~1V51GP8Py|d$5$f;HMxZ#@@*`R0X*i$@PYP%pMl^$KX~hg1o8?s-aIr&tuY{dO8fj$2iOJ29czk%u=saam^Y(x zJ%Mc87Ula+AWut9ZTNxL2$jSo6alV5`gm?C-2<9O0Rtqw_rAbSj+~z&+PJ#p6_+j4r40z%tuXQD-(R;HzK<#Lir0K`!w|*lC z`1?qNXcH(Dt2`vf(iP>L2YD2tvJ#jikH1V3-$?+5gO6AV=A)c1C?zn3mcnK%#YrSl zh>55G=AqBYCN%zcklNJUfB6xa73kjZVH2baOk2RLv+q-219vlf)Q{vw6F9DfEj`CK#nzN2dIg{T=e6_*1t`;m=>?>1E@(J+y{?f zl7JyHaV#`%mT-_SF#aag;0X{%w&Fpp#V1)zSsIG?pz*pm+?F_;?-M{pgi@6m185uh z1egVw8Zc}S&P!Z|llxI35r>-U+OGKLz54okC!Uay5UL-#gh4>`A{v0D*i8AE zn~W~?So{(Z(fPb*&X1?1YS0_dbVWo|{($=xRlCUJn>-Cj5)FK8MqZ8tNf0tATEXqk zx=2O+0m$m{B0m-gn-a$Io%fuLguJz~s?WhyZ*Y0DB$Ocs<2jBg z0{w+6B7KxgWkm29WM-#dBwpH1;|EzKQb-Aa?#u@zK-<}#9{?<_z8{(5hJCHqmpjsO za&ngQu6qETTS`(gh@Al-qr}Y4&Q3NR7yw{>C2j4^{$3DinE}{)*Z>cUuImaem+hht zJ41rDeb6&db@jzglgn21L{?s2cM=3kE(PH84G#uGIObi1k2a^4`g?!>$XtniB^Lym zD`T$#|8Hkv3{bK_TD=5@`B_{$ADzbI%w4&^W#g>{)zM3F)`hCWRv31no2o)Mp93iz z5ui1M^A5049ZigXfB!TLaONN?!IjVo<32o7)%yVT4%A!^2MAhhRwsG-8v4$`tZ-b%{yJL6qCCUSq|x%+ z@R!F~;e3v$+%eqoW2{^0qvb{6W~NHsMC&$R`SM%Q4mp0xtlP+54%E{g*5+LON|n6a zDrnU|&bo41!ue9bqTu`0wN5(%6%ee#eU-zxWUT$2OZ()HxV#T zX~YHsxkr-De59b2GV}yyBA~SG_Y~{jo=&KN&!ANg4ud%8_G`EZ7*2}c>Cn9KOJIsi zgSq!Nt%8~>l!N#m95xB>yAQlZLN3lHM^KNUQmfJ6TQFjEat@SYK^{XLO!~m*6;+V` z1Gu_;^VUho|26qzX`6lPd%X$q-;V(Lb?6#rs0Pwz?Veewa5~{IJFvj`0!z> zdN;$r;oB5|kOJ<9oBtJ`pcL5LpfgkV71RWsj~F0di}AX0Ua;o)-;OFG3B`iXvRb!} z{zCwe#+$E6s%NxdCq+OjQ!0o3IlZ#i(iRiD4AV$leEKEzp4C8hTNrd~lPbC7- zS|yS>xMbz{4gs)LZ}e=#VYWu0laj~l49l6OC|6!i(i8WO0#EA%ET=1qHz!+Ub1t_W zlla_gfRd?CpS{NVD<^VH9Uzb&VV**L?uYBfLoB*Yocdf)V1t7aqQ)r`({B<3O z)E##v4)20(EK(Q5KY4KSq~lcRqws*cU8Rp+@9*!oT^>uHA8lo8Y#c>v<)#zU(M4^h z60JQ1Xr%d#bd{kclH(s27I;eP zb}nSgJKV3(5r9(3J>VnwPTki=8WV_T^{8bB-%vfTtn8SO(7ag#L@F=Z?!7$SuXJRy zndeR7v@;mCQoq@Bc^wbvuKX!#bqIEbO7vvl^Rd#*$Tv41LS)Mdh9O;n9hB-m0jJG8 z5YI+xJr$oq!u0Wi7nefsOGp`)ES}}I2e&PInj%(zt4W&Qj0aK!dybpbpcfboi!k=U zJ%^khp*+PPwb(_Twd*2bJ8MjkB-ywVS?{>vU;C*F6*2jG%!>7UhHP5;%zNav*lF9@8{`w zkkL{+JTcm{2ewvGa=(X|U1ffj+$>3#QK-!bb(h zz;W6d3W;)s$x$9>VTf^}-( zd2-(%sN<*e5|i^cf;}>@oAo->mP~;TBIBuo59{A8**geI(2Dy`hXKMcSkI)>C{J=^ zvZJ~CnUR6iS{6K)iDx$rF&xX%_6W9eUIsbOr!RpkLsI-4&JD842`+AeBBC_2`{h%R zDkJaQ=|miYV{3%`J1R8l-FG6mPzw4Cs3Z&Nn+akT@Vn{oH0B{|GJkv5$A2BVTPB`( z1T7xcke-UUxXD>UiF6`4h<|=h6vfkkd)y#SLmdwreD;2F6WSi`_JK3>GlfgifmC!K z@u^tdotK}3A(16R#^h(f4l#!)e+Q@f+j>ujhH7TQ?lLUTKmCZ(M^NJ4BP!l3-)v}> z3*v%*nu2Ycz-uVX?-Cz#fh>DcKuHgCWrl)xV1J*weIN+;W@{Okh85sXJ|!3pGAMZj zDQVH*h!4d4O7xGrM8Y)%x{8d=3-li|nU7=klzW*Qn@U>O#C0jCeKLA&5W0&>UU~DX z36h}@2$@*=pQCS$Kv@pRnql?ZI7E-iy>NA;oy$O}6+y`rsk{^_rBbJOBds1g0oqQ) z<5vk4{~{KER)W!phBVy9^~f9`kX%T@ppWMWM|cUnR~=(d+T1LfH7RLV&YWF24gJ(u z`2Tb6?I1+)@|G8=N<*lLt=>}=#$)t>95)f-HwDnQ+gD#r&==>uQI*9;3{ByW#Ilxp zuma5LqIlp>3U``)EXIjNph)LKCTH*7d1y)~orww>GPDT+c-b$M%lb zZ95U2t8ScfA_LIq?4;sbK49}3Sb=R8Ut$99V%))n?1dK>*o!_4Vu~ zxp|#Po`i*67f(0ZZZo6*%|PEHq z&am|NaCYG{?$hN8B7fT;9;_C}Rb7T2H34NNSq`j{5<+j+eU$wr9%~%O(ClQfP~yjG z+OE~1gzPWIXr`HHvC_Gzd5Wp)*ok{vJ~!K6r*Tkg-{b$aP#VQh()jJ{Gm~pZ+0Z(N zmsgkL_;;uaymS}bAXAMN+d{HtHBGVk|9$C+6bc8GO_lf-~3 zXHD&{>qMn}JT|h`h4^C(?QTn9Yn4R9B6!&!zu4)z`;35!x3dp&7H#TKS{e`@YyrK|ixEW7K?7+iRofNh1Z;rk z(k`MN@gkUPb+$}Id7L`Iq$j4O_AC8IMYhMm;Y3AEnZmE3bIuxB6>OM|{I%eHUE5E! zcSft80aot59l_}AlV;(?4~cHbTx{5|iLKe1?g6E;jKUnXne-Y&@cJ_>Yz#FidB@A@ z@Nvl81WCPi`Q0TS;=s%$VoQ(WIz^(<0za!3h`3l=m-MH;P@$1OOS7D6l9V&^Xz(}= zwkXcnpk~-OiJLc{%gB(s7#`r0=`}lSCZP0ZZ8y|kx(6c0>n4y#ED1~8g@?B7Y~dWH zJfZq71&q2)>Iw9U7*J65HHZ9rw@ndDVf%7zj`dqt`bk>o^%sonfQ@yT!`E%c3n?^! zK83UNxz=GdzZk@b@$XME7!zqb?x*4Nl$6x%6T1H4XvIBzEqk05@cs1A@S2Jtp6U5| zu&p!CsK+P{%pE5 zIOvejhBqHPo>}A!6hz0hUbhOUNHl>Bq^i#Ia56%F5tk}#Si}{$t+d;cG1a9M$UYPe zE@Mus!6i7`X1i<0sfm5x_?(JZ+rkjDB}!XzU;YKP6!%{JVaWsIW#SF zOUhY35vh^;8sjR)$YdPb3Rv)eShwlD#$857kHI9;&)tcI+{43=k0mXJF;^z^N4FL zE1<$b(zie3yu3e&PdfN$yPE9Eb^a8;JMRa6<3hTF*HXYC+j$3u(GS{;ZtwyiOUny` z%Xv|d;F-&ZyuwwU8ZN4%mVMIr`qP7<<@W?5D`bVLJqcPZkxb)5Yq=cdfw^nZ3AB9f zhf&}ZPjH;ddqZ(-MruuR^hj2CR^vsaCPmefvNO&CMgGuALoJJ8Fbqe}7Y%b(omnY;q z@%6SQ*3}jE7#Ovg)`RU=#tT#|6uU+iDTKG&8g|S-EaWF_@2$8+AuiNd751kbL=|b* zx3@^?l4R%{G-`Fd!8jd{)F1wATzI0BeaiL%@XLg;W3FHKxr?JI*<~ zZ0o>T8NY5|e_?H3u=S!ykG8qNDYW>?Z9)IM!1DQpY{6Pbgg}(8=NV0rZmm<8Hk+H# z=F40phT^1&oE9qQxl_Gz)};jxcTIw8iq#ApcZr;YAlt*0?n-YDvF*A;6X$B|Uo%x! zv@zHF0hj(l7svv$OMRu*low%YdQn=|4Z26TxZm(ocDd(RimV@bS2yvV-aBs=XuZaF z`t07{4Lib@Lb`WlVX~a}gY9&TBc@o&LgS+B$|yF?dp_FGxAAOzMAiA|0`@1c>X0?jq=#Kp`7ipR|LVl#2M`BxiMX zb*2*R`$g#WTii@;VJISG3HRlc8y$Rz0th}6xvF%@uXNpXyn8)olP1^!S z`yt*n94dO~4~w3}280pTFKFhw9=@KCW+8n{=KYMJ__!HhF^-YI?ZuFR`Jwh4s|5R^ zcFy5F@AYif$xo#g)u1gTfqL2%w`xj$EU!5+p)hi`B zE;o;m0@M(;wd&(+(G4f3JL~!dOI_&kBr`Qxv&LRKl`B!Xxsw}j&4Ztns5O@>f(5|i z=L|rioe!n);Nak}B}HB;-&q3hkRIW)(HAAPUEhU+yS_H7Gy>lW!a?6|rXkIuja_%O zjtWfGVq*2Sh*wl=GKi)y;tmTbXDP>jPyhb;o024b6*5x3Wt62xr71%}h9`=~)iHar z-FE$|_0Zd$x2D^d9(pV$0G+zBX=t{7=rVQ3Lq6x{w~!2M&0d^3umR0nzTir1#K%#%+>^pV?z!2OnLWa{m94zS zHhlW2MCqVnTB%7yvL}r;0_@fc?Ds{B?mJ}YvR&ua4^|g)SjSP~KXeS=N}F9Zsc}x* z(xRG=IYT3oKC+xLJ}M#@UYkF%-)+0I;Sm^kqFm7>Z)`+dXJ-A}?w4I)^ydf};D z#-rj(S=P-A%ai4X`&(5u%U6vvXFBiSZ}A*U9}#n140Bx8C>E$ZVS18zAUv0)zeMxS z4F!)8KnBiqqU}$AOjudM5a*ikg~`^|*oGgbg%OQQA4(Y?8ihz6lgdk+BI7=`nfCy$ z(}r!WaF5NpKakD!47L6uxG>cMysZ3gVIy&%WgU~s^|mMa8_LSOlQXxWx!$v@jeI=m z^G7ordfuXL0(*%u%H{UBu4ao2N<(T1gJV4pO;-I)&-;8t(V2xL4hE%ZWp(!<(7T z9@Wd?@snI*mV?={f?J zRNb>)W_FHOpL+}ysxZW#*YPtL_o+qpEL^=d4RJf4@O@>!->N55oU9E_mF$Gph3c}P zMimmyy)tr{#UtM-tMz)NCsi^_L2ki&t&Bv=yRyW3IPWF56f7Iu zj08W{5C$?@X4?ywBtaTvm@a9{WOW+G$Yi;ZB=o@IefW_aZ=2_tyZ-p!vbg#@es0cc zEJ)XEPG!%lpk+Bs?X%Kxr28}K)(NibDe`+-2Ua+Dhf27dzhGS`&O@*BY*y zJ@aw|N8!wV-W=}fkBeqj%hR6eH_cA%tJ3yRv$e2qGPxGb2+O5s;ISki<1%n{O`gIU zZB~8}l^ja5Bf+3MwmU6p^s=5pR-l&6<$mD*33&-l7;g1R{${5oWA{MvKWS>}xJIo~{SGEbxUGdqFLTN(}~(wA=Y${0rEdTHcehGCGaU=+I5!I?!NSSv{0%X|L}eLZTJ+<5B62 z4}D5od3(FF4!}GU)rO##>VpBuzvwfk-xiYUbM~$)u+x_G|3k}j9Rj~zc8j4wd zd~1~Qi*b_)t*J%6tFG&#d(Ge?U)1%)p;jnmU4CR&qjMb0rd2=f-RowPk)1mRjB*A2 zc9!7QF8Y_6YWeP3zOASnqOZF(B->GVOf%hFtErh8PT^$Rvx@wWPQ%|ed2OKgxz9^} z*pquUJ6144>DPMMX)#$&y4wg4$qQJh; z1doCzGgK)qezdSiFA>>P7F?OnJ|W;f37zoHJNl}LC}4l`QDx3JK^a|zY3NqUERZo3!nSfm?N0#FCRAd@Is*ajsEk@WyrJZ5wMGlD{JOSUYS9DJLb|Yr> z6@%Fon+cD{>#ZaBDC7m4-S#^YxzK{vU?r*vcof>WMMTfcDLdwg9@kA+jU10f3Xhod zm-B9HHLa^M;lrONhs{u%mS~&DCvN9Hf7Yu-CL66}%%EwtHV%8C(fsodXP||4k#MG^ zX60-_1t@L`EBJL=u;@+#bhUE-j=_O80J*N)2z+8l*d1urX=}m+Ilf3m1OpN(-b766 zV<7jFGe-;K-epPtmmcx`mv%KjQt<5xuu8d8zX>7gRqdJ*9E}t0_x%(N=Wr@>!xAUf zmv?yOzpL=Mm>!|^a!{gvspLpbk;ln0!T#~kSF(&&BY)htGd&+S`!8TTW?r6#w2xyk zug+_V+5QYruyr^O#1Eu|Hl@Au;PKw(f8>BIgx{X)A;3WX?1N@}OKJFog$;UKWF@FHFwp7Auzm3tM)&M}Pdq zKnnYzj2+;^!Xdf51EwyIibJ$!0GT>3C&5$|sFbTd#-vN^wwE4iiL(LOJV<_cd|kdF zVoXr7ApZP)x80xd5rFtVxl=_k`hPBJoo*{RUMx;eiXD8uZj=> zSBo^Zv@Y!Szm_hKePQ8QA(t=BJ?q11K0h;_prtUmIH_!V&s&UVv2D%+s);&A=`k@x zUxGARgVbxe|8v&*^8(Cp4lc|CzVw=%j92z23nR}%3Axof!#x;2uj>+>*2fmQoE_M& zh9&e3wqA$+ZWt$NkT`!pTD@;_&|DP7V{ztZ+o;ruSStzc1_Lvlhib?)8g|7uz6V$G zokQ#@_AqkhOM_c`fpPBcRAM}_yyKxihwWlWy$GBp*HpLB|@^t9+M9NyR)(fzasRqxec zN>Je;>3S4bs@bX$jMwaVHBj?rfw`c|+7ZKjF`$QU^Hs=r9_Rh34^A(HO$)c%S_ky?eL?r@op}wN+{zYmM^($_Y zcCd*F$By$~AuXj?0Kxx|#KkG)rY;kCJ(7__sO|SZpW&<*?iKtFbr~$=2nb(EQ3XC8 zr%+c($7E24Jc-@3CIwczwb$LjX7D>jRg>3$_wM@=du(!%H`@23)|1A`{kPI3dahLnemLj{ValQ=H$p4bsmotTSokGQ92Vi7pjw{ z2_U%7(IQZO(p40NAjth`mSa+>aBxP zA-S00$jT9GzNP3<=VUJ5%|aRgq72Ud8N=N)Y8}LDhs`egg*j)9Rp~fpst`{Uk^7b6 zjr>n`(7k84NaQJ+F4KyQF2EseM+$z36_P+)gVGwvevhx7FUOu)Qg`VGB=yMK!wx&nYq>)si^%rQKul{r(WF z!``)cJ-m!W>SIl*Zyiz;&QW{c`|Q4sh{;?b>#=XBHqFg(p~O~r!~fQ4bPV%CCuvMJ zagsQlT8D8AdM~}MjI&?WHoyJzTd_Xx%}d%%q+v%2kLlQ+cP`6MzY+x2rS)J===c4S zRmz_IrpkZb>Vgd0EeZ^5w%VxOj(m3yWh!v6Mm8kHcs~niuv`*RufYgF3EF8h7i;wO z;9KS%c#KNl;-w9{_}qLk9$A2pY_%r%+A+z*Rh~JV}SyDNueEQR2cvdN&Mo&K!l%)XJ^wcxsPe=?>y&Cn&!d1F{oEW&L_vI8s!H{g%| zCP2TP2XL9A3223w3TXdrh=0%&1&Iv`;B^{!6x1BbS^l;`EPn{d)3! zH`Pr=Y zY>Ul5$cWAZE>Q6M6QZaBv``ArUES++MA}{`0)J9*@SX1T`0E-C32&KRx>u2*$X@$h z?oZT$2s<2a>TLF(B*dM0n+ByO@V%hqL^cYwz4yZTW>~vi0+r# zeCqjzf`9+RK=(r%P?c7DVv#j-uA;%+d<$?}+vU@F&6s?G zL|!>b6aHu&aoCB}a*56_^CBVLT~qhZWhI(S%7RDX@<58( zugjCnP@;oRp1o56*zH>~iHP|yhC*%s;CD!OKWyvCUr0S2uX#C}&hA~V?O;d8(_>Q@ zsPLsH#oCHu%tD)9Gz2e3w$&;YRN3N$>F^&Rt#CYR?4hI5olQf&ntA!=p`S!KTKfym zX@e7$iP3}yq?_g$H8n&WMG5P1y=U35d3bgiIej+sx#?=QIyL}05b0&kc;vM&6Z+nGC2LOMYhu z3#>GnSq($xARL~?PAdIkSjRK{-x@by(_j4siwym`vZL&nmGRpY3?dZ34wy7T`dg)Is>!v{@tfh&M z*XZO&@=3fsT-hiv&O4V zuC7%qQVhe;T^9x8B*ae={`Ic}`&;;-ShV+9-iJQ+a|q2ztg?vQ8+ zc6IiBKq+hAq!|{$424J(n{vevm#g#5bpQAH(IPBww?;?0Ye`^-R0r z%`-6r_bTs$IhlOt(>O0zsKCKUj$FK?UYPUGf^%a9bkfaforbga{luS93{$CdBs?{J zF%f*&%0*q&19vg_8Mn4u)a+M#mb6WGz9u*7lr-?!FMmMYV@l+<_=T!*)@L99<4?p4 z-@qW@eKPcCg9>DX3p<3>mQB@mAwxJVNkgw%!T#|&T`NH5c*>VKPo$rH=y}HFI*LzE zlZloNbHC=oq4`$gJy2lG=6&Q`VZKH=1&&W`&NOy$$MMMP(y8tnnv%7;Ye0tAW!bFOaNn+|@bcuDnsF-hagg?n?ctB>!?)nx%TW;>{1riK-y9 z+akPR<)_|-DDN&kYqtVm?~5OGVG>@SZOH4riG7>>+aF(3pLUQ%`zw-ZbX2iucNE&j zM2`(W*5%@-_n?N?bGi+!JS80jR;roIaYu0bMx(_ef2^fqrB`~)d~7B4tw-UpsD7?o zT7{6?>u9)H3d_$CQx&EWpJPvqzP*dF@WjFYO=Zw%2q@k~Gm_ZeQ85JO9Dox?6b2KXlI2 z!vCu$O&nRz*7sXc*-qu}=Og&vWu(sy>!0T2dvzjmDC!g5EQ({mqSz*!NNbA}EQ;sY z@hp-4t~tJj-uQzeea4$wxzV9;O&u5{e2)XK!%7UNuH>oR<4;_C3z_soZR74ALqfj! zQAz^&wlb;bQQB?3Z3dmJ8b)X05d*upO7Q%q&Rq7h_`(-;EJnfd!~(E$Q_ zyifs-gVYkWKSP^|Qy9B_^DP;z_? zj-A-f-_$>j|Ij;^p`Ck%j~ zyiE||SL25<;`h^Z1>ynoEoeykHjDA5vNEqE7@m*I(()N(6^{U^tOoj&NFoq~>({(! z9z#%;pctJQTp6q9>79pEB^V5ya(PJb#wi9Gj1tlj);oh2kkD;e0maOu#4iSLfSYwU zNSu^_J_bJ@!U2KeT_N>1s?>mNrXrm29NZ`aBtcX$0aAZp8+!eHeisg$h&yg0FAsvg zjl6>ZUaZ|EuSEX)HTfNRC`%90H=z1!nB?3LTO=&MAj$a}K?>;MuGqx?Z-HF}C=!=u zlsr%?Qvb0&RiIKBT@|>A2YsJ~2OYmF-ZQbep^g~*havu975b;`5*SOJcj%;$Gf0EB zxA%I=#_d*MsKNumfO$~D6f(+y*Cvl4G8f$d4cliF26u1zF#w>Qlw#jPsb2&9oY@bL z53x_5$~Lo_Mu2alQ`&~4zx#cF^uCksXPF4_*wu0XSZPbQ)_;-NrjN#jxjo=Ze7jh8No&2%u5TjO?~`!ph^ za@uJh?Myu;8ZU|ln*?1tVTKkE@jeKjLEUK@bE767gbSz+MMqS_0}vIrCo5M$w>^@J zJ?YKM$!BQP7DvRurkHHL}hYeOR&NlUhYr>JXkyQ^l)0+hc^LR8aF1S#Jz z_2;}4zsyp2A}$bdq+kGco?>RepRF0Sij{724 zxV&W?`n`w@e4!32swKi-i~pJcXAn^P#xp^=wJIl-_b7t+auw6Rl=@){XZe>P5;=$L zZ4tfrqABBV(HX`)pZ(cZyXq@!zYOhN8tAY6AN{g|e)(R!-ZO`82^4=;E7c__rB`SE zH?KhP$Va|NI5a0?j$nt)Y^ow#j}YV5x}e`}(okGBtD02h0C9P{Q&CbdrEcFA{$u4o z8I$|gVSV@C%@mL5-Kt$6tvyqJ`agYtO#$`RTyRWId*pyas)(@lyIkscCZy00g3XQ2 z0qQh-1EySrtvo6b(SM@G1Utbgn6@s#2$W!b$qO%$AL)-VqWsAC2-KCmv3#XKA7;N1 zDqhFVbiTiZvw_n9vq3{V{<8N8;F&$Rs&50#zSpl!&Mxe)}30DK5XsZE0-C zd?+BNNBrXSux&R);gZ_2?|8yDY zi{LCF`DUxpMdqM8B6v~5z%+9I>}IU-lI57H+eZB3qV4>awRy5vNB`8Jlm-N% z+b{e-_XJoFMd_ekhP>o3mDBrwt^c*S)ns%aXtzuteMHR)MxzbjvH1Tg z34iOky2&9kM|@Uzn;YML`2YSbfeK6}2sWtsf11pHw)5W~Y#)FcP~o?Z%zNXRES}qe zJBQXb^fTiB4EENR|NW+e%3$}Raq$ov0wN4iM+?8%t>~AA6VKe#gZ)qNfB%R?25uy) z{YhoS9^^yQ9r%=AkmZmPGQNoW-(*3)0^}}PPhlEp2qiM1zHZgvrDrp@y(Py#)!f7c z$ZEk4wE6B718u%{#sDTTG+=GkWl%2WuylF z-G3L;R%z`aSx)}5=}m_JMXPlQfS*n&9wQhQ0U|Bi?=ysm@K%K|ukw}BcTll}u9b3fNiRy$|r`6^`J54A4>)$%A ztB3f*_W6aSpPZJ~VfstFP#wMp_vxsT!Ao8-1rrj8eM}PH=*QAGmu+9=$PD_oUY!-9 zK6={5^$Q)Myv|<`+~-{$*RnaZ7z8-K%%IT8zVy#_1lX*9*F9*XrUL^$wq6eyxz0bLf)t)y$y* zjvDnJYJU%KJ6zW&PULYeLDB4>xrs;|h|p`X{T|wkljld^5_J>+%R9}^J_Jrdv#0*J zVK`g5@8iq&7lbE(%|6fLxzz-`kh_T6nPOqcTBG20H{D3CJVwe81A$Z={bLZ-aGDf- zg9^Y6?_M(R3yKsDoA_+$gkEs&rD-@WvG$;TH9e*`j^R8m#NFuPWY5dYj8B4wqUp_# z&-UXQ{}*L%0TuPywvPf5Lk}RGLn94RGK7Ev0sBMyzW4m!bIv+zvG#J~%+Kfd#QofHUDs_#uge5S=m0EI=HSs&3KFW{ zQ9?ZKJfXb%xS;|?;HTIi+r3nq3`*4b%=gHtrG;|pT(xft4?B*ej#y0|B^%8JarDug zFD2lf_G@^iv4rq2bEq0pP%6Dj!Q-p zR@eHX@X&}O9c##0kcM4bv7F-!x{){?}{@!boRRG23*_Es*{G%g=svPuM zEo@f!#WY!8WLRd6{d!lp`HWrGXY*_9!DrD3^rtAIY(fcv=WDk#-_Mi20`Yfm{Z12q zz+pzP{@k-vhd)QZm9Rm^|1}la@_gv|Ugbde)FDoDttOt|_a3{qrf(guXZJO`&2Y}_ zeEdR~9`<6Md3IpcDvQHTsL&dz?pNwkF&{rq4`RA!7*~!fGClLR2L-y3?)3?u!#CO3 zr@e->w(U(BjIYDsq+joxQ4*ncKVk!_yMWe_70m0tbr{ME_IvQ< z1y@PK-eZdwsbt_h$QwU_pd1~J1(aX|G63Ha8BCNM7-6=1nB%5e4tCEV z5H)I!r4cq45Nf#Wj2loG{6iJwPh8g$og($xm_si_GlOjsD7oudGF>Qg%MSdrG20`G7sG}&yN~HRv2Af8%|6I*Z1+VoJV7;LU zbYmwtx!>7>d2L`{fBiVu>3`0jI)@8pLcB&%zy_JkH*y-_K+*PXL(ru9Q#-lBW)Rlq z@1fdag{q!3@Qz6;oJZ2obOpXQi3%}xfdwXOH?UkgrtdR38}3QIlWXWf|MTb3)1DgW zN0-H$q|cA$80=ZEP1#v6t_i%7@owYUTlf5?^-31+qh-`&JTZQ#7WyhU2U!4RD3Qfa z-krdu0Sp}k6GXU6!jl;=7phN2SsIGgA`r#%@C`l!_UQazEI5`vg-`D$OCSip%%^Kw z?lCC8`N{#WUR+%n)Ko%jjDGmQO)F$-C{({G_HnCvYH71#;Bcc0>?^0Yr(An~Y#QLU zRd32H#j>W{TKR=^mg9UJ)T$rvnuLiEe|k36Bxh^|SOf~+5EfWtN@V_-634)BypqDe zzMQMA(p(iRArtuhm1kzE&;JoO9gApTdEHaTVPOl2XamCA3dcW|`*>s?E|nUeC%Qd9 zY>y)E1M(2IAV>_mv5H=_kPx`)`{RpLp?X-S*gN)n_;nQIK6?OO!_qI&TDS2M0huA_ zKG9-PZW}X6;-oN0hr+05n0j>>SKS)E0N#y(P~-k!NT6d|Bq`$(u%o)kIEO!0 z2ZVj6J)$g5fZ7GFl|I1c*jBw&iJ=Vh=%8x?0%QO;^`QCe1pCB)HPhF4w&TX*%Vo$8 zphenO=`bW98U3w@NU2tV?Pk}c<8T4&V12~%@i~ALzXfnB(DhfaFnFJWrJqi=l5o=_ zk?k%v?vPGw#lozL=67I{O|1DE;#_VzjTSxWN#^MT8W)*$;aiHF?dNxkL30-%8NNB& zXhI`k$VSC;yHZ{iXl?A(?*qtm3cyYe2y4lOxKEW@DQ{fh2E^e_?w;;6n-D7`uqw#U z|HwBl+2(nvD&1A{=+}iKEfXA188uWg4-|;P$|^nt{@lZveV?-l>hT5Yqw*?8 zbHS&AZ0A5n^9epFgW-{Yd}=MNXs`&p#65eVB4)trD(Wf_8RLKuh6lW{Yz+(ZN2j+3 zl?DEMNH67@VJT`o!%i3+ValFt#Z7#i97oG$)B@}0xUMZDB3 zFQR%1-|Yg(m$cWdmeg-w+wjbg3-F1hK*Y1iP4+W*nSdCL-xZ#*ek!rPdz} zK-d8%^8MP@FsQbuTMV%q8nOhstoB@dg2d6f%P+p-Pt+t1oRZjo?zLXvyR8dst)_m^MtPvjM`$}$Ws^;j__2OX6Vj0{MRKuaC zw8Y;QjC_DMfe{%z5a{rwO-m!0vzZV0c7xVv43*V(bgjt^ZT3ERC%w342rWf087bPq zUVD5tUr#@9U!>iWelhYeQhfidS-sDw9TV&|IvtdmJ;U*|fz#r6z7=xHnSnZ`ntPiz z-XV@N7le?sJVPIS)mAvaTnyRRNj3B&H{lac3h9Gft=;DKJ4+wha4j;b(yXgK`ZWVB z{`j`{-ZLpxZS)Vw&iK0VM1x1>?%xl=F1$x1LjQ8ESwNoM|&e)-eG5wY1wZ4$yoy<3fDwPc&bKy*8CUBY=gw4-{rj z_%`U+`;uVF88J|~A=#Y<8$!EvPJ$EPKEayrMngfjBMk75nBk9peKA9brcmmF7fWIiZ?FiywDZdKK!l|;#tH{5=r#6m$Mg!no6 za?t5k&EDaZ+v)vS6-aj@?vr~`kgo&sr$rWGS&vXzJ!y&zqSnYc?~~AX8L8&}>REw% z>T-qNajR@i7U&F7qp4~a!6)NhWCQMyf?D6Z?Y8(?_p5KPBRNX4$Q_PNUy;p-#Edlt z93_E0UoUFY^(j9)_`St8lZ{d-P#^1BB}ubnH~K{eIh+aIQJgM(54+3WM2?nH6k(Kh zw`{2p(MS;(?Rd5}QJ4~LceN>dca!+Rx4_`wpUbHsgrfDPXQbf)gvqN<#(|8Fa#v*( zBA)PxPPS8=oP0h)lAyxyA^AOmA@!Cm+~HDQ^g^VRZ|*(x8T;P0-4IvbM>}qpu_Dte zW;l{GH{}*mufqdD;(J3U{5{};!Ev~a=--Knm91RmSi%8a^>@{ zdc-1xV`VgLDAL1L0@i|&$eAd*$E+V(NwRXGLL3s1uTUyyVjiS2BGUaan)Lnkf^bN2 zKvEZIejxq2M%jf5zR31!V*v)=6TznFK}H*!-y}piW5cLa@jILi_QXERBC`rTDQP>|CkO6_hHyuIB z?Kv0$oK056U96xy}>oYB>~!_(y6Z`5-XmVheKtrT_*Y=)& zSivWbwO-el4P5OhD0u)75*0G}M_V%-zE?kR{E9rDExGe1g@j3RwC=(AI`y9A)Jp$> z`6P%d-+r?;nNb6AC8H`Aw#%*RC_Zx(QVPFA22}VI_i^VNqsCro;kVwUZK4!JE)sZ` zvTn9E)C)DAJ=8e6dLU|Od{s#r_u3iO7@lpkY@+;0f#_v*0C=+ux-$g3a^3Wfpz&^3 z(Y?gK7(4-~YD2w_;9rR-5rJHfiUG|To{WdR($Y_pO$3g_<$4+q7MPSpHuk{o&F1PFl zaDlS4j`+z-Hy@+cY9LBm-r+vvmkf37&Cg$(J^*Uk*uoUYXZ2i9#eG={d;TH06#Qh> zOygRmqM`b)Mmw>Gt=@xOX?72Ozl!v|s&reXVx^+#SA~n?_7e}1 z9PEXhi<2K9mgQrX^|>2c-l5&#@A^2DxRqpA&V!j|O!-WI>XN`67!ylOnx>*O?TAPW zmiC0@Yo_2zgTi}XKH_@l^6S4}VzS{$OUrp67ICxH57FJ`L?`+b)mW53+RxD>U~W)D ziqmSB9Yn)+d7eeF!6{C*>+TLuv1(QvBp$~K*QM(`zd0fCc$wdzxRRS?Q{IZ$V~#AH z>T|&5HlpoI9fFb(HHvUM3Fj6NB)E|{g^FfNIHhn^w*N4-OE?6{<2DP$h7mjl$V+JJ zyj64np3B$-higEoJ7obseT2K_tu$-&o9624?(KFgD5WrZ>;1x<822LLglJZh9s3z{ zO31~>YPmKFN&+Xod3nW*2bxSPz0dm`#k+KxdFHu@6MaUY#Kw=3u~&Cx!U<%!f1z4q zSM`DD;s?T7d!+lcs=ubgv&3d%SOcCoVryZxhO}(#0IlS308veko@#KNx%TnmWFtN& z{p$mC6=}A5$J{9CBXag(g7Nuyp5zG7;Et4ARMan0zFnO0e58AzgLy+F!*|v%c*J_} z5>*xACQ26HCCZ@6@z9q)%d^xn?BwG7^ux{_WEl>BqgJitxUVYjb(({=3g#dsHTp{O zx!AOMeLSO%OHy*aP;NrE_<0$K8)CZq#8WFfq;ap8|5Db(@phOm9C@FP8;+L4w_@=4 z6i$ee3pgZ!gkB;$?r)i+7YU@v+MP~|q30uhS-oiVTQ4G1sPqEyXFx}E+0dZJ~Zyw*bPJ0{2mln8p#dVyWI+Kyug zh3Zo%CQigVg~i-LyLKd+&9G&$74t7NDY4a%y0l5WM@5OQgVtKc(iEm&oOW!m)#S3g zL`2)0@TV-5YOi1|%1jg)i64|><>0c@n(K~f9Yo$#fbD(9xehL+>Sz)xi$n_&GN=yQ zN@3Q|=!pcpFP0~AF;@ka@ONCN!u+V;hrR82Npp0hOfI(s$winDdf0eZoLc5{XvUs% zbl(;a!f$0UZ(Bc4I6KzNaZToW15Fr!ac7}_lH1KktIG{7)SOgt>r%fKFHY=0|5OSx zY>-NWWrPcTUig8G;U3Y<8slZmb~yKoZhlnfv*jq*l|Sc}_mvm=0_M7okGgnna9h|q zFPqqhB!^BZ&(VRpZMTLot6pS!5qkGvHSR<}Nj^|vJoefmU0zDK&5#}S8c11uqU}Xb zUkdQP!y_F-{MGK0pYL)VUX6f~{BA7!gAjW)LJb|tV33fv`eM<%xAN_H7Z zAy6AsxvjI5?Nx|T4*6^HChya^HFtezvnUQ%$&Yv&77ltyhHT-z33$F$@zXrm!jx*U zPT2N+L=J21q_@A z{8q03`^+#xN)*oeCZ@h{G%q&c8%WT|99t15gWFHQdonOv-v8L~)cl<04wECThKY>Lm z&X;O2`;9TaiUp6`B4|B40G6Y zF?n(XnyIU{y`AYOQ}8=Gl9HQMzx^diErD}5fmoM?)U>A|t`vj#On%-5Y}N*Q#$FJ( zDKyd@CiKx{DDoG;^AtQ!SiV_V^a6wya z^v{mfyHW`0jjW&Rc60k@BAvISBD7=fK@50K_I=j7Pkd$j7q@s2PdDfJ}IIgf{!($TR8)vl%!~3j# zy!>|(-G@UPAT<;*tND}MQ{v;d#baLNjpb~ewN^g?ecc--!k)+P8xo-)nOKQFQ)nW& zhU2^K8#BNh=O-g0SW%=U4BMm-`uER;%#1;>oy&dS(Ejq&l-^FFzuQ__b`&WiH^|9T zAe(g3UtQwPVO`@E4v0>I(pcpM+&WmQ6#IE0PH2WnadrEDqCy0{)~-Xb4CBc`BB6R( zG)^$4SW2bO`lMm{ua!Q)G;tcFU}|fo!;)cKxVMnCgbx7pPgFOmhf|O4wWT+^*-@@U zP?P3{81l-HJZ%h=OcG`NWomhC3XC63)P-B*k|%L_KGaFu-ck&AASdO_OlqyexS z6@c3KGILP?T*l1xcOVpoh@wkEJ430sYdntsUO@# zDdK(BA_Io^>90m`>NUR!e{Ppb?t?Dx!iCIIiip48pLSYVFaNgpXhP}0 zl!*Xcrm%(l>DS4HFE}GV=Hwmx11>$Pv3zJKp*Qs!Rh-fZ`a)g7ZtfJ5tx8#r)o%Vk z`(Ac-*9-HgXd$xrq3M3p+ zf`s3QMN{>)RouVHz(^lZe$ls5r=9YM?-4%*;cGRV%VSp349wUQtJQd0;_Iph2?ixG zRnX#;t-PRUhv=UHUnItGGl$z5E+KsIDgcEk?NbOM(oUr^Putk)+ud^)>ISpDmP_O+ zCY8F+B&aE!l|DT)(29Kv1!WS?Dto6gb-B+GfT`0!oTdGK%}Q$1GjHHJc&TTxP;rP; z?#muolNH#j#DBB^2B_8znVrsMFORKdBt@3Ok4+3E4*cHcy~H&NEU}^Fp;RvN@^*<) zEB^Ll-ZOgOjmvRUhqzP*%FPe?F^pF7P%E+~c;8(-FYvfuso~*J9T#+ZD=GG{s#QrR zUBy!lN#3g_>|2ky`cnzvgR3__R{Lob62FNgODW@+Bbs6s@JZ(xSc`ebp&IBkVyZ8* zDd7|O4>gP||Mszpd63ZY9M++P>ooUEpT(P9&Uz0q@bKwHMvtARF3Tu2q&p+og?m?< z0lGE^l=w4XArV3cok9Z{2Xo;DBWAuc_xIiPJl7Q#c7Mipa7=T$7c56kf&SP-iN?|9 zIStBM-YOhOo7XLsZ@5>;`SP)bf=LH=x+LC?tA+SU< zvJ!@$aOz|8PB}pS62gDywF+T3a$k1Fcs6h<{n!;Z+M%O7mKB2gFOg{b z+QO|xc|yc<#qbT+r`_2yjWnI0=$Gqs`f_pd`9J9=?}q7``ap%{!rD>VlD1^6`WRZC z6b+nKP{$;{$=x}ayk*7k4w^9X+TerneL|E!eEf1f-nbd12&H0ejHJt?8YtMEFSx%H zT7E-_npN6thXHA2mMCHP@m*yIy5$?%RX>}p5&9zGxEtRCr zN4hq)>ZA&`J?M%|W#zsp)v8~Wh`1SQ_qeGb3#^T1+xXlgNl)aNXlK65cxg@*`fVn; ziGJKwK^i;%zWGU~5>oV%K4|e+_~>>L&F3kKRWH!S*zMd}vv5@_n+tJ$!SmVY2MkX8 zW0%WYR+3o2xi(x750#)nlP9~TF^LP36cD5Gq`c4#Lvq1eK2ekSRBf;pSW%qgaXlm% zk_TmRl=oHuE7s;WA$qzciANldqrC_6niCU6A1(q%yLB>aBf1sjrRq{kdp0I7Pr+Xd zh&NQ!d#zbleY=Xvd(;f$K>9bRzk2b`McR$hcEs+baiqgsv{^Ex0tWc1 zzJ{=GmB4l~aK3H(vXr4e7@e$I{Jr)gRE;RF!Fy}pDQFb`g17yW2~>0aU?KQ=8<5{# zVb9mKN1f4j#TT&A+Lr(F8R6M7{dyHt`r#n_tmTR1yNK7Uj&hKOW#AyrcKAk<0&&^a zm6BT9^gzm)1YJDb?wAJoj+1>wAZ>5TA&P2P;f2*s?HBSSLS=xEc`u zVLq+lR0~+}$-ByrDEcjd_?Y9vujeXYwr_}R>2Nx}q2Q-hSl9m%1|{>ri`{xhv)Lqe z-~qCVdtgzGQrjU0Fau3FoHJ=y3t(ELTF1Md#`SgZ_8OR6mkBaD!W(z|+zTI8`z<9_H z^o69H-2r0Rkx}zB=5pINmZ2XOiOVEzHVv&|9~@6s6@@i^HHm5Iyn+YekWe`pV%@0% zg#~Ty+ZhGiH!2lC9}`Tf-@?4(#+Z%Q%Z8_mT*z>arYZec)gmX&&x;i}+aP7HUs!QS z3kr3HW9*de6?H&z|4#mGW{cX4 z^+_&2D6!9=-Q*8P*eT?-VCwU0k*wcyNV0rSaMB?Txl!+H_XjmDb=WGOAiYCKqPk>e z7UVqDfc*KEvQr^3id%Pv)8{Akf@}+&WtbhPiJ$PT(#;*w8H|h;oAHB$aP5oByYjOw zigAdM`3XYufw)qjLu2wHNA-S$T!`=^b`v5Y=F_XE%%s4ABV5>zjIuLW>N^fYxl=mB{KQSGX@F>#habs>ILM zN#~oq1~?uj|G zJdxYH8g8_MmSs>|t+_3XFzo1pj9Ki@NAMbynVYfKU|{FkT|JV0`-K;U_g|(3gF>2E z;ITW;%QY>AmU9WZnFLh^Sm=11PC zVku2;&(z~7v39_d*I;U4esb@|l%fY4OMosUH{z{K8ePN&%G;#eR=tY1PnHHJ+y&hd zCT&q_d0n<=VqFOVm{_=?>fXxm36PHec|eZ?SGf%VLUF9OA*v={xkqG4ykEd04yxy+ z!7Y12fVy{-0S`W_wLIIs#A^Ny+U^Ywd4l9iqyVz0#Wq6l{R>7C=^>lyB8>R8w7 z7<@XeVu!=Ql}Tx-%c^p#qhOTOnodiWB=Pv+9A2RlP536r=@8X-u7-g$ zR!+|0sUq8gGhQf~RV|ix_Qbdkr`z9K#d#Y902rL0W$FJbpFQ6=6ekWWP4}_Ws4$&tSI|OC@qQ zMN2`V24)+Ds1Y&ESh<(n>ARX8CalL9nlG;MS+Wz|w{Eo!IwzavU$>J^J5rDjNK*;3 z%Gj+TX?y*y+O~&sv4btb{W;~4US>;>SwN4A@9c&pgqnT1(1@R_&<%&wXPUOH&|#*$ z-#d?4f|IEK(Z#p=z5Wg1v~quL!HG)7fe<_8s{$_+>;5 zrj(@d&>d*I53@Y4{6}CZf+}2RX%RZ6)y_ttNkzo{&~jJ`vRntWr+pSydMR84^6jf+ zv<&pESNJM_FjA?slicY1xrb~s=%GAwnFVjn{!(zu8wKc=ZnX=@=hpULKEVoOp2Yn& zD2Z@PxuV}IUs(+m_tJK%9Jri%nWZ-RIa&Bo&NcOrO3;J)M3B>tl2Q}pQp#o_f`TmL ziNRxW)pQ}G%>phU8ty4eO{X4f zTE`~Q8YuGshty0V1?73rNf8D13{*?4 zKi+^E&A0?Z!1EZ zcU(s5!1>*qC-1-D=2Y@Sz7d#yQ+wp~K;aCntXNB{>AdcC=@sco)iwU%@Ka4{)`J-R zC0#sArbTlVX^xS7D2=@W_l`5Zp1cevM$rAJ;Lx^$-vhL2mbFn7e>u{TAry{1{KcgLQrffBMaO5Du6B&HD?25m-8`xceZG^|&9i&`<%!`gC~W*h=_xjxR({i8PaLwz zYa+grgz89~*++B-T)m%n0}{oHWIb3Xe^hBRQ|CSSMwL8Y9h$9~HF7&rL>AhH^1}yl z7K^~XdfJNNYXUfxjY}Cxymif&r7!l`;w~`w!o}SiHcRaYb5Lo^(@@G=Q<4^I_oSZv z_{~@v#bmD_seh|;#j;c86P zus2oMjrC@g1R;tS>-G8lR5Kb6Bh2DTZ*O5xWh0l&(~|DWZSiQP&8PCbxb!SP@_Wp4 zU_e_g(alMGGd7MuGrHDZhq~U78sUeJ$n0^@iRB$Us!7> zfoD*bZR3N66K4DTLZ#YF8rRqWD)R;Cwtlw$YD6yD2{V5I5B4yx0S1(}eLtLb4SlPo zUAI;rqAH8>j*EfF6_NJ0HXSbzZ+HhjmsP<9=NjFD%r9aIUiI2J`=u&Phe%Q`8YZ=- zg@?EDr@>~08|d|cY?d^+D88G~cb4k)s*_+&B?KT17m4uKslGK&p#}9L^C|yFn>KKs z`I#8HDHI7Pob4(ffLI-zfm&K94FStq4oNcKi3w{f2&N-S1=2WUItH&G-#8D2eSlmV z&S_7-@p&5j|2cGTq~~t#MC5?TY}PlK_1AB=M@nLkeEh~=AOnNqu@Ec@yB$>6PPhfj zX@}l0CO;h-?q1CS{7R~1F=(iMYz;J_#`>#5kf?bTY2LXZxJ78ZwSbgO@%gJ7T4HB* z=aiWGEMEY*NpW}mW%fE->fFrov23wLw+*G*gFo0td2&~Ml5U(A+3_qaWxmo4Ehd#) z-v#0b&7rNQr|{1PLS|{7kH@9Jnm{l-FX-jp0$GYzC=?Mnb>15c76sM|0JwG&no?2lEWpU`31G)-&^d1iDk4Lf7GsKo!2o;EisvV-8J+@;NjW(41)Q zZYoWn5vtB^BN`;;v(bI;8Kl#cI?