From b3ce572034b4deb2a037fc614a1e398ea70ba6a8 Mon Sep 17 00:00:00 2001 From: Alan Loh Date: Fri, 1 Dec 2023 14:45:22 +0100 Subject: [PATCH] Source contamination update --- nenupy/__init__.py | 2 +- nenupy/schedule/contamination.py | 52 +++++++++++++++++--------------- 2 files changed, 29 insertions(+), 25 deletions(-) diff --git a/nenupy/__init__.py b/nenupy/__init__.py index 7c3fd9f..ff085a7 100644 --- a/nenupy/__init__.py +++ b/nenupy/__init__.py @@ -5,7 +5,7 @@ __copyright__ = "Copyright 2023, nenupy" __credits__ = ["Alan Loh"] __license__ = "MIT" -__version__ = "2.5.3" +__version__ = "2.5.4" __maintainer__ = "Alan Loh" __email__ = "alan.loh@obspm.fr" diff --git a/nenupy/schedule/contamination.py b/nenupy/schedule/contamination.py index a16428b..052cfd1 100644 --- a/nenupy/schedule/contamination.py +++ b/nenupy/schedule/contamination.py @@ -243,15 +243,14 @@ def __init__(self, time: Time, frequency: u.Quantity, pointing: Pointing, + nenufar_config: NenuFAR_Configuration = NenuFAR_Configuration(beamsquint_correction=False), miniarray_rotations: List[int] = None, use_antenna_gain: bool = True ): self.time = time self.frequency = frequency self.pointing = pointing - self.configuration=NenuFAR_Configuration( - beamsquint_correction=False - ) + self.configuration=nenufar_config self.miniarray_rotations = miniarray_rotations self.moc = None @@ -306,55 +305,56 @@ def miniarray_rotations(self, mr: List[int]): # --------------------------------------------------------- # # ------------------------ Methods ------------------------ # - def compute_weight_moc(self, sources: List[str], cuts_number: int = 10) -> np.ndarray: + def compute_weight_moc(self, sources: List[str], thresholds: np.ndarray = np.logspace(-2, 0, 10, endpoint=False)) -> np.ndarray: """ Compute moc with arrays of values between 0 and 1.""" # Get an array of sky positions (including all sources, all times) sky_positions = self._get_skycoord_array(sources) - thresholds = np.linspace(0, 1, cuts_number + 1) - - threshold_moc = np.zeros((cuts_number, self.frequency.size, self.time.size), dtype=bool) + threshold_moc = np.zeros((thresholds.size, self.frequency.size, self.time.size), dtype=bool) - for i, thr in enumerate(thresholds[1:]): + for i, thr in enumerate(thresholds): - moc = self.compute_moc(maximum_ratio=thr, return_array=True) + moc = self.compute_moc(relative_threshold=thr, return_array=True) source_in_grating_lobes = np.zeros(moc.shape, dtype=int) for f_idx in range(self.frequency.size): for t_idx in range(self.time.size): - source_in_grating_lobes[f_idx, t_idx] = np.sum( + source_in_grating_lobes[f_idx, t_idx] = np.any( moc[f_idx, t_idx].contains( sky_positions[:, t_idx].ra, sky_positions[:, t_idx].dec ) ) - - threshold_moc[i, :, :] = source_in_grating_lobes.astype(bool) + + threshold_moc[i, :, :] = source_in_grating_lobes return SourceInLobes( time=self.time, frequency=self.frequency, - value=np.sum(threshold_moc, axis=0)/cuts_number + value=np.nanmean(threshold_moc, axis=0) ) - - def compute_moc(self, maximum_ratio: float = 0.5, return_array: bool = False): + def compute_moc(self, relative_threshold: float = 0.5, return_array: bool = False): r""" Computes the MOC as sky patches where the array factor is above :math:`{\rm max}(\mathcal{F}_{\rm MA}) \times r`. - :math:`\mathcal{F}_{\rm MA}` is the Mini-Array(s) - array factor and :math:`r` is the ``maximum_ratio``. + :math:`\mathcal{F}_{\rm MA}` is the Mini-Array(s) normalized + array factor and :math:`r` is the ``relative_threshold``. + + :param relative_threshold: + All the AF values above this threshold are included in the MOC. + :type maximum_ratio: + float """ # Number of Mini-Array that have been summed - n_ma = self.miniarray_rotations.size - + # n_ma = self.miniarray_rotations.size mocs = [] for f_idx in range(self.frequency.size): # Compute the threshold above which the HEALPix cells are # to be included in the 'main sensitivity' of the analog beam # (i.e., primary beam, and grating lobes). - threshold = self.sky.value[:, f_idx, 0].max()/n_ma*maximum_ratio + threshold = self.sky.value[:, f_idx, 0].max()*relative_threshold # Find the cells and select only those that are above the horizon. above_threshold = self.sky.value[:, f_idx, 0] >= threshold @@ -432,7 +432,7 @@ def sources_in_lobes(self, sources: List[str]) -> SourceInLobes: for f_idx in range(self.frequency.size): for t_idx in range(self.time.size): source_in_grating_lobes[f_idx, t_idx] = np.sum( - self.moc[f_idx, t_idx].contains( + self.moc[f_idx, t_idx].contains( # contains_lonlat sky_positions[:, t_idx].ra, sky_positions[:, t_idx].dec ) @@ -483,7 +483,10 @@ def plot(self, # --------------------------------------------------------- # # ----------------------- Internal ------------------------ # def _compute_array_factor(self, use_antenna_gain: bool = True) -> np.ndarray: - """ Computes the array factor, summed over the 6 different NenuFAR Mini-Array rotations. """ + """ Computes the normalized array factor, summed over the 6 possible different NenuFAR Mini-Array rotations. + If less rotations are selected, the sum is done on less MA array factors. + The returned AF is normalized. + """ # Mini-Array selection ma_mask = np.isin(MA_ROTATIONS, self.miniarray_rotations) af = 0 @@ -497,13 +500,14 @@ def _compute_array_factor(self, use_antenna_gain: bool = True) -> np.ndarray: configuration=self.configuration )#self.pointing ) - + if use_antenna_gain: af *= ma._antenna_gain(sky=self.sky, pointing=self.pointing) log.info("Computing the array factor...") with ProgressBar() if log.getEffectiveLevel() <= logging.INFO else DummyCtMgr(): - return af.compute() + array_factor = af.compute() + return array_factor / np.max(array_factor, axis=3)[:, :, :, None] def _get_skycoord_array(self, sources: List[str]) -> SkyCoord: