forked from gouthampradhan/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MaximalRectangle.java
80 lines (72 loc) · 2.43 KB
/
MaximalRectangle.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
package stack;
import java.util.Stack;
/**
* Created by gouthamvidyapradhan on 29/11/2017.
*
* Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 6.
Solution O(n * m): This problem is similar to LargestRectangleInHistogram.
Run the largest rectangle in histogram algorithm for each row.
*/
public class MaximalRectangle {
/**
* Main method
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception{
char[][] matrix = {{'1','0','1','0','0'}, {'1', '0', '1', '1', '1'}, {'1', '1', '1', '1', '1'},
{'1', '0', '0', '1', '0'}};
System.out.println(new MaximalRectangle().maximalRectangle(matrix));
}
public int maximalRectangle(char[][] matrix) {
if(matrix.length == 0 || matrix[0].length == 0) return 0;
int[] A = new int[matrix[0].length];
int max = Integer.MIN_VALUE;
for(int i = 0; i < matrix.length; i ++){
for(int j = 0; j < matrix[0].length; j++){
if(matrix[i][j] == '1'){
if(i > 0 && matrix[i - 1][j] == '1'){
A[j] = A[j] + 1;
} else{
A[j] = 1;
}
} else {
A[j] = 0;
}
}
//calculate max rectangle for this row
max = Math.max(max, getMaxRectangle(A));
}
return max;
}
/**
* Get max rectangle algorithm similar to max rectangle in histogram
* @param heights
* @return
*/
private int getMaxRectangle(int[] heights){
int maxArea = Integer.MIN_VALUE;
Stack<Integer> stack = new Stack<>();
int i = 0;
for (; i < heights.length; i++) {
while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {
int top = stack.pop();
int base = stack.isEmpty() ? i : i - stack.peek() - 1;
maxArea = Math.max(maxArea, base * heights[top]);
}
stack.push(i);
}
while (!stack.isEmpty()) {
int top = stack.pop();
int base = stack.isEmpty() ? i : i - stack.peek() - 1;
maxArea = Math.max(maxArea, base * heights[top]);
}
return maxArea;
}
}