~Jw@BQd9fke%dp=PSpl;4d1Y-M7}fLaPQpp~2k zFDXp!+C1ufOr5e?lu0{fNsN5wH&{OR(bKN=+=dZX5b_+2R{exEb@$sX+Jntbv8{$f znuQ6#;BdVxqr-9%10~3ry^6zwAXR#$PdX-ST=~hkR5xBO7G7tWXCCDdcEqDZ89`|S zE3p2i0kJfc7Rx|2slt~ZQ}Y{BG3AwWP_%jc+HjLi!yR|uQXlx)7C~&%#)Dg{lWa^E zzTB7E$LQ8z72z0Nd3)M~9F7i=z~^PPDf*$5J{NS9Y4N0%?1+1m_A9ANYX#L2Zr62* zX}i2}ln+aXT%?q2hfi|OCMlz&VK#wWicG_U-6B2G0qzcfATs>KCSj`r4&wgx13J|y z0J3>~h;1dzAn9!1cpkEY8`v*$aU5rfb2;|b`#j=TASZ3ep99+PIC_lAZ!-=%F>W*F z=9uMl+}&qIDT2N|YaOqu`$}sdp2!^)fu*=oOGrt%CX0S8G^+0h5H)N0jWZf_7-wA@!voK|d-SL|sf@@ZHHsvw6 zmX(2v+xG;`IHx4to&^PHH?O7t2gmm9PP)ZE9NX4`{Z~A-tkeKB?1;(nOfK&1vpnK$ zLoYu6&AySuKC_Q9bZ^C@mEMg;9mKO9qJ`SYH*{XVGP^BM1I;P@O4GqrNt{E9ZXYqP z6p{0`dLkQ5WVlbXAVu>s{8fjYjs5%Rxnkj7+FR44X2uHxN_WF*cyXBpTJX#8kFY!5 zsgatmq-lnQ#E)0is*b2XQ|r_HK`m%JOjLs%3bCfJj#y;H6+e3uLmf`{Xh`umOy~Zi z1lW4GE~ndvju#vY>^5!Ki;;F$77iA(zS644RhvTs5c10C&MAgk1BzdCO4m-bh;O%4 zx>qptavnb~lMRkz@B`wB3j}t>gFJ^Tg zc@tV7#33Efm%q+_X!GCm<(!+S?H2v{*iH=Tt!b}_Cg2D>;^;8Ujobi@?e1HlOrOP% zFCUxW5BNT#k4L#t1YUfV*Sv+=fi>)gr=hNbqrXq}6~o_+=_v*L-ML{`&AVwg{~GMV z-2R^DQOW*@2^kC>L5()FX4b!NPcqW3if{B zs#gC-t}0^9qNJ)Eh2!0vVQHqZ9U?tv05@-YR;yd?*FLExv}?-ZD3!%1COLi|1HX1w zq#R+A*QC0Ub?}?VdP-OT!+}=gTT54?l_FBhg=$}^R(}tZ-UQu4qt$s(ISLOxr=>mX zR01gFr^z7<@`UW7SqAmKJJr`>kB`w!qgteTZ?iq8M3LJ74?pWj)6j*2#b2NVu^NJ~ z676P^$aC(n@3xJWEdQ1^07NFI$|wKX|;O+EkP2|vtCL(~b14RP_BokPlXQXfzIgB7jR@4Sj%F4@aE$P!t(r7Py68XFy`r?q~{HN3`}$0s?z z`J1Jua@}&g)M~UXJP*q2C>l#EoC2`;H`p4+@pXxI{cWraH%kHBpp5tNeE^x~nfXNwb{mS6#h?_Xi96{NF+=3)ZtaLbmE5O4Z@dCNNw7dm3XBCZcrp!3XyFoagH zkdzvL=VJY{!e%fW@%w)mMSo$>T!1{T-eYB#Zv&u82ofv*kGz0$1^0KB{a>&6Kkr%& zD9y>69G@>bF_c~e)uGx?1B;-lkwKu%<)7Q>%>CcK1-RN|;GN%zk8U~yf<$*Bxk1Xm zl*oU$Wq())fB!pA2@bZI7}Od6zd!Hqd@BC`ds>X^%@|6qB5vo|2AOYKR{x8K`=5hg z0E1=hAeIJ%ex!_6lk@IUz<4w706Gw#Ec&wQ&Ho(V%~0RR070}r>^{@-V< z1H%r~MeCo3I(15y9;*^y+-R{)lM z*GY3AOKuquH4ZfXC3lU3H5tdm-<1?#(j;BgeW?vtZr8!?N8O1FQHT86uHRV#KyEcr z%0Jc|j0q7A{$gjUrbNI5aP65b`Tv+-u?)Z$BvI`rN{$0VR(fdE6#}lopD}=6TxN9l`9r&H z`2m(FAQ&?7+p2tW2MaF7B*U+XsqH2^D-KOE%WDqZN*H?*B8y?u{Ua6yHX)P`tlE>O z*7ASM5ukN5zQnEJOp*lO9O@EWD_&^7x)%A2`4)z5uIJn`VfN>P1DLDiC(M=rv$$;S zz{K>pFBOUOfX8c>V{1A2u8);ynkyr{UuPMIM8Tsm6{9W08Af#+K_~M0QryM zqi_3?_9_}x1GEEx?7KLCR3V1w@DLS2+l#?;os=c5faLa8U;Gpi^%XVHE%dw}gGMfY z@P*;y(o>BhF#wSh_~^Ns@((#XvY}{5W;uLtZx8%S%O849q0p!X~sDiMu;-0c76glOh#j?eW}_$+tYl71|>9S zS|K}=I-|87Hhc!f85SwNb3q1xp&$f^63HNryanLlADZu@rLcR?zrRUb0&jR&A4%}X zPHuC8Es(j`cF!*g5S(}7s7-)boyWo1X*|mM4Q&&Y@m_z1fi;#pjS2AtffjL3rQFO{ z>103og3J!V*?18~-C=vir2pE6K=YZjw8sLHOK8q-H8Xe>d2c(wkPGv{uV@N7C7R4*K)Obs`PaS32W*aY*gtwRY-^B8m#NVgEt1~OJF|_W zxfovY`E3kYXRlv&N7?~MWY4#R?tN7z?*Zhyjim}-v{Wl-&TSvF<@2H`q99Y;?soGM z0c)U6R=~ClpnfD;)CGm~9Dz+8(1(PxsZ8&PxNFgjbM55SvAN% zPWwtlxGNyx|5{fyjGApS!hJ#lgbBw`2)EY}Xy_*CI&JUgzJbyM#9SWf5=MAC5sg3r zPn2AO3h1jCEqp21y~cTBkf{0fsuU>xvJ8nvxKmN*{c$`vFJT8ZFK!j+SbLWS-(*J; z)Zf!mh0rt*J`np2kj>MD7&y3R|8py_r33q~z49&owOceZ$yA-U(`5rue!^U#Q0z zaeg$1p;r`bpc*6TR{ia%1ll6#Rxyw%auzu6F?Mm6N_Q0=(dAO>R|+72^w$Mg28~apnUe0)Omz`-rs#^E%-{td0eE~i{;NAuf<3~`6dvXEHi^0)hK?? z!-WqBu6OpeB|mH7N;PFaKRqI!kVSa4229)L-6+Q-^)xIEe!OhUS7ArCzbOKx(O@fW zhO73LG2@Oup>q^0H>8rGWZGzeCV&)U;2xNNNbx;I3!}-&2_s0_CS!UO^Uk-%*L>Iy z1c1dyz!J1v;{a`;3DIIvrRT?siL&04vfvPdLh~T#XC_OGVIhJa7R;U09^Rc-54hg$ z1|-T0jIB`)3*8}tXztKrv-(?rn;0Lj0656NK1jBl_VzpPUD*Jonvnb|2i;nlr3A|1Yc;rvaQz4u8%PWbO}ZU8a{@kd>8fWSTy31j1 z@tKMRRhL@R!x6Z*)FWoy5p8K^4f^{2o>ET1P_g^HpISmMouAM;=cpqI3xVF1#VqC} z1tq=L?>29g7D&#L>1|<3RgA`t42N1u$5h&I7@)g-tN63W)mp-VtATL;I&NzKT#fDb zC^b_XaLqFXjBdK%AkKe+JM?k~$(W#_v%75ecKUBnU29u;AfO*%Z$%i;H}u^FX|L5>rp%iKSaxfoG-V3OlOiXr} z-YJ2H6L#3B0g#OZ!cI)|SM8JZXnZg%V88iLg0sPWsKcQ;c;l*@r4XLq0$_g}VIU&{ zgxY|N$RluXT&4H~{2S^LDg~c*`UU@m?h@C$*6m428E6R~1 z6o`mIP?IVT!Mo}KDyO$%PXESW;H=GKwC@$jSun4usDi6$K50nj35*$btU>Ey9frRQ z8n_RXYywUw-J_0eK*gM=Co5yln&d8%16&4gCC*=fp^tGKFm&jUz0nd2;Y7K^G>a*B z5XxW?{?&uNlc5Nh6K?_K9s6?d`GG;Yd{Eup5_7ZS+J(m8$4p`=uxNgm#DVTtzep9g6o!A$8iGUMmlL8+iFJusgXs^(e zB0^oG_^sFmBH3%9V6uABL~Y{c@=@cMZ)JeWU-yd+z@9cxEK9R=!=U-i71Uv-7@Zs7 z5d0s>jQaAM#qiBuE2}rAYOlQ322)Z~gm?$iM3v10wj>HWF~nTZ_FduC!3nvgZGllm z9`Mj)*I9=_<{Fz+moiMSIzr%b8@0~#KN?8CAeIZKCmSV+FQP7dTYx!vtM-IlH?;!j zY}t%oy{rO*J7xg6Ffdc_8^HACN5;l`!!Q9E(=(N;G2}xkI(C`n93fCH*5KnD+kvc^ zk~Lu2E823{&Z1oqZ$APpk;9y-h%srJeidHIk@xpLTmgoh7-AF#uYCZRq}VLq!8Ku6 zK-JbLG&$uBE*vm@?fb|d&p=Uov0GGcGhNU!tpHdfXzc7jlk<&`60V;)B-_3E@abR}P;e^jUr&!iC=yHwA z)JkeGOBxcb`{rg3z><$R1HAliLlydr6PORYjh!&?cq7=iYPUHd;PcmTm+msh;+5#P z&*6da)a$7x3(BzK(ndI@1?apRL^BLrYBNSUQ+#R@qJ${mB3E1#>y&%^joRK|48Pa> zxbqlBH19=@nzJ%6`~r_gZ{y@Z_SZ)=fZE4$Djv>H;3I9N(yYG%eC3A+BL;mS?RkHD z`ePXD21rr=9pN$b7+9yGDw*Ly5USAc3kpcE9*W!b3jiBPjWlV0X$wdN#Orv)7Jtos z=n_U(%da~{u8$7*9paG{8%{u1>p-~!pPMff6n6SRRAJ{A+&*MXS`sD%VDYO5Xl^w7 z%WK|_Pw!aO{5h3sEseNnd;`$@c^Pn6o&)s_(N{SbHu-e$=@#~ypm8M>sfW2ge!C#X zm|PUU3#~L zW^@OsV0xgBF|Q@`TUqpvZ<3_AfC&!H=xSdBi2(P|kpv7;je5(9Lyc_>-fm5s(~z z4YcDh?Xh|>I||4slzS}RbP52T&fWI5i@!lwh!Y`@WF9-&7SeeYV#zwU46?mR7`+IL zgg{C2#Y2~=36VeB&<*5C7r%Je6wWAvvmMaIo+F6rZ71v;=>3xl!Mx@CuL)Ul_re%K zA~*k3b~UP8-=r)0Ds``|^NAq5)lt-CVb+~O_nR6#`^$@+@MKMHy^EeqP9SUY_mzKdGF%WbbF;CqaE87DNfCk@OYyi&nvLHE zoVosbZU6hjNs13Ksojk8E@K`{h!HbH>+yk*V5oNCh_B&x=C#51-i!{jd6`SVvvi(o zFfU*IEOdrMy)nW1IzId)C(@{fBfpK$twr6dAvg-WX|4v1|PBmXc9=b z>8u_iaakNcyX-iw$IiLQ2F=`ef#`yd^PFcE52RgmY(jT*_T> zAjk0otSDS_zT;8%GEf4U?5;8mOHJ$ivHB?l`_dA)pIGwPPr@phJmrE2OMy1n-$XWy zQrc&!^f00BdOyF8PW8?-SIxoqD+Gr-Ph9bIz+^4Lqe6e=tZM&nnyXW8mrSIBN>kEpD1;MmMiuimAPgebro~ z*vI)15!@^Sx1JT+%3E@3T{6@KzFICDRv(&*Cqcua zM3%R^^$JhJ;5+rF;-3(^KXXkLLQUSrRrOxAz5w|-+s0MNhnW9g(c2_WT#fANp`F^qoq9q-Dyk{585wF1MW1Z8*^7`$Xgf;fJhi??=?;oM)9JCR)-q{bHGOL(l1*nu*8nFW z#NY!$dd2_Xv0eSYyK$Or{$L`)RYcQ`1=LeD5>}tI7=a=9aec=H8Syv2fQ5UmvY;4p z;kbyEdE;qF6d_{fag7KBrRKsLN^zwx#o^o=7uc=S_6{zvxX^;&3wPJ(E)T()=4L;T}&J$1k{a{!9xah zi?|7MA%E6Q>j`oC7tFrE9K*{z?kjPh%97cCWx_dlZpUT}USy6gK*b(Fd!FfX#vTd- zef6hu6)UIrVqwVYalWPex$GOja?D+5BUNc+o4L#mX zBWxzv{=XOyt^MQHC!R|mhA{hITTyG3=`o#|D#ynTkoIj}SOKitW_Q1)>r*8F z=a*wS)G+qjLa9Lg;>$p&4tMDK03r3B9q=&z_(YyOtxhI;Xl4(vC8b^aoh)uBI@@@? z78ZoVkd`p|K2N}bOaI6CGxT08DmtuoJ{EFc4_RCWyu8w|UVYQJYt65Jik`G|*tdD1 zOCC`vTz8NxH5~8M*GBSqu^UR8!RkE})q4ZVu$$f&5y^==EApa{Vcee@L|rgkz$i8`SC)D^!5AY+usEEG{TI* zPie-+P5OT+0ySLX;}o8`UCv~Fn;#nk-Z9mX`xmm`Nn*xK`rmeak9`3~-bQX^s^lj_ ze~9Ti_a$?rLp$QGygcCjC-;%MtKq47LJo=m3@}_D`BPGj@VJ3Ql{>P&qMnri9Y*%hugWzG$9v+UrxTk|Cn9 zYySakjCo1pr7Zz3y@$QzXu3^mIoP-dICd}cRAvXsN6^}WABl1phfG@97#xN;SgXcb zIrc;zczf`qo0256>GDH++yHq%>I2p`I91K}Wf=okX(lhRIkk%hyyUm3kCZnuxi?;D z9g0?Z?V0LSIQn`D9P%hNI8VF8wM2)C~FlXQ-lr_G11Ru;P0VJVL84f1@~Xa+xwxOY=G<_)c!b)>Uiu)l@ zOZSB(VcXQn2ss}6h~B-Y2_w0xruI;XU%ZbwI~ArxrylFxL&HCx(#vDz*TvmC_ASGm zTmNt(nP|FT8y^aal;yXT)!JySsC(-D}p3bZz;^FP>Brp);iIL1`P zuk|N}1Da@lI4>Yh!S(L28S#|IeI__7TPCk`v!&vsr++DDJYu>(=wdHC-v^3_vS1>9 z+v*0=V$bWuSPXcDTr7|NHsmC5#fZxkFt6(Kf|eDXT!B^x+ja8$OY)utbN!Fy3tl#V zCEc8k&*(@_`YCO9Xb5E9rZ9%S3P3m$A7*uXxvu`&8T+H-u=K|Ji!@>TYo z!_6P#@}V(d@BMtoue!kY;bgC{Guj}is3R`_#quV465s{QIX5_fNaYmO()IM}rpN<` z^cPx1Dz&n;;mMqeRh2F6z-aiLOO$$8@kTj&P!|+s{P4 z?uG&0(X*cb>b+|7a#z5bbYzfxeCULoMB)nIAVGw8W!!d8p%bIpiW1{leesig$7rtQ`X6<7p@AXJHm@Oti7y}_pp(8c8E00>E|o_ z6wsmn5h%P~Fwuy3zeCoK=`=X|Bfxclq($LRGLN*o7Z+q2XsJ>uR=yO{%rOgZmuT=cSCy__>6M4@Dpm2H!H0-+ojkb+j@UjPZ+>`1 z2C!jv(JsdGb`})3=9&RH$N_Dn(v>Bj5JY4fmTJNS^sIz<0Xz1gs8{SIT z&Suu19;fPip1N*EL<9CLR28y5w2~G^TsF*p?mLK$%1}^?Gb|dI8%WsHvO^47FAtEQ z%upM=rc@7ZL{X{$T+71YI>!`CT;PgiXlv`?rnsk{fVKAY0_3tQo^NRpKMB#@J#7U2 zp=-Niyx%Xh45i zr{I3yl0sdca5*sZIv0iMoy^zrM&K8xYw=RUKnl5e=Se)qGhZKPk=O&Q@#3~rz03f$ zk(MY?h65Wx7VrBSyV7&$fEIRbqr&T-Fa1qrpT9jsj-!ke!aXV>eZX`Rt|R@gw)T$l z+aAEh@6FHr$vJyBi9Cv&H=dAZc*hU1USJ0LeWQ6&wKh|4NZAweXgXH4T}L&#OsRZm z$MX-nNC&=YYnUnY5PcE^I4It~pI>51$dI%P*l2U`F~`c1x|1EBSDhN(_k`>BECDxV ze+t;N?+9A87-NEqi0vC}j_-6loQ5}^>kKHpXeteT zaspO`%YAbT)BGu~OJ%kTUrNmT5-lR)arV3BWFuh&<6}7Cr`l$<+9zFpX6fF%YH{Z1 zWOF*@hIC#ZCMZQ5f8F3w>{z5CMSytgR`g8%&cyNh)TGj4?NPz|jGuaXMRBb+Ev5&; zDtSWPZ2CY7t2Rt2R;w;V!U@cAE6qZx=o)qZ%K||B zO__!EwqKtaBWkS2^80dbqjGvd=a z9a{G@)(7M&A?pTqKrjB1cs@qsL@w2F` ze(DGdH(Wqa9;QxML%K8N$ zS}|=#w|?^tY@gitK~7t4(RCKIMA6A#+JR8 zTD~EG#AF=L-Hec4-&U#q*_x@Y^u7}o%4Z{Z45&D&n=CCyzS~uk?N*iR8u`yJ_;ZQ5 zOB<(~5=NH0Z*bSw%9}%!EL(&eHsVH?tfrGMMZ-Avhqg9~RD+8Y2M+`!ZseFXnzffk z@^k{W{<3y3JVxcmj~f+6a-4}?OQjt-0e4)pH)e{J1lIVK0e0VE87YSnfgiAnE8l;A zDl5L}0*Q5cy{($9I&#RgpyL4A!Cy4(tjBBe(HmXm=DA4(8T@R4OBf#pR}n@Mh@bky zH<0%^$|d^M&M}6*FBk%t1J+~(A;Y{%r;(|)(HRU9{FNuyfftDT!v@&;MvP>b4<%`x z(PLs%=uB;Eew2W5aJ3&+wtmWVF|?-ZLi1Oakf*&S<2%UJexceZcwwv$LT%u=;RFQ8 z9@h0CtoPOhHn5|0tSN=tVOaa#!s?mj)QMqHw#{FL})!qw!g#+ zaU|HIe+;CrikDmhKU)Nbn;Wc^5_7zYrG2m~P1pFf7Svj4xbzHY4Sl;t!QO1Cwk?aS zN)o?sgDVAW=8ed43}4_{tr)K4My75I)h^)+mVWkpetXMvx>}_wVj3J3MBV7fccjr4 za4bB@lBjupiR&M6cX=MYh(o);H?#gdM+d!5%{Sxq2w>yu@ z&hagdz{g#89Lt86>F#pQ<|FFe`%+{|t>*1uJ0mLDMLVm&lcNpLZM;UQCnh=H&45q4 z=&9cWq~ucLL-9s>YVmN-LNUk<&XtGvZm2x)K)|Q*o#F5;`cZ}D%^4q2*s9G0$4uES z=|&dZAeM_^>9OubROweP-fq%`Kg6Mt#2xT=IH zi}iVF^rJWCS46e@CGOU}h~qAEhd9-S=doTfz(Fu4-VP+mQ@&YwDbF(KgE{-u9rpbt zNw=PEd{A@I_gFF8Mi~PLi#2s{InPIx_kjUS%E^5@AM-qsk+JJHn}_~APFA)I1|`Xa zTSp-J;o2my0|bt{5P$4KX&Dkoa5&Z6${x_MtFHfUu3+da9$CsJuHW^|e9$awJ<>po z)jne%rTT7KRrRGs0!waS_wxo=zTd`l$yV(9K)aAp0kBK84i@Ba zm(;3CSy&GeaZP2Owp{M(1UBW++pY3O|G7Gw>2#)a=k4>YS0$Z~tdJmW(Vm$8UU}Le zXT;O4&|l03$nm@-7~Ash@uu}GBxE5>RT8=@YpYj^7Le)7n4l))_rn3$^P}^3mlHfA z19x}ND_-)!VHA|%xWIxha<{kp1r0{_{FnaxR+&J=YK9Vh=?H;7u*{`!h9N zwxfKz6Y=p&G+8twKNYhLOR>GOQds(ms&MZ7BHI8FGndaGy;>5gDsi~@m$Ijg*HLp+ zVW$Q<|MR5vyHJ7E6P&&Et^qB@VLh|FgMyxNv8#G1 zV2inG;;3(c0#9^0ULyf=CPp<;bK6y6AxC-b)@bAHICD?$BR|&M&j4wb&J(C|Y+c?PDV--Vxf-KlEYx)<2p#4fofzbd${?}5HMt^eN zY8RoVZoK}Yw2N1{j)Uy!rd3&Q$mgR(3qxgWuCC{%BT26hJ_!h9t!N<+J&xjmlIV{8 zJ+e_A#3TNkOE2AxKmofJ3@(4#hzv@;*dv@~%iUTFyn@l$ZtvgeLkK=F|6;fKCNC>~ zYaD)<^rDd;)BUn}nle~eqS4h3> z*Vcd5s!v+WgdEvN5p&@I=0A3KOxDwR+J~XC>@i{J*&TqBB-$Up&qOfgfi==Z}cj zZQGKa|J)>7m55=neHH&ecK&ACLpdrtnw(+jR@Zgjhv-&AhC}2GtzE>XO>O!VH>>qh z4>ywS!4$z4OLna7lSCcl@?2|#JTwu1>#bbe0B3rBay~PfHCMIp)oUvCbGe_m-tqif z`2layB}$svW6#sH%YEk^llZ+myg1hug#8V#HLItxEqt12oRpQXzlWnVm>zTNFq$)@ z^)3%6e7SSi8K70!&kZVSkHE)Sw~jpWp-F-D2b(j7#=G5j1HCN2mZ*~;$Kz&VSqeS; z@gd{V3CPnApx#dHu`*R))yUTh=(@Wn5*>5ntN`cyAUx@jf%X~Eb464|USUSoogKg| zKR)#=L+R8nSeEq=K)VDkZ8r}-s00QMrqj)~rNL_hpA@dYx3q|5jjqNfL9MQCYJw$k zH0et$D}u4U*1b}+EeC)Vr@m30a9+Y$S8T2EVEO=~lRC=zS|0HB$+MQ#5hrmRo|Tp7 zheqL`r|+om6o^3krBbw0U>6PD@rVbVZXxHESIc)UtQ=+uHMrnZ%W_q`?g~3VkoUAa z+fTs||JVv~bO?(p_){qI@O*6_Q)&J73};TY+Vko`*`$?#Qrg*YRkp|F4qC1WZ}BM8 z$kpsOJ(%wgyiphu-6q>&_D}Rq-t$cF`yMQ^U{CK_OPc8Atg+WKvcD3c?8gAWF70!vMnhj8O-E#K;t1>z*doNCwhowfj*ce4#^^rtLT=h+GJzn zkr5wft*cN$LzdnJ!WX?iK6l&pK0B@v!}1cZDKvW4%~MBGiD1y`p)dyY<^njPwI`ca z90NW*!%z4!uvcsrarUJJUD@<5gV#CUx2h>SeKyYqNX%F5+tI9Z`A=5jz6F7$13swswtu%~*lX3MYZuP(3%fxYS28&SV4;c(ePL@Yp|TM5sy z``}{XFDzGmq4RxL`m!5MG^X9B?dtc+`3K^j@1TCG6#AIlyZq}QThqfLN&@5Pm!3f) zn4%qeQ?G`qlgI0`edX-$D5HdP@Iejd=bxs0Y^x5?n&2oa5pWn5 z73~dmqR?X=fnHRkJ(<4iaB++S+8|g$N`DYvnG!|sZF%%Z&*%ZY7ElnzApd_B=QqEz z41a1@N!!20l(-W*8+?ylcThG(&>m6wIh2}3iVFEqBW%f8t2TZ#X=zwes+#xYrS$S= zvZ=<)2Xs1KE7)4tJ@is=tGHSfoYw`?f^UB5HY^o_AXDF68x2qBI(kY!a5QNz&1A$> zSRo5ZWssfU7`RCH3S8`y`0h8UJ=j(wgb&C`t<%HFtx_zn17-PGiy{b02@X{saGrjI z9B>FMsiwbSI619)MM8$~$boHVw4kY@+J7iLh5*s-#>Dga)=h(;=uG zsk6J$4z+)}Rx0+}8kmTzmQO}F)6vcJ(4KX23hb{AE_4l4%kmZ_*3W>x1nhydW#&5; zA@{LrU1Q=i*Ns@SBRrQKB;>Fr&`jX*7T8_m@G$w(zBNBfpLpJBS-Vxd(=8gias_+k zip&d<>Y_AlV|G*~mwJN3GHyxoHu*#OP4ETu<2Ed-s5O(aO>w{H%img<`xG~|MT$5r z!}Cm&oH0;RdoDDJ(gvpWK9_=irF1jPCfFllRZqh)C~AKMn)KVWz}BB+p`Dz*aQy3w z*pJyGESJK3<}(Uq!8XxNZdEO0jN;$P(5BlkhOB?W{;o(2LB8#*1`fK*7zXKbL!_E( zmUAB-3Wpyb2!M5_)Do+X1;TuNq7SEMtJeGDhQeXxdRfcac0C`8X^gOs1VM*cw`_(5 z4SyUc?)Qx>XhF=T5AVLtxLMEEkMt0 zN!%+edN}=vHfaUd0{i+#*m1E%`munvBspi5svD}$+Y&b0YD~La1O3!UV8a*OE1n9*}9CPE`TrQqz{(TN}XF4j53X}f0Nmbv;PC%i1 z9((vXFh2+`@0qQ$-mY&8wyqKi`k#5`Tjk0)i1^CLDWZ5xN)g>{yTBw9_xUg^=DFMRZMMBf1UrU&Ab$1VO?ajXG~=53%s6e&BHQn&mn@ zBaiS0qNUKl=&2#_e*z<0b-IP^qBkU+2Zt%9fP8Its>oJd_r4m3bXO{GmY~}nq5V4& zESGeC+kX1YhHv;4%^QvajUnQyeVV2HsxMQvunnG%J^5IAy1tM7VhD`09d7Wnj2-t3 zd>Uo~?I1L;{XOk~%BS*-e#JoTU~#g^goOx}CT15=DdjyXK1PAg{B)H8v)FTzkD;8? zzELwidF#<`N1}vE{H0b6|M=XIi`^C`hy+`sXqo^!4v9WSC*}v;Yl}d9|9Bm3=hBaF zzhaOjC{L2Q@_jSzP>k?^$S~A4WaP3-1?Fw=VQ>8-q3)Y_U3YA8+>L?sCFf2TCQ`kG zwusP^lrOidZ@xnE*cPnn6eQeF7ZvuPuYL4;QZV}dj#x7sI{A|$`d0Z@A12vgC&aI?c;nas|orc z5xofZwu!{EBp+>n6qw}C?>I%A4(Ac&=yeskYr-#@K4_L`XPWN0%v%GQzLY_#zWJYY zDA1Rx~3Q5 z9B|n5jGhFSlcc5UYzKK_UUsor@^FoS0$r2V0TdlvgFuK4er z0wrR%47NMYj+<{$QPLtPq|8>Erv+cpy10l3t7l0sI#Tvn z_@lWXg(pf~Wj)@n$)@pY)sVx9$9KH2uJ87GBnYnY)pUJCgp4>;I}2Sro$was@2MgT zA}sCQo@##3H4hw!%_G{)je+RCukB;85DS`+fkcD~CEycxn=#^Q%Im6w?+}-LVH6J9 zy_9V&`70nJaXy$H#$Jb^5ihBI_XR){-NbUgl251Ty15NfD+MCrbie8lg*uUq;5xgq z4=GvShgH@dj?w0iC|>eOET9a|vBq)h{)Fyc|DgWyUXoxSO|Ht6{+tjs4yjqX_3xXN zAl+Y4;&%(Sq`Uh)c7exs-5(G=u27OwhX*Z-C!Zzpc7tg;{W~rMoc=C6;v3cPjBUzS zSNKu`lO;TDUu{lcdk>Y8@e)h&!^EKzHpJero#>^VnK8`nDANTl>k-NMxGwIaZN>o* zmW!?5t@zcqq+hIF&bUYR);zP9Be{}Y2|bn*Q=|h_!g5P4MiuV>N66du4OkxvjMV`W zyasloz>m>B^GHhoCjUrA0Mov4L`Rgds9p9q=;*y?z>>F>fKJo)K01dL5;@-Nm^a+$%f|!LYeO=Bv z&3#IpQ)F6T3a>6r!_Z|<-2|DZ@AildDSPSIVY%BWrDlU_ht{Y7cr4Lz?`Q1=nGQK3zoh0IZ@wdqPjqWmT zW*nh3N&9%?=0nng#v)aYu&(kCHBd0Z@s6$xO0Oz@Q=Ud8jYB$k1`5LW(kgF#F3k(< zsXxNZFVe?eg6#8VQu{O04_DVm+Y8eHog`v9DwFmvWH_HGjH*)aSUALAj)-1l8#GH! z)hHN(14h^v4PZ4n*DI7^91@7t0rwV_``MC#RB_HapiIIn^6XIMnvPwKZXunLe7)pJ zwliGDMxrc#np6CDt+|u)qX*)@l#xgg8l#7hk<=Ud@FYa_`J;=YcU~$1y7bx^2pq8n zXI{_{t~@rr3srTa^r;pN4m3fe*2dcG26YhX~7PKsFP+u?h&D% z4z8o`%*?5^V2^o1EV#5KNWVZuIe`wayYvn%#WQSqe7gJ$%*EiQ1tVYi4jA_H z5V~#s`O=7MzdhCcH&W%D{;~jfo?49LZ{-{P1=eQL6*-;VU#^JEx4Sq`1Jtl#mOi$# zHEc{LmaPMiJgY@8weOm)=U6r; ztnzrbYXOM^+20YyH(_*hna(mxUh}8E-D&AikPhoq5XhThe*vOiiFxJGR&9GL)|$uW zIWLR}1Rm)>_Z=fC0lL8VHyDwC2u9=UtUBBqP2F97YhDeJ&BMiY-%Ux#aaiBjC z?6x=Rtiz%BmDtW)no+pNU_tt>5oBJ=OJ* zL><+zd$|at+8h`%70iB_%wKFJ9)*#dW9m}0<_MNgi(b_F5iG`-NpLuF#JBrg0ow)P zCQH(uN;>eTOv4YlL0+}_Y2o1a@a~My)}$F&&?90+yWFRuQNC<`$ha^T?gf;d>TZrf z6I(;TIRp3Zpkrq+4TC69L4ECbC^iy;bMBF|d6R9oLNBfe%s11G;JQk;Aa|9Zeu64D z?;VoStxhD-XcQkwz{8`YLfxO@TDGKe!zwTR?H7hB+Ioqg(TmWDCh1x6!q8;|FBjG4 zi++=Dwo!Z1LToUL#oKL4Wl5;EghV=%-`3yGV+B9JMCIDq#~gqV@$HW-4`6i4t_+N} zH8%q2>pbXyjD??yP84ctJ^IIu<+TC*5Vx=%#V)aIiWMuFkjwB_i}|L4MA(0%7K;l4 z{OW}0_C-_HQy5XJ-JjFJz)0_vb3l|l5WdNC(ot>Au&sE&>y_XR-;FHav#lGrUh~!O zLEyl)#>JZWt&!Eos40|P6>TJ(eu#{h5{J4BOoAQq86~5EET_;59=^Vj*oH@X< z@6fk;aB<){?!;}eIvaRR8_>G(IN+;CxvtiH;Bl0^_wPn%yW3?2EG^zr?71=k*(+RN zs0Y!OsS~sx(2&QM8L)t2g&QR|J#3+`qeLAgl9*8vG?SvK?Rk~^Hi+lW7YlZh{lor= zJ?5Ex8UE)p8>?7c?)uIHrlaEx#Myx#0#X29!S+mRSKaby4H0Hn$709-tHK!51v zg!MtRdJT;zOTb!+w-+z`m6BhheEr>GPxihL%}UwR-IpS@ws@bicS$ir!`AzLlT%}g zv1MZbK_A((lvghRiQtR!!6_a<>g$nP^ibfJzlEXrsQ4~WEPfwgCxBrGgqUWvha$5C zL?_Gnr7C4An1T7epjo|o2i+fYm}iEoKFPqw3<`ZOIyLa86xQ|#InfgZ318@Y2El7B zb+&*5cJ1&p>1#3f^L*mI^nrI2y?N)ICt#)NNDET?QR4O$8Y=I0!gi9MgWUmjXrpMW zePUkj$y2bl+n$>N3Q-9vadnjRB5^$^S>y@no!Y~NTgg^#>E8vb3Ll%^8;pPHZ}CZp z#_|RL${w)qJqKJMFYEniPO|UyWtWf4U~#G5Wvq@ zh9JywdYV*~&(BNhefUX`#5dMU0r!0YIkohqC^_61kE0fuD14??L`t!2fIHY;SRgjQ zt~Ol@5PNa){MK1hdM8D47c6T$=_I)?hpy{Fpx_-a6QHuJ^R*us@=4>?C)be?Opxp57^{L^YEc4SRq27iT=6G#hNm1<8!YO) zPs6;TDP9tiaj+}zPV>XS7-w6%xdcy_*2-z6%fku)HIlQ^ANJaF0#=HgpkSIhEr)@V zxaS(Gy1xmFQ@0w`xRLAvC$xhmCohf%xyeF;t z`y%{cH@ts)C>m`q3ncC`Rrg$&1q`I?K7ar*G*Dpo%afoJ9mTNAIy#VU&jWkD(5iJw zi=$?t^E}IqP%CNIu`--E1M*nvyzRAw1~R70gD+7qKK0*GTD!QB<~XPtT;}V5qRdn; zLZ#!U#1kIszxkg1z#=VI*IyXaxQ*uk6d)kJh)Q&wnpOWzFZhB5BS|9(TtvnozUR64 z9wi8VQ=ROBLQ)T%?*`qV(S-3vrSoctQJp%M1F53ie^N#7V!$hGrx;AX>XmOMrT0Q* zi0c%X8+0@2c>7_l(sdq8IezUH^T{(0YQk*sGY^*NpAVCn>TPd?PS zQ)99W8#VMA!g5B9M#_JvXXAH%i9i;_Idp!og49+;zZ?)1#(6QIR^n4CD77Ou(4xLQ8?(v z3>j=6M>&KB#5l!B8*hZHXbmbIWDICz^YI@akr?`6RcdZR@39{0i@ub6`MU*oH6g|+ zSbu^{_|(YvUOn&kCMYz@4iOeARtEU? z2DY0rclO)(cxKJ_5kJiV!`T}|JonU2^FEYSy0$r*0R?=5I>j#q#`?vUu%~SRC0)-e z)8GqwbW(?Qd73Mn>fj!P1fwnVI*FWG;dfL#!67hJP}`&DSfh`vs*bi$$Elhs{33p$ zn7MnkL!01g{s{8J^ZJZZad1id@d^Td5c5;^Ny3IOjKz+CG^!lQw;L(gNbnT0V4_6K zZ)SRRc5h1~pUD=`=*AI}OWKB#_5vMc*}4PH52ves9c@bGXzyu()tGd%k;O&b*6biO}iF_qflr(dxd8JLO6 zBRJeVdkeIE-^>nBOyZc6l-`8*%mhcVs=yumGoUEN)LT?(EcmWo`eV9owBU>rNdaw9 z!<~#9@^)b@L03wjm)c6j@F4UYqY(KN#sGhDQOXB&tN+%(KOK>zz}8c(s(}@ zxFdC{kP5c76i?)_ml`f;3iNUVJ`@Y;1Qv1B*%9%4nK1h{yTLZ-FoE|Dhg#@s{-KO( zZ==kl%;`wnkXp`ytSJ@iARRh6I%#J%Woi8wcQtWn*6RQU$m9t7a zX0Uu+AFuo;z7D38cFn|D-s~!{_Pp5G8mrPZ<9R~k+ma?YYu2_Dn*_d-a~feU59~}B z^|SAJ{f3!Qon3cK@8L2^{o#)_Pmp5)R-1)edx!~mk2W$K9eP90R3S58@Sdkw^eGsK{z@lE*;2|l;smy)!Gk=h zhsoLslcz2l86ULuisFWmE0(kv4Ntr13bx_|!jjg<*_5 z-U?L@-~ueDR>LU!n!vL|x#yQlu1{8M0HqWPd+R)HcNBG{0O-Cu$=hLHO%WOJVnsya!>{fzjqw};&C6?^>-z$AHJtazA3B2Wy3J43D55G z#;#fqkfy4Wce*FfDHn%UHL0Vt=#%cesRtI*hi?xCak(wVvK=>D$LZ;Sg6~{4q$Cd0 z!A!mh+w?a-9>rBalkk-rPoLJ3HwT+;Eg$@Va<}6}q|mi;P_;Fd@*CdU2nK45OO)vM zdo0TU)Z?-@z_z6_WEyDpuKUKj1`s8cKLL-ZppB>ZMBWdt%5zfz7~%FZI?phQww50` z`sZ(i>*({d*d7IRwJqD;l}X$aYnQgE()&q(bAde*+18VrPrRhcz`T*nGE_1lH3Z(b zSN8g>A4_=Ym@^Da24ab*z>TI6HaQo7By(8vEn=zfh^12~#1VTt+5LiY+YK0-RlO(R z1X|EBgkz#yc0XEA|Gv&gHqaGo6sT!H$OnH3RTU$RayBbBtp}V=?#>g(>J&fb6~7@- z`|-fZYBIOPCK_sv^z=%Cx@Srdb}1M^nZ8tO=T86AuNzGVdvdGkI@TF4fZBLVOWu2* ze6Em>e~K>f+OoB${|1jzQDul5j(=d=d8NxcHUpyPT|Fs^yx2+nWCM0ULmy_VO}j|E z8QB~=o#fS4n+I^K<@oeQxfwmRm3x)P8;=d4e|x|qhYg5Vn_se3w%Am$B zB#87{dmesJa{sk0O4Wx`%xaNd=@VmR<8v7*j5FZ#_OEmVS7To0ehS!=oNB&|N=*1L znYCrDRw9Qt`{%R&NVU_^!@KjS)K}xr7n;iQ-GKRkAuDx~R0jJ9znc1srp&3nzW34_ z*lSO)+X^eXS4oP7tUwkkKe0;P!hNjDWwuIh&P)LkhVk88b>-XS5+Cv~IlFHa#x7_f ze-ijKi&XS|!)WoU+wUuSQD*wrr0zg+F`a=d=_J((C{ zG7HNvo;W``<0D+ai+?4Th#F72953Se^Nm^vmOoP*%IxF!L+&r~Y(5lyF8~}9xXB#X%{D>y&mY}@`4RiM zU`)?2<4)yQ8qiyzW@!vjPAt*1uink0jmH>%ECIh=s zPW4uqQlJ+$M;}*ZDh#cg*$cTdl&%{WvZN9Z@;teyjf*1Nwbv+rzm{4<<8k_W=l<$J zo{T%y!j2)DS{_LEf)SgQK^*yR&cH2};-JbJ)cNH_042#uA&F{bM74C;bn7Tsw2*28yW-S=dejo`4>a+wOuPET3RE5`ySwztMY)Pt)^QtIfOBPU^Jk1HG_w=@B&#jJ|D4t{1 zD#_LHzld7}<<|3lP(^i#>v!pOXIwtmUneVbJK)mmb`3Ua>v!FRH7g}*iJ0T0>o+M)$>nOMo4dqgZMW==DvbU2t+=Dl2* zGV8S}3)wA{X2Xh`B~Uc9r+k%f^I*(~FtUkDWOL^w&2$f;hfczab4e(2OuuSf<4zg@ ztfCbsEf3si+zq2RsiTp6KadXfS@48ShMZdYVne0^&#oJgW2#S1mr`U0vH?AecmaJg z2)M}Q1Gz{cqTlLlx@@+l8%OkoB|JJNJVNitE>8#>9TO{Wpep({C)Wzgj!*TzE{q~H zp)@-7Vz}NLPV(@tm$#e4iEJ+CyPrSd6!q9E<5HccEI9YT(2nA5mH>k^6cJm1HOXm= z3jH96#3$BfrChnFT_mX^I|2QZgb{xyh}1FH;1l>3BzRzZ7c~pLW!3KF|BGcKTBheU zR6Qo=(NZblLUGW=cQZHOe^LD=97>|i3!d8l=F7r|J(eDYe53l@yv>>s5Tf$!Vum?s zZ>%Mqf;byX?wqFgrWP@ANGlmT29xLj1=dhY!j~KUT1LUzhjREAkijD?HpUL^Ti;DT zOgLrUmIniP@VF5e*t_X@$S}NAmTcsoyl^)upe@SU0jE}Wi20HYZvK`yn9QfIiL6oJ zx7B6=l9x&RjiGq(+h6P~8XTo8cu6(C-fE05B+#KPWULRYl)k9@@DkN)5j+M6EVS3C zUQ3I(QN+g|s23pj3DY~T&H?131F4o@o8s9`raKyc%qxDGKQDG#_Bc6`&>D~%`YD{g zd6{K?vidD!6IdY1FYWn=b=%Y|jKJ*^>(c!xCQ>DpJZY{pGe*z}B zzYU$W&+w#Pf9;P^kF!^F(`wR#$S6>6N1s*>RP?jOlOnHme~3<%aqKgYJ|oD|?Q;X9 z4$a9wP;jA$O33{Uvqm9335&*4#gNCfthM7nWe1qjzGvybO75r&gMQE(H{n|uOTSu^ z$m@+VBs93aGs;z6X_s}>dbmplvUyC<=?%=-r2ByzRmAQXj2;DJ+I9>Hi~)`dhrUE9 zGd;?l3LZ0AbPsSxDwSRgO_GS)m`&;F2U3>jp94f6r)X%% z?p)Q0Et2yWhdYo`gBS8q)Fh%-#6s|F&zgie7+NQUX`m{K48`{R9@t(t9Z z-y*(~n|G)2XZJrx)-X7@dR&tLA@#=Cus`9!dW zfiWr4L`9)0 zs38RvnugT4xrq5UiRsgT^}|0!AuKqsK1vvVAy$S|bD^h7ceRcfr>DW3B<86_Tw*Qx z*r)R9R|C&#m*RTwk~rRW$iMKk;LyL;($k~NCOG|N`5g#G1vhgiHU_%^jszno8i#0^ zp|5rwXs5J9#J|gBW%1#mdX4p+y!e>sKEAijk69U8d}{Vu$0LhF2Y-y8v8X}+?y9AH zSZ9p*fC?t+;4(n^<`1zxf@tM_VBSs2Js8Q#i@g5&t7S&()esGjO_QG6Bwq%j2}KkE zFh-5vqZg&O{T0AcOD;TiU2(&duB&)uM!Q_SHx)x;icDfpzw|xb;CdGF5)H^k!e2UA z3Y=t*RDSeDY16l5L303M1v7-uSPD{2*m|~Ium+`Ifi*f}&$z!Erxso{D$r?EX>}Cc z7W>bzeX~^>8-Rrj!AE`5i2?&f@QeV#3Ni}+2NsRDdL_UgenlP?EjjiNxWUz#7>Lov z%w`KDQ8C(iCXV&8;Vyb7cI9vA9QLx?)r6Rb^MD`FHGppn7;g=yHt>yMf{5e3$1*F{ zpOOHxT}+-Ur^gqBZ^xT00ZM|vuOfd76h)_%8odD7^bKH2Ua!GPD(%`tX90xy{#=C& zfmV&4&_QBx-9$H1SkP4h>jQC=YaYl`rp%CP$+$#ri9`tpnjH}{((V^AoHAwRBu>CNKigB z(7>4TXWE0iNhU8)B^u)o^?#8L0tM_^nsNVwl}bHEVGaD8v5ElD1_9~=&`ExI_AG=S z?WQP#|MR9QI^*wW|31(Q%VqxmQcoT{4vqmZ-)FUPPly)40^WY#QD{vB8h2*wX<^MbyG0lLswsk_0FEHw zk!m8pKDTi%Ex=S#4A?Dy3LM;Pl?R%l08=@-rbIW_RVg*Ohif_!$LN2*T!EGtJwZRj ztna4UD&S{|g&vBKESoUcAA>5Zd?`^S;F+2=rs1hFqQ@Idy;~%|%%Bo+*RC|~ zV@l*UQ_0?~U`L(GKZK)7w;{{6qu)~g#wV*?ug5BnliIihL=E04|JULq(P@3mdc(Pw!L@;6zPdJekL?ap!=tJ8L*ccXjE?W zzLtIai=T$`HpdLu3=X_`G7r3|DoEQFVIu1YTWEBfKUT1VdwCv-EF^td|@mjQe0Zp9TGrGY{T@AyTS@Br`; zVrrCa)KiQ~DTx!Y{`>4C3yB2XRs&ihNlZCx=j$|4D=!~nJw3mzGH$v_ol|b=ty)k= zoq&crce}G4X9U4-rM#`a82L1JoAN)F4uLk+^{Q11te+~w4@ErZ|4)1G9na<4{*RYz z;f0XM2pJirf$TDpS@sB-A$w*MsT8tTlo_)37D=)qdxT_V%bvgEGV1-l@6Y%9`{Vcf z^K(D$hevO&>pIW#IFIvK=W!g*WVLo{mHj7w>x|O+uSb zNne7qY*qt*pa7twWqB2oihE8WBFj*w(4J9OCT1)N>HL%0l`!>?5bK+**QhZAiV1C% zd<-cMZ{{ANO6kj1J!;K#oEv*#cMel*Tm<3HR0M?N*DAXP86~KAy;|N8sgm(1)8*^X zCa?%cTSYk#Wbnt`cxgXNEmCAm_8!D`y(x$ ztKM=37Sa4OcTS`uqmPy$B^=Sa{vJDGkz^w*-E|L9`wZuSg#%0bAZrx-M=a@zgI;Qq zXR;T82GU^B8;Q4{B1nGqb+m*5wEW=6s7CD0Meos5hzy ziaV&C$8pqjw^nCYoO)?0Npf@FpMq{?J$uT=L@j<^ha3v_27KfZIbmq>cabP zF5ll_;&2$}<7{+97n}R;w$mf$wYitZC2TK%jIIb}ry6~X{s>FNI`23hqFygb4 z{@}qZbZ^0NJ9$6vT?hgx!dP~7TO8!>LgeB}#1O_EK}_I7-le^UY~Pd1Qpn*))Wqz0 zHK*q*(u#0SNeYZ~H8}~AFJZR)xJ7#denXG``P)Zdg5%-C4NY+39racM!U*l1i$S@2>b@7Q)oZ?m&S9G)Tnhy^1fBbB? z0hGvHJ~bWr4%W$J()zJjt6R%CL+b~0c-7P7^83?R^RM9tgaDK&ad`3K4SrcPPcR+{ zn|vh>)~$jH^gHSW@Sk%#nq*K6Y#_tDu=1Z?{nf5$0fL+F6w?$Nf)+;uggBt;KIfyA zFM17~C16*5#^)Z;;WZd2wn937N>Mrd$Cn2nL2tk{xd}wx!5Fk6*grvi0icCR*EmER zpkoAd@7TR2{^B$pgjw>b=DM@uwpY5f!-_?R8lt(g^Z^S|2QE?inNnn5<3>Ee8l+o* zhOxK5CCji!%0yj}gm#{W&qfK3H0q&Ev;{;fYrVo^^U;s12B0;9b9digIef-L7&_XH z751A4-|)emLbH5wl7dYKvcghnibSu^BtA#&){$!?*#KwNBghII7j>aWw!AueQ9L3m zJHB!qwjC#4KnE!lJ85{0>p6@jL1fNl&hmF77~0yh(-0G!z0Qzl*t{fjT34DCG8yu4iCBUU&xl6~NSj4PhrFCS zaN_xK<%2It5hOSCn7+TfzY-4-S^(8To1TE8ONu-GRi|oPbHH6N(EaEFcot!%zn~A9 z^=v`+8QpL=Hhdh|k^gJMLtRB+lK|H5KO15m8!s)BnjQck4NJXI zFECjGh>i^^56jfjoz1QJsu1d?v>d`S~X;Q+9N%u z4V7#rT4qNt$J{7>R&P{mW>p0JgxjHyofI$NmV`t9YSkY>R`q7e4WB*ij<5!?~hCjiR!btxKDkt4$pfvDXdiU!)IxJX*hSjeA;H$u@piv_oEd67x%In za9KEz9>(9G+hBA3k1*Y9$+Z(^5w|YE;kY>87KdwFOp#|)h z3`T<8I*YQ|Yc%0>VWNF4@9re%4^_IZKClsj*5_#5p1Ew;w9w5U#oto4_=$2XNQ&bX8U`-5 z<_B6T0Vler!(_DzHJRmITQ2CtJI(3vbapLggBBt?8^P=%i7X1ON`DjnM#8p&+<5b9n=Py<7^w zB6p!v9diW!C5!L;8vrKLRNjHFc@vs22Yz}tCsPt@Xc_Z>~(I;Q8+o-^ee-3s{gN5Fv_BP>6tT@#QOB z8nV7WfyKIfgzFy{-g@f%87to8P2dB_5c!-E>vS8CHHhE!c@g4517&RHyM-p5w=Z5k zcFrOjX^@P-+%QsXz5^iUuwr?K1)_L`6j{NB91l|vPY9&}HKqZ2jCU~GltEWar?QvW z*aNGCf|FZ|qxI7?$6nZenun&$V`Jgk*X&n@oaag;Xe0VD+@#`d_)sxSa?XxLmQr-vutA2Z>=5CeaTEjl7beUX=VLC+dSeDYtO1)Hc=p{%mk> z$x~6{n%W#k?!HmEciv)GHPd)7iiJJ5D6cw-VM|2cCn9LHq+chgIdMz>-@nB!z2XS{foJ+k6=k@CQC=!7Llc?BE3Rs zq{fzu#YIF=r|+-ekyAjw?B7;fI^+~DzfeFO1AVPP9Ux3$2)58|gFKQ(a32O$@?U*t z##`LI5sy7$={dr%TU*cw7#YjgZal0&fDLvMFxO4?V56FtT~2wJqMSWQFT0q;UAMcv zXDJWx?mPVDZ#o4Lut1)iV?w1*eMA?s175h~Gb)2;Xk zf6U_w{+^}L(0OUG&gBr@$v0n4A3^s9b9-8N&BxXtR7EvOf6%pDe>VDI30z_J2f=3`y|#0S?sK~CO4)p6 zI%m}8mkU|9pb>iWx#4!vig8PP4?h9q8n&Aw(@)8f-69og<)LG;bCB_ z>(n9lu{!C+D|n;Yk6%r*X`1TAFh$NH{!a}*iWyX<+Go} zi%T;YiIRx!BqZT+n|SSjYv|td7?4lIROsGaJ`8^e=OT^P-wV_`G2w#$@vNQ1DiaIq z8;`>=ze84eDjbhHV)+3=CRkGaC&QUc^uep^yyr?er{%OZH#^Ez!}OLNjV!}5>BlKz z5$x92d_~4|SzScRGig3~R&3Bk>QnLt-l8ID(Q8pT`b!^8i^J7&bbUMoG@p8(X}>VH z*(d~vC1&FNL^It)?~B{S%dQp;wo_-S&y`Mdcw*#}Sh(92P3XymYbi$xo>_|jZ2ZOhUBeD-K>b&$O+woxreL~Kl!QkKoo zpE_q;Ke6rO_9E9gu(v~1?p3zaUCr&5WggFvD$oYTr;NeJ_)y30i_Idd$^uBalcz6M zr#jKq_hx*r9a#Z51nd@xA#}VcQiq)}N(GK;m8M)A@OUSk{WZxo zM{1?G6uxsWx$8(FS9!5%4Um2x-f zHUh>KM?74^(6In^X=8hmlxvXQ@fOg6(}JBNUX1b!OmEUA5~EOaKc&w471RV=-~GVN z%{G=*Hg_Gdke}ZuO7wpswhoXOOr2>;c_CL_)-5A>tl}97__7~nX%uBLx-~^yTH2V1 z)A*4+%HXXRBTPwgq{r0|G1(QXS3!b^Nzo~sE~xc8^y3E6p>m>XzH;m5QX^+kwudUt z{Utz@3R}Nl`$Q7VOLi+yZ%Zcfa|@BP4CNYJc2-znbEt?;OUParjM8}NXG=LJ^i_)u z8|*J78uuP7Lh5C;#5OHMWbe>@#fk-xa4(npu8Y+2-tL-^F<{p)a;TGysLtd<3T+rT zkWq|Tm78g>kOlXEI=xPhIuUYCt@q+n{jxXK&58!k^Eu2dOEyA($$htY|EC2K9((C# zcnEQMi#7=-F$lE_>Z1_=%XFtWnY2eyPWN$4wHGc1f(mL{Xn2pAf+5g3+SWtOZ5{(I zPhHT;2||8afH*Gr*z2IPh%eL~&23RggIgRBfU*AI4W^4`F`x-|GRK*vIEnwzqL0nI zvtWfmqc$@FaFL{CR|Q?nwE^WkED@S~E$3QCCB5OmHBm%cv0B3To+L&7;USLm8I9yfpTf}Ob{Ye+~bg~iIu+dvIx3GQJPkv~pPL_Sm3LBFt zaNT4JfG$cySQI`5?Lm^-80dyTz*SNEk#oXmle74&;}P-5uLFG;wJTl17#hRagTu9)8t%9hFxd7yOF?PHi{dyg^O{)j79eX#rmK?gfeAPFmME~mwLGUxap&Z{e?2*maubXa`E$6 z#5J#UmM7bSE~s$C+0dO#_mj9`i`D(W`<&SGNpp^wA535RDx8bvPMjs{&qjM99|e7< z^UlaZJFn4~f{zI&SEjqCy*2^ZHA%Pb`P~F@d>T9>RifG`9(nBiVg^-;u#U-Sfd5j@ z^(s#9qQn9p|5qM1Yab5YgR43;G@`#cQuUsH;K@|K-JeD8BB}}!pF{U%)3qAd5xb$j z9)~3&e|u>NZ>$Ln0Rm?U+&{VQQd^o|q~j-6MzEvuO*(PwRMCC`q>mtr;=4dXZU&dd zI&uVGC(P!>S=AXxhS_S<|-#63cV&Xvyia;>0FRA9*(yTGLVK!cj zKvB=QjIP7wjsE9Ax=)#-^PwtQEC9)8#h)w=-jV2ayI+ao4c<5;Y+EBUr@MZc;TwtWr}x9D-Y_BT@DBCtaAaucH4plcVET43a*8vk8=j*c^j`MNZ~31Oxiq>TRlD z(1V@es~W>W0K^m#LRcXXsAy1-6Ce#~1wc+lFfzhyA(>Y7ey!LiA9Ae+ysecaW_0{| zpI)?Axw{*GedAd%>9J*wJ(6wjn@*~_frV$;aOb^hjzWA>M~^B zO?u7`aFeA;B}7KsHLpJbk`Tt+9YyZbJpSv?NSMw@?(Evn^xOdplS9>`og;ZP5lUdh z>xS1TZxq8e%w6Ll#p~KbU`$Ybx!YjT6Ds*SB+kW-S(Uy2yEdJry@b+i=fLlJeq#eJ0 z^=FG>#R0ZqL&e&6Q(p7pdpStl%s2EEK3nYw**g%;{&Q+y-7V+QE(xi^ipw14Gt1O* z>^TAsL(9VPh*kAYpw@{Ixmj*#SGbeOg!PU2gyHI;I0%$QQ&l9MW4j&B!M^YaKkl#=&b%l ziT9x9`8r^|bz|)6Y&eeaY-g#!rIitZIUYI3DK>fIwZ}A^WZ9^C-&inNzksg+GM;g> z0F||weRQpI3mvhM-jb{O>Lbt$k{0omRk^I$H3kck|*0fb&w;6bc zgXh0&|4{+AXnn8;00+k!9Fem2bH(S(XSY!(5+{lG{AQdA_1Mv^)am@7E6OWN!dY za^%Us%VP%TW2Fl?huKG?;Se77(3C#9%K4wci&UunFSwEY$w4@h{0HoC90-boMD%Ex zfubTrkLZtMDOfCD);I{u1v;XGJf+W2FM2g@)+hP>_tNLp=4nRfmVvwZ`V_qOKLa23 z=lgH{e1+<+ZL7r^TT8+-04B<{TqH)WnxCy<)txzvxeDVVIPx{G8+%DNzcyF`C}?rg5(E)~T^9S_Ubk>1m+%8(C&#A7fJv+aYd zL9i~erP5YR=J%8bl{Cy67U2kk9yco18iBLEGTi{+=AYdrhHg ze=c`=aH^Sj*d9P&k%94xQoH-Caj_g)gYdC1=wU<^KGXN&Nts1es9!;+>PrU#J zX9ZP&rTk;)d7eTJst;ed%%5A5Tl{F>40i!HolL6yd5$d9c5W=V@|vmlt>JrhglNAvXjiX$CyQAAF&^zO^Aa=N#PZ=s=G zWet<{QqO&Uz-tVF<%j~b7|I!cCIVZjyL@xN^aGTTf5&)#c+Vk$&8Av^^MCBF52L$~`X9x$m!>+N%zYxZNcubNKVr5a_G08-19ExK=*J<3-lsm-` zco)4ZODnS|#dT|yrIX{@ALf0DZ2UA)7gI07yoJ<$cU^&bp`z>%zvVckCjtwkH%UK$ z`J_xz>X={+QD45vt9&z^y2D5zEd}BxJ<-xVO9ELn3!-zcPj|h1Yz&uu%m);aBY6{G zDd*sRn>$vpMxoTXmuLU?p6Il|7{{-BD%~zDg96I}cKtB?nmkm0kPqG$02xca>`TPex2&2>K*FKTFxmPy%6Ob=4zuM|=ZZ z?&*!>gxoJZS4rCNir!btbFavOX5miA22H(tD(X4fIW)Apq@u#tz0R>df2u04D2%!g z#<$4n6mu_U;C^>ri~~~zOG*za=XLz4Q2$e;V)7ywiA=(M?(USal3Wev%OZRA?I(T@ zNL_B7X}a869@nhDHa&2ef`WpypUB_;7#cRMhj0wuMG40kLdy_2PHq)_ceq4yhO2|6+2n2&4Y zEg=Yq3{G3Xex3tLjvP5y-C0z^j{ReN8(3Y{tJnbf8R`Z}O*QXgO|5De%eY5%5 zIhZfDV)ii`Z-`@@)Jqo?OHs7`th@wMAzY*ekdRK@H)Yl>M8dat=DrkXNTcvFRf z=b^XlR9j=8)&x3&z^l)Ezlmjvn;zX zyM^mJ+`2n!9=Wr5WqRS+GfC_5k`swzI83(_J~cDaeXW}s5#X?<0PH=)))b))L| zfA2l({7?lYjY=!{4M>$Fb+w_3ZzrgIP+xc z+Us7Iw4Qp?nBnx!r+;tWaHHF=RgKeP$XPxpIC#uY4DaWAEhdd=KaB^yzZ{JpxtNx? z^jPxd$qoIuW@Ru~D2#2Me6yDldzPly%-fE<7;~6@-bK|Z&gLzHFZS+LRMl9TpZ?Hy z7ljJG?aF%XAd^l)ywy7?lBs90YX{kyh~|>do6+rWzPzHxO!7M%Q`A#Y4_ba=_Chg) z*O4Vr;lkOY*4eCdwbmNCJeJN$?!%Zyw@ltxSyx91O=)HkkT>3tW}4J7q4h5kqH zA-qym{MD+X#;s^`Z7A~PBU_7eKD|W1o(Mu z@egPDL(YS@=J%)NPo`NxV6>>7(9CeMD;Y1POqBeV926SLIP_kF=|VVXuo&J1R#6Vt zNNKJPr3AH_L}h=z7%}mUp|Nt~(SY{x;_cy0=(HVjA&Y|O;SjZVk?D{~nsVwH7nu}k zwIX{N%aY+L+h{_;NX}4JCD!87rpD`xU%Dzvx^`EmylHyk=)Tog(ayI-ag^C_ z)3K|+roEX}Ayyh|U0Sf$N&cEn$f8fD)9!AMFs&fSC(Y;5H{%^_gm#yO5^r~w50?yo&eAHl8|(Drj#`24qqlrDcG2A0 zds!zbU7i(e#3!XED(US^3bD2KO0L->3~vk7+` zn-kMV>0o)tLSsp2vDXFy6{USy!8Pa47JUEQ>u~vPBs%_640CYmMLhI!w5QqiU|9igG}Z@pkcS)pnmm`V4(2S%pd-lnYEbm!r%%|bXy_wkK2_w7OW9TRad{HR zF<}-uK8{UJ@wLigVa`OUYVL_pgPxp##`y6`hpwrmjdD4!t+i?QO6h3c^qxX%YwN_3 zJ6AJ!>nwH}&sq;f_-2^Z;@8;u3TeA%NJlN?7R+}IZZTfH+L;z^Ku2%MwBAyEc0|1^ zLyL~ySNpWp<%~Ytz!a@mV;MplwK$I4(Ezi$!rx8aYVEmpWy7Xd(Hy)}Fy>Bjnt}$* z{gOj-z*ett0tZFM>$QO9u3)>*MKXfkcMAp9r1cYwQRo2e1N>%NOM_p~L zk{WQL^YZcf7BB6%h!ZI|w}HJ%ma0+pcH3wiE6AETP&;?>a>?&j74L_7UzNBU7AVCr zv>mPsfO_@SA3qednxwR4R-wV4T$n*u*NSk?g_J~)rPN$M5Jm&!2zx+@{$1$TcKTzd zuO^3Dfh+;QMoIUWcE1lZKij9e<;G*-X*<{6oEGg9uC?yFJ=XQ=Lz-a3@A~F`T#WHo z=p$=`D=Lq!1B^Wj;qq zHB|Wd>u=dt1J(By-rnx_zc-fSE=yP$14_2cq<2CbNG<>6{XQ=USKm9HOX(nB-0TjV zvP=0}w>84gIEU@M=)OR$wmV)lf!)m_q|C0(YSvc}{xMNFp5jEE8+nmn$kKd(0E>Vu zuTs!Cek|9gV~foJubQj2srYSP&xxi8iUc#iQx9`@`^b ztktlJGO0O*X7vJtPXnBfn;9{=781~Yd-Jh_W>5^=Ikb1wKr`smXoj9 zI=MpJ$tx+(kRvNUf@a=IRB5zk9=W~b7Zei1cJ{hmsQ*3LB^TOC(+SzBp5&y5gPYE8 z7r&O(LT^{kn2rQrTfS6ZL=SwOe#`2VQuKW>W9(;ah5qUm4SC-(1orPvER>fet@yYH z#Ic2+JahL!w58X=i)C91o1wv_8ll+2)r#M-TL#Pb*3?&WIUe@D-h0zjc~9e(Y|GpJ zS}EfN(BeUECor*!`r=-3+-#Y>V}hMY$#njFLkwqSo_dypYVTvqaqObgYWoJAFl`!` zhj+%3tZ1-N-dj3>wY+sAk1;X0qXh-#_s&ta2tIs#D4ky66$?ld^v+42)M2cU| zc+0u`{x-Zl?DQ`B1Yyti`Gq&lmd~R_c;MvFw_H1rQat2va?Eex?UI3XU0b(VJrua| zEyxy`6V^0OeY`=t`z`t9Qgwwx1E8cy7y0eP10YYKTu8OMaCdEkyvx+^1GRVb%3C-8NBZvvY=7@bS`W**aNh=Ku}4O` zrNbw<^78V=V$4T`vcEN_-T~A4rNc3^zv@j?1MG{wn*4wxeRm3F=?uq5q?lKq4gE)d zkwtJXbl8e>-%NGc9@!F0mTt32b+~9&0FrzMs;#+WpMvYWuj)kVs~5ex0RgZhBnty^7Lbw$y#o5 zmjeFc_rG6pr)e}^VgF6W5oSNjr)rm{Ls+x&HX8rTwV;9OJ!LkH^Lbj)#sYx~Yi)Wi zS1jHpCXKZUnD?96w?Znf`*SC#IH63FTKFJv$Fpbl*$uqDoe^w+cQ8JM?Cx*h8E@>gvl^C6d@1Uw(K z5^1ToUPa9d4F^@9?ZTJp&#%!QD&HWV>McmH^DP$Sx2fw}sarK24WLXkYc%XKop#?; zS{{i;kdr_((P(C^Sa6#Y@H2C@^|i3|JhsGdzdFOAdftDlXuxF@+cb2i#b(-vi%lQ> z#=>jQi<*t4)%-*BCw{w1>L~&h@ma^rrV!w&+>t6@Yr6~IHViGC*ZQprw0ohQJz5>oU1G&s-F5~h6 z+rdudp~AWEG)o^M@Ab#gPIqPEn5Wx3j}sc!Eiqj-TN=15huMu^wR!!~_=dZ>8L1{V z6L$CPp36=FmvK#FS7v(UhRB(--+I!*?dZ4zJ@-nPII+90nbQzOP#YLeeM{h9ZsL)Y zOg&X>;}*`(v-v5TK-*IN)Zkn56?94FE&LHM@$Tp35glk^e~i!OR3z;lt*{lYyO$L+UgXO5{K1j$~S%{JhFMLZ8y8J)FGr5 z=x?U}Wplm~e-02?*rvMoT+%bV@IV(pu31=^%o)`(0*dRJTI*{(>2vyThnJbPTlPff zO2*ReMn`XT5`HkVwz2*>li4gasKxELFlE)AB#|{-D4QaNbIp2EyNO6k{;|Q4&IP$L z6hgMc2pTzSk>F9Gru5DBg+pUJ6E|dnY9xosgL3&u=B4GD*S6lx(sE7Lvb_IcyESp1 zA_Y@rs`jeT=EJx7CQ(8dO|4b)A-{ajDqE79@($2yIyg>xI*;X43Fyz3El*n{s{JNY zu6U29#(Pd9yWd+sRUhHNzeLUK|VoPvi>n0&Ox6tg1%VRHl zZEnu8f;9n|#nJf>6kAOio6Bk(=37Huu`-gSUY}zOqD73&PQ_QXtb7q9WAfaQ^!)DS zst4kOHVTwZTSt&a3tTS&A~a~5)N!poBi26nQxPz4)LuYU^0s7l@K4Y z3$UH-8Z6h}>A-TVT9{F=-V<<8pKh{c>UyqAmPz4O(iC%Nnd6s4oQt^l!1{#l>Sqm7 zNmQou3u-&R?cWK{i|cQ4eh`CIj_xxVVP4Bb-9etMd4+3 zp$;9!-*ZppB#Be+bw0w*e0f>IQF5vL$-e0JaE1lUskH|Q0VD75&WW`+EewD7VD~MV zbmxbvzMk@-%omQt7>K2Jng1@Z^yQ~jdx3Ln#3SrvoErRiS-tig1tY|(ZD?sB_};eD zqG9oQT-)thG&ZQi6wOKNfd}Wy|iDM_dWy}1`b9?KlF!r47?NeKeppZCj zoIQ|;4sa9)RuZr7;lLJHH1X;kFg)s=Fk+--RV%Rkemg7T$b(;TecEj58@GGrg8Wub z3VYk^8E#|N3tgFn1yYu-i6X^wwzXGPzT~rzWY`auU)a_e_Fp(VM`CV$?4=3d{vSVOFnhx@wQ zRPcNnpTkUG$$WEI(NF}VMHO%QN5MVgpBY@%9kX{+TJA8Kt1Q%g7bt5~(dNiiHl`#D za2-e^FOmW| zdwKLArX;l=Q;NP4+%!IcVow91bY4GC6|N0IPakFX-3fl%6&$U`{T6gh3D#pgSa6tX1&mk%$ z;nT_eavYQTO^J}yPaS2QFCoG_v1ixo`4tr=_GE9LlEm2#j*6iT4HhFtn~uL1LI2m1 z5sp39i$9N!9s|6@_uDVJq9o!|v%K}W{gqH7Zc6|mYS2#=!W8u9^{@^I^@RaqiRZ7` z->4?0#V%sruBfi-7#eNu-4Dox#KDZhO++e-pa-c9PAN$ zM~{kxm-Mx)%2opDZhB2zv-{NnX0YtZgG0oLeGy{K;+}%VEZ{|&o3xW1NU*nXxNh_> z;G&Iyfb&iGcxa_U>_!R={0m}+W=C-#hQQ@hw&(|60-C%*2Oopj(h=wAHcaI6Q>&Q)Etat_>*d4DVwF72= zvXa3CWnriT7Ad}5RoolxXFPC{k!gR^hpk|Qwe@3d6;B}=#IMU`f8e^jkp>}bpsUA( z&IZP*U(FDnru2@$Zj1o3aN!Mv9vf;liAzK}{tHW1#_+ zLNfI{%iv8~{^PId`MJ4OS_IP_9Qm?I4`~`A39FQTIOFXBc7gewb>|UC<vE`jEOI z)WHOfq1_>Kgj?ezfc$RHR=Xf6EBS1x?E$st64AO{qakm)O288DX$g^id%8LWmLho8 zQMUgoETx;-82g9^nC}gLkl5vL-CPa+qLda|c}atI*vfNfYKwv1HH%HN_|~pdKRfk2 z`{2#}4kO5^**MKKU_EYjU2k4y~o_s!xr(FIqgz|& zj-{+ji@GDl1z~JzKg9F$J&*hoprax>c1=Rf?Svz#B>ceh5~0Ak*}nX++r~1l~nKSsOGRNP`$rPpt!1dGB?D0dSA$Wiuv-yz$~TQ-qy8d&s}?)`HHW&Cn8F?A%$=sZSUSxM zY|x4?S!esy&$zDGM)Ba3pe(hA;a-iceG=**3_9N35$noBJK~h5r0}vT1i!wrw`v?l?Nt9TjaIX1R+&lck#Lq4o7kezVY$Hzn9a2 zu6SwnhWv2rhcl1$zATH)9~Xk}@4bAKW5jPeDKCj#&SkvxQ&-!F@krpHE`Yqr;kvtg zVAvl=KSy+$?6Y}3MB(B;6=MIyLwQeVWPAT%G87g(Z*}o$%-=U&mD?aj|*@bGcUG34S-L%@~>may=EdL@6e$*d_fm(t@y(v z0xA#gjy!~!f%5WP?P9`aLpGL1WK+8h=tL@jM$Icot`Kk%eeggI z9y?wSzxT&6K9T_Z%)<7gA4J|tT>|Mutx!u^(PDk+Wh^`U(R??6YT;Sj5{EJaL=xOt zfsQ4vf)6e76%xJfB~{TR8gTpZ@fp!<{ih>RdUS&@sJM1+8S9V|11K;nZoay<%?7M8 z(Kaz~pgiFS@POYDP%APPa-^W(4ND}fi3%J%dgwTMIpS7jEWY7B8UZNa2vixsOAw~{ z`=%yow(rPvcUCxLjFmW@Jo8u9A%_j98}K^kxrrPJF|pU|#Q3=Q3eS}zKL|U-7xw-U zv(3rFQ@|_-)LiNqS6zhJPzNNaKe74IP-`HpM}GLg!h7HbBi|?f2bV)0!W5v)zhKv! zV^e{lGLeBgHLUxE^5~HKkc2&q6%V#K5ah>>LkM@o)x+a5oDm~8t2}PId z5FW~FYnT1l;YM4rz{Og4?H9?=1eheRuJeYxrgR1W_2r|RopZ?AME%STDFy`qpUrg* z5+_qsfHNzubBzsfawLzPY#BME6|D(u;GKk|`-f`*V?H+;_v6G@D>%#4$atux^8}P1Ml_d1wO*>~OWmF#S1k z$IwRLtomBig&jR~4DAvvjCbO(DEZ&LMll<~>9EF}u>AX28`#bPnVcDi!y;rs`N0x$ zcuba$P8(>A1H(=0h}~gv)kW}B<=M>|rj}q|JZJeMPVPZIIGB?#aX1D_9gM$x{483O zKTw$GwqVZ_zf?lZNQJ|QG!uMAkm7;tp``l1ign;%W>yeE9o|=uzP<&5B1h;+j7S}v zD3$kBM*eWwd-+%;gotxC=SW_Tju7O1-s8LWCnixD4K3gc3w7ynU|M0nYH!_esE$U1M(}G zCBJ~Epy09{Q||mY@O*UMZXLojIfgh<#Y9lWAT0*LA3;YO)y2M!j`e0 z|8ADXrBi*37cw=GFG9hs0p#-|gOh7Hz6Bjv3xhXBU6q2uV&gRH4;bXPpcD&vbo3>+ ze!c(MWY&o|_sWhmrN*>q419e^LMK!RMM^pSd46ESa=trFv-eiImZjd_+ucE|HRVCJ z@}1RwNPoYk5DE$XD*pUSw~z-PO`Pp5wM$QZQgN@!Z3n{G*Sp*d??dg?5|r#lr^VQ` z@LG4=k$^=mK&kE*$PP73YcI0UPKES;C2l-O2z{mPzSF5VHj~#H=Ctw)c@Xln8zAFV zT4{56iXL*Efg1NAwJ#SE6%|7BTCPj^3vNC@26x|c1#41U`s&PV3;%CvB)hgCPHi1Z zw12|-t|?6omK9xj*z*+#M<}!{@3uL`q!4*3?uEXRqZtd2<<*dYfo3{pL8(z0ho^%!- z!ds1>KkmvI5kJr3YSHUgnX+7A@VruDrNV@Ble%*)jb$^od#$o!(phV0D|vE0YPY4= zZ#Q#lK89t)Jf&)Mv&@`xlP|MsI(hQy&8)Ml@!cmY>?7j4X)DNj{j?r0tLs14`nKF> z$mt~W%`}?D>1Bs$QpM!eyIG;hlLcy7ZSaC&g?Kdaoc$)Z$lkRczg?NHRrtx1L#KB% z^f))U#rL`*;@$I>Ey61%huC)d4W94fcU1YT#=D%Xz^pn-tPQe!YHfnBQ7;;U%G+lMgsId*y^qL?LsGR1k9R^K%>TXpMzGs_w9v za&A&6L)~M1+_ROu9Qfi7uf3eRLVD9iX3lM`J)3I%r*@h$;|6ENgz~1192Azzyxfek z$#*i}3{gnqIPmTG#}6sZh*c#_I*=+X^98uA<&f{RBn-Jqx6R9M-ut4p%opMo&LvhA zJmqlNxouv5bFk^uj(^I~3cNHrf0{|4ftZN zn@S=1j{p0iP?@&*fz82w_+pXU+BLDN+G&SJ@WqAAd*4qrqhF!SCP#i=6wAYIW|-Ok ziA=Cr_zGSQIr8(8*k#gY<(d7TxM7xgQC?fwU~awzwSTjJ{a2_ZXQormdF=3E8a=NC z6EQal>>8Y!6&VqfEGl#U@j8Bu94`8}*a>rI9po2iL|zLhkz)2?0*Z+KLVE00XYJk- zHeL(-ZZW{0{^FAHyF!R^148j289T&4cjtf6sw-SQV`5OLX{uBS`=8FGp}{1{xD? z4*l21kK76>u=4oMC;n@X{xwTZc)cgbPx-h|eoP_3 z(e3FZ?GeNNr)2XW0kOyAG~@R_$mRWKhabTMt%O8p54_SNf%}h13|imV{{ R!ZG-tq?oK|<_#UM{|6*CiiZFI literal 0 HcmV?d00001

    Pipeline(steps=[('step1',\n",
    +       "                 ColumnTransformer(remainder='passthrough',\n",
    +       "                                   transformers=[('col_tnf',\n",
    +       "                                                  OneHotEncoder(drop='first',\n",
    +       "                                                                sparse_output=False),\n",
    +       "                                                  [0, 2])])),\n",
    +       "                ('step2', StandardScaler())])
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